JP5154023B2 - Catalyst carrier holding material and catalytic converter - Google Patents

Catalyst carrier holding material and catalytic converter Download PDF

Info

Publication number
JP5154023B2
JP5154023B2 JP2006094932A JP2006094932A JP5154023B2 JP 5154023 B2 JP5154023 B2 JP 5154023B2 JP 2006094932 A JP2006094932 A JP 2006094932A JP 2006094932 A JP2006094932 A JP 2006094932A JP 5154023 B2 JP5154023 B2 JP 5154023B2
Authority
JP
Japan
Prior art keywords
holding material
catalyst carrier
carrier holding
heat
crystalline alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006094932A
Other languages
Japanese (ja)
Other versions
JP2007270673A (en
Inventor
健二 酒匂
宗和 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
3M Innovative Properties Co
Original Assignee
Honda Motor Co Ltd
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, 3M Innovative Properties Co filed Critical Honda Motor Co Ltd
Priority to JP2006094932A priority Critical patent/JP5154023B2/en
Priority to PCT/US2007/064673 priority patent/WO2007117934A2/en
Publication of JP2007270673A publication Critical patent/JP2007270673A/en
Application granted granted Critical
Publication of JP5154023B2 publication Critical patent/JP5154023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2864Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

本発明は主に自動車に使用される触媒コンバータに関し、特にその担体保持材として使用される無機繊維成形体に関する。   The present invention relates to a catalytic converter mainly used in automobiles, and more particularly to an inorganic fiber molded body used as a carrier holding material.

触媒コンバータは、内燃機関の排気ガス中に含まれる一酸化炭素、炭化水素、窒素酸化物などの有害成分を貴金属触媒によって除去する装置である。   A catalytic converter is a device that removes harmful components such as carbon monoxide, hydrocarbons, and nitrogen oxides contained in the exhaust gas of an internal combustion engine with a noble metal catalyst.

触媒及び排気ガスを高温にすれば、有害物質の分解効率が高まるため、近年、触媒コンバータはエンジンにできるだけ近づけて設置される。そして近年のエンジンは燃費を向上させるために排気ガス温度が高くなり、950℃を越えることもある。それゆえ、触媒コンバータの構成物品には950℃の環境で使用できる程度の耐熱性が要求されている。   In recent years, catalytic converters are installed as close as possible to the engine because the decomposition efficiency of harmful substances increases if the catalyst and exhaust gas are heated to high temperatures. In recent years, the exhaust gas temperature has been increased in order to improve fuel efficiency, and it may exceed 950 ° C. Therefore, the constituent articles of the catalytic converter are required to have heat resistance that can be used in an environment of 950 ° C.

特許文献1には触媒コンバータの構成が記載されている。触媒コンバータは筒状に形成された排気ガス浄化用触媒の担体と、該担体を収容し排気ガス導管に接続される金属製のケーシングと、該担体に巻回されて担体とケーシングとの間隙に充填される触媒担体保持材とを有している。   Patent Document 1 describes the configuration of a catalytic converter. The catalytic converter has a cylindrically shaped exhaust gas purification catalyst carrier, a metal casing that contains the carrier and is connected to an exhaust gas conduit, and is wound around the carrier and is placed in a gap between the carrier and the casing. And a catalyst carrier holding material to be filled.

この触媒担体保持材はアルミナ繊維と、該アルミナ繊維に分散された熱分解によって消失する有機バインダーとを、有する耐熱性層;及び該耐熱性層に積層された、セラミック繊維と、該セラミック繊維に分散された熱分解によって消失する有機バインダーと、該セラミック繊維に分散された無機膨張材とを、有する熱膨張性層;を有している。熱膨張性層の高温熱劣化をアルミナ繊維の層によって防止することを企図したものである。但し、ここでは、アルミナ含有率が90%未満のムライト組成の繊維などもアルミナ繊維として説明されているが、本発明の結晶質アルミナ繊維とは、異なるものである。   The catalyst carrier holding material includes an alumina fiber and a heat-resistant layer having an organic binder dispersed in the alumina fiber and disappeared by thermal decomposition; a ceramic fiber laminated on the heat-resistant layer; and the ceramic fiber. A thermally expandable layer having an organic binder that disappears due to dispersed thermal decomposition, and an inorganic expansion material dispersed in the ceramic fiber. It is intended to prevent high-temperature thermal deterioration of the thermally expandable layer by the alumina fiber layer. However, here, a fiber of mullite composition having an alumina content of less than 90% is also described as an alumina fiber, but is different from the crystalline alumina fiber of the present invention.

しかしながら、この触媒担体保持材は、上述のような近年の要求性能から見れば耐熱性が不十分である。例えば、排気ガス温度が950℃を越えると50時間程度の短期間で触媒担体保持材の触媒担体保持力が低下してしまう。   However, this catalyst carrier holding material has insufficient heat resistance in view of the recent required performance as described above. For example, when the exhaust gas temperature exceeds 950 ° C., the catalyst carrier holding power of the catalyst carrier holding material decreases in a short period of about 50 hours.

耐熱性が不十分である原因は、この種の触媒担体保持材に通常膨張材として使用されるバーミキュライトにあると考えられている。例えば、特許文献2第0004段落には、アルミナシリカ繊維にバーミキュライトを添加した熱膨張性層は、800〜900℃を上限に発生面圧特性が低下することが記載されている。また、特許文献3第0012段落には、セラミック繊維にバーミキュライト等を添加した熱膨張材は、850℃を越える排気ガスに晒されると激しく劣化することが記載されている。   The reason why the heat resistance is insufficient is considered to be vermiculite which is usually used as an expansion material for this kind of catalyst carrier holding material. For example, Patent Document 2 paragraph 0004 describes that the surface pressure characteristics of a thermally expandable layer obtained by adding vermiculite to alumina silica fiber is lowered to 800 to 900 ° C. as an upper limit. In paragraph 0012 of Patent Document 3, it is described that a thermal expansion material in which vermiculite or the like is added to ceramic fibers deteriorates severely when exposed to exhaust gas exceeding 850 ° C.

特許文献4には触媒コンバータの構成が記載されており、バーミキュライトとセラミックファイバーとの混合物をシート状に成形した担体保持材が、耐熱性に劣ることが記載されている。そして、その原因は、バーミキュライトが850℃を越えると分解することと説明されている(第0004段落)。   Patent Document 4 describes the configuration of a catalytic converter, and describes that a carrier holding material obtained by molding a mixture of vermiculite and ceramic fibers into a sheet is inferior in heat resistance. And the cause is explained that vermiculite decomposes when it exceeds 850 ° C. (paragraph 0004).

