JP5155269B2 - High-speed electrical track - Google Patents

High-speed electrical track Download PDF

Info

Publication number
JP5155269B2
JP5155269B2 JP2009206017A JP2009206017A JP5155269B2 JP 5155269 B2 JP5155269 B2 JP 5155269B2 JP 2009206017 A JP2009206017 A JP 2009206017A JP 2009206017 A JP2009206017 A JP 2009206017A JP 5155269 B2 JP5155269 B2 JP 5155269B2
Authority
JP
Japan
Prior art keywords
line
electrode
ground
gcpw
ended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009206017A
Other languages
Japanese (ja)
Other versions
JP2011061303A (en
Inventor
博正 田野辺
真司 美野
俊英 吉松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2009206017A priority Critical patent/JP5155269B2/en
Publication of JP2011061303A publication Critical patent/JP2011061303A/en
Application granted granted Critical
Publication of JP5155269B2 publication Critical patent/JP5155269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation

Description

本発明は高速電気線路に関し、より詳細には、異なる部品の間を3次元的に接続する際に用いられる可撓性を備えるフレキシブル高速電気線路あるいは異なる部品を同一面に備えることを可能とするリジッド高速電気線路電気線路に関する。   The present invention relates to a high-speed electric line, and more specifically, it is possible to provide a flexible high-speed electric line having flexibility used when three-dimensionally connecting different parts or different parts on the same surface. The present invention relates to a rigid high-speed electric line.

電気信号の信号速度の上昇、さらに小型部品に備えられる電極間ピッチの狭小化に伴い、低損失かつファインピッチ電気線路を備える軽薄短小化された基板が望まれている。   With the increase in the signal speed of electric signals and the narrowing of the pitch between electrodes provided in small parts, a light and thin substrate having a low loss and a fine pitch electric line is desired.

電気信号の伝搬の際に生じる損失を抑えるため、フッ素系樹脂例えばPTFEなどを基板材料とし、ガラスクロスに浸透させた複数層の基板の方式がある。(例えば、特許文献1参照)
さらに、異なる高さや位置に備えられた部品間を電気的に接続するため、一層基板として可撓性を備えたフレキシブル基板が用いられる場合もある。
In order to suppress a loss that occurs during propagation of an electric signal, there is a multi-layer substrate system in which a fluororesin such as PTFE is used as a substrate material and the glass cloth is infiltrated. (For example, see Patent Document 1)
Furthermore, in order to electrically connect components provided at different heights and positions, a flexible substrate having flexibility as a single layer substrate may be used.

図3に、従来のガラス布に樹脂を浸透させた基板3−1上に形成されたグランデッド・コプレーナ線路を示す。また図4に、図3のC−C断面を示す。ガラス布の縦糸3−7と横糸3−8を内部に含む樹脂の一方の面にグランド−ポジティブ信号−ネガティブ信号−グランドの電気線路3−2、3−3、3−4からなるディファレンシャル・グランデッドコプレーナ電極(電極Diff.−GCPW)が形成されており、対向する他方の面にはグランド電極3−6が一様に形成されている。   FIG. 3 shows a grounded coplanar line formed on a substrate 3-1 in which a resin is infiltrated into a conventional glass cloth. 4 shows a CC cross section of FIG. A differential gland composed of a ground-positive signal-negative signal-ground electric line 3-2, 3-3, 3-4 on one surface of a resin containing warp yarns 3-7 and weft yarns 3-8 inside. A dead coplanar electrode (electrode Diff.-GCPW) is formed, and a ground electrode 3-6 is uniformly formed on the other surface facing each other.

米国特許第6783841号明細書US Pat. No. 6,783,481

しかしながら、差動伝送路を構成する2本の電気線路3−2、3−3のうち、片方の電気線路3−3の下部にガラス繊維の横糸が電送路長に渡って位置している。電気線路3−3の方がガラス繊維の影響を大きく受けることから、電気線路3−2と電気線路3−3との間に信号伝搬速度差が生じてしまう。この信号伝搬速度差は電気線路を伝搬する信号にSkew差を生じさせ、伝送後の差動信号波形においてクロスポイントのずれやジッタを生じさせるという課題があった。   However, of the two electric lines 3-2 and 3-3 constituting the differential transmission path, a weft of glass fiber is located over the length of the electric path in the lower part of one of the electric lines 3-3. Since the electric line 3-3 is more affected by the glass fiber, a signal propagation speed difference is generated between the electric line 3-2 and the electric line 3-3. This signal propagation speed difference causes a skew difference in the signal propagating through the electric line, and there is a problem of causing a cross-point shift and jitter in the differential signal waveform after transmission.

