JP5155913B2 - Exhaust gas analyzer - Google Patents

Exhaust gas analyzer Download PDF

Info

Publication number
JP5155913B2
JP5155913B2 JP2009066589A JP2009066589A JP5155913B2 JP 5155913 B2 JP5155913 B2 JP 5155913B2 JP 2009066589 A JP2009066589 A JP 2009066589A JP 2009066589 A JP2009066589 A JP 2009066589A JP 5155913 B2 JP5155913 B2 JP 5155913B2
Authority
JP
Japan
Prior art keywords
light
signal
exhaust gas
measurement
measurement light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009066589A
Other languages
Japanese (ja)
Other versions
JP2010217100A (en
Inventor
正裕 山蔭
久雄 鈴木
聖 深田
研二 牟田
慎一郎 浅海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toyota Motor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009066589A priority Critical patent/JP5155913B2/en
Publication of JP2010217100A publication Critical patent/JP2010217100A/en
Application granted granted Critical
Publication of JP5155913B2 publication Critical patent/JP5155913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、自動車等の排ガスの分析装置および排ガス分析方法に係り、特に、排気経路中に取り付けることで、排気経路中を通過する排ガスの成分を正確にリアルタイムに測定できようにした排ガス分析装置と排ガス分析方法に関する。   The present invention relates to an exhaust gas analyzer and exhaust gas analysis method for automobiles and the like, and in particular, an exhaust gas analyzer that can be mounted in the exhaust path so that the components of the exhaust gas passing through the exhaust path can be accurately measured in real time. And an exhaust gas analysis method.

従来、この種の排ガス分析装置として、特許文献1には、排ガス分析の精度を向上させることができ、排ガス分析を容易にリアルタイムで行える、レーザ吸引法による排ガス分析装置が記載されており、その装置は、レーザ光発生手段の出力光を測定光と参照光に分波させ、その測定光を計測セル内を流れる排ガスに照射させる光分波手段と、光分波手段と計測セルの間の光路に配置された光減衰器と、排ガス中を透過した測定光と参照光を受光する受光素子と、受光素子で受光された測定光信号と参照光信号との差分信号を検出する差分検出器とを備え、前記差分検出器は、さらに、受光素子で受光された測定光信号と参照光信号に基づき、測定光と参照光の光強度を一定にするべくフィードバック補正量を算出してその信号を光減衰器に入力する回路を備えている。   Conventionally, as an exhaust gas analyzer of this type, Patent Document 1 describes an exhaust gas analyzer using a laser suction method that can improve the accuracy of exhaust gas analysis and can easily perform exhaust gas analysis in real time. The apparatus demultiplexes the output light of the laser light generating means into measurement light and reference light, and irradiates the measurement light to the exhaust gas flowing in the measurement cell, and between the optical demultiplexing means and the measurement cell. An optical attenuator disposed in the optical path, a light receiving element that receives measurement light and reference light transmitted through the exhaust gas, and a difference detector that detects a difference signal between the measurement light signal received by the light receiving element and the reference light signal The difference detector further calculates a feedback correction amount based on the measurement light signal and the reference light signal received by the light receiving element so as to make the light intensities of the measurement light and the reference light constant. To optical attenuator And it includes a circuit to power.

この種の排ガス分析装置において、計測部である計測セルからの背景光(輻射光)が測定光の受光素子に入力されると、測定光信号と参照光信号の差分に背景光に基づく誤差が生じ、計測誤差を生じる結果となる。   In this type of exhaust gas analyzer, when background light (radiant light) from a measurement cell that is a measurement unit is input to a light receiving element for measurement light, an error based on background light is added to the difference between the measurement light signal and the reference light signal. Resulting in a measurement error.

特許文献2には、測定対象とされるガス状物質に固有な吸収波長のレーザ光を発振する光源と、測定ガスを透過したレーザ光を受光する手段とを備えたガス濃度計側装置において、背景光(輻射光)を受光する手段をレーザの光軸を外れた位置に別途設置し、レーザ光の受光出力から背景光の受光出力を差し引くことにより、背景光の影響を除去することが記載されている。   In Patent Document 2, in a gas concentration meter side device including a light source that oscillates laser light having an absorption wavelength unique to a gaseous substance to be measured, and means for receiving laser light that has passed through a measurement gas, It is described that a means for receiving background light (radiation light) is separately installed at a position off the optical axis of the laser, and the effect of background light is removed by subtracting the light reception output of the background light from the light reception output of the laser light. Has been.

また、特許文献3には、内燃機関の燃焼室内の燃料濃度を高精度に検出するために、測定光を入射させたときの通過後の光強度を検出し、該検出値を、前記光源から測定光を遮断弁で遮断したときに燃焼室内の熱輻射光によって同様に検出される検出値により補正することで熱輻射の影響を除去した光強度を入手し、その信号から燃料濃度を算出することが記載されている。   Further, in Patent Document 3, in order to detect the fuel concentration in the combustion chamber of the internal combustion engine with high accuracy, the light intensity after passing when the measurement light is incident is detected, and the detected value is obtained from the light source. Obtain the light intensity from which the influence of thermal radiation has been removed by correcting with the detected value that is similarly detected by the thermal radiation light in the combustion chamber when the measurement light is blocked by the shutoff valve, and calculate the fuel concentration from that signal It is described.