また、特許文献4には、耐熱性に優れた触媒コンバータの担体保持材として、有機繊維とともにニードルパンチされた圧縮結晶質アルミナファイバー層が記載されている。この担体保持材は耐熱性に劣るバーミキュライトを使用しないことを特徴としている。   Patent Document 4 describes a compressed crystalline alumina fiber layer that is needle punched together with organic fibers as a carrier holding material of a catalytic converter having excellent heat resistance. This carrier holding material is characterized by not using vermiculite which is inferior in heat resistance.

しかしながら、従来の触媒担体保持材はいずれも耐熱性が未だ不十分であり、950℃を越える環境において長期間適当な触媒担体保持力を維持することができない。
特開平10−288032号公報 特開平7−77036号公報 特開平8−338237号公報 特開平7−197811号公報
However, all of the conventional catalyst carrier holding materials still have insufficient heat resistance, and an appropriate catalyst carrier holding force cannot be maintained for a long time in an environment exceeding 950 ° C.
Japanese Patent Laid-Open No. 10-288032 JP-A-7-77036 JP-A-8-338237 JP-A-7-197811

本発明は上記従来の問題を解決するものであり、その目的とするところは、耐熱性に優れ、950℃を越える環境においても長期間触媒担体を支持するのに十分な保持力を維持することができる、触媒コンバータの担体保持材を提供することにある。   The present invention solves the above-mentioned conventional problems, and the object of the present invention is to have excellent heat resistance and maintain sufficient holding power to support the catalyst carrier for a long time even in an environment exceeding 950 ° C. It is an object of the present invention to provide a carrier holding material for a catalytic converter.

本発明は、結晶質アルミナ繊維と、該結晶質アルミナ繊維に分散された熱分解によって消失する有機バインダーとを、有する耐熱性層;及び
該耐熱性層に集積された、結晶質アルミナ繊維と、該結晶質アルミナ繊維に分散された熱分解によって消失する有機バインダーと、該アルミナ繊維に分散されたバーミキュライトとを、有する熱膨張性層;
を有する、触媒担体保持材であって、
該結晶質アルミナ繊維が触媒担体保持材中1457〜1777g/m の量で存在しており、
該耐熱性層中に存在する結晶質アルミナ繊維の量と前記熱膨張性層中に存在する結晶質アルミナ繊維の量との比率が0.98〜1.98であり、
該バーミキュライトが熱膨張性層中に23〜30重量%の量で存在している、触媒担体保持材を提供するものであり、そのことにより、上記目的が達成される。
The present invention comprises a heat-resistant layer having crystalline alumina fibers and an organic binder that is dispersed in the crystalline alumina fibers and disappears by thermal decomposition; and the crystalline alumina fibers integrated in the heat-resistant layer; A thermally expandable layer having an organic binder dispersed in the crystalline alumina fiber and disappearing by pyrolysis, and vermiculite dispersed in the alumina fiber;
A catalyst carrier holding material comprising:
The crystalline alumina fiber is present in the catalyst carrier holding material in an amount of 1457 to 1777 g / m 2 ;
The ratio of the amount of crystalline alumina fibers present in the heat resistant layer to the amount of crystalline alumina fibers present in the thermally expandable layer is 0.98 to 1.98;
The present invention provides a catalyst carrier holding material in which the vermiculite is present in the thermally expandable layer in an amount of 23 to 30% by weight, whereby the above object is achieved.

本発明の触媒コンバータの担体保持材は耐熱性に優れ、950℃を越える環境においても長期間触媒担体を支持するのに十分な保持力を維持することができる。   The carrier holding material of the catalytic converter of the present invention is excellent in heat resistance and can maintain a holding force sufficient to support the catalyst carrier for a long time even in an environment exceeding 950 ° C.

図1は本発明の触媒担体保持材の一部を示す斜視図である。この触媒担体保持材3は耐熱性層1とそれに積層された熱膨張性層2とを有している。   FIG. 1 is a perspective view showing a part of the catalyst carrier holding material of the present invention. This catalyst carrier holding material 3 has a heat-resistant layer 1 and a heat-expandable layer 2 laminated thereon.

耐熱性層1は、厚さ方向にほぼ均一に集積した結晶質アルミナ繊維の集合体であり、所謂ブランケット又はブロックと呼ばれるものを包含する。結晶質アルミナ繊維としては、通常、繊維径が1〜50μm、繊維長が0.5〜500mmのものが使用されるが、圧縮復元力および形状保持性の観点からは、繊維径が3〜8μm、繊維長が0.5〜300mmの繊維が特に好ましい。   The heat-resistant layer 1 is an aggregate of crystalline alumina fibers accumulated almost uniformly in the thickness direction, and includes what is called a blanket or a block. As the crystalline alumina fiber, one having a fiber diameter of 1 to 50 μm and a fiber length of 0.5 to 500 mm is usually used. From the viewpoint of compressive restoring force and shape retention, the fiber diameter is 3 to 8 μm. A fiber having a fiber length of 0.5 to 300 mm is particularly preferable.

上記結晶質アルミナ繊維の組成としては、アルミナ含有率が90重量%以上、かつシリカ含有率が10重量%未満のものをいう。好ましくはアルミナ含有量が94重量%以上のものである。   The composition of the crystalline alumina fiber refers to one having an alumina content of 90% by weight or more and a silica content of less than 10% by weight. Preferably, the alumina content is 94% by weight or more.

結晶質アルミナ繊維は、非結晶質セラミック繊維と比較して耐熱性に優れ、セラミック繊維の様に結晶化の進行に伴う収縮などによる熱劣化が極めて少ない上に、一定の圧縮がなされた場合に弾力性に富んでいる。すなわち、結晶質アルミナ繊維層は、低い嵩密度で高い保持力を発生し且つその高温における特性変化が少ないと言う性質を持つ。従って、触媒コンバータの担体保持材として使用した際、担体とケーシングとの熱膨張の差によって担体とケーシングとの間隙が変化し、その嵩密度が変化した場合にも、担体に対する保持圧力の変化を小さくできる。 Crystalline alumina fibers are superior in heat resistance compared to non-crystalline ceramic fibers, and heat degradation due to shrinkage accompanying the progress of crystallization is extremely low, as is the case with ceramic fibers. It is rich in elasticity. That is, the crystalline alumina fiber layer has a property that it generates a high holding force at a low bulk density and has little property change at a high temperature. Therefore, when used as a carrier holding material for a catalytic converter, even if the gap between the carrier and the casing changes due to the difference in thermal expansion between the carrier and the casing, and the bulk density changes, the change in the holding pressure on the carrier also changes. Can be small.

有機バインダーは、圧縮された層の厚さを常温下において維持でき、熱分解による消失後に上記層の厚さを復元し得るものであれば特に制限なく使用できるが、担体の使用温度以上でも分解しない様なもの、更には、有機バインダーを含浸させることによって層の柔軟性および復元面圧特性を阻害し、担体の破壊を助長する様な性質を持つ有機バインダーの使用は、避ける必要がある。有機バインダーとしては、各種のゴム、水溶性有機高分子化合物、熱可塑性樹脂、熱硬化性樹脂などを使用できる。   The organic binder can be used without particular limitation as long as it can maintain the thickness of the compressed layer at room temperature and can restore the thickness of the layer after disappearance due to thermal decomposition. Further, it is necessary to avoid the use of an organic binder having such a property that it impedes the flexibility and restoring surface pressure characteristics of the layer by impregnating the organic binder and promotes the destruction of the support. As the organic binder, various rubbers, water-soluble organic polymer compounds, thermoplastic resins, thermosetting resins and the like can be used.

上記ゴム類としては、天然ゴム;エチルアクリレートとクロロエチルビニルエーテルの共重合体、n−ブチルアクリレートとアクリロニトリルの共重合体、エチルアクリレートとアクリロニトリルの共重合体などのアクリルゴム;ブタジエンとアクリロニトリルの共重合体のニトリルゴム;ブタジエンゴム等が挙げられ、水溶性有機高分子化合物としては、カルボキシメチルセルロース、ポリビニルアルコール等が挙げられる。熱可塑性樹脂としては、アクリル酸、アクリル酸エステル、アクリルアミド、アクリロニトリル、メタクリル酸、メタクリル酸エステル等の単独重合体および共重合体であるアクリル樹脂;アクリロニトリル・スチレン共重合体;アクリロニトリル・ブタジエン・スチレン共重合体などが挙げられる。また、熱硬化性樹脂としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂などが挙げられる。   Examples of the rubbers include natural rubber; acrylic rubber such as copolymer of ethyl acrylate and chloroethyl vinyl ether, copolymer of n-butyl acrylate and acrylonitrile, copolymer of ethyl acrylate and acrylonitrile; copolymer of butadiene and acrylonitrile. Examples of the water-soluble organic polymer compound include carboxymethyl cellulose and polyvinyl alcohol. Thermoplastic resins include acrylic resins that are homopolymers and copolymers such as acrylic acid, acrylic ester, acrylamide, acrylonitrile, methacrylic acid, methacrylic ester; acrylonitrile / styrene copolymer; acrylonitrile / butadiene / styrene copolymer A polymer etc. are mentioned. Examples of the thermosetting resin include bisphenol type epoxy resins and novolac type epoxy resins.

上記の有機バインダーを有効成分とした水溶液、水分散型エマルション、ラテックス、有機溶媒溶液(これらを総称して「バインダー液」と言う)が市販されており、これらのバインダー液は、そのまま水などの溶媒で希釈して使用できるため、比較的安価に適用し得る。なお、有機バインダーは一種である必要はなく2種以上の混合物であってもよい。   Aqueous solutions, water-dispersed emulsions, latexes, and organic solvent solutions (collectively referred to as “binder liquids”) containing the above organic binders as active ingredients are commercially available. Since it can be used after being diluted with a solvent, it can be applied relatively inexpensively. In addition, the organic binder does not need to be 1 type, and 2 or more types of mixtures may be sufficient as it.

有機バインダー含有量は、特に限定されるものではなく、結晶質アルミナ繊維の種類、形状、層の絶対厚さ、触媒コンバータの金属製ケーシングに組み込む前の有機バインダーを含む成形体としての厚さ及び反発力によって決定される。有機バインダー含有量は、通常、結晶質アルミナ繊維100重量部に対して有機バインダーの有効成分が3〜30重量部にするのがよい。有機バインダーの含有量が3重量部未満の場合は、基材層の反発によって成形体としての厚さを維持できない虞があり、30重量部を超える場合は、有機バインダー焼失に伴う重量減少により保持力の低下が増大する他、成形体の柔軟性が損なわれる虞が生ずる。斯かる観点から、有機バインダーの上記割合は5〜20重量部の範囲が通常もちいられる。   The content of the organic binder is not particularly limited, and the type and shape of the crystalline alumina fiber, the absolute thickness of the layer, the thickness as the molded body containing the organic binder before being incorporated into the metal casing of the catalytic converter, and Determined by repulsive force. The organic binder content is usually 3-30 parts by weight of the active component of the organic binder with respect to 100 parts by weight of the crystalline alumina fiber. If the content of the organic binder is less than 3 parts by weight, the thickness of the molded body may not be maintained due to the repulsion of the base material layer. If the content exceeds 30 parts by weight, it will be retained due to weight reduction due to burnout of the organic binder. In addition to an increase in force reduction, the flexibility of the molded body may be impaired. From such a viewpoint, the range of 5 to 20 parts by weight of the organic binder is usually used.

耐熱性層1は、抄紙法を用いて形成することができる。水中に分散させた結晶質アルミナ繊維に有機バインダーを添加したスラリーを調整する工程、そのスラリーを抄紙法によりメッシュ上で脱水する工程、メッシュ上に形成された層を厚さ方向に圧縮する工程、有機バインダーの溶媒分および水を乾燥により除去する工程を経て製造される。 The heat resistant layer 1 can be formed using a papermaking method. A step of preparing a slurry in which an organic binder is added to crystalline alumina fibers dispersed in water, a step of dehydrating the slurry on a mesh by a papermaking method, a step of compressing a layer formed on the mesh in the thickness direction, It is manufactured through a step of removing the solvent and water of the organic binder by drying.

耐熱性層1は、ニードルパンチ処理を施した結晶性アルミナ繊維ブランケットを用いて形成することもできる。その際には、ニードルパンチング処理したブランケットに有機バインダーを含浸する工程、有機バインダー液を含浸させた層を厚さ方向に圧縮する工程、有機バインダー液の溶媒分を乾燥により除去する工程を経て製造される。必要に応じ有機バインダーは水により希釈して使用しても良い。 The heat-resistant layer 1 can also be formed using a crystalline alumina fiber blanket that has been subjected to needle punching. In that case, manufactured through a step of impregnating a needle punched blanket with an organic binder, a step of compressing the layer impregnated with the organic binder solution in the thickness direction, and a step of removing the solvent content of the organic binder solution by drying Is done. If necessary, the organic binder may be diluted with water.