また、低損失であることを特徴とするPTFEや液晶ポリマは、その材料特性として300℃以上の温度に暴露した際に軟化してしまうため、基板端部を他の部品等に鉛フリーハンダ等で接続する際に、その信頼性に課題があった。   In addition, PTFE and liquid crystal polymer, which are characterized by low loss, are softened when exposed to temperatures of 300 ° C. or higher as their material characteristics. When connecting with, there was a problem in its reliability.

低損失性とハンダ温度耐性向上を目的とし、ガラスクロスにPTFEや液晶ポリマを浸透させた事例もあるが、基板の薄膜化に伴い電気信号ピッチ間隔も狭小化しており、特に差動電気線路として用いる際、ポジティブ電気線路、あるいはネガティブ電気線路のいずれかの下部に線路と並行してあるいは並行に近い角度でガラスクロスが位置した際は、結果としてそれぞれの線路を伝送される電気信号の速度変化が生じ、ジッタの増加等が懸念されており、以上の2点を同時に解決可能な方式が望まれていた。   There are cases where PTFE and liquid crystal polymer are infiltrated into glass cloth for the purpose of low loss and improvement in solder temperature resistance, but the electrical signal pitch interval has become narrower as the substrate becomes thinner, especially as a differential electrical line. When a glass cloth is positioned at the lower side of either the positive electric line or the negative electric line in parallel or at an angle close to the line in use, the speed change of the electric signal transmitted through each line results. Therefore, there is a concern about an increase in jitter and the like, and a method capable of solving the above two points simultaneously has been desired.

本発明は、このような課題に鑑みてなされたもので、その目的とするところは、半田付けする箇所でのハンダ耐熱性を向上させ、特に電気線路を差動電気線路として使う場合に伝送後の信号品質を向上させる高速電気線路を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to improve the soldering heat resistance at the soldering point, especially when the electric line is used as a differential electric line. An object of the present invention is to provide a high-speed electric line that improves the signal quality.

上記の課題を解決するために、請求項1に記載の発明は、高速電気線路であって、複数本のガラス繊維を交互に編み込んだガラス繊維布に樹脂を染みこませた可撓性を備えるフィルムであって、前記フィルムのエッジ端からL(mm)の範囲となる領域Aと、前記領域A以外の領域Bの両者でガラス繊維の交差密度が異なるフィルムと、前記フィルムの第1の面に一様に形成された導体と、前記第1の面に対向する第2の面に前記ガラス繊維と並行にならないように形成された電気線路とを備え、前記領域Aのガラス繊維の交差密度は、前記領域Bのガラス繊維の交差密度よりも高いことを特徴とする。 In order to solve the above-mentioned problems, the invention according to claim 1 is a high-speed electric line, and is provided with flexibility in which a resin is soaked in a glass fiber cloth in which a plurality of glass fibers are alternately knitted. A film having different cross density of glass fibers in both the region A in the range of L (mm) from the edge of the film and the region B other than the region A, and the first surface of the film And an electric line formed on the second surface facing the first surface so as not to be parallel to the glass fiber, and the cross density of the glass fibers in the region A Is higher than the cross density of the glass fibers in the region B.

請求項に記載の発明は、請求項に記載の高速電気線路において、前記電気線路は、前記第2の面の領域Aに形成された、(グランド、信号、グランド)の組で使う金属膜を順番にならべ、かつ前記第1の面にグランド電極を備えたシングルエンド・グランデッドコプレーナ電極(電極Single−Ended−GCPW)、前記第1の面にグランド電極を備えないシングルエンド・コプレーナ電極(電極Single−Ended−CPW)、
(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに前記第1の面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ電極(電極Diff.−GCPW)、前記第1の面にグランド電極を備えないディファレンシャル・コプレーナ電極(電極Diff.−CPW)、あるいは、前記電極Single−Ended−GCPW、電極Single−Ended−CPW、電極Diff.−GCPW、電極Diff.−CPWの任意の組み合わせの電極を少なくとも2つ以上備えたことを特徴とする。
Metal The invention according to claim 2, in high-speed electrical line according to claim 1, wherein the electrical line is formed in the region A of the second surface, using a set of (ground, signal, ground) A single-ended grounded coplanar electrode (electrode Single-Ended-GCPW) having a film arranged in order and having a ground electrode on the first surface, and a single-ended coplanar electrode having no ground electrode on the first surface (Electrode Single-Ended-CPW),
A differential grounded coplanar electrode (electrode Diff.-GCPW) having a ground electrode on the first surface is arranged in order, and metal films used in a set of (ground, positive signal, negative signal, ground), the first No. 1 differential coplanar electrode (electrode Diff.-CPW) without a ground electrode, or the electrode Single-Ended-GCPW, the electrode Single-Ended-CPW, the electrode Diff. -GCPW, electrode Diff. -At least two or more electrodes of arbitrary combinations of CPW are provided.