特開2006−337326号公報JP 2006-337326 A 特開2001−74653号公報JP 2001-74653 A 特開2003−4633号公報JP 2003-4633 A

特許文献1に記載の排ガス分析装置では、計測部である計測セルからの背景光(輻射光)による計測誤差について、特に言及がされていない。特許文献2に記載のガス濃度計側装置では、背景光を受光するための受光手段を別途レーザの光軸を外れた位置に設置する必要がある。また、特許文献3に記載の燃料濃度測定装置では、検出値を、光源から測定光を遮断弁で遮断したときに燃焼室内の熱輻射光によって同様に検出される検出値により補正するようにしており、遮断弁という機械的な手段による測定光の遮断であることから、1ms以内という高速演算を必要とする排ガス分析装置にその技術を適用しても、リアルタイムでの測定が難しい。   In the exhaust gas analyzer described in Patent Document 1, no particular mention is made of a measurement error due to background light (radiant light) from a measurement cell which is a measurement unit. In the gas concentration meter side device described in Patent Document 2, it is necessary to separately install a light receiving means for receiving background light at a position off the optical axis of the laser. Further, in the fuel concentration measuring device described in Patent Document 3, the detected value is corrected by the detected value similarly detected by the heat radiation light in the combustion chamber when the measuring light from the light source is blocked by the shut-off valve. In addition, since the measurement light is blocked by mechanical means called a shut-off valve, real-time measurement is difficult even if the technology is applied to an exhaust gas analyzer that requires a high-speed calculation within 1 ms.

さらに、特許文献1に記載のように、測定信号と参照信号とのバランスを取るために、測定光と参照光の受光強度を光減衰器でフィードバック制御し、一定強度の光を受光するようにしたものにおいて、背景光(輻射光)による計測誤差をなくすために、特許文献2あるいは特許文献3に記載のように測定光信号からと参照光信号を差し引くだけでは、後記するように、正しい計測ができないという不都合がある。   Further, as described in Patent Document 1, in order to balance the measurement signal and the reference signal, the light intensity of the measurement light and the reference light is feedback-controlled by an optical attenuator so as to receive light having a constant intensity. In order to eliminate the measurement error due to background light (radiant light), just subtracting the reference light signal from the measurement light signal as described in Patent Document 2 or Patent Document 3, as described later, correct measurement is performed. There is an inconvenience that cannot be done.

本発明は、上記のような背景のもとになされたものであり、背景光(輻射光)の影響を排除することで計測誤差をなくすことができ、かつリアルタイムで計測することのできる、より改良された排ガス分析装置を開示することを課題とする。   The present invention has been made based on the background as described above. By eliminating the influence of background light (radiant light), measurement errors can be eliminated, and measurement can be performed in real time. It is an object of the present invention to disclose an improved exhaust gas analyzer.

本発明に係る排ガス分析装置は、基本的には、エンジンから排出される排ガスにレーザ光を照射し、排ガス中を透過した信号光の吸収線から排ガスの成分を分析する排ガス分析装置であって、レーザ光照射タイミングチャートとレーザ光が照射されない時間帯を選択するタイミング信号発生手段を備えたレーザ光発生手段と、前記レーザ光発生手段の出力光を測定光と参照光に分波させ前記測定光を計測セル内を流れる排ガスに照射させる光分波手段と、前記光分波手段と前記計測セルの間の光路に配置された光減衰器と、排ガス中を透過した前記測定光と前記参照光を受光する受光素子と、前記受光素子で受光された測定光信号と参照光信号との差分信号を検出する差分検出器と、前記タイミング信号発生手段からの信号に基づきレーザ光が照射されないときに前記測定光の受光素子が受光した輻射光信号を格納するメモリと、前記測定信号から前記輻射光信号を減算する減算回路と、前記減算後の信号を前記光減衰器にフィードバックする光減衰器制御回路と、を備えることを特徴とする。   An exhaust gas analyzer according to the present invention is basically an exhaust gas analyzer that irradiates exhaust gas emitted from an engine with laser light and analyzes components of the exhaust gas from an absorption line of signal light transmitted through the exhaust gas. A laser beam irradiation timing chart, a laser beam generator having a timing signal generator for selecting a time zone in which the laser beam is not irradiated, and the measurement light and the reference beam separated by the output light of the laser beam generator Optical demultiplexing means for irradiating the exhaust gas flowing in the measurement cell, an optical attenuator disposed in an optical path between the optical demultiplexing means and the measurement cell, the measurement light transmitted through the exhaust gas, and the reference A light receiving element that receives light, a difference detector that detects a difference signal between a measurement light signal received by the light receiving element and a reference light signal, and a laser beam based on a signal from the timing signal generating means A memory that stores a radiation light signal received by the light receiving element of the measurement light when it is not irradiated, a subtraction circuit that subtracts the radiation light signal from the measurement signal, and a signal after the subtraction is fed back to the optical attenuator. And an optical attenuator control circuit.

また、本発明に係る排ガス分析方法は、エンジンから排出される排ガスにレーザ光発生手段の出力光から分波した測定光を光減衰器を通して照射し、排ガス中を透過した測定光と参照光とを受光して測定光信号と参照光信号との差分信号を検出して該差分信号に基づいて排ガスの成分を分析する排ガス分析方法であって、前記排ガス分析方法は、レーザ光が照射していないときに測定光受光手段が受光した輻射光信号をメモリに格納し、レーザ光を照射しているときに測定光受光手段が受光した測定光信号から前記輻射光信号を減算して得られた信号を前記光減衰器にフィードバックすることにより、輻射分を除いた測定光レベルを設定値に近付けるようにする制御を含むことを特徴とする。   Further, the exhaust gas analysis method according to the present invention irradiates the exhaust gas discharged from the engine with the measurement light demultiplexed from the output light of the laser light generating means through the optical attenuator, and the measurement light and the reference light transmitted through the exhaust gas. Is an exhaust gas analysis method for detecting a difference signal between a measurement light signal and a reference light signal and analyzing an exhaust gas component based on the difference signal, wherein the exhaust gas analysis method is irradiated with laser light. Obtained by subtracting the radiant light signal from the measurement light signal received by the measurement light receiving means when the laser light is irradiated and stored in the memory. Control is provided to bring the measured light level excluding radiation into a set value by feeding back the signal to the optical attenuator.