熱膨張性層2は、バーミキュライトの粒子を、結晶質アルミナ繊維を含むスラリー中に分散させること以外は抄紙法により形成される耐熱性層1と同様にして製造される。なお、必要に応じその他の無機充填材として例えばセピオライト鉱物などを含有させることが出来る。 The heat-expandable layer 2 is produced in the same manner as the heat-resistant layer 1 formed by a papermaking method, except that vermiculite particles are dispersed in a slurry containing crystalline alumina fibers. In addition, for example, sepiolite mineral can be included as other inorganic filler as required.

このようにして形成した保持材は、次の様な特性を有しているのが好ましい。すなわち、担体外周面とケーシング内面との間隙に相当する厚さの圧縮状態において、0.1〜8.0kgf/cmの復元力を有しているのが好ましい。斯かる復元力は、担体がセラミックス製の場合で0.5〜8.0kgf/cm程度とされ、担体が金属製の場合で0.1〜4.0kgf/cm程度とされる。 The holding material thus formed preferably has the following characteristics. In other words, it preferably has a restoring force of 0.1 to 8.0 kgf / cm 2 in a compressed state having a thickness corresponding to the gap between the outer peripheral surface of the carrier and the inner surface of the casing. Such restoring force, the carrier is a 0.5~8.0kgf / cm 2 approximately in the case of a ceramic carrier is a 0.1~4.0kgf / cm 2 approximately in the case of metal.

上記の復元力は、層に分散された有機バインダーが熱分解によって消失した後においても維持される。層の復元力は、担体外周面とケーシング内面との間隙に相当する厚さに層を圧縮するのに要する力(圧縮力)に相当する。従って、本発明においては、層形成時の圧縮力によって上記の復元力の指標としている。   The restoring force is maintained even after the organic binder dispersed in the layer disappears by thermal decomposition. The restoring force of the layer corresponds to a force (compression force) required to compress the layer to a thickness corresponding to the gap between the outer peripheral surface of the carrier and the inner surface of the casing. Therefore, in the present invention, the restoring force is used as an index of the restoring force based on the compressive force at the time of layer formation.

得られる熱膨張性層中に、バーミキュライトは23〜33重量%、好ましくは25〜32重量%の量で存在している。バーミキュライトの量が23重量%未満であると高温におけるバーミキュライトの膨張により発生する圧力が不足し、十分な触媒担体保持力が得られない。33重量%を越えると高温に長時間さらされた際に、バーミキュライトの膨張により得られる圧力に比べ、そのバーミキュライトの劣化が与える影響が大きくなることにより十分な触媒担体保持力が得られないばかりでなく、初めて高温に曝された際のバーミキュライトが発生する圧力が過大となり、結果として保持材が発生する圧力がキャニング時面圧を上回り、触媒担体を圧損する可能性がある。 In the resulting thermally expandable layer, vermiculite is present in an amount of 23 to 33% by weight, preferably 25 to 32% by weight. If the amount of vermiculite is less than 23% by weight, the pressure generated by the expansion of vermiculite at a high temperature is insufficient, and sufficient catalyst carrier holding power cannot be obtained. If the amount exceeds 33% by weight, the effect of deterioration of the vermiculite is greater than the pressure obtained by the expansion of vermiculite when exposed to a high temperature for a long time. However, the pressure at which vermiculite is generated when exposed to a high temperature for the first time becomes excessive, and as a result, the pressure at which the holding material is generated may exceed the surface pressure during canning, and the catalyst carrier may be damaged.

得られる触媒担体保持材は厚さが7〜25mm、好ましくは10mm〜20mmである。厚さが7mm未満であると、作製する際に厚みをコントロールするための圧縮を過度に行う必要があり、それにより保持材を構成する結晶質アルミナ繊維が折損する。その結果、自動車の排気ガス等の圧力により保持材が飛散、脱落する等の不具合が発生する可能性がある。厚さが25mmを越えると、キャニング工程において触媒担体への保持材の巻き付け時に、その内外周差により発生する張力が過大となり、外周層すなわち熱膨張性層にクラックが発生する等の不具合が発生する可能性がある。   The obtained catalyst carrier holding material has a thickness of 7 to 25 mm, preferably 10 to 20 mm. When the thickness is less than 7 mm, it is necessary to perform excessive compression for controlling the thickness at the time of production, whereby the crystalline alumina fibers constituting the holding material are broken. As a result, there is a possibility that a problem such as the holding material scattering and dropping due to the pressure of the exhaust gas of the automobile occurs. If the thickness exceeds 25 mm, the tension generated by the difference between the inner and outer circumferences will be excessive when the holding material is wound around the catalyst carrier in the canning process, causing problems such as cracks in the outer circumferential layer, that is, the thermal expansion layer. there's a possibility that.

得られる触媒担体保持材中に、結晶質アルミナ繊維は1400g/m以上、好ましくは1500〜2500g/mの量で存在している。結晶質アルミナ繊維の量が1400g/m未満であると熱膨張性層に含まれるバーミキュライトの熱による劣化を防ぐための耐熱性層の厚みが不足し、保持材としての耐熱性が不十分となる可能性がある。 The catalyst carrier holding material to be obtained, the crystalline alumina fibers 1400 g / m 2 or more, preferably present in an amount of 1500~2500g / m 2. If the amount of crystalline alumina fiber is less than 1400 g / m 2 , the heat-resistant layer for preventing deterioration due to heat of the vermiculite contained in the heat-expandable layer is insufficient, and the heat resistance as a holding material is insufficient. There is a possibility.

また、耐熱性層中に存在する結晶質アルミナ繊維の量と熱膨張性層中に存在する結晶質アルミナ繊維の量との比率は0.98〜1.98、好ましくは1.2〜1.9である。この比率が0.98未満であると触媒担体が発生する熱を耐熱層が十分に遮断できず、バーミキュライトの熱による劣化が促進され、十分な保持力性能が得られなくなる可能性がある。   The ratio between the amount of crystalline alumina fibers present in the heat resistant layer and the amount of crystalline alumina fibers present in the thermally expandable layer is 0.98 to 1.98, preferably 1.2 to 1.2. Nine. If this ratio is less than 0.98, the heat-resistant layer cannot sufficiently block the heat generated by the catalyst carrier, the deterioration of vermiculite due to the heat is promoted, and sufficient holding power performance may not be obtained.

また、1.98を越えると保持材全体におけるバーミキュライトの量が不足し、十分な保持力性能が得られない。 On the other hand, if it exceeds 1.98, the amount of vermiculite in the entire holding material is insufficient, and sufficient holding power performance cannot be obtained.

図2は本発明による触媒コンバータの典型的な構成を示した斜視図である。構成の容易な理解のため、触媒コンバータを展開した状態が示されている。図示の触媒コンバータ10は、金属ケーシング11と、その金属ケーシング11内に配置されたモノリスの固体触媒担体20と、金属ケーシング11と触媒担体20との間に配置された触媒担体保持材30とを備える。   FIG. 2 is a perspective view showing a typical configuration of the catalytic converter according to the present invention. For easy understanding of the configuration, the state where the catalytic converter is deployed is shown. The illustrated catalytic converter 10 includes a metal casing 11, a monolithic solid catalyst carrier 20 disposed in the metal casing 11, and a catalyst carrier holding material 30 disposed between the metal casing 11 and the catalyst carrier 20. Prepare.

触媒担体保持材30は、本発明に従い、耐熱性層及び熱膨張性層を有している。そして、耐熱性層が触媒担体側に向くように配置されている。また、触媒コンバータ10には、円錐台の形をした排気ガス流入口12及び排気ガス流出口13が取り付けられている。   The catalyst carrier holding material 30 has a heat resistant layer and a thermally expandable layer according to the present invention. And it arrange | positions so that a heat resistant layer may face the catalyst support side. The catalytic converter 10 is provided with an exhaust gas inlet 12 and an exhaust gas outlet 13 each having a truncated cone shape.

上記の構成により、950℃の環境下で使用できる触媒コンバータが提供できる。   With the above configuration, a catalytic converter that can be used in an environment of 950 ° C. can be provided.

以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。   The following examples further illustrate the present invention, but the present invention is not limited thereto.

実施例1〜10および比較例1〜3
結晶質アルミナ繊維(Saffil社製「LA」アルミナ含有率96重量%)と水を固形分濃度0.5%となるようにWaringブレンダーに加え、約10秒間攪拌した。これを12リットルのビーカーに移し、固形分濃度45.5%のアクリルラテックス(ローム・アンド・ハース社製「Rhoplex HA−8」)を水に対し0.06%となるように添加し、プロペラミキサーにより混合した。硫酸アルミニウムの50%水溶液を十分量加え、pHを4〜6に調整した。凝集剤(Nalco社製「7530」)の0.1%溶液10グラムを加え、プロペラミキサーにより混合し、耐熱性層となる第1のスラリーとした。
Examples 1-10 and Comparative Examples 1-3
Crystalline alumina fibers (Saffil's “LA” alumina content 96% by weight) and water were added to a Waring blender to a solid content concentration of 0.5% and stirred for about 10 seconds. This was transferred to a 12 liter beaker, and an acrylic latex having a solid content of 45.5% (“Rhoplex HA-8” manufactured by Rohm and Haas) was added to a water content of 0.06% with respect to water. Mix with a mixer. A sufficient amount of 50% aqueous solution of aluminum sulfate was added to adjust the pH to 4-6. 10 grams of a 0.1% solution of a flocculant (Nalco “7530”) was added and mixed with a propeller mixer to form a first slurry that would be a heat resistant layer.

同様に結晶質アルミナ繊維(Saffil社製「LA」)と水を固形分濃度0.5%となるようにWaringブレンダーに加え、約10秒間攪拌した。これを12リットルのビーカーに移し、固形分濃度45.5%のアクリルラテックス(ローム・アンド・ハース社製「Rhoplex HA−8」)を水に対し0.06%となるように添加し、さらにメッシュサイズが18〜50メッシュである未膨張バーミキュライト(コーメタルズインク社製)を加え、プロペラミキサーにより混合した。硫酸アルミニウムの50%水溶液を十分量加え、pHを4〜6に調整した。凝集剤(Nalco社製「7530」)の0.1%溶液10グラムを加え、プロペラミキサーにより混合し、熱膨張性層となる第2のスラリーとした。   Similarly, crystalline alumina fibers (“LA” manufactured by Saffil) and water were added to a Waring blender so as to have a solid concentration of 0.5%, and stirred for about 10 seconds. This was transferred to a 12 liter beaker, and an acrylic latex having a solid content of 45.5% (“Rhoplex HA-8” manufactured by Rohm and Haas) was added to 0.06% with respect to water. Unexpanded vermiculite (manufactured by Cormetals Inc.) having a mesh size of 18 to 50 mesh was added and mixed with a propeller mixer. A sufficient amount of 50% aqueous solution of aluminum sulfate was added to adjust the pH to 4-6. 10 grams of a 0.1% solution of a flocculant (Nalco “7530”) was added and mixed with a propeller mixer to form a second slurry that would be a thermally expandable layer.

第1のスラリーを抄紙法により成形した後、続けて第2のスラリーを注ぎ脱水し、2層構造の成形体を得た。これを1対の加圧ローラーにて圧縮して高密度化し、加熱ロールにて乾燥してバインダー含有率約12%の触媒担体保持材を得た。
各スラリーに投入する繊維量および第2のスラリーに添加するバーミキュライトの量を調整し、表1に示す実施例1〜10および比較例1〜3を得た。
After forming the first slurry by the papermaking method, the second slurry was poured and dehydrated continuously to obtain a molded article having a two-layer structure. This was compressed with a pair of pressure rollers to increase the density, and dried with a heating roll to obtain a catalyst carrier holding material having a binder content of about 12%.
The amount of fiber added to each slurry and the amount of vermiculite added to the second slurry were adjusted to obtain Examples 1 to 10 and Comparative Examples 1 to 3 shown in Table 1.

比較例4
結晶質アルミナ繊維(Saffil社製「LA」)と水を固形分濃度0.5%となるようにWaringブレンダーに加え、約10秒間攪拌した。これを12リットルのビーカーに移し、固形分濃度45.5%のアクリルラテックス(ローム・アンド・ハース社製「Rhoplex HA−8」)を水に対し0.06%となるように添加し、プロペラミキサーにより混合した。硫酸アルミニウムの50%水溶液を十分量加え、pHを4〜6に調整した。凝集剤(Nalco社製「7530」)の0.1%溶液10グラムを加え、プロペラミキサーにより混合し、耐熱性層となる第1のスラリーとした。
Comparative Example 4
Crystalline alumina fiber (Saffil's “LA”) and water were added to a Waring blender to a solid content concentration of 0.5% and stirred for about 10 seconds. This was transferred to a 12 liter beaker, and an acrylic latex having a solid content of 45.5% (“Rhoplex HA-8” manufactured by Rohm and Haas) was added to a water content of 0.06% with respect to water. Mix with a mixer. A sufficient amount of 50% aqueous solution of aluminum sulfate was added to adjust the pH to 4-6. 10 grams of a 0.1% solution of a flocculant (Nalco “7530”) was added and mixed with a propeller mixer to form a first slurry that would be a heat resistant layer.

同様にセラミック繊維(サーマルセラミックス社製「カオウールTM HAバルク」アルミナ含有率55重量%)と水を固形分濃度0.5%となるようにWaringブレンダーに加え、約20秒間攪拌した。これを12リットルのビーカーに移し、固形分濃度45.5%のアクリルラテックス(ローム・アンド・ハース社製「Rhoplex HA−8」)を水に対し0.06%となるように添加し、さらにメッシュサイズが18〜50メッシュである未膨張バーミキュライト(コーメタルズインク社製)を加え、プロペラミキサーにより混合した。硫酸アルミニウムの50%水溶液を十分量加え、pHを4〜6に調整した。凝集剤(Nalco社製「7530」)の0.1%溶液10グラムを加え、プロペラミキサーにより混合し、熱膨張性層となる第2のスラリーとした。 Similarly, ceramic fibers (“Cao wool TM HA bulk” alumina content 55% by weight manufactured by Thermal Ceramics Co., Ltd.) and water were added to a Waring blender so as to have a solid content concentration of 0.5%, and stirred for about 20 seconds. This was transferred to a 12 liter beaker, and an acrylic latex having a solid content of 45.5% (“Rhoplex HA-8” manufactured by Rohm and Haas) was added to 0.06% with respect to water. Unexpanded vermiculite (manufactured by Cormetals Inc.) having a mesh size of 18 to 50 mesh was added and mixed with a propeller mixer. A sufficient amount of 50% aqueous solution of aluminum sulfate was added to adjust the pH to 4-6. 10 grams of a 0.1% solution of a flocculant (Nalco “7530”) was added and mixed with a propeller mixer to form a second slurry that would be a thermally expandable layer.

第1のスラリーを抄紙法により成形した後、続けて第2のスラリーを注ぎ脱水し、2層構造の成形体を得た。これを1対の加圧ローラーにて圧縮して高密度化し、加熱ロールにて乾燥してバインダー含有率約12%の触媒担体保持材を得た。   After forming the first slurry by the papermaking method, the second slurry was poured and dehydrated continuously to obtain a molded article having a two-layer structure. This was compressed with a pair of pressure rollers to increase the density, and dried with a heating roll to obtain a catalyst carrier holding material having a binder content of about 12%.

高温耐久面圧試験
高温耐久面圧試験は標準的な触媒担体を有する触媒コンバーターに見い出される実条件を作り、想定される使用条件下で触媒担体保持材の発生する圧力を測定する試験である。
MTSシステムズコーポレーション社製「シンテック1/D」には、45mm径の触媒担体保持材サンプルを挟み込むために試料台間の間隙(ギャップ)を可変することができる一対の試料台が装備されている。
High-temperature endurance surface pressure test The high-temperature endurance surface pressure test is a test for creating actual conditions found in a catalytic converter having a standard catalyst carrier and measuring the pressure generated by the catalyst carrier holding material under the assumed use conditions.
Syntec 1 / D” manufactured by MTS Systems Corporation is equipped with a pair of sample tables that can vary the gap (gap) between the sample tables in order to sandwich a catalyst carrier holding material sample having a diameter of 45 mm.

その上部には試料台間のギャップに挟み込んだ保持材が発生する圧力を測定するロードセルが装備されている。また、サンプルを保持する一対の試料台はそれぞれ異なった温度に加熱することができる。   A load cell for measuring the pressure generated by the holding material sandwiched in the gap between the sample stands is provided at the upper part. Moreover, a pair of sample stand holding a sample can be heated to different temperatures, respectively.

また、触媒コンバーターにおいては温度が上昇するとともに、金属ケースおよび触媒担体の熱膨張係数が異なることにより触媒担体保持材が存在するギャップが広くなる。この現象を再現するために、本測定においても温度とともに想定されるギャップとなるように温度が上昇するにつれて試料台間のギャップを連続的に増加させる。   Further, in the catalytic converter, the temperature rises, and the gap in which the catalyst carrier holding material exists is widened by the difference in thermal expansion coefficient between the metal case and the catalyst carrier. In order to reproduce this phenomenon, the gap between the sample stands is continuously increased as the temperature rises so that the gap assumed with the temperature is obtained in this measurement.

本実施例における測定では、耐熱性層側試料台の温度は室温(約25℃)から高温時920℃、熱膨張性層側試料台の温度は室温(約26℃)から高温時680℃まで昇温し、室温時から高温時に増大するギャップ変化量は0.5mmとした。室温から高温に達するまでの時間は約40分間、高温で16分間保持した後室温まで約60分間で冷却し、これを500サイクル繰り返した。   In the measurement in this example, the temperature of the heat-resistant layer side sample stage is from room temperature (about 25 ° C.) to 920 ° C. at high temperature, and the temperature of the thermally expandable layer side sample stage is from room temperature (about 26 ° C.) to 680 ° C. at high temperature. The gap change amount increased from room temperature to high temperature was 0.5 mm when the temperature was raised. The time from the room temperature to the high temperature was about 40 minutes, kept at the high temperature for 16 minutes, then cooled to room temperature in about 60 minutes, and this was repeated 500 cycles.

500サイクルの高温保持終了時の面圧を耐久後面圧として、32kPa以上の場合を耐熱性を十分有する判定とした。試験結果を表1に示す。   The surface pressure at the end of high temperature holding for 500 cycles was defined as the post-endurance surface pressure, and the case of 32 kPa or more was determined to have sufficient heat resistance. The test results are shown in Table 1.

尚、試験開始時設定ギャップ、つまり、試験開始時に設定する間隙は、試料台間隙を25mm/分のスピードで圧縮した際に保持材が150kPaの面圧を発生するギャップを試験開始時設定ギャップとした。   The gap set at the start of the test, that is, the gap set at the start of the test, is the gap at which the holding material generates a surface pressure of 150 kPa when the gap between the sample stands is compressed at a speed of 25 mm / min. did.

初期高温面圧試験
上記高温耐久試験と同様の試験方法により、下記の試験開始時設定ギャップにて試験を実施し、1サイクル目高温保持付近の最大ピーク面圧値を初期高温面圧値とした。試験結果を表1に示す。
Initial high temperature surface pressure test Using the same test method as the above high temperature endurance test, the test was conducted with the following setting gap at the start of the test, and the maximum peak surface pressure value near the first cycle high temperature retention was set as the initial high temperature surface pressure value. . The test results are shown in Table 1.

尚、試験開始時設定ギャップ、つまり、試験開始時に設定する間隙は、試料台間隙を25mm/分のスピードで圧縮した際に保持材が400kPaの面圧を発生するギャップを試験開始時設定ギャップとした。その際の試験スタート時面圧をキャニング面圧とした。   The gap set at the start of the test, that is, the gap set at the start of the test is the gap at which the holding material generates a surface pressure of 400 kPa when the gap between the sample tables is compressed at a speed of 25 mm / min. did. The surface pressure at the start of the test was taken as the canning surface pressure.

[表1]

Figure 0005154023
a:触媒担体保持材中の結晶質アルミナ繊維量
b:結晶質アルミナ繊維量の耐熱性層と熱膨張性層との比率
c:熱膨張性層中のバーミキュライト量
d:総繊維量は耐熱性層結晶性アルミナファイバー1056g/mと熱膨張性層のセラミックファイバー659g/mの和 [Table 1]
Figure 0005154023
a: Amount of crystalline alumina fiber in catalyst carrier holding material
b: Ratio of heat-resistant layer and thermally expandable layer with crystalline alumina fiber content
c: Vermiculite content in the thermally expandable layer
d: Total fiber amount is the sum of heat resistant layer crystalline alumina fiber 1056 g / m 2 and thermally expandable layer ceramic fiber 659 g / m 2

繊維量比率
耐熱性層繊維量/熱膨張性層繊維量で示される繊維量比率については実施例1〜4について比較を行った。高温耐久試験後面圧は繊維量比率0.98〜1.98の範囲で耐熱性を十分有すると判定される32kPaを上回ることが確認された。
The fiber amount ratio indicated by the fiber amount ratio heat-resistant layer fiber amount / thermally expandable layer fiber amount was compared for Examples 1 to 4. It was confirmed that the surface pressure after the high-temperature endurance test exceeded 32 kPa, which is determined to have sufficient heat resistance in the fiber amount ratio range of 0.98 to 1.98.

総繊維量
総繊維量については実施例3、6および比較例1について比較を行った。高温耐久試験後面圧は総繊維量1400g/m以上において耐熱性を十分有すると判定される32kPaを上回ることが確認された。
Total fiber amount The total fiber amount was compared for Examples 3 and 6 and Comparative Example 1. It was confirmed that the surface pressure after the high-temperature durability test exceeded 32 kPa, which is judged to have sufficient heat resistance when the total fiber amount is 1400 g / m 2 or more.

バーミキュライト含有率
バーミキュライト含有率については実施例3および実施例6〜8、および比較例2について比較を行った。高温耐久試験後面圧は熱膨張性層に含まれるバーミキュライト含有率23〜33重量%において耐熱性を十分有すると判定される32kPaを上回ることが確認された。
Vermiculite content rate The vermiculite content rate was compared for Example 3, Examples 6 to 8, and Comparative Example 2. It was confirmed that the surface pressure after the high-temperature endurance test exceeded 32 kPa, which was judged to have sufficient heat resistance at a vermiculite content of 23 to 33% by weight contained in the thermally expandable layer.

また、実施例9、10および比較例3についてキャニング面圧−初期高温面圧の値を比較した。初期高温面圧がキャニング面圧を上回る場合はその保持材の1サイクル目における高温時に発生する圧力がキャニングで設定した面圧を上回ることを意味し、触媒担体をその圧力差により圧損する可能性がある。比較例3においてはキャニング面圧−初期高温面圧が正となることから、バーミキュライト含有率は33重量%以下とすることが望ましい。   Further, Examples 9 and 10 and Comparative Example 3 were compared in terms of canning surface pressure-initial high temperature surface pressure. If the initial high-temperature surface pressure exceeds the canning surface pressure, it means that the pressure generated at the high temperature in the first cycle of the holding material exceeds the surface pressure set by canning, and the catalyst carrier may be damaged by the pressure difference. There is. In Comparative Example 3, since the canning surface pressure-initial high temperature surface pressure is positive, the vermiculite content is preferably 33% by weight or less.

熱膨張性層に耐熱性の劣るセラミックファイバーを使用した場合
実施例3と比較例4について比較を行うと、熱膨張性層に結晶性アルミナファイバーを使用した実施例3については高温耐久試験後面圧は耐熱性を十分有すると判定される32kPaを上回ることが確認されたが、熱膨張性層がアルミナ含有量約50重量%のセラミックファイバーで構成される比較例4については十分な耐熱性が得られないことが確認された。
When a ceramic fiber with poor heat resistance is used for the thermally expandable layer When comparing Example 3 and Comparative Example 4, the temperature is high for Example 3 in which crystalline alumina fiber is used for the thermally expandable layer. It was confirmed that the surface pressure after the durability test exceeded 32 kPa, which is determined to have sufficient heat resistance, but the comparative example 4 in which the thermally expandable layer is composed of ceramic fibers having an alumina content of about 50% by weight is sufficient. It was confirmed that heat resistance could not be obtained.

本発明の触媒担体保持材の一部を示す斜視図である。It is a perspective view which shows a part of catalyst carrier holding material of this invention. 本発明による触媒コンバータの典型的な構成を示した斜視図である。It is the perspective view which showed the typical structure of the catalytic converter by this invention.

符号の説明Explanation of symbols

1…耐熱性層、
2…熱膨張性層、
3…触媒担体保持材。

1 ... heat-resistant layer,
2 ... thermal expansion layer,
3 ... Catalyst carrier holding material.

Claims (3)

結晶質アルミナ繊維と、該結晶質アルミナ繊維に均一に含浸された熱分解によって消失する有機バインダーとを、有する耐熱性層;及び
該耐熱性層に積層された、結晶質アルミナ繊維と、該結晶質アルミナ繊維に分散された熱分解によって消失する有機バインダーと、該結晶質アルミナ繊維に分散されたバーミキュライトとを、有する熱膨張性層;
を有する、触媒担体保持材であって、
該結晶質アルミナ繊維が触媒担体保持材中1457〜1777g/m の量で存在しており、
該耐熱性層中に存在する結晶質アルミナ繊維の量と前記熱膨張性層中に存在する結晶質アルミナ繊維の量との比率が0.98〜1.98であり、
該バーミキュライトが熱膨張性層中に23〜30重量%の量で存在している、触媒担体保持材。
A heat-resistant layer having a crystalline alumina fiber and an organic binder that is uniformly impregnated in the crystalline alumina fiber and disappears by thermal decomposition; and the crystalline alumina fiber laminated on the heat-resistant layer, and the crystal A heat-expandable layer having an organic binder dispersed in the porous alumina fiber and disappearing by pyrolysis, and vermiculite dispersed in the crystalline alumina fiber;
A catalyst carrier holding material comprising:
The crystalline alumina fiber is present in the catalyst carrier holding material in an amount of 1457 to 1777 g / m 2 ;
The ratio of the amount of crystalline alumina fibers present in the heat resistant layer to the amount of crystalline alumina fibers present in the thermally expandable layer is 0.98 to 1.98;
A catalyst carrier holding material, wherein the vermiculite is present in the thermally expandable layer in an amount of 23 to 30% by weight.
厚さ方向に圧縮されて、厚さが7〜25mmである請求項1に記載の触媒担体保持材。   The catalyst carrier holding material according to claim 1, which is compressed in the thickness direction and has a thickness of 7 to 25 mm. 筒状に形成された排気ガス浄化用触媒の担体と、該担体を収容し排気ガス導管に接続されるケーシングと、該担体に巻回されて担体とケーシングとの間隙に充填される触媒担体保持材とを有する触媒コンバータであって、
該触媒担体保持材が請求項1又は2に記載の触媒担体保持材であり該耐熱性層が担体側に向くように配置されている、触媒コンバータ。
A support for the exhaust gas purification catalyst formed in a cylindrical shape, a casing that contains the support and is connected to an exhaust gas conduit, and a catalyst support that is wound around the support and is filled in a gap between the support and the casing A catalytic converter having a material,
A catalytic converter, wherein the catalyst carrier holding material is the catalyst carrier holding material according to claim 1 or 2, and the heat-resistant layer is arranged to face the carrier side.
JP2006094932A 2006-03-30 2006-03-30 Catalyst carrier holding material and catalytic converter Active JP5154023B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006094932A JP5154023B2 (en) 2006-03-30 2006-03-30 Catalyst carrier holding material and catalytic converter
PCT/US2007/064673 WO2007117934A2 (en) 2006-03-30 2007-03-22 Catalyst-carrier supporting material and catalytic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094932A JP5154023B2 (en) 2006-03-30 2006-03-30 Catalyst carrier holding material and catalytic converter

Publications (2)

Publication Number Publication Date
JP2007270673A JP2007270673A (en) 2007-10-18
JP5154023B2 true JP5154023B2 (en) 2013-02-27

Family

ID=38519851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094932A Active JP5154023B2 (en) 2006-03-30 2006-03-30 Catalyst carrier holding material and catalytic converter

Country Status (2)

Country Link
JP (1) JP5154023B2 (en)
WO (1) WO2007117934A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5971894B2 (en) * 2011-01-31 2016-08-17 スリーエム イノベイティブ プロパティズ カンパニー Contamination control element holding material, manufacturing method thereof and contamination control apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791124B2 (en) * 1992-02-14 1995-10-04 日本ピラー工業株式会社 Heat-expandable ceramic fiber composite
JP3919034B2 (en) * 1997-04-10 2007-05-23 三菱化学株式会社 Inorganic fiber molded body and catalytic converter
EP0884459A3 (en) * 1997-06-13 2002-12-11 Corning Incorporated Coated catalytic converter substrates and mounts
JP3359855B2 (en) * 1997-12-22 2002-12-24 イビデン株式会社 Exhaust gas purification converter
JP3370940B2 (en) * 1998-11-24 2003-01-27 株式会社ユタカ技研 Exhaust converter carrier holding mat
DE19922954C5 (en) * 1999-05-19 2006-10-12 Belchem Fiber Materials Gmbh Use of inorganic textile fiber materials in the form of knits and round needle hoses in exhaust gas converters for internal combustion engines
KR100640124B1 (en) * 1999-06-08 2006-10-31 쓰리엠 이노베이티브 프로퍼티즈 캄파니 High Temperature Mat for a Pollution Control Device
JP2003148126A (en) * 2001-11-16 2003-05-21 Isuzu Motors Ltd Filter fixing method for exhaust emission control device
EP1495807A1 (en) * 2003-06-30 2005-01-12 3M Innovative Properties Company Mounting mat for mounting monolith in a pollution control device
US7645426B2 (en) * 2004-04-14 2010-01-12 3M Innovative Properties Company Sandwich hybrid mounting mat

Also Published As

Publication number Publication date
JP2007270673A (en) 2007-10-18
WO2007117934A3 (en) 2007-12-13
WO2007117934A2 (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5756467B2 (en) Low shear mounting mat for pollution control equipment
KR101523830B1 (en) Exhaust gas treatment device
JP4982363B2 (en) Exhaust gas treatment apparatus and method for manufacturing the same
JP4309349B2 (en) Exhaust gas treatment apparatus and method for manufacturing the same
US8951323B2 (en) Multiple layer mat and exhaust gas treatment device
JP2005074243A (en) Contamination controlling element-holding material and contamination controlling apparatus
JP2002129455A (en) Sealing material for supporting catalyst converter, method of producing the same and catalyst converter
JP4918433B2 (en) Catalytic converter, holding material for catalytic converter and method for producing the same
JP2013501892A (en) Variable basic mass mounting mat or preform and exhaust gas treatment device
JP3919034B2 (en) Inorganic fiber molded body and catalytic converter
WO2015045638A1 (en) Holding seal material, production method for holding seal material, and exhaust gas purification device
JP5154023B2 (en) Catalyst carrier holding material and catalytic converter
US20100247397A1 (en) Magnetic coupling device for an elevator system
JP2005054726A (en) Retaining seal member and exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120419

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250