請求項に記載の発明は、請求項に記載の高速電気線路において、前記導体は、前記第1の面の領域Bに形成されたグランド電極を備え、前記電気線路は、前記第2の面の領域Bに形成された、電気線路のみのマイクロストリップ線路(線路MSL)、前記フィルム底面にグランドを備え、表面には(グランド、信号、グランド)の順番に並んだ金属膜を備えるシングルエンド・グランデッドコプレーナ線路(線路Single−Ended−GCPW)、(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに底面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ線路(線路Diff.−GCPW)、あるいは、前記線路MSL、線路Single−Ended−GCPW、線路Diff.−GCPWの任意の組み合わせの線路を少なくとも1つ以上備えたことを特徴とする。 Invention according to claim 3, in high-speed electrical line according to claim 1, wherein the conductor includes a first surface ground electrode formed in a region B of the electric line, the second A single-ended microstrip line (line MSL) formed only in an electric line formed on the surface area B, a ground on the bottom of the film, and a metal film arranged in the order of (ground, signal, ground) on the surface・ A differential grounded coplanar line with metal films used in order of a grounded coplanar line (line Single-Ended-GCPW), (ground, positive signal, negative signal, ground) and a ground electrode on the bottom. (Line Diff.-GCPW), or the line MSL, line Single-Ended-GCP , Line Diff. -It has at least one line of arbitrary combinations of GCPW.

請求項に記載の発明は、請求項に記載の高速電気線路において、前記導体は、前記第1の面の領域Bに形成されたグランド電極を備え、前記電気線路は、前記第2の面の領域Bに形成された、電気線路のみのマイクロストリップ線路(線路MSL)、前記フィルム底面にグランドを備え、表面には(グランド、信号、グランド)の順番に並んだ金属膜を備えるシングルエンド・グランデッドコプレーナ線路(線路Single−Ended−GCPW)、(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに底面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ線路(線路Diff.−GCPW)、あるいは、前記線路MSL、線路Single−Ended−GCPW、線路Diff.−GCPWの任意の組み合わせの線路を少なくとも1つ以上備えたことを特徴とする。 According to a fourth aspect of the present invention, in the high-speed electric line according to the second aspect, the conductor includes a ground electrode formed in a region B of the first surface, and the electric line includes the second electric line. A single-ended microstrip line (line MSL) formed only in an electric line formed on the surface area B, a ground on the bottom of the film, and a metal film arranged in the order of (ground, signal, ground) on the surface・ A differential grounded coplanar line with metal films used in order of a grounded coplanar line (line Single-Ended-GCPW), (ground, positive signal, negative signal, ground) and a ground electrode on the bottom. (Line Diff.-GCPW), or the line MSL, line Single-Ended-GCP , Line Diff. -It has at least one line of arbitrary combinations of GCPW.

請求項に記載の発明は、請求項に記載の高速電気線路において、前記電極Single−Ended−GCPW、あるいは前記電極Single−Ended−CPWを電気的に接続する際、前記線路MSL、あるいは前記線路Single−Ended−GCPWが用いられていることを特徴とする。 The invention according to claim 5 is the high-speed electric line according to claim 4 , wherein when the electrode Single-Ended-GCPW or the electrode Single-Ended-CPW is electrically connected, the line MSL or the line A line Single-Ended-GCPW is used.

請求項に記載の発明は、請求項に記載の高速電気線路において、前記電極Diff.−GCPW、あるいは前記電極Diff.−CPWを電気的に接続する際、前記線路Diff.−GCPWが用いられていることを特徴とする。 According to a sixth aspect of the present invention, in the high-speed electric line according to the fourth aspect , the electrode Diff. -GCPW or the electrode Diff. -When the CPW is electrically connected, the line Diff. -GCPW is used.