以下に、本発明における排ガス分析装置および排ガス分析方法の特徴的事項について、説明する。前記した特許文献1に記載される差分法を利用したガス分析方法において、レーザ光発生手段に印加される駆動パルスが電流値が経時変化する電流走査区間を持つ駆動パルスである場合、背景光(輻射光)である輻射光信号がない状態では、図1(a)に示すように、排ガス中を通した測定光信号と通さない参照光信号の信号レベルの強弱の差を取り、これをアンプで信号を差分増幅することにより、図1(b)に示すような差分信号の吸収波形を得、この強度に基づいてガス分析を行っている。差分増幅が必要な理由は、測定信号と参照信号との差がきわめて微弱であることによる。ここで、測定信号(吸収部を除く)と参照信号とのバランスがとれていることが必要となるために、前記のように、測定光、参照光の受光強度を光減衰器でフィードバック制御し、常に一定の強度の光を受光するようにしている。   Hereinafter, characteristic items of the exhaust gas analyzer and the exhaust gas analysis method of the present invention will be described. In the gas analysis method using the difference method described in Patent Document 1 described above, when the drive pulse applied to the laser light generating means is a drive pulse having a current scanning section in which the current value changes with time, background light ( In the state where there is no radiation light signal (radiation light), as shown in FIG. 1 (a), the difference in signal level between the measurement light signal passing through the exhaust gas and the reference light signal passing through the exhaust gas is taken and this is amplified. By differentially amplifying the signal, an absorption waveform of the differential signal as shown in FIG. 1B is obtained, and gas analysis is performed based on this intensity. The difference amplification is necessary because the difference between the measurement signal and the reference signal is extremely weak. Here, since it is necessary to balance the measurement signal (excluding the absorber) and the reference signal, the received light intensity of the measurement light and reference light is feedback-controlled by the optical attenuator as described above. , Always receive light of constant intensity.

この方法に、輻射光による誤差をなくすために、単に測定光信号から参照光信号および輻射光信号を減算する手法を適用すると、下記の理由により正しい計測ができないことが起こる。   If the method of simply subtracting the reference light signal and the radiation light signal from the measurement light signal is applied to this method in order to eliminate an error due to the radiation light, correct measurement cannot be performed for the following reason.

(ア)輻射による測定光への寄与は、波長依存性が低いため、差分法で計測する領域ではほぼ一定と見なせるため、測定信号は、図2(a)に示すように、参照信号に比べて輻射光分だけゲタをはいた値に等しくなる。
(イ)これを差分増幅すると、差分前の差分信号に比べて輻射光が十分に大きい場合には輻射後の差分信号は飽和する場合があり、計測不能となる。
(ウ)さらに、(ア)でいうゲタをはいた値が測定信号に重畳すると、測定信号/参照信号のバランスを回復するために、測定光学系の減衰率を操作し、測定光の強度を下げて、バランスを取ることとなる。このときに、に測定信号は一定比率で割り引かれることとなり、その結果、図2(b)に示すように、測定信号/参照信号の傾きに差異が生じる。それを差分増幅することにより、傾きが増幅し、図2(c)に示すように、差分信号の一部が測定系において飽和が発生して信号の計測不能となる領域が生じ、排ガス濃度の計測に問題を生じる。
(A) Since the contribution to the measurement light due to radiation is low in wavelength dependence, it can be considered to be almost constant in the region measured by the difference method. Therefore, the measurement signal is compared with the reference signal as shown in FIG. Thus, it is equal to the value obtained by adding the amount of radiation.
(A) When this is differentially amplified, if the radiation light is sufficiently larger than the difference signal before the difference, the difference signal after radiation may be saturated, and measurement becomes impossible.
(C) Furthermore, when the value with the getter in (a) is superimposed on the measurement signal, in order to restore the balance between the measurement signal and the reference signal, the attenuation factor of the measurement optical system is manipulated to increase the intensity of the measurement light. Lower and balance. At this time, the measurement signal is discounted at a constant ratio. As a result, as shown in FIG. 2B, a difference occurs in the gradient of the measurement signal / reference signal. By amplifying the difference, the slope is amplified, and as shown in FIG. 2 (c), a part of the difference signal is saturated in the measurement system, resulting in an area where the signal cannot be measured. Problems with measurement.

本発明では、上記の不都合を解消するために、本発明では、測定信号/参照信号のバランスを取る前に、測定光信号からから輻射光信号を削除するようにしている。すなわち、図3(a)に示すように、測定光に輻射光が重畳している信号から、図3(b)に示す測定光と同時に入手した輻射光信号分を差し引き、減算後の信号を測定信号/参照信号を一定値となるようにフィードバック制御している。そのようにして得られた測定光信号と参照光信号は、図3(c)に示すように傾きが同じものとなり、両信号の差分を差分増幅回路で増幅することにより、図3(d)に示すように、誤差のない差分信号をリアルタイムで得ることができる。得られた差分信号は、従来知られた解析系に送られて、排ガスの分析が行われる。   In the present invention, in order to eliminate the above-described inconvenience, in the present invention, the radiation light signal is deleted from the measurement light signal before the measurement signal / reference signal is balanced. That is, as shown in FIG. 3A, the signal obtained by superimposing the radiation light on the measurement light is subtracted from the radiation light signal obtained simultaneously with the measurement light shown in FIG. Feedback control is performed so that the measurement signal / reference signal becomes a constant value. The measurement light signal and the reference light signal thus obtained have the same inclination as shown in FIG. 3C, and the difference between the two signals is amplified by the differential amplifier circuit, so that FIG. As shown in FIG. 5, a difference signal without error can be obtained in real time. The obtained difference signal is sent to a conventionally known analysis system to analyze the exhaust gas.

より具体的には、本発明において、レーザ光発生手段は、レーザ光照射タイミングチャートとレーザ光が照射されない時間帯を選択するタイミング信号発生手段を備える。タイミングチャートにより、図4に示すように、レーザ光発生手段は、レーザが照射されない時間帯aとレーザが照射されている時間帯bとを反復する。その結果として、測定光を受光する受光素子から、前記した図3(b)に示したような波形の信号強度が得られる。すなわち、図3(b)において、レーザが照射されない時間帯aでの信号強度は輻射光に起因しており、レーザが照射されている時間帯bで信号強度は輻射光による寄与を含む測定光の信号強度となる。   More specifically, in the present invention, the laser light generation means includes a laser light irradiation timing chart and a timing signal generation means for selecting a time zone in which the laser light is not irradiated. According to the timing chart, as shown in FIG. 4, the laser light generating means repeats a time zone a in which the laser is not irradiated and a time zone b in which the laser is irradiated. As a result, the signal intensity having the waveform as shown in FIG. 3B is obtained from the light receiving element that receives the measurement light. That is, in FIG. 3B, the signal intensity in the time zone “a” where the laser is not irradiated is caused by the radiation light, and the signal intensity in the time zone “b” where the laser is irradiated includes the contribution of the radiation light. Signal strength.

レーザ光発生手段は、さらに、レーザ光が照射されない時間帯を選択するタイミング信号発生手段を備えており、前記タイミング信号発生手段からの信号に基づきレーザ光が照射されないときに測定光の受光素子が受光した輻射光信号がメモリに格納される。減算回路は、測定光信号から輻射光信号を減算し、減算回路によって減算された信号が光減衰器制御回路に送られて、測定光側の光減衰器にフィードバックされる。   The laser light generating means further includes timing signal generating means for selecting a time zone in which the laser light is not irradiated, and when the laser light is not irradiated based on the signal from the timing signal generating means, the light receiving element for the measurement light is The received radiation light signal is stored in the memory. The subtraction circuit subtracts the radiation light signal from the measurement light signal, and the signal subtracted by the subtraction circuit is sent to the optical attenuator control circuit and fed back to the optical attenuator on the measurement light side.

参照光側ではその信号が光減衰器制御回路に送られ、参照光側の光減衰器にフィードバックされる。   On the reference light side, the signal is sent to the optical attenuator control circuit and fed back to the optical attenuator on the reference light side.

そのようにして測定信号/参照信号を一定値となるようにかつ傾きが一定になるようにフィードバック制御された測定信号と参照信号とが、差分増幅回路を備えた差分検出器に送られ、そこで差分増幅された差分信号が形成される。その信号が解析系に送られ、例えば特許文献1に記載されているような従来知られた解析法によって、リアルタイムに排ガスの分析が行われる。   The measurement signal and the reference signal that are feedback-controlled so that the measurement signal / reference signal has a constant value and a constant inclination are sent to a differential detector having a differential amplifier circuit. A differentially amplified differential signal is formed. The signal is sent to the analysis system, and the exhaust gas is analyzed in real time by a conventionally known analysis method as described in Patent Document 1, for example.

本発明において、差分増幅回路への入力信号から前記輻射光に起因する信号分を除去することが望ましく、適宜の手法によりそれを行うことができる。一例として、差分検出器に備えられたバンドパスフィルタを用いることができる。すなわち、輻射光のスペクトルは平坦であり、特許文献1に記載のようなレーザ吸収法で行う分光分析における波長掃引幅の範囲内では一定値のバイアスと扱うことができる。従って、例えば、7k〜2MHzのバンドパスフィルタを用いることにより、直流成分としての輻射光信号を除去するとができる。   In the present invention, it is desirable to remove the signal component resulting from the radiation light from the input signal to the differential amplifier circuit, and this can be done by an appropriate method. As an example, a bandpass filter provided in the difference detector can be used. That is, the spectrum of the radiant light is flat and can be treated as a constant bias within the range of the wavelength sweep width in the spectroscopic analysis performed by the laser absorption method as described in Patent Document 1. Therefore, for example, by using a band pass filter of 7 k to 2 MHz, it is possible to remove a radiation light signal as a DC component.

本発明によれば、レーザ吸引法による排ガス分析装置および方法において、計測セルで発生する背景光(輻射光)による影響をなくしたリアルタイムでの信号処理が可能となり、計測程度の高い排ガス分析をリアルタイムで行うことが可能となる。   According to the present invention, in the exhaust gas analysis apparatus and method using the laser suction method, real-time signal processing that eliminates the influence of background light (radiant light) generated in the measurement cell is possible, and exhaust gas analysis with a high degree of measurement can be performed in real time. Can be performed.

差分法を利用した排ガス分析において、輻射光信号がない状態での信号処理状態を模式的に示す図。The figure which shows typically the signal processing state in the state without a radiant light signal in the exhaust gas analysis using a difference method. 差分法を利用した排ガス分析において、輻射光が寄与する場合での信号処理状態を模式的に示す図。The figure which shows typically the signal processing state in case the radiation light contributes in the exhaust gas analysis using a difference method. 本発明に係る信号処理状態を模式的に示す図。The figure which shows typically the signal processing state which concerns on this invention. 本発明に係るレーザ光発生手段でのレーザ光照射タイミングチャートの一例を示す図。The figure which shows an example of the laser beam irradiation timing chart in the laser beam generation means which concerns on this invention. 本発明に係る排ガス分析装置の一実施の形態の全体構成を示す図。The figure which shows the whole structure of one Embodiment of the exhaust gas analyzer which concerns on this invention. 本発明に係る排ガス分析装置を車両に搭載した一実施形態の要部構成図。The principal part block diagram of one Embodiment which mounted the exhaust gas analyzer which concerns on this invention in the vehicle. 本発明に係る排ガス分析装置をエンジンベンチに搭載した場合の要部構成図。The principal part block diagram at the time of mounting the exhaust gas analyzer which concerns on this invention in an engine bench.

以下、図面を参照して、本発明に係る排ガス分析装置の一実施形態を説明する。図5は排ガス分析装置の全体構成を示すブロック図である。図5において、排ガス分析装置30はレーザ光発生手段31を備え、該レーザ光発生手段31には、電流値が経時変化する電流走査区間を持つ駆動パルスが印加される。また、レーザ光発生手段31は、レーザ光照射タイミングチャート32とレーザ光が照射されない時間帯を選択するタイミング信号発生手段33とを備える。レーザ光発生手段31の出力光P(図4に示すような波形を持つ)は、公知の分波器34によって、測定光P1と参照光P2とに分波される。測定光P1と参照光P2は、それぞれ公知の光減衰器(VOA)35を通過する。   Hereinafter, an embodiment of an exhaust gas analyzer according to the present invention will be described with reference to the drawings. FIG. 5 is a block diagram showing the overall configuration of the exhaust gas analyzer. In FIG. 5, the exhaust gas analyzer 30 includes a laser light generating unit 31, and a driving pulse having a current scanning section in which the current value changes with time is applied to the laser light generating unit 31. The laser light generating means 31 includes a laser light irradiation timing chart 32 and a timing signal generating means 33 for selecting a time zone during which no laser light is irradiated. The output light P (having a waveform as shown in FIG. 4) of the laser light generating means 31 is demultiplexed into the measurement light P1 and the reference light P2 by a known demultiplexer 34. The measurement light P1 and the reference light P2 pass through a known optical attenuator (VOA) 35, respectively.

測定光P1は、計測セル36内を流れるエンジンから排出される排ガス中を透過した後、輻射光を含んだ状態でフォトダイオード(PD)などである受光素子37によって受光される。参照光P2はそのままで同様の受光素子38によって受光される。   The measurement light P1 passes through the exhaust gas discharged from the engine flowing in the measurement cell 36, and then is received by the light receiving element 37 such as a photodiode (PD) in a state including radiation light. The reference light P2 is received by the same light receiving element 38 as it is.

受光素子37からの測定光信号と受光素子38からの参照光信号は、差分信号器40に入力する。この例において、差分信号器40は、受光素子37からの測定光信号と受光素子38からの参照光信号とそれぞれに対応して、アンプ41と、7k〜2MHz帯域の周波数成分を通過させるバンドパスフィルタ(BPF)42とを備え、バンドパスフィルタ42を通過した2つの信号が公知の差分増幅回路43に送られる。   The measurement light signal from the light receiving element 37 and the reference light signal from the light receiving element 38 are input to the differential signal device 40. In this example, the difference signal device 40 passes the amplifier 41 and the band pass of the 7 k to 2 MHz band corresponding to the measurement light signal from the light receiving element 37 and the reference light signal from the light receiving element 38, respectively. A filter (BPF) 42 is provided, and two signals that have passed through the band-pass filter 42 are sent to a known differential amplifier circuit 43.

バンドパスフィルタ42を通過することにより、測定光信号と参照光信号からは直流成分が除去される。特に、測定光信号からは、輻射光信号成分が除去される。直流成分が除去された測定光信号と参照光信号は差分増幅回路43において差分増幅が行われ、図3(d)に示したような差分信号が出力される。この差分信号の波形は、計測セル36内を流れる排ガスの成分に依存しており、解析系を構成するコンピュータ44に送られて、前記した特許文献1に記載のような従来知られた手法により、排ガス分析が行われる。   By passing through the band-pass filter 42, a DC component is removed from the measurement light signal and the reference light signal. In particular, the radiation light signal component is removed from the measurement light signal. The measurement light signal and the reference light signal from which the DC component has been removed are subjected to differential amplification in the differential amplifier circuit 43, and a differential signal as shown in FIG. 3D is output. The waveform of the difference signal depends on the component of the exhaust gas flowing in the measurement cell 36, and is sent to the computer 44 that constitutes the analysis system, using a conventionally known method as described in Patent Document 1 described above. An exhaust gas analysis is performed.

本発明による排ガス分析装置30において、前記測定光信号は、前記バンドパスフィルタ42の前で一部が分岐され、分岐された輻射光成分を含む測定光信号は、アナログメモリ45と光減衰器制御回路46に送られる。前記アナログメモリ45には、レーザ光発生手段31に備えた前記タイミング信号発生手段33から、レーザ光が照射されない時間帯をONとする信号が送られ、メモリ更新タイミング制御が行われる。そして、アナログメモリ45は、前記信号がONのときに、前記輻射光成分を含む測定光信号を格納する。ここで実際に格納される信号強度は、レーザ光が照射されない時間帯のものであり、計測セル36における背景光、すなわち輻射光に起因する信号強度である。   In the exhaust gas analyzer 30 according to the present invention, the measurement light signal is partially branched in front of the bandpass filter 42, and the measurement light signal including the branched radiation light component is controlled by the analog memory 45 and the optical attenuator control. It is sent to the circuit 46. The analog memory 45 is supplied with a signal for turning on a time zone during which no laser beam is irradiated from the timing signal generating unit 33 provided in the laser beam generating unit 31, and the memory update timing control is performed. The analog memory 45 stores the measurement light signal including the radiation component when the signal is ON. Here, the actually stored signal intensity is in a time zone in which the laser beam is not irradiated, and is a signal intensity caused by background light in the measurement cell 36, that is, radiation light.

前記アナログメモリ45に格納された信号の信号強度は、加算器(減算回路)47において、次のタイミングで送られてきた輻射光成分を含む測定光信号の信号強度から減算され、減算後の信号が前記した光減衰器制御回路46に送られる。光減衰器制御回路46で処理後のフィードバック信号が前記した光減衰器(VOA)35に送られてフィードバック制御され、測定光の光強度が設定値に近づくように制御される。   The signal intensity of the signal stored in the analog memory 45 is subtracted from the signal intensity of the measurement light signal including the radiation component transmitted at the next timing in the adder (subtraction circuit) 47, and the signal after the subtraction Is sent to the optical attenuator control circuit 46 described above. The processed feedback signal is sent to the optical attenuator (VOA) 35 and feedback-controlled by the optical attenuator control circuit 46, and the optical intensity of the measurement light is controlled to approach the set value.

参照光P2についても、同様にして光減衰器制御回路46によるフィードバック制御が行われ、参照光の光強度が設定値に近づくように制御される。それにより、測定信号/参照信号のバランスが図られる。   Similarly, the reference light P2 is subjected to feedback control by the optical attenuator control circuit 46 so that the light intensity of the reference light approaches the set value. Thereby, the balance of the measurement signal / reference signal is achieved.

上記のように、本発明による排ガス分析装置では、図5において(ア)で囲まれる領域において、測定光から輻射光分を除く処理が行われ、(イ)で囲まれる領域において、測定光から輻射光分を除いた信号成分により光減衰器(VOA)に対するフィードバック制御を行い測定光の光強度が設定値に近づくように制御される。そのために、レーザ吸引法による排ガス分析装置および方法において、計測セル36で発生する背景光(輻射光)による影響をなくしたリアルタイムでの信号処理が可能となり、計測程度の高い排ガス分析をリアルタイムで行うことが可能となる。また、図示の例では、(ウ)で囲まれる差分検出器の領域で、バンドパスフィルタ42によって測定光信号と参照光信号から直流成分を除去する処理をおこなっており、このバンドパスフィルタ42として、公知の差分検出器が備えるバンドパスフィルタをそのまま用いることができる利点もある。なお、図5で、SVは、光量設定値を示す。   As described above, in the exhaust gas analyzer according to the present invention, in the region surrounded by (a) in FIG. 5, the process of removing the radiant light from the measurement light is performed, and in the region surrounded by (a), Feedback control for the optical attenuator (VOA) is performed by the signal component excluding the radiated light component, and the light intensity of the measurement light is controlled to approach the set value. Therefore, in the exhaust gas analysis apparatus and method using the laser suction method, real-time signal processing that eliminates the influence of background light (radiant light) generated in the measurement cell 36 is possible, and exhaust gas analysis with a high degree of measurement is performed in real time. It becomes possible. In the illustrated example, the bandpass filter 42 removes a direct current component from the measurement light signal and the reference light signal in the area of the difference detector surrounded by (c). There is also an advantage that a bandpass filter provided in a known difference detector can be used as it is. In FIG. 5, SV represents a light amount setting value.

図示しないが、分波器34から、複数系統の図5に示した測定光と参照光とからなる群を取り出して、同時に、複数箇所においてガス分析を行うこともできる。その場合、同じ周波数のレーザ光を複数系統で用いるようにしてもよく、信号発生器から出力される複数の周波数の信号を各系統で用いるようにしてもよい。前者の場合には、例えば排ガス触媒の前後に、前記した排ガス分析装置を設置することにより、触媒により排ガス成分の変化を知ることができる。後者の場合には、排ガスに含まれる複数種のガス成分の分析を行うことができる。   Although not shown, it is possible to take out a group of measurement light and reference light shown in FIG. 5 from the branching filter 34 and perform gas analysis at a plurality of locations at the same time. In that case, laser beams having the same frequency may be used in a plurality of systems, or signals of a plurality of frequencies output from the signal generator may be used in each system. In the former case, for example, by installing the above-described exhaust gas analyzer before and after the exhaust gas catalyst, the change in the exhaust gas component can be known by the catalyst. In the latter case, it is possible to analyze a plurality of kinds of gas components contained in the exhaust gas.

図6は、本発明による排ガス分析装置30を、自動車1に設置した場合であり、図7は、エンジンベンチ1Aに設置した場合である。いずれにおいても、エンジン2の各気筒から排出される排ガスは、エキゾーストマニホルド3で合流され、排気管4を通して第1触媒装置5に導入され、さらに第2触媒装置6に導入され、そのあとマフラー7を通して排気パイプ8から大気中に放出される。この例において、排気経路は、エキゾーストマニホルド3、排気管4、第1触媒装置5、第2触媒装置6、マフラー7、排気パイプ8を接合して形成され、エンジン2から排出された排ガスを第1触媒装置5で浄化し、さらに第2触媒装置6で浄化したあと、マフラー7により消音、減圧して大気中に放出している。   FIG. 6 shows a case where the exhaust gas analyzer 30 according to the present invention is installed in the automobile 1, and FIG. 7 shows a case where it is installed on the engine bench 1A. In any case, the exhaust gas discharged from each cylinder of the engine 2 is merged in the exhaust manifold 3, introduced into the first catalyst device 5 through the exhaust pipe 4, further introduced into the second catalyst device 6, and then the muffler 7. Through the exhaust pipe 8 to the atmosphere. In this example, the exhaust path is formed by joining the exhaust manifold 3, the exhaust pipe 4, the first catalyst device 5, the second catalyst device 6, the muffler 7, and the exhaust pipe 8. After purification by the first catalyst device 5 and further purification by the second catalyst device 6, the muffler 7 silences and depressurizes it and releases it to the atmosphere.

このような排気経路における複数箇所に、本発明による排ガス分析装置30における前記した計測セル36が取り付けられ、各計測セル36毎に、前記した分析系が配置され、それらの信号がそれぞれの差分検出器40に送られて、それぞれの差分信号が出力される。それらの差分信号は解析系を構成するコンピュータ44に送られて、排ガス分析が行われる。前記したように複数の計測セル36を備えることにより、排気経路での種々の箇所での排ガス分析を同時にかつリアルタイムで行うことができる。   The above-described measurement cells 36 in the exhaust gas analyzer 30 according to the present invention are attached to a plurality of locations in such an exhaust path, and the above-described analysis system is arranged for each measurement cell 36, and these signals are detected by their respective differences. The difference signal is output to the device 40. These differential signals are sent to a computer 44 constituting an analysis system for exhaust gas analysis. As described above, by providing the plurality of measurement cells 36, exhaust gas analysis at various locations in the exhaust path can be performed simultaneously and in real time.

P…レーザ光発生手段の出力光、
P1…測定光、
P2…参照光、
30…排ガス分析装置、
31…レーザ光発生手段、
32…レーザ光照射タイミングチャート、
33…レーザ光が照射されない時間帯を選択するタイミング信号発生手段、
35…光減衰器(VOA)、
36…計測セル、
37、38…フォトダイオード(PD)などである受光素子、
40…差分信号器、
41…アンプ、
42…バンドパスフィルタ(BPF)、
43…差分増幅回路、
44…解析系を構成するコンピュータ、
45…アナログメモリ、
46…光減衰器制御回路、
47…加算器(減算回路)。
P: Output light of the laser light generating means,
P1: Measuring light,
P2: Reference light,
30 ... exhaust gas analyzer,
31 ... Laser light generating means,
32. Timing chart of laser beam irradiation,
33 ... Timing signal generating means for selecting a time zone in which the laser beam is not irradiated,
35. Optical attenuator (VOA),
36 ... measurement cell,
37, 38: a light receiving element such as a photodiode (PD),
40. Difference signal device,
41 ... Amplifier,
42: Band pass filter (BPF),
43 ... differential amplifier circuit,
44. Computer constituting analysis system,
45 ... Analog memory,
46: Optical attenuator control circuit,
47: Adder (subtraction circuit).

Claims (4)

エンジンから排出される排ガスにレーザ光を照射し、排ガス中を透過した信号光の吸収線から排ガスの成分を分析する排ガス分析装置であって、該排ガス分析装置は、
レーザ光照射タイミングチャートとレーザ光が照射されない時間帯を選択するタイミング信号発生手段を備えたレーザ光発生手段と、
前記レーザ光発生手段の出力光を測定光と参照光に分波させ前記測定光を計測セル内を流れる排ガスに照射させる光分波手段と、
前記光分波手段と前記計測セルの間の光路に配置された光減衰器と、
排ガス中を透過した前記測定光と前記参照光を受光する受光素子と、
前記受光素子で受光された測定光信号と参照光信号との差分信号を検出する差分検出器と、
前記タイミング信号発生手段からの信号に基づきレーザ光が照射されないときに前記測定光の受光素子が受光した輻射光信号を格納するメモリと、
前記測定光信号から前記輻射光信号を減算する減算回路と、
前記減算後の信号を前記光減衰器にフィードバックする光減衰器制御回路と、を備えることを特徴とする排ガス分析装置。
An exhaust gas analyzer that irradiates exhaust gas emitted from an engine with laser light and analyzes components of the exhaust gas from an absorption line of signal light that has passed through the exhaust gas, the exhaust gas analyzer comprising:
A laser light generating means comprising a laser light irradiation timing chart and a timing signal generating means for selecting a time zone in which the laser light is not irradiated;
Optical demultiplexing means for demultiplexing the output light of the laser light generating means into measurement light and reference light and irradiating the measurement light on the exhaust gas flowing in the measurement cell;
An optical attenuator disposed in an optical path between the optical demultiplexing means and the measurement cell;
A light receiving element that receives the measurement light and the reference light transmitted through the exhaust gas;
A difference detector for detecting a difference signal between the measurement light signal and the reference light signal received by the light receiving element;
A memory for storing a radiation light signal received by the light receiving element of the measurement light when the laser light is not irradiated based on a signal from the timing signal generating unit;
A subtracting circuit for subtracting the radiation light signal from the measurement light signal;
And an optical attenuator control circuit that feeds back the signal after the subtraction to the optical attenuator.
前記差分検出器は、前記測定光信号および参照光信号から直流成分を除去するバンドパスフィルタをさらに備えることを特徴とする請求項1に記載の排ガス分析装置。   The exhaust gas analyzer according to claim 1, wherein the difference detector further includes a band-pass filter that removes a DC component from the measurement light signal and the reference light signal. エンジンから排出される排ガスにレーザ光発生手段の出力光から分波した測定光を光減衰器を通して照射し、排ガス中を透過した測定光と参照光とを受光して測定光信号と参照光信号との差分信号を検出して該差分信号に基づいて排ガスの成分を分析する排ガス分析方法であって、
前記排ガス分析方法は、レーザ光が照射していないときに測定光受光手段が受光した輻射光信号をメモリに格納し、レーザ光を照射しているときに測定光受光手段が受光した測定光信号から前記輻射光信号を減算して得られた信号を前記光減衰器にフィードバックすることにより、輻射分を除いた測定光レベルを設定値に近付けるようにする制御を含むことを特徴とする排ガス分析方法。
The exhaust gas discharged from the engine is irradiated with measurement light demultiplexed from the output light of the laser light generating means through the optical attenuator, and the measurement light signal and reference light signal transmitted through the exhaust gas are received and the measurement light signal and reference light signal are received. And an exhaust gas analysis method for analyzing a component of exhaust gas based on the difference signal,
In the exhaust gas analysis method, the radiation light signal received by the measurement light receiving means when the laser light is not irradiated is stored in the memory, and the measurement light signal received by the measurement light receiving means when the laser light is emitted. Exhaust gas analysis, including a control for bringing a measurement light level excluding radiation close to a set value by feeding back a signal obtained by subtracting the radiation light signal from the optical attenuator Method.
前記測定信号および参照信号からバンドパスフィルタを用いて直流成分を除去した後、前記差分信号を入手することを特徴とする請求項3に記載の排ガス分析方法。   The exhaust gas analysis method according to claim 3, wherein the difference signal is obtained after removing a direct current component from the measurement signal and the reference signal using a band-pass filter.
JP2009066589A 2009-03-18 2009-03-18 Exhaust gas analyzer Expired - Fee Related JP5155913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009066589A JP5155913B2 (en) 2009-03-18 2009-03-18 Exhaust gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009066589A JP5155913B2 (en) 2009-03-18 2009-03-18 Exhaust gas analyzer

Publications (2)

Publication Number Publication Date
JP2010217100A JP2010217100A (en) 2010-09-30
JP5155913B2 true JP5155913B2 (en) 2013-03-06

Family

ID=42976096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009066589A Expired - Fee Related JP5155913B2 (en) 2009-03-18 2009-03-18 Exhaust gas analyzer

Country Status (1)

Country Link
JP (1) JP5155913B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6062354B2 (en) * 2013-12-13 2017-01-18 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
JP6062355B2 (en) * 2013-12-13 2017-01-18 三菱日立パワーシステムズ株式会社 Gas analysis method and gas analyzer
CN104089880B (en) * 2014-07-11 2016-08-17 宇星科技发展(深圳)有限公司 Multi-channel laser gas analyser
JP6277938B2 (en) * 2014-10-23 2018-02-14 株式会社島津製作所 Gas analyzer
JP6473367B2 (en) 2015-03-31 2019-02-20 三菱重工業株式会社 Gas analysis system
JP6668841B2 (en) * 2016-03-14 2020-03-18 富士電機株式会社 Laser gas analyzer
JP7224386B2 (en) * 2021-04-01 2023-02-17 アンリツ株式会社 Optical signal waveform measuring device and optical signal waveform measuring method
JP7308873B2 (en) * 2021-04-01 2023-07-14 アンリツ株式会社 Optical signal waveform measuring device and optical signal waveform measuring method
CN117405626B (en) * 2023-12-13 2024-04-02 合肥金星智控科技股份有限公司 Mid-infrared TDLAS infrared radiation background subtraction device and method and acquisition system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213815A (en) * 1988-06-30 1990-01-18 Fujitsu Ltd Sensitivity correction system for photoconducting type infrared detector
JPH05107185A (en) * 1991-10-17 1993-04-27 Horiba Ltd Gas analyzer
JP3466360B2 (en) * 1996-02-07 2003-11-10 株式会社リコー Moisture content detection device
JP3761734B2 (en) * 1999-02-12 2006-03-29 富士写真フイルム株式会社 Optical measurement method and apparatus
JP3342446B2 (en) * 1999-08-31 2002-11-11 三菱重工業株式会社 Gas concentration measurement device
JP4485170B2 (en) * 2003-11-14 2010-06-16 東亜ディーケーケー株式会社 Analysis equipment
JP4713227B2 (en) * 2005-06-06 2011-06-29 トヨタ自動車株式会社 Exhaust gas analyzer and exhaust gas analysis method
JP2008157841A (en) * 2006-12-26 2008-07-10 Juki Corp Reliability improving method of photodetection

Also Published As

Publication number Publication date
JP2010217100A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5155913B2 (en) Exhaust gas analyzer
US20120188550A1 (en) Gas Concentration Measurement Device
KR100978603B1 (en) Exhaust gas analysis method and exhaust gas analysis apparatus
JP4713227B2 (en) Exhaust gas analyzer and exhaust gas analysis method
US7502118B2 (en) High sensitivity coherent photothermal interferometric system and method for chemical detection
JP6057430B2 (en) Gas analysis apparatus and gas analysis method using laser light
US9335257B2 (en) Tunable diode laser absorption spectroscopy with water vapor determination
KR100747768B1 (en) Apparatus for measuring exhaust gas using wavelength modulation spectroscopy
JP2015040747A5 (en)
JP2009243968A (en) Exhaust gas analyzer and analyzing method
US20030132389A1 (en) Method for monitoring and controlling the high temperature reducing combustion atmosphere
JP2013061358A (en) Exhaust gas analyzer and exhaust gas analyzing method
JP4879006B2 (en) Engine exhaust gas analysis device, analysis method, and analysis program
JP6668841B2 (en) Laser gas analyzer
JP2009243954A (en) Exhaust gas analyzer and analyzing method
CN115307557A (en) Photoacoustic measurement system and photoacoustic measurement method
JP5086971B2 (en) Dust concentration measuring device in gas, dust concentration calibration method of dust concentration measuring device, dust concentration measuring method in gas
JP4490333B2 (en) Exhaust gas analyzer
JP2012068164A (en) Infrared gas analyzer
JP2013096810A (en) Device and method for optical gas measurement
US8780337B2 (en) System and method for eliminating the effect of non-primary laser modes on characterization of optical components through characterized decomposition
JP6752274B2 (en) Light absorption measuring device for absorption spectroscopy measurement and absorption spectroscopy measurement system using this
JP2011137645A (en) Optical gas analysis device, gas analysis method and analysis control method
JP3197132B2 (en) Measuring device using laser light
JPH10206330A (en) Laser emission spectral analysis method and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5155913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees