JP2008157841A - Reliability improving method of photodetection - Google Patents

Reliability improving method of photodetection Download PDF

Info

Publication number
JP2008157841A
JP2008157841A JP2006349055A JP2006349055A JP2008157841A JP 2008157841 A JP2008157841 A JP 2008157841A JP 2006349055 A JP2006349055 A JP 2006349055A JP 2006349055 A JP2006349055 A JP 2006349055A JP 2008157841 A JP2008157841 A JP 2008157841A
Authority
JP
Japan
Prior art keywords
irradiation
light
value
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349055A
Other languages
Japanese (ja)
Inventor
Toshiaki Nagai
利明 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2006349055A priority Critical patent/JP2008157841A/en
Publication of JP2008157841A publication Critical patent/JP2008157841A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring light intensity of transmitted light and reflected light, even if disturbance light enters by suppressing an influence. <P>SOLUTION: The on/off state of light irradiated at a light intensity measuring time is switched periodically, and an output from a photodetector is taken repeatedly synchronously with a period of irradiation/non-irradiation, and an integrated value of output values at the non-irradiation time is subtracted from an integrated value of the output at the irradiation time, to thereby eliminate an influence of the output value caused by disturbance light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

被測定物に紫外、赤外または可視光を照射し、その時発生する透過光、反射光、蛍光等の光強度を測定し、被測定物内に含まれる成分を特定する光検出装置に関する。   The present invention relates to a photodetection device that irradiates an object to be measured with ultraviolet, infrared, or visible light, measures light intensity such as transmitted light, reflected light, and fluorescence generated at that time, and identifies components contained in the object to be measured.

ある対象物についての測定を行った場合、その測定値は必ずバラツキを含んでいる。このバラツキの影響を少なくするには、同一操作による測定を多数回行い、その結果における平均値を算出して測定値とするのが良いとされている。   When a measurement is performed on an object, the measurement value always includes variation. In order to reduce the influence of this variation, it is said that measurement by the same operation is performed many times, and an average value in the result is calculated as a measured value.

図1は光検出を繰返し行うことで、検出値の精度向上が可能なシステムを示したブロック図である。1は被測定物を示す。100は分光計測器であって吸光度を測定できるものであり、発光部101と受光部102より構成される。タイミングコントローラ3により同一被測定物に対して所定回数の繰り返し測定をするように制御されている。各測定結果(吸光度値)は積算器2で積算され平均値が算出され、数値またはグラフの形で測定データとしてモニタ4またな他の出力装置に出力される。5は、ノイズレベルを読み取る機能を有する装置、つまりノイズレベル検出器であって、積算器2の出力(平均化された測定データ)からノイズレベルを読み取り、ノイズレベル値Nを出力するものである。比較器6は、測定データのノイズレベル値Nと、予めパラメータとして設定されたノイズレベルの基準値Rnとを比較し、NがRnよりも小さければ出力信号Rcをタイミングコントローラ3に向けて発信する。タイミングコントローラ3はこの信号Rcを受けて分光器1の繰り返し測定を停止させ、また積算器2における積算も停止するように制御する。以上手順はソフトウェアを備えたコンピュータ上でのプログラム処理と考えてよく。図2のフローチャートのごとく逐次処理が行われる。8の記憶装置は、基準値Rnの設定、またノイズレベル値Nの保存を実行する。   FIG. 1 is a block diagram showing a system capable of improving the accuracy of a detection value by repeatedly performing light detection. Reference numeral 1 denotes an object to be measured. Reference numeral 100 denotes a spectroscopic measuring instrument that can measure absorbance, and includes a light emitting unit 101 and a light receiving unit 102. The timing controller 3 controls the same object to be measured repeatedly a predetermined number of times. Each measurement result (absorbance value) is integrated by the integrator 2, an average value is calculated, and is output to the monitor 4 or other output device as measurement data in the form of a numerical value or a graph. Reference numeral 5 denotes a device having a function of reading a noise level, that is, a noise level detector, which reads a noise level from an output (averaged measurement data) of the integrator 2 and outputs a noise level value N. . The comparator 6 compares the noise level value N of the measurement data with a noise level reference value Rn set in advance as a parameter. If N is smaller than Rn, the comparator 6 transmits an output signal Rc to the timing controller 3. . Upon receiving this signal Rc, the timing controller 3 controls the spectroscope 1 to stop repeated measurements and also stops the integration in the integrator 2. The above procedure can be thought of as program processing on a computer equipped with software. Sequential processing is performed as in the flowchart of FIG. The storage device 8 executes setting of the reference value Rn and storage of the noise level value N.

特開2001−330469JP 2001-330469 A

前記方法は測定時に発生する単発的なノイズに対しては、積算器が効果的に機能し、また繰返し測定をすることで、信頼度の高い検出が可能である。しかし、照射光以外の光、例えば室内灯のような外乱光侵入の可能性のある測定時においては、ほぼ一律に検出値をプラスにしてしまうため対応は不可能であり測定時の環境に左右されてしまう。このような場合、測定部分は外乱光が侵入しないような暗室状態にすることで対応するのが通常である。しかし、多機能臨床検査装置に内蔵される光検出部等では、操作性等の問題で光検出部を完全に暗室状態することが困難な場合もあり、装置の設置条件によっては室内灯や日光などの影響を少なからず受けてしまうことがあった。   In the above method, the integrator functions effectively for single noise generated during measurement, and it is possible to detect with high reliability by repeatedly measuring. However, when measuring light other than irradiation light, for example, ambient light such as room lights, the detection value is almost uniformly positive, so it is not possible to handle it. Will be. In such a case, the measurement part is usually dealt with by making it a dark room state in which ambient light does not enter. However, it may be difficult to completely put the light detection unit in a dark room due to problems such as operability in the light detection unit incorporated in the multifunctional clinical examination apparatus. In some cases, I was affected by the influences.

請求項1の発明では、上記課題を解決するために、被測定物から得られる透過光、反射光、蛍光等の光強度を測定し、被測定物に含まれる物質を特定する光検出装置において、照射・無照射を周期的に切替える手段と、照射・無照射の周期に同期して繰返し光検出器の出力を取込む手段と、照射時の出力値から無照射時の出力値を減算する手段を有しているので、外乱光による出力値の増加を除去することが可能となる。   In the invention of claim 1, in order to solve the above-mentioned problem, in a light detection device for measuring the light intensity of transmitted light, reflected light, fluorescence, etc. obtained from the object to be measured, and identifying the substance contained in the object to be measured , Means for periodically switching between irradiation and non-irradiation, means for repeatedly capturing the output of the photodetector in synchronization with the period of irradiation and non-irradiation, and subtracting the output value during non-irradiation from the output value during irradiation Since it has means, it becomes possible to eliminate an increase in output value due to disturbance light.

請求項2の発明によれば、光検出器の出力取込みを一定の周期のもと照射開始直前までの繰返しと、照射時の繰返しと、照射終了直後に繰返しで連続実行し、照射時の繰返し取込み平均から照射開始直前までの繰返しと照射終了直後の繰返し取込み総平均を減じた値から測定値と算出するため、外乱光による出力値の増加を除去に加えて、瞬間的に発生したノイズの影響も低減することが可能となる。   According to the second aspect of the present invention, the detection of the output of the photodetector is continuously executed at a fixed period until immediately before the start of irradiation, the repetition at the time of irradiation, and the repetition immediately after the end of irradiation, and the repetition at the time of irradiation. In order to calculate the measured value from the value obtained by subtracting the average from the average of acquisition until just before the start of irradiation and the total average of repeat acquisition immediately after the end of irradiation, in addition to eliminating the increase in output value due to ambient light, the noise generated instantaneously The influence can also be reduced.

外乱光の浸入が起こり、検出値にオフセットが発生した場合においても適時修正が可能となり外乱光の影響を除去することができる。   Even when disturbance light enters and an offset occurs in the detected value, timely correction can be made and the influence of disturbance light can be eliminated.

経時的に光検出器の受光特性に変化が発生した場合において、常時オフセット調整を行っているため、正確な光検出が可能となる。   When a change occurs in the light receiving characteristics of the photodetector over time, the offset adjustment is always performed, so that accurate light detection is possible.

(実施形態の全体構成)
実施形態を、以下図面をもって説明する。
(Overall configuration of the embodiment)
Embodiments will be described below with reference to the drawings.

図3は本発明の実施例の一つを表したブロック図である。分光器(1)は光源(3)から照射さらた光が被測定物に達し、そのとき被測定物から生ずる光を選別(特定波長のみ透過させる)し、透過光、反射光、蛍光等の必要と見なせる波長成分のみを、光電変換器(2)の受光面へと導く。続いて、光電変換され電気信号化された検出光は、積算器切換(6)により積算器A(7)または、積算器B(8)のどちらか一方に積算されるように選択される。積算器A(6)および積算器B(7)おいてそれぞれ得られたノイズレベルは、ノイズレベル検出(10)にて所定のノイズレベル許容値と比較される。比較結果が許容範囲外であった場合は、タイミングコントローラ(11)により予め設定された周期で照射光ON/OFF(12)が制御され、照射光点灯ドライバ(4)を介して光源(3)が機能し被測定物に光を照射して、前記内容と同様に光検出のサイクルを行う。また、ノイズレベル検出(10)の比較結果が許容値範囲内となった場合は、積算器A(7),B(8)の光検出データをもとに、光検出値補正処理部(9)にて補正演算処理を行い、光検出値としての結果を出力する。尚、積算器切換(6)〜照射光ON/OFF(12)はマイクロコンピュータにおけるソフトウェアとして実現可能であるため、これらを含めてマイクロコンビュータ(100)とする。   FIG. 3 is a block diagram showing one embodiment of the present invention. In the spectroscope (1), the light irradiated from the light source (3) reaches the object to be measured, and at that time, the light generated from the object to be measured is selected (only a specific wavelength is transmitted), and transmitted light, reflected light, fluorescence, etc. Only the wavelength components that can be considered necessary are guided to the light receiving surface of the photoelectric converter (2). Subsequently, the detection light photoelectrically converted into an electrical signal is selected so as to be integrated into either the integrator A (7) or the integrator B (8) by the integrator switching (6). The noise levels obtained in the integrator A (6) and the integrator B (7) are compared with a predetermined noise level allowable value in the noise level detection (10). If the comparison result is outside the allowable range, the irradiation light ON / OFF (12) is controlled by the timing controller (11) at a preset period, and the light source (3) is transmitted via the irradiation light lighting driver (4). Functions to irradiate the object to be measured with light, and performs a light detection cycle in the same manner as described above. When the comparison result of the noise level detection (10) falls within the allowable value range, the light detection value correction processing unit (9 ), A correction calculation process is performed, and a result as a light detection value is output. Since the integrator switching (6) to the irradiation light ON / OFF (12) can be realized as software in a microcomputer, the microcomputer (100) is included.

図4は、図3で示した実施例におけるシーケンスをフローチャートで示したものである。マイクロコンビュータ(100)において、外部記憶装置からの読出し、あるいはキー入力等(図示せず)にて、S1光検出値のノイズレベル許容値Rをノイズレベル検出(10)に記録する。S2測定動作に進み、光電変換器(2)による光検出(サンプリング)へと移行する。S3光検出データが、光源(3)からの照射光が発せられている状態か否かを判断。S4照射状態の場合は、積算器A(7)にて光検出データの積算を実施、S5無照射状態では、積算器B(8)にて光検出データの積算を実施する。S6ノイズレベル検出として、積算器A(7)および積算器B(8)のノイズレベルNA,NBを算出する。S7ノイズレベルNA,NBと許容値Rとの比較を実施。NA,NBの一方でも許容値R以上ならば、S8照射光点灯時間をプラス(積算器A,Bも積算回数プラス)して再測定へ、以下ならば、S9積算器A(7)および積算器B(8)の積算値SA,SBをもとに補正計算を実行し、光検出値を算出し(出力して)終了する。補正計算処理については、図5のタイミングで照射光点灯前に点灯時間Tonの1/2の時間を無照射状態にて一定周期にて複数回の光検出を実行する。この時積算器Bにて光検出データの積算(このときの積算値をΣSoff1とする。)が実行されている。つづいて、照射光点灯状態に移行後、前記無照射時と同様の一定周期にて複数回の光検出を実行し、積算器Aにて積算が実行される。(このときの積算値をΣSonとする。)再び無照射状態に移行後、点灯前と同様点灯時間Tonの1/2の時間分、一定周期にて複数回の光検出を実行し、積算器Bにて光検出データの積算(このときの積算値をΣSoff2とし、ΣSoff=ΣSoff1+ΣSoff2)も再開される。Toff時間経過後、光検出値SはS=ΣSon−ΣSoffにて算出される。図6は、同一物質を異なる濃度で含んだ複数検体に対し10回の繰返し測定中に、外乱光入光有無を交互に行った結果を濃度と光検出値の関係でグラフ化したものである。エラーバーは±3σ(標準偏差)の範囲を表している。光検出値を左グラフは照射時のみ積算値(ΣSon),右グラフは照射時積算値−無照射時積算値(ΣSon−ΣSoff)として示した。
(他の実施形態)
図7は本発明の他の実施例を表したブロック図である。分光器(101)は光源(103)から照射さらた光が被測定物に達し、そのとき被測定物から生ずる光を選別(特定波長のみ透過させる)し、透過光、反射光、蛍光等の必要と見なせる波長成分のみを、光電変換器(102)の受光面へと導く。続いて、光電変換され電気信号化された検出光は、加減算切換(106)により加減算器(107)において、加算または、減算のどちらか一方の演算されるように選択される。加減算器(107)おいて得られたノイズレベルは、ノイズレベル検出(110)にて所定のノイズレベル許容値と比較される。比較結果が許容範囲外であった場合は、タイミングコントローラ(111)により予め設定された周期で照射光ON/OFF(112)が制御され、照射光点灯ドライバ(104)を介して光源(103)が機能し被測定物に光を照射して、前記内容と同様に光検出のサイクルを行う。また、ノイズレベル検出(110)の比較結果が許容値範囲内となった場合は、加減算器(107)の演算データをもとに、光検出値補正処理部(9)にて補正演算処理を行い、光検出値としての結果を出力する。尚、加減算切換(106)〜照射光ON/OFF(112)はマイクロコンピュータにおけるソフトウェアとして実現可能であるため、これらを含めてマイクロコンビュータ(200)とする。
FIG. 4 is a flowchart showing the sequence in the embodiment shown in FIG. In the microcomputer (100), the noise level allowable value R of the S1 light detection value is recorded in the noise level detection (10) by reading from the external storage device or by key input (not shown). It progresses to S2 measurement operation | movement and transfers to the optical detection (sampling) by a photoelectric converter (2). It is determined whether or not the S3 light detection data is in a state where irradiation light from the light source (3) is emitted. In the S4 irradiation state, integration of the light detection data is performed by the integrator A (7), and in the S5 non-irradiation state, integration of the light detection data is performed by the integrator B (8). As S6 noise level detection, the noise levels NA and NB of the integrator A (7) and the integrator B (8) are calculated. S7 Noise levels NA, NB and allowable value R are compared. If either NA or NB is greater than or equal to the allowable value R, the S8 irradiation light lighting time is increased (accumulators A and B are also added), and remeasurement is performed. The correction calculation is executed based on the integrated values SA and SB of the device B (8), the light detection value is calculated (output), and the process ends. As for the correction calculation process, light detection is executed a plurality of times at a fixed period in the non-irradiation state for a time ½ of the lighting time Ton before the irradiation light is turned on at the timing of FIG. At this time, integration of light detection data is performed by the integrator B (the integrated value at this time is set to ΣSoff1). Subsequently, after shifting to the irradiation light lighting state, light detection is performed a plurality of times at a constant cycle similar to that in the non-irradiation state, and integration is performed by the integrator A. (The integrated value at this time is set to ΣSon.) After the transition to the non-irradiation state again, the light detection is performed a plurality of times at a constant period for a half of the lighting time Ton as before the lighting. At B, the integration of the photodetection data (the integration value at this time is ΣSoff2, and ΣSoff = ΣSoff1 + ΣSoff2) is restarted. After the Toff time has elapsed, the light detection value S is calculated as S = ΣSon−ΣSoff. FIG. 6 is a graph showing the result of alternately performing the presence or absence of disturbance light incident during 10 repeated measurements of a plurality of specimens containing the same substance at different concentrations in relation to the concentration and the light detection value. . Error bars represent a range of ± 3σ (standard deviation). The left graph shows the photodetection value as the integrated value (ΣSon) only during irradiation, and the right graph shows the integrated value during irradiation−non-irradiated integrated value (ΣSon−ΣSoff).
(Other embodiments)
FIG. 7 is a block diagram showing another embodiment of the present invention. The spectroscope (101) is irradiated with light from the light source (103) and reaches the object to be measured. At that time, the light generated from the object to be measured is selected (only a specific wavelength is transmitted), and transmitted light, reflected light, fluorescence, etc. Only the wavelength components that can be considered necessary are guided to the light receiving surface of the photoelectric converter (102). Subsequently, the detection light photoelectrically converted into an electric signal is selected so that either addition or subtraction is performed in the adder / subtractor (107) by the addition / subtraction switching (106). The noise level obtained in the adder / subtractor (107) is compared with a predetermined noise level tolerance in the noise level detection (110). If the comparison result is out of the allowable range, the irradiation light ON / OFF (112) is controlled by the timing controller (111) at a preset period, and the light source (103) is transmitted via the irradiation light lighting driver (104). Functions to irradiate the object to be measured with light, and performs a light detection cycle in the same manner as described above. If the comparison result of the noise level detection (110) is within the allowable range, the light detection value correction processing unit (9) performs correction calculation processing based on the calculation data of the adder / subtracter (107). And output the result as a light detection value. In addition, since addition / subtraction switching (106) to irradiation light ON / OFF (112) can be realized as software in a microcomputer, these are included in the microcomputer (200).

図8は、図7で示した他の実施例におけるシーケンスをフローチャートで示したものである。マイクロコンビュータ(200)において、外部記憶装置からの読出し、あるいはキー入力等(図示せず)にて、S11光検出値のノイズレベル許容値Rをノイズレベル検出(110)に記録する。S12測定動作に進み、光電変換器(102)による光検出(サンプリング)へと移行する。S13光検出データが、光源(103)からの照射光が発せられている状態か否かを判断。S14照射状態の場合は、加減算器(107)にて光検出データの加算を実施、S15無照射状態では、加減算器(107)にて光検出データの減算を実施する。S16ノイズレベル検出として、加減算器(107)のノイズレベルNCを算出する。S17ノイズレベルNC,許容値Rとの比較を実施。NCが許容値R以上ならば、S18照射光点灯時間をプラス(加減算器の加減算回数もプラス)して再測定へ、以下ならば、S19加減算器(107)の演算値Scをもとに平均値の計算を実行し、光検出値の算出を(出力して)終了する。   FIG. 8 is a flowchart showing a sequence in the other embodiment shown in FIG. In the microcomputer (200), the noise level allowable value R of the S11 light detection value is recorded in the noise level detection (110) by reading from the external storage device or by key input (not shown). Proceeding to S12 measurement operation, the process proceeds to photodetection (sampling) by the photoelectric converter (102). S13: It is determined whether the light detection data is in a state in which irradiation light from the light source (103) is emitted. In the S14 irradiation state, the addition / subtraction unit (107) adds the light detection data, and in the S15 non-irradiation state, the addition / subtraction unit (107) subtracts the light detection data. In S16 noise level detection, the noise level NC of the adder / subtracter (107) is calculated. S17 Comparison with noise level NC and allowable value R. If NC is greater than or equal to the allowable value R, the S18 irradiation light lighting time is added (plus the number of additions / subtractions of the adder / subtractor), and the measurement is re-measured. The calculation of the value is executed, and the calculation of the light detection value is finished (output).

従来の光検出装置の構成図である。It is a block diagram of the conventional photon detection apparatus. 従来の光検出装置の動作フローチャートである。It is an operation | movement flowchart of the conventional photon detection apparatus. 本発明の光検出装置の構成図である。It is a block diagram of the photon detection apparatus of this invention. 本発明の光検出装置の動作フローチャートである。It is an operation | movement flowchart of the photon detection apparatus of this invention. 本発明の光検出値演算説明図である。It is light detection value calculation explanatory drawing of this invention. 従来の光検出装置と本発明の光検出装置による測定対象物CY5を測定した場合の精度を示すグラフである。It is a graph which shows the precision at the time of measuring the measurement object CY5 by the conventional photodetector and the photodetector of this invention. 本発明の他の形態による光検出装置の構成図である。It is a block diagram of the photon detection apparatus by the other form of this invention. 本発明の他の形態による光検出装置の動作フローチャートである。It is an operation | movement flowchart of the photon detection apparatus by the other form of this invention.

符号の説明Explanation of symbols

1 分光器
2 光電変換器
3 A/D変換器
4 光源
5 照射光点灯ドライバ
6 積算器切換
7 積算器A(光源点灯時実行)
8 積算器B(光源消灯時実行)
9 光検出値補正演算部
10 ノイズレベル検出
11 タイミングコントローラ
12 照射光ON/OFF制御部
100 マイクロコンピュータ
DESCRIPTION OF SYMBOLS 1 Spectrometer 2 Photoelectric converter 3 A / D converter 4 Light source 5 Illumination light lighting driver 6 Accumulator switching 7 Accumulator A (execution when light source is lit)
8 Accumulator B (Executed when the light source is turned off)
9 Light detection value correction calculation section
10 Noise level detection
11 Timing controller
12 Irradiation light ON / OFF controller
100 microcomputer

Claims (2)

被測定物に光を照射することにより、被測定物から得られる透過光、反射光、蛍光等の光強度を測定し、被測定物に含まれる物質を特定する光検出装置において、照射・無照射を周期的に切替える手段と、照射・無照射の周期に同期して繰返し光検出器の出力を取込む手段と、照射時の出力値から無照射時の出力値を減算する手段を有すること特徴する光検出装置。   In a light detection device that measures the light intensity of transmitted light, reflected light, fluorescence, etc. obtained from a measurement object by irradiating the measurement object, and identifies the substance contained in the measurement object, Means to periodically switch the irradiation, means to repeatedly capture the output of the photodetector in synchronism with the irradiation / non-irradiation period, and means to subtract the non-irradiation output value from the irradiation output value Characteristic photo detector. 請求項1記載の光検出装置において、光検出器の出力取込みを一定の周期のもと照射開始直前までの繰返しと、照射時の繰返しと、照射終了直後に繰返しで連続実行し、照射時の繰返し取込み平均から照射開始直前までの繰返しと照射終了直後の繰返し取込み総平均を減じた値から測定値と算出することを特徴とする光検出方法。   The light detection device according to claim 1, wherein the detection of the output of the light detector is continuously executed repeatedly at a fixed period until immediately before the start of irradiation, at the time of irradiation, and immediately after the end of irradiation. A photodetection method characterized in that a measurement value is calculated from a value obtained by subtracting a repeat average from repeated acquisition average immediately before the start of irradiation and a total average repeat acquisition immediately after the end of irradiation.
JP2006349055A 2006-12-26 2006-12-26 Reliability improving method of photodetection Pending JP2008157841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349055A JP2008157841A (en) 2006-12-26 2006-12-26 Reliability improving method of photodetection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349055A JP2008157841A (en) 2006-12-26 2006-12-26 Reliability improving method of photodetection

Publications (1)

Publication Number Publication Date
JP2008157841A true JP2008157841A (en) 2008-07-10

Family

ID=39658898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349055A Pending JP2008157841A (en) 2006-12-26 2006-12-26 Reliability improving method of photodetection

Country Status (1)

Country Link
JP (1) JP2008157841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054436A (en) * 2008-08-29 2010-03-11 Topcon Corp Plant sensor
JP2010217100A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Exhaust gas analyzer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054436A (en) * 2008-08-29 2010-03-11 Topcon Corp Plant sensor
JP2010217100A (en) * 2009-03-18 2010-09-30 Toyota Motor Corp Exhaust gas analyzer

Similar Documents

Publication Publication Date Title
TWI513972B (en) Reflectance measuring apparatus reflectivity measurement method, film thickness measuring apparatus and method for measuring film thickness
KR20100042227A (en) Apparatus and method for measuring optical characteristics suitable for spectrum measurement
US9829430B2 (en) Spectrophotometer
JP2008256380A (en) Optical measuring instrument and adjustment method therefor
JP2008157841A (en) Reliability improving method of photodetection
JP3761734B2 (en) Optical measurement method and apparatus
KR20140031084A (en) Method and apparatus for measuring concentration of advanced-oxidation active species
JP2021004760A (en) Ranging device having external light illuminance measurement function and external light illuminance measurement method
US8717557B2 (en) Spectrophotometer and method for determining performance thereof
JP2015066192A (en) Tooth colorimetric method, tooth colorimetric device, and tooth colorimetric program
JP5470881B2 (en) Measuring apparatus and measuring method
JP2015143660A (en) Spectral photometer
WO2017110853A1 (en) Method for measuring concrete
JP2009240644A (en) Transparency measurement device
WO2015122237A1 (en) Spectroscopic analysis device and spectroscopic analysis method
JP2007024679A (en) Analyzer and analyzing processing method
WO2021182224A1 (en) Measuring device
JPH07306139A (en) Method and instrument for measuring concentration of component, etc., of liquid sample
JP2009222607A (en) Illumination control method of sample analyzer, and sample analyzer
WO2011039946A1 (en) Inspection apparatus and inspection method
JP2018503079A (en) Spectrophotometer and method for performing a spectrophotometric measurement
JP2008032641A (en) Photometric level correction method and measuring object inspection system
JPH05172632A (en) Device for measuring quantity of light
JP5191107B2 (en) Ranging device
JP2010249649A (en) Photometry apparatus and photometry method