請求項に記載の発明は、請求項又はに記載の高速電気線路において、前記ガラス繊維に染みこませた樹脂がエポキシ樹脂、ポリミド樹脂、フッ素系樹脂、あるいは液晶ポリマ樹脂であることを特徴とする。 The invention described in claim 7 is the high-speed electric line according to claim 5 or 6 , wherein the resin soaked in the glass fiber is an epoxy resin, a polyimide resin, a fluorine resin, or a liquid crystal polymer resin. Features.

請求項において、請求項に記載の高速電気線路において、前記第1の面側に前記フィルムより厚いリジッドな基板を備えたことを特徴とする。 In claim 8, in high-speed electrical line according to claim 7, characterized in that it comprises a thick rigid board than the film on the first surface.

本発明は、半田付けが想定される基板端部には、ガラス繊維の密度を選択的に増加させることにより、半田付けする箇所でのハンダ耐熱性を向上させ、さらに、ガラス布のガラス繊維と電気線路とが並行にならないように配置することによって、電気線路の直下に電気線路に沿うようにガラス繊維が位置することを防止し、特に電気線路を差動電気線路として使う場合、伝送後の信号品質を向上させる。   The present invention selectively improves the solder heat resistance at the soldering location by selectively increasing the density of the glass fiber at the end of the substrate where soldering is assumed. By arranging so as not to be parallel to the electrical line, it is possible to prevent the glass fiber from being positioned along the electrical line directly below the electrical line, especially when the electrical line is used as a differential electrical line. Improve signal quality.

本発明は、半田付けする箇所でのハンダ耐熱性を向上させ、さらに、特に電気線路を差動電気線路として使う場合に伝送後の信号品質を向上させる効果を奏する。   The present invention has an effect of improving solder heat resistance at a soldering location, and further improving signal quality after transmission, particularly when an electric line is used as a differential electric line.

本発明の第1の実施形態に係る電気線路の全体図である。1 is an overall view of an electric line according to a first embodiment of the present invention. 本発明の第2の実施形態に係る電気線路の全体図である。It is a general view of the electrical track which concerns on the 2nd Embodiment of this invention. 従来のガラス布に樹脂を浸透させた基板3−1上に形成されたグランデッド・コプレーナ線路を示す全体図である。It is a general view which shows the grounded coplanar track | line formed on the board | substrate 3-1 which made resin permeate the conventional glass cloth. 図3のC−C断面図である。It is CC sectional drawing of FIG.

以下、本発明の実施の形態について、詳細に説明する。尚、全ての実施例においてガラス繊維に染みこませた基板材料はエポキシ樹脂、ポリミド樹脂、フッ素系樹脂、あるいは液晶ポリマ樹脂のいずれでも構成可能であり、消耗の線路インピーダンスに応じた電気線路の構造パラメータ、例えば線路幅やグランドとのピッチ間隔が基板厚みや導体厚みから自動的に決定されることは、言うまでもない。   Hereinafter, embodiments of the present invention will be described in detail. In all the embodiments, the substrate material soaked in the glass fiber can be composed of any of an epoxy resin, a polyimide resin, a fluorine resin, or a liquid crystal polymer resin, and the structure of the electric line according to the consumption line impedance. It goes without saying that parameters such as the line width and the pitch interval with the ground are automatically determined from the substrate thickness and conductor thickness.

(第1の実施形態)
図1に、本発明の第1の実施形態に係る電気線路の全体図を示す。ここでは、ガラス布1−2に基板材料を染みこませた一枚の基板1−1上にシングルエンド伝送路1−7、シングルエンド・コプレーナ伝送路1−8が形成されている。なお、基板1−1のシングルエンド伝送路を構成する面と対向する面にはグランド電極が一様に形成されている。基板1−1のシングルエンド・コプレーナ伝送路1−8が形成された領域の裏面に一様にグランド電極を備えた際は、シングルエンド・コプレーナ伝送路1−8はシングルエンド・グランデッドコプレーナ線路になることは言うまでもない。
(First embodiment)
FIG. 1 shows an overall view of an electric line according to the first embodiment of the present invention. Here, a single-ended transmission line 1-7 and a single-ended coplanar transmission line 1-8 are formed on a single substrate 1-1 in which a substrate material is soaked in a glass cloth 1-2. A ground electrode is uniformly formed on the surface of the substrate 1-1 that faces the surface constituting the single-ended transmission line. When the ground electrode is uniformly provided on the back surface of the region of the substrate 1-1 where the single-ended coplanar transmission line 1-8 is formed, the single-ended coplanar transmission line 1-8 is a single-ended grounded coplanar line. Needless to say.

それぞれの伝送路の終端には他の基板や部品との接続を想定し、シングルエンド・コプレーナ電極1−5、1−6がそれぞれ備えられている。また、それぞれの電極が形成された領域1−3では、ガラス布を構成するガラス繊維の密度が、伝送路が形成された領域1−4と比較して選択的に高くなっている。これにより、ハンダや押圧等によって他の部品や基板と接続する際、温度耐性や機械的強度を向上させている。領域1−3は、基板の端面から約0.5mm〜2mm程度の領域とすることができる。   Single-ended coplanar electrodes 1-5 and 1-6 are provided at the end of each transmission line, assuming connection with other boards and components. Moreover, in the area | region 1-3 in which each electrode was formed, the density of the glass fiber which comprises a glass cloth is selectively high compared with the area | region 1-4 in which the transmission line was formed. Thereby, when connecting with other components or a board | substrate by solder, press, etc., temperature tolerance and mechanical strength are improved. The region 1-3 can be a region of about 0.5 mm to 2 mm from the end surface of the substrate.

本発明では、ガラス繊維と伝送路とを互いに並行にならないように配置することにより、伝送路の長手方向に沿って伝送路の真下にガラス繊維が位置することを回避している。伝送路が形成された領域1−4では、ガラス繊維の密度が低いことにより、フレキシブル基板としての可撓性が向上するだけでなく、伝送路直下に基板材料を介して位置するガラス繊維の交差数が減少するため、インピーダンスの揺らぎが低減され、伝送特性が向上する。   In the present invention, by arranging the glass fiber and the transmission line so as not to be parallel to each other, it is avoided that the glass fiber is located directly below the transmission line along the longitudinal direction of the transmission line. In the region 1-4 where the transmission line is formed, the low density of the glass fibers not only improves the flexibility as a flexible substrate, but also intersects the glass fibers located directly under the transmission line via the substrate material. Since the number decreases, impedance fluctuation is reduced and transmission characteristics are improved.

(第2の実施形態)
図2に、本発明の第2の実施形態に係る電気線路の全体図を示す。ここでは、ガラス布2−2に基板材料を染みこませた一枚の基板2−1上に、3種のディファレンシャル線路が形成されている。図面上で上から順番に、(グランド−ポジティブ信号−グランド−ネガティブ信号−グランド)の線路からなる第1の伝送路2−4、(グランド−ポジティブ信号−グランド−グランド−ネガティブ信号−グランド)の線路からなる第2の伝送路2−5、そして(グランド−ポジティブ信号−ネガティブ信号−グランド)の線路からなる第3の伝送路2−6である。
(Second Embodiment)
FIG. 2 shows an overall view of an electric line according to the second embodiment of the present invention. Here, three types of differential lines are formed on one substrate 2-1 in which a substrate material is soaked in a glass cloth 2-2. In order from the top in the drawing, the first transmission path 2-4 composed of (ground-positive signal-ground-negative signal-ground) lines, (ground-positive signal-ground-ground-negative signal-ground) A second transmission path 2-5 composed of a line, and a third transmission path 2-6 composed of a line of (ground-positive signal-negative signal-ground).

第1の実施形態と同じように、ガラス繊維と伝送路とを互いに並行にならないように配置することにより、伝送路の長手方向に沿って真下にガラス繊維が位置することを回避している。これにより、ポジティブ信号、ネガティブ信号間でのSkew発生が抑制され、良好な差動電気信号伝送が可能となる。   As in the first embodiment, the glass fiber and the transmission line are arranged so as not to be parallel to each other, thereby avoiding the glass fiber being located directly below the longitudinal direction of the transmission line. Thereby, generation of skew between the positive signal and the negative signal is suppressed, and good differential electric signal transmission is possible.

さらに、それぞれの電極が形成された領域2−3では、ガラス布を構成するガラス繊維の密度が、伝送路が形成された領域2−4と比較して選択的に高くなっている。これにより、ハンダや押圧等によって他の部品や基板と接続する際、温度耐性や機械的強度を向上させている。伝送路が形成された領域2−4では、ガラス繊維の密度が低いことにより、フレキシブル基板としての可撓性が向上するだけでなく、伝送路直下に基板材料を介して位置するガラス繊維の交差数が減少するため、インピーダンスの揺らぎが低減され、伝送特性が向上する。領域2−3は、基板の端面から約0.5mm〜2mm程度の領域とすることができる。   Further, in the region 2-3 where the respective electrodes are formed, the density of the glass fibers constituting the glass cloth is selectively higher than that in the region 2-4 where the transmission path is formed. Thereby, when connecting with other components or a board | substrate by solder, press, etc., temperature tolerance and mechanical strength are improved. In the region 2-4 in which the transmission line is formed, the density of the glass fiber is low, so that not only the flexibility as the flexible substrate is improved, but also the intersection of the glass fibers located directly below the transmission line via the substrate material. Since the number decreases, impedance fluctuation is reduced and transmission characteristics are improved. The region 2-3 can be a region of about 0.5 mm to 2 mm from the end surface of the substrate.

尚、実施形態1、2は、さらに強度を得るために基板1−1、2−2よりも厚い基板上に実装することができる。   The first and second embodiments can be mounted on a substrate thicker than the substrates 1-1 and 2-2 in order to obtain further strength.

1−1、2−1、3−1 基板
1−2、2−2 ガラス布
1−3、2−3 電極が形成された領域
1−4、2−4 伝送路が形成された領域
1−5、1−6 シングルエンド・コプレーナ電極
1−7 シングルエンド伝送路
1−8 シングルエンド・コプレーナ伝送路
2−4 第1の伝送路
2−5 第2の伝送路
2−6 第3の伝送路
3−2、3−3、3−4 電気線路
3−5 電極Diff.−GCPW
3−6 グラウンド電極
3−7 ガラス布の縦糸
3−8 ガラス布の横糸
1-1, 2-1, 3-1 Substrate 1-2, 2-2 Glass cloth 1-3, 2-3 Area where electrodes are formed 1-4, 2-4 Area where transmission lines are formed 1- 5, 1-6 Single-ended coplanar electrode 1-7 Single-ended transmission line 1-8 Single-ended coplanar transmission line 2-4 First transmission line 2-5 Second transmission line 2-6 Third transmission line 3-2, 3-3, 3-4 Electrical line 3-5 Electrode Diff. -GCPW
3-6 Ground electrode 3-7 Warp of glass cloth 3-8 Weft of glass cloth

Claims (8)

複数本のガラス繊維を交互に編み込んだガラス繊維布に樹脂を染みこませた可撓性を備えるフィルムであって、前記フィルムのエッジ端からL(mm)の範囲となる領域Aと、前記領域A以外の領域Bの両者でガラス繊維の交差密度が異なるフィルムと、
前記フィルムの第1の面に一様に形成された導体と、
前記第1の面に対向する第2の面に前記ガラス繊維と並行にならないように形成された電気線路と
を備え、前記領域Aのガラス繊維の交差密度は、前記領域Bのガラス繊維の交差密度よりも高いことを特徴とする高速電気線路。
A flexible film in which a glass fiber cloth in which a plurality of glass fibers are alternately knitted is impregnated with a resin, the region A being in the range of L (mm) from the edge of the film, and the region A film in which the cross density of glass fibers is different in both regions B other than A,
A conductor uniformly formed on the first surface of the film;
An electrical line formed on the second surface opposite to the first surface so as not to be parallel to the glass fiber, and the cross density of the glass fibers in the region A is the crossing of the glass fibers in the region B A high-speed electrical line characterized by higher density .
前記電気線路は、前記第2の面の領域Aに形成された、
(グランド、信号、グランド)の組で使う金属膜を順番にならべ、かつ前記第1の面にグランド電極を備えたシングルエンド・グランデッドコプレーナ電極(電極Single−Ended−GCPW)、
前記第1の面にグランド電極を備えないシングルエンド・コプレーナ電極(電極Single−Ended−CPW)、
(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに前記第1の面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ電極(電極Diff.−GCPW)、
前記第1の面にグランド電極を備えないディファレンシャル・コプレーナ電極(電極Diff.−CPW)、あるいは、
前記電極Single−Ended−GCPW、電極Single−Ended−CPW、電極Diff.−GCPW、電極Diff.−CPWの任意の組み合わせの電極
を少なくとも2つ以上備えたことを特徴とする請求項に記載の高速電気線路。
The electrical line is formed in the region A of the second surface,
A single-ended grounded coplanar electrode (electrode Single-Ended-GCPW) having a metal electrode used in a set of (ground, signal, ground) in order and having a ground electrode on the first surface;
A single-ended coplanar electrode (electrode Single-Ended-CPW) without a ground electrode on the first surface;
(Ground, positive signal, negative signal, ground) are arranged in order, and a differential grounded coplanar electrode (electrode Diff.-GCPW) having a ground electrode on the first surface,
A differential coplanar electrode (electrode Diff.-CPW) without a ground electrode on the first surface, or
The electrode Single-Ended-GCPW, the electrode Single-Ended-CPW, the electrode Diff. -GCPW, electrode Diff. The high-speed electric line according to claim 1 , comprising at least two or more electrodes of any combination of CPW.
前記導体は、前記第1の面の領域Bに形成されたグランド電極を備え、
前記電気線路は、前記第2の面の領域Bに形成された、
電気線路のみのマイクロストリップ線路(線路MSL)、
前記フィルム底面にグランドを備え、表面には(グランド、信号、グランド)の順番に並んだ金属膜を備えるシングルエンド・グランデッドコプレーナ線路(線路Single−Ended−GCPW)、
(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに底面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ線路(線路Diff.−GCPW)、あるいは、
前記線路MSL、線路Single−Ended−GCPW、線路Diff.−GCPWの任意の組み合わせの線路
を少なくとも1つ以上備えた
ことを特徴とする請求項に記載の高速電気線路。
The conductor includes a ground electrode formed in the region B of the first surface,
The electrical line is formed in the region B of the second surface,
Microstrip line (line MSL) only for electric lines,
A single-ended grounded coplanar line (line Single-Ended-GCPW) having a ground on the bottom surface of the film and a metal film arranged in the order of (ground, signal, ground) on the surface,
(Ground, positive signal, negative signal, ground) Metal films used in pairs are sequentially arranged, and a differential grounded coplanar line (line Diff.-GCPW) having a ground electrode on the bottom surface, or
The line MSL, the line Single-Ended-GCPW, the line Diff. Fast electric line according to claim 1, characterized in that any combination of lines -GCPW comprising at least one or more.
前記導体は、前記第1の面の領域Bに形成されたグランド電極を備え、
前記電気線路は、前記第2の面の領域Bに形成された、
電気線路のみのマイクロストリップ線路(線路MSL)、
前記フィルム底面にグランドを備え、表面には(グランド、信号、グランド)の順番に並んだ金属膜を備えるシングルエンド・グランデッドコプレーナ線路(線路Single−Ended−GCPW)、
(グランド、ポジティブ信号、ネガティブ信号、グランド)の組で使う金属膜を順番に並べ、さらに底面にグランド電極を備えたディファレンシャル・グランデッドコプレーナ線路(線路Diff.−GCPW)、あるいは、
前記線路MSL、線路Single−Ended−GCPW、線路Diff.−GCPWの任意の組み合わせの線路
を少なくとも1つ以上備えた
ことを特徴とする請求項に記載の高速電気線路。
The conductor includes a ground electrode formed in the region B of the first surface,
The electrical line is formed in the region B of the second surface,
Microstrip line (line MSL) only for electric lines,
A single-ended grounded coplanar line (line Single-Ended-GCPW) having a ground on the bottom surface of the film and a metal film arranged in the order of (ground, signal, ground) on the surface,
(Ground, positive signal, negative signal, ground) Metal films used in pairs are sequentially arranged, and a differential grounded coplanar line (line Diff.-GCPW) having a ground electrode on the bottom surface, or
The line MSL, the line Single-Ended-GCPW, the line Diff. The high-speed electric line according to claim 2 , comprising at least one line of any combination of -GCPW.
前記電極Single−Ended−GCPW、あるいは前記電極Single−Ended−CPWを電気的に接続する際、前記線路MSL、あるいは前記線路Single−Ended−GCPWが用いられていることを特徴とする請求項に記載の高速電気線路。 The electrode Single-Ended-GCPW, or when electrically connecting the electrodes Single-Ended-CPW, in claim 4, wherein the line MSL, or the line Single-Ended-GCPW is used The described high-speed electrical line. 前記電極Diff.−GCPW、あるいは前記電極Diff.−CPWを電気的に接続する際、前記線路Diff.−GCPWが用いられていることを特徴とする請求項に記載の高速電気線路。 The electrode Diff. -GCPW or the electrode Diff. -When the CPW is electrically connected, the line Diff. 5. The high-speed electric line according to claim 4 , wherein GCPW is used. 前記ガラス繊維に染みこませた樹脂がエポキシ樹脂、ポリミド樹脂、フッ素系樹脂、あるいは液晶ポリマ樹脂であることを特徴とする請求項又はに記載の高速電気線路。 The glass fibers stain crowded so the resin is an epoxy resin, polyimide resin, fluorine-based resin or high speed electrical line according to claim 5 or 6, characterized in that a liquid crystal polymer resin. 前記第1の面側に前記フィルムより厚いリジッドな基板を備えたことを特徴とする請求項に記載の高速電気線路。 8. The high-speed electric line according to claim 7 , further comprising a rigid substrate thicker than the film on the first surface side.
JP2009206017A 2009-09-07 2009-09-07 High-speed electrical track Expired - Fee Related JP5155269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206017A JP5155269B2 (en) 2009-09-07 2009-09-07 High-speed electrical track

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206017A JP5155269B2 (en) 2009-09-07 2009-09-07 High-speed electrical track

Publications (2)

Publication Number Publication Date
JP2011061303A JP2011061303A (en) 2011-03-24
JP5155269B2 true JP5155269B2 (en) 2013-03-06

Family

ID=43948473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206017A Expired - Fee Related JP5155269B2 (en) 2009-09-07 2009-09-07 High-speed electrical track

Country Status (1)

Country Link
JP (1) JP5155269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233843A (en) * 2020-12-17 2021-01-15 特变电工(德阳)电缆股份有限公司 Environment-friendly flame-retardant cold-resistant wear-resistant cable and manufacturing method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059517A (en) * 2015-02-27 2017-03-23 セイコーエプソン株式会社 Electronic apparatus, and printer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879512B2 (en) * 2002-01-08 2007-02-14 日東紡績株式会社 Glass fiber woven fabric, prepreg, and printed wiring board
JP2003224408A (en) * 2002-01-30 2003-08-08 Kyocera Corp High-frequency wiring board
JP2003264348A (en) * 2002-03-07 2003-09-19 Sony Corp High frequency module
JP4536430B2 (en) * 2004-06-10 2010-09-01 イビデン株式会社 Flex rigid wiring board
JP5200565B2 (en) * 2007-04-09 2013-06-05 日立化成株式会社 Printed wiring board and electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233843A (en) * 2020-12-17 2021-01-15 特变电工(德阳)电缆股份有限公司 Environment-friendly flame-retardant cold-resistant wear-resistant cable and manufacturing method and application thereof
CN112233843B (en) * 2020-12-17 2021-02-26 特变电工(德阳)电缆股份有限公司 Environment-friendly flame-retardant cold-resistant wear-resistant cable and manufacturing method and application thereof

Also Published As

Publication number Publication date
JP2011061303A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
US10371996B2 (en) Display device
US6372996B2 (en) Circuit board having shielding planes with varied void opening patterns for controlling the impedance and the transmission time
JP5790261B2 (en) Circuit board and optical modulator
US6225568B1 (en) Circuit board having shielding planes with varied void opening patterns for controlling the impedance and the transmission time
US10827612B2 (en) Printed circuit board and electrical connector assembly using the same
JP2016057567A (en) Optical module, optical transmission/reception module, and flexible substrate
CN107995776A (en) A kind of circuit board and crosstalk eliminating method for being used to shield crosstalk
JP5155269B2 (en) High-speed electrical track
JP5050797B2 (en) Flexible printed wiring board
US11277913B2 (en) Electrical connector assembly
US20090188699A1 (en) Printed circuit board
WO2016117320A1 (en) Wiring board and method for designing same
JP5392131B2 (en) Wiring board
JP2007294563A (en) Printed wiring board
CN103503583B (en) Circuit board
WO2009119849A1 (en) Composite wiring board
CN102487573A (en) Printed circuit board
US11791523B2 (en) Bandpass filter
CN110998387A (en) Optical waveguide, opto-electric hybrid board, and opto-electric hybrid module
US20110205715A1 (en) Transmission line circuit having pairs of crossing conductive lines
JP2008166357A (en) Printed circuit board
JP2012009573A (en) Circuit board
JP5299201B2 (en) Printed circuit board and printed circuit board manufacturing method
JP3959545B2 (en) Transmission line and semiconductor device
WO2019224901A1 (en) Rigid printed wiring board having flexible section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees