JP5152128B2 - Method for producing compound semiconductor crystal - Google Patents

Method for producing compound semiconductor crystal

Info

Publication number
JP5152128B2
JP5152128B2 JP2009197756A JP2009197756A JP5152128B2 JP 5152128 B2 JP5152128 B2 JP 5152128B2 JP 2009197756 A JP2009197756 A JP 2009197756A JP 2009197756 A JP2009197756 A JP 2009197756A JP 5152128 B2 JP5152128 B2 JP 5152128B2
Authority
JP
Japan
Prior art keywords
crucible
crystal
compound semiconductor
thickness
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009197756A
Other languages
Japanese (ja)
Other versions
JP2011046573A (en
Inventor
幸司 大宝
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009197756A priority Critical patent/JP5152128B2/en
Publication of JP2011046573A publication Critical patent/JP2011046573A/en
Application granted granted Critical
Publication of JP5152128B2 publication Critical patent/JP5152128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、化合物半導体結晶の製造方法に関し、特に、LEC法にて結晶成長させる化合物半導体結晶の製造方法に関するものである。   The present invention relates to a method for producing a compound semiconductor crystal, and more particularly to a method for producing a compound semiconductor crystal in which crystals are grown by the LEC method.

ICやLSI等の基板のような半導体材料は、化合物半導体結晶から薄く切り出すことなどにより作製される。この化合物半導体結晶の製造方法としては種々の方法があるが、よく用いられている方法としてはLEC法が知られている(例えば、特許文献1参照)。   A semiconductor material such as a substrate such as an IC or LSI is manufactured by thinly cutting a compound semiconductor crystal. There are various methods for producing this compound semiconductor crystal, and the LEC method is known as a commonly used method (see, for example, Patent Document 1).

ここでいうLEC法とは、簡単に言うと、ルツボ内に原料および液体封止剤を入れてこれらを融解させ、この原料融液に種結晶を接触させ、液体封止剤にて原料成分の流出を封止しつつ、この種結晶を引き上げることにより結晶成長した単結晶の化合物半導体結晶を得る方法である。   The LEC method referred to here simply puts a raw material and a liquid sealant in a crucible, melts them, contacts a seed crystal with this raw material melt, In this method, a single crystal compound semiconductor crystal is obtained by pulling up the seed crystal while sealing outflow.

このLEC法は、化合物半導体結晶の製造方法としては確かによく用いられている方法であるが、化合物半導体結晶の製造工程において、原料融液の温度などのような結晶成長条件が結晶成長間に変動するという問題が生ずることもある。   This LEC method is certainly used as a method for producing a compound semiconductor crystal. However, in the production process of a compound semiconductor crystal, crystal growth conditions such as the temperature of the raw material melt vary between crystal growths. The problem of fluctuating may arise.

例えば、結晶成長が進行すると、ルツボの中の融液の残量が減少し、結晶成長界面が原料融液中に張り出してきてルツボの底に接触し、成長が続行できなくなったり、結晶成長の進行に伴い発生する温度ゆらぎが少しであっても、融液全体が凝固して、結晶とルツボが固着してしまったりという問題がある。   For example, as the crystal growth progresses, the remaining amount of the melt in the crucible decreases, the crystal growth interface protrudes into the raw material melt and comes into contact with the bottom of the crucible, and the growth cannot be continued. Even if the temperature fluctuation generated with the progress is small, there is a problem that the whole melt is solidified and the crystal and the crucible are fixed.

本出願人はこの問題を解決すべく、ルツボとこのルツボを支えるサセプタとの間に介在物を設け、原料の融解の際に介在物に蓄えられた熱を利用して原料融液の温度ゆらぎを抑制する技術を開発している(例えば、特許文献2参照)。   In order to solve this problem, the present applicant provides an inclusion between the crucible and the susceptor that supports the crucible, and uses the heat stored in the inclusion during melting of the raw material to cause temperature fluctuations in the raw material melt. Has been developed (for example, see Patent Document 2).

特開平6−56582号公報JP-A-6-56582 特開2009−23867号公報JP 2009-23867 A

一方、結晶成長条件が結晶成長間に変動する要因は上述した内容以外にも考えられ、例えば、ルツボの肉厚の変化によるルツボの熱伝導性の変化が挙げられる。   On the other hand, factors that cause the crystal growth conditions to fluctuate between crystal growths are considered in addition to those described above, and examples include a change in the thermal conductivity of the crucible due to a change in the crucible wall thickness.

ルツボの材質としては一般にpBN(pyrolitic Boron Nitride)が使用されているが、液体封止剤として一般に使用される三酸化硼素とpBNからなるルツボとの間の濡れ性は良好であるため、三酸化硼素がルツボ内周面に固着しやすくなってしまう。この固着によりルツボ内周面が損耗してしまい、さらに、化合物半導体結晶の製造にこのルツボを使用する度に、この損耗が発生するため、結果としてルツボの肉厚が次第に薄くなってしまう。   As a material for the crucible, pBN (pyrolytic Boron Nitride) is generally used. However, since the wettability between boron trioxide generally used as a liquid sealant and the crucible made of pBN is good, trioxide is used. Boron tends to adhere to the inner peripheral surface of the crucible. Due to this fixing, the inner peripheral surface of the crucible is worn out. Further, every time this crucible is used for manufacturing a compound semiconductor crystal, this wear occurs, and as a result, the thickness of the crucible gradually becomes thinner.

ルツボの肉厚が薄くなることにより、原料を融解するためのヒータの熱に対する熱伝導性が大きくなり、ルツボを使用する度に結晶成長条件が変動することになる。さらに、ルツボの内周面が損耗してしまうため、結晶成長を行う前の原料融液と三酸化硼素との界面
位置が変動することにより、熱伝導性以外にも、熱流も変動することになる。これらの変動により、原料融液内の温度分布の再現性が得られなくなるおそれがある。
By reducing the thickness of the crucible, the thermal conductivity of the heater for melting the raw material is increased, and the crystal growth conditions fluctuate each time the crucible is used. Furthermore, since the inner peripheral surface of the crucible is worn, the interface position between the raw material melt and boron trioxide before crystal growth fluctuates, so that the heat flow fluctuates in addition to the thermal conductivity. Become. Due to these fluctuations, the reproducibility of the temperature distribution in the raw material melt may not be obtained.

特に、化合物半導体結晶を製造した後、製造された化合物半導体結晶についての性能を測定し、次の化合物半導体結晶の製造工程で得られる化合物半導体結晶との偏差が小さくなるように製造工程に修正を加える制御方法(以降、Run−to−Runともいう)を用いる場合、前記偏差を小さくするためにも化合物半導体結晶の製造工程の再現性が重要になる。再現性が重要であるにもかかわらず、上述のようにルツボの肉厚が薄くなることにより、ルツボの熱伝導性および熱流が変動することになり、原料融液内の温度分布の再現性が得られなくなるおそれがある。その結果、Run−to−Runによって単結晶を再現性良く得ることが難しくなり、安定した単結晶歩留まりを得ることが困難となるおそれがある。   In particular, after manufacturing a compound semiconductor crystal, the performance of the manufactured compound semiconductor crystal is measured, and the manufacturing process is modified so that the deviation from the compound semiconductor crystal obtained in the manufacturing process of the next compound semiconductor crystal is small. When a control method to be added (hereinafter also referred to as Run-to-Run) is used, the reproducibility of the compound semiconductor crystal manufacturing process is important in order to reduce the deviation. In spite of the importance of reproducibility, the crucible wall thickness is reduced as described above, so that the thermal conductivity and heat flow of the crucible fluctuate, and the reproducibility of the temperature distribution in the raw material melt is reduced. There is a risk that it will not be obtained. As a result, it becomes difficult to obtain a single crystal with good reproducibility by Run-to-Run, and it may be difficult to obtain a stable single crystal yield.

本発明の目的は、結晶成長条件の再現性を確保し、安定した単結晶歩留まりを得る化合物半導体結晶の製造方法を提供することである。   An object of the present invention is to provide a method for producing a compound semiconductor crystal that ensures reproducibility of crystal growth conditions and obtains a stable single crystal yield.

本発明の第一の態様は、サセプタによって支持されるルツボ内に原料及び液体封止剤を収容する収容工程と、前記ルツボを加熱し、前記原料及び液体封止剤を融解する融解工程と、前記ルツボ内の原料融液に種結晶を接触させ、前記種結晶を引き上げて結晶成長させて化合物半導体結晶を得る結晶成長工程と、前記結晶成長工程の前に前記ルツボと前記サセプタとの間に予め設けておいた熱量調整部の肉厚を、ルツボ内周面の損耗量に応じて厚くするように補正する補正工程と、を有することを特徴とする。 The first aspect of the present invention includes a housing step of storing a raw material and a liquid sealant in a crucible supported by a susceptor, a melting step of heating the crucible and melting the raw material and the liquid sealant, A crystal growth step of bringing a seed crystal into contact with the raw material melt in the crucible, pulling up the seed crystal and growing the crystal to obtain a compound semiconductor crystal, and between the crucible and the susceptor before the crystal growth step And a correction step of correcting the thickness of the heat amount adjusting portion provided in advance so as to increase the thickness according to the amount of wear on the inner peripheral surface of the crucible.

本発明の第の態様は、第一の態様に記載の発明において、前記補正工程前後の熱量調整部を前記ルツボと同じ材質とすることを特徴とする。 A second aspect of the present invention is characterized in that, in the invention described in the first aspect, the heat amount adjusting portion before and after the correction step is made of the same material as the crucible.

本発明の第の態様は、第一または第二の態様に記載の発明において、前記補正工程前後の熱量調整部を前記ルツボ底部形と相似、または同一形状とすることを特徴とする。 A third aspect of the present invention is characterized in that, in the invention described in the first or second aspect, the calorific value adjustment part before and after the correction step is similar or identical to the crucible bottom shape.

本発明の第の態様は、第一ないし第のいずれかの態様に記載の発明において、前記補正工程前後の熱量調整部を円筒形状としたとき、前記補正工程前後の熱量調整部の外径を、前記ルツボ外径と同じとすることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, when the heat quantity adjustment part before and after the correction process is cylindrical, the heat quantity adjustment part before and after the correction process is outside of the heat quantity adjustment part. The diameter is the same as the outer diameter of the crucible.

本発明の第の態様は、第一ないし第のいずれかの態様に記載の発明において、前記補正工程前後の熱量調整部の肉厚を、前記ルツボ底部肉厚よりも厚くすることを特徴とする。 According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the thickness of the calorific value adjusting part before and after the correction step is made thicker than the crucible bottom part thickness. And

本発明の第の態様は、第に記載の化合物半導体結晶の製造方法を繰り返すことにより、前記熱量調整部の肉厚と前記ルツボ底部の肉厚との和を、少なくとも各々の補正工程において一定とすることを特徴とする。
A sixth aspect of the invention, Ri by the repeating compound manufacturing method of a semiconductor crystal according to the second, the sum of the wall thickness of the thick and the crucible bottom of the heat adjuster, at least each of the correction It is characterized by being constant in the process.

本発明によれば、結晶成長条件の再現性を確保し、安定した単結晶歩留まりを得る化合物半導体結晶の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the compound semiconductor crystal which ensures the reproducibility of crystal growth conditions and obtains the stable single crystal yield can be provided.

本発明の一実施形態におけるLEC法結晶成長炉の概略断面図である。It is a schematic sectional drawing of the LEC method crystal growth furnace in one Embodiment of this invention. 本発明の別の実施形態におけるLEC法結晶成長炉の概略断面図である。It is a schematic sectional drawing of the LEC method crystal growth furnace in another embodiment of this invention. 本発明の別の実施形態におけるLEC法結晶成長炉の概略断面図である。It is a schematic sectional drawing of the LEC method crystal growth furnace in another embodiment of this invention. 本発明の別の実施形態におけるLEC法結晶成長炉の概略断面図である。It is a schematic sectional drawing of the LEC method crystal growth furnace in another embodiment of this invention. 従来の化合物半導体結晶の製造装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the manufacturing apparatus of the conventional compound semiconductor crystal.

本発明者らは、製造工程の再現性を確保することができる化合物半導体結晶の製造方法について種々検討した。
その結果、発明者らは、サセプタとルツボとの間に前もって熱量調整部を設けておき、ルツボの肉厚が薄くなっても、ルツボ内周面の損耗量に応じて前記熱量調整部の肉厚を補正すればルツボの熱伝導性を維持することができることを見出した。
The present inventors have studied various methods for producing a compound semiconductor crystal that can ensure the reproducibility of the production process.
As a result, the inventors have previously provided a heat amount adjusting portion between the susceptor and the crucible, and even if the crucible wall thickness is reduced, the heat amount adjusting portion according to the amount of wear on the inner peripheral surface of the crucible. It was found that the thermal conductivity of the crucible can be maintained if the thickness is corrected.

以下に、本発明の一実施形態に係る半導体結晶の製造方法およびその製造装置について説明する。なお、本実施形態においては、化合物半導体結晶の製造方法の1つであるLEC法(Liquid Encapsulated Czochralski法)でGaAs単結晶を製造する際の製造装置及びその製造方法について説明する。   Below, the manufacturing method and the manufacturing apparatus of the semiconductor crystal which concern on one Embodiment of this invention are demonstrated. In the present embodiment, a manufacturing apparatus and a manufacturing method for manufacturing a GaAs single crystal by the LEC method (Liquid Encapsulated Czochralski method), which is one of manufacturing methods of a compound semiconductor crystal, will be described.

図1は、本発明の一実施形態における化合物半導体結晶の製造装置を示す概略断面図である。
図1に示すように、圧力容器からなる成長炉100には、単結晶を引上げる為の引上げ軸1が設けられ、引上げ軸1の先端に、種結晶2が取り付けられる。
FIG. 1 is a schematic cross-sectional view showing a compound semiconductor crystal manufacturing apparatus according to an embodiment of the present invention.
As shown in FIG. 1, a growth furnace 100 composed of a pressure vessel is provided with a pulling shaft 1 for pulling up a single crystal, and a seed crystal 2 is attached to the tip of the pulling shaft 1.

前記引上げ軸1は、成長炉100の上方から炉内に挿入され、炉内に設置されているルツボ3に対峙される。そしてこのルツボ3は、サセプタ4を介して回転及び昇降自在なペデスタル5に支持される。   The pulling shaft 1 is inserted into the furnace from above the growth furnace 100 and is opposed to a crucible 3 installed in the furnace. The crucible 3 is supported by a pedestal 5 that can be rotated and moved up and down via a susceptor 4.

前記ルツボ3内には、単結晶の原料6と、液体封止材7とが収容される。なお、この原料6としては例えばIII族原料やV族原料が挙げられ、液体封止材7としては例えば三酸化硼素(B)が挙げられる。後述するように、原料6および液体封止材7はルツボ3内にて融解される。 A single crystal raw material 6 and a liquid sealing material 7 are accommodated in the crucible 3. Examples of the raw material 6 include group III raw materials and group V raw materials, and examples of the liquid sealing material 7 include boron trioxide (B 2 O 3 ). As will be described later, the raw material 6 and the liquid sealing material 7 are melted in the crucible 3.

前記ルツボ3の材質は、化合物半導体結晶の製造に用いることができるものであればよく、例えばpBNやシリコン、またはこれらを含有したものなどが挙げられるが、本実施形態においてはルツボがpBNからなる場合について説明する。   The crucible 3 may be made of any material as long as it can be used for the production of a compound semiconductor crystal. Examples thereof include pBN, silicon, and materials containing these. In this embodiment, the crucible is made of pBN. The case will be described.

また、前記ルツボ3の形状としては、通常のルツボと同様の形状、すなわち上方が開口し、底部33および側部34を有する形状であればよい。前記側部34の形状としては円
筒形状であってもよいし、複数のプレートを組み合わせたものからなる形状であっても良い。前記底部33の形状としては、所定の曲率を有する球面形状であってもよいし、平面形状であってもよいが、温度分布を均一にするという観点から球面形状であることが好ましい。さらに、前記底部33において、原料6と液体封止剤7とを収容する内周面(以降、ルツボ底部上面331ともいう)と、サセプタ4によって支持される外周面(以降、ルツボ底部下面332ともいう)とが相似形状または同一形状であってもよいし、異なる形状であっても良い。例えば、ルツボ底部上面331が球面形状で、ルツボ底部下面332が平面形状であってもよいし、その逆であってもよい。
Further, the shape of the crucible 3 may be the same shape as that of a normal crucible, that is, a shape having an open top and a bottom 33 and a side 34. The side portion 34 may have a cylindrical shape or a shape formed by combining a plurality of plates. The shape of the bottom 33 may be a spherical shape having a predetermined curvature or a planar shape, but is preferably a spherical shape from the viewpoint of uniform temperature distribution. Further, in the bottom 33, an inner peripheral surface (hereinafter also referred to as a crucible bottom upper surface 331) that accommodates the raw material 6 and the liquid sealant 7 and an outer peripheral surface (hereinafter referred to as a crucible bottom lower surface 332) supported by the susceptor 4. ) May be similar or the same shape, or different shapes. For example, the crucible bottom upper surface 331 may be spherical and the crucible bottom lower surface 332 may be planar or vice versa.

ここで、本実施形態においては、前記種結晶2から単結晶を成長させる工程の前に、前記ルツボ3と前記サセプタ4との間に、後で詳述する熱量調整部11を設けておく。この熱量調整部11の肉厚を、後述するルツボ損耗量に応じて補正することになる。   Here, in this embodiment, before the step of growing a single crystal from the seed crystal 2, a calorific value adjusting unit 11, which will be described in detail later, is provided between the crucible 3 and the susceptor 4. The thickness of the heat quantity adjusting unit 11 is corrected according to the crucible wear amount described later.

前記サセプタ4は、前記ルツボ3と同じ材質であることが好ましい。本実施形態の場合、ルツボ3の材質をpBNとしていることから、サセプタ4の材質もpBNとすることが好ましい。後で詳述するが、Run−to−Runを行いながら複数の化合物半導体結晶を各々製造する際に、熱伝導性を一定にしやすくなるためである。   The susceptor 4 is preferably made of the same material as the crucible 3. In this embodiment, since the material of the crucible 3 is pBN, it is preferable that the material of the susceptor 4 is also pBN. As will be described in detail later, it is easy to make the thermal conductivity constant when manufacturing a plurality of compound semiconductor crystals while performing Run-to-Run.

また、前記サセプタ4の形状としては、化合物半導体結晶の製造に用いられるサセプタ4と同様の形状、すなわちルツボ底部下面332を支持する形状であればよいが、後述する熱量調整部11、そしてさらに熱量調整部11により支持されるルツボ3全体を収納できる形状であることが好ましい。具体的には、ルツボ3が円筒形状であり、熱量調整部11の外径とルツボ3外径とが略同一である場合、ルツボ3外径とサセプタ4内径とを略一致させた形状であり、熱量調整部11および熱量調整部11により支持されるルツボ3全体を収納できることが望ましい。熱伝導性を一定にしやすくなり、原料6を融解したときの原料融液の温度分布を一定にすることができるためである。本実施形態では、ルツボ3およびサセプタ4を円筒形状とし、かつルツボ底部上面331および下面332ならびにサセプタ4上面を球面形状とした場合について説明する。   The shape of the susceptor 4 may be the same shape as that of the susceptor 4 used for manufacturing a compound semiconductor crystal, that is, a shape that supports the bottom surface 332 of the crucible bottom. A shape that can accommodate the entire crucible 3 supported by the adjusting portion 11 is preferable. Specifically, when the crucible 3 has a cylindrical shape and the outer diameter of the heat amount adjusting unit 11 and the outer diameter of the crucible 3 are substantially the same, the outer diameter of the crucible 3 and the inner diameter of the susceptor 4 are substantially matched. It is desirable that the entire crucible 3 supported by the heat amount adjusting unit 11 and the heat amount adjusting unit 11 can be accommodated. This is because it becomes easy to make the thermal conductivity constant, and the temperature distribution of the raw material melt when the raw material 6 is melted can be made constant. In the present embodiment, a case will be described in which the crucible 3 and the susceptor 4 are cylindrical, and the crucible bottom upper surface 331 and lower surface 332 and the upper surface of the susceptor 4 are spherical.

前記ペデスタル5は、引上げ軸1と同心としながら成長炉100の下方より成長炉100内に挿入され、前記サセプタ4はこのペデスタル5の上端に固定される。
また、前記ペデスタル5および前記引上げ軸1は、それぞれ別個に設けられた回転装置(図示せず)により回転され、昇降装置(図示せず)により昇降される。
The pedestal 5 is inserted into the growth furnace 100 from below the growth furnace 100 while being concentric with the pulling shaft 1, and the susceptor 4 is fixed to the upper end of the pedestal 5.
Further, the pedestal 5 and the pulling shaft 1 are rotated by a rotating device (not shown) provided separately, and are raised and lowered by a lifting device (not shown).

また、成長炉100には、原料6及び液体封止材7を融解する加熱手段として、ヒータ8と、ヒータ8の温度を制御する温度コントローラ(図示せず)とが設けられている。さらに、ルツボ3内の原料6及び液体封止材7の温度を検出するための温度検出手段として熱電対9が設けられる。   Further, the growth furnace 100 is provided with a heater 8 and a temperature controller (not shown) for controlling the temperature of the heater 8 as heating means for melting the raw material 6 and the liquid sealing material 7. Further, a thermocouple 9 is provided as a temperature detecting means for detecting the temperature of the raw material 6 and the liquid sealing material 7 in the crucible 3.

前記ヒータ8は、サセプタ4と同心としながら、円筒形状のサセプタ4の外周に沿ってサセプタ4を包囲するように炉内に設置される。また、前記熱電対9はペデスタル5の軸内の上端部に設置される。   The heater 8 is installed in the furnace so as to surround the susceptor 4 along the outer periphery of the cylindrical susceptor 4 while being concentric with the susceptor 4. The thermocouple 9 is installed at the upper end in the shaft of the pedestal 5.

以上が化合物半導体結晶の製造装置の構成である。次に、化合物半導体結晶の製造方法について説明する。   The above is the configuration of the compound semiconductor crystal manufacturing apparatus. Next, a method for producing a compound semiconductor crystal will be described.

(収容工程)
まず、サセプタ4によって支持されるルツボ3内に原料6及び液体封止剤7を収容する。このとき、炉内を所定圧の不活性ガス雰囲気に保持する。この不活性ガスの圧力は、原料6としてIII族、V族原料をルツボ3内に収容した場合に、原料6からV族原料が解
離するのを防止する程度の圧力に設定される。
(Containment process)
First, the raw material 6 and the liquid sealant 7 are accommodated in the crucible 3 supported by the susceptor 4. At this time, the inside of the furnace is maintained in an inert gas atmosphere having a predetermined pressure. The pressure of the inert gas is set to such a level as to prevent dissociation of the group V material from the material 6 when the group III and group V materials are accommodated in the crucible 3 as the material 6.

(融解工程)
次に、温度コントローラによりヒータ8が加熱される。このヒータ8の加熱によりルツボ3を加熱し、ルツボ内の原料6及び液体封止剤7を融解する。
具体的には、まず、ルツボ3の温度をヒータ8の加熱により液体封止材7の溶融温度に到達させ、液体封止材7を融解する。原料の融解前に液体封止剤が融解することで、液体封止剤がルツボ内周面の底部側に接触する。さらに、ヒータ8の温度を原料6の溶融温度に到達させ、原料6を融解する。このとき、液体封止材7の比重よりも原料6の融液の比重が大きいので、液体封止材7により原料融液の表面が覆われる。これにより、原料6の融液からのV族元素の解離を防止することができる。
(Melting process)
Next, the heater 8 is heated by the temperature controller. The crucible 3 is heated by the heating of the heater 8 to melt the raw material 6 and the liquid sealant 7 in the crucible.
Specifically, first, the temperature of the crucible 3 is caused to reach the melting temperature of the liquid sealing material 7 by the heating of the heater 8 to melt the liquid sealing material 7. The liquid sealant is melted before the raw material is melted, so that the liquid sealant contacts the bottom side of the inner peripheral surface of the crucible. Further, the temperature of the heater 8 reaches the melting temperature of the raw material 6 to melt the raw material 6. At this time, since the specific gravity of the melt of the raw material 6 is larger than the specific gravity of the liquid sealing material 7, the surface of the raw material melt is covered with the liquid sealing material 7. Thereby, dissociation of the V group element from the melt of the raw material 6 can be prevented.

(結晶成長工程)
原料6および液体封止剤7を融解した後、引上げ軸1の先端に固定された種結晶2を前記昇降装置により降ろし、液体封止剤7を貫いて原料6の融液に接触させる。そして、温度コントローラのフィードバック制御によってヒータ8の温度を徐々に低下させつつ、この状態のまま引上げ軸1を種結晶2とともに前記昇降装置によりゆっくりと引上げていく。こうすることで結晶が成長し、単結晶である成長結晶10が液体封止材7を貫いて引上げられていく。
(Crystal growth process)
After melting the raw material 6 and the liquid sealant 7, the seed crystal 2 fixed to the tip of the pulling shaft 1 is lowered by the lifting device, and passes through the liquid sealant 7 to contact the melt of the raw material 6. Then, while gradually lowering the temperature of the heater 8 by feedback control of the temperature controller, the pulling shaft 1 is slowly pulled up together with the seed crystal 2 by the lifting device in this state. By doing so, the crystal grows, and the growth crystal 10 that is a single crystal is pulled up through the liquid sealing material 7.

このような成長結晶10の引上げの際に、引上げ軸1及びペデスタル5は、いずれも前記回転装置により相対的に回転される。また、成長結晶10の外径を一定に制御するため、成長結晶10の単位時間当たりの重量増加量を検出し、これから結晶外径を算出して成長結晶10の外径が目標の外径となるように、ヒータ8が温度コントローラによりフィードバック制御される。   When the grown crystal 10 is pulled up, the pulling shaft 1 and the pedestal 5 are both relatively rotated by the rotating device. Further, in order to control the outer diameter of the growth crystal 10 to be constant, the amount of weight increase per unit time of the growth crystal 10 is detected, and the outer diameter of the growth crystal 10 is calculated from this by calculating the crystal outer diameter. Thus, the heater 8 is feedback controlled by the temperature controller.

また、結晶外径の成長の進行に伴ってルツボ3内の融液が減少すると、必然的に液面位置が下がることになる。液面位置が下がると、ヒータ8と結晶成長界面との位置関係が変化し、融液を効率良く加熱することが難しくなる。このため、結晶の成長量から液面の低下量を算出して、この算出結果に基づいて昇降装置を制御する。具体的には、液面の低下に応じて、ペデスタル5を徐々に上昇させてルツボ3の位置を調整し、ヒータ8の発熱帯に対して融液の液面を常に一定の位置に調節する制御が実行される。   Further, if the melt in the crucible 3 decreases as the crystal outer diameter grows, the liquid surface position inevitably decreases. When the liquid level is lowered, the positional relationship between the heater 8 and the crystal growth interface changes, and it becomes difficult to efficiently heat the melt. For this reason, the amount of decrease in the liquid level is calculated from the amount of crystal growth, and the lifting device is controlled based on the calculation result. Specifically, the pedestal 5 is gradually raised to adjust the position of the crucible 3 in accordance with the lowering of the liquid level, and the liquid level of the melt is always adjusted to a fixed position with respect to the tropics of the heater 8. Control is executed.

(損耗測定工程)
前記結晶成長工程の後、必要があれば、液体封止剤7と接触していたルツボ内周面31の損耗量を測定する。
先にも述べたように、液体封止剤7がルツボ内周面31に固着することにより、ルツボ内周面31が損耗してしまう。この損耗に起因してルツボ3の肉厚が薄くなることにより、原料6を融解するためのヒータ8の熱に対する熱伝導性が大きくなり、原料融液内の温度分布の再現性が崩れ、ルツボ3を使用する度に結晶成長条件が変動することになる。その結果、単結晶を再現性良く得ることが難しくなってしまう。また、この損耗に起因する再現性の崩れは、特に、ルツボ底部での損耗が影響する。
(Wear measurement process)
After the crystal growth step, if necessary, the amount of wear on the inner peripheral surface 31 of the crucible that has been in contact with the liquid sealant 7 is measured.
As described above, the liquid sealing agent 7 adheres to the inner peripheral surface 31 of the crucible, so that the inner peripheral surface 31 of the crucible is worn out. As the thickness of the crucible 3 is reduced due to this wear, the thermal conductivity of the heater 8 for melting the raw material 6 increases with respect to the heat, and the reproducibility of the temperature distribution in the raw material melt is lost. Every time 3 is used, the crystal growth conditions change. As a result, it becomes difficult to obtain a single crystal with good reproducibility. In addition, the deterioration of reproducibility due to this wear is particularly affected by wear at the bottom of the crucible.

そこで、本実施形態においては、後述の補正工程にて、ルツボ内周面31の損耗による熱伝導性の変化が生じないようにするための下準備として、ルツボ内周面31の損耗量を測定する。測定方法としては損耗量を調べることができる既存の方法を用いればよく、例えば、測定物中を超音波が往復する時間により厚さを測定する超音波厚さ計を用いてもよい。
なお本工程は、ルツボ内周面31の損耗量が予測できる手法を用いる場合は行わなくともよい。例えば炉内圧力、原料融液量、ヒータ8の設定温度、結晶成長工程に費やす時間
、ルツボの材質、外径・内径および肉厚等から損耗量を予め計算してもよい。
Therefore, in the present embodiment, the amount of wear of the crucible inner peripheral surface 31 is measured as a preparatory preparation for preventing a change in thermal conductivity due to wear of the crucible inner peripheral surface 31 in the correction step described later. To do. As the measuring method, an existing method capable of examining the amount of wear may be used. For example, an ultrasonic thickness meter that measures the thickness according to the time required for the ultrasonic wave to reciprocate in the measurement object may be used.
In addition, this process does not need to be performed when using the method in which the amount of wear of the crucible inner peripheral surface 31 can be predicted. For example, the wear amount may be calculated in advance from the furnace pressure, the raw material melt amount, the set temperature of the heater 8, the time spent for the crystal growth process, the material of the crucible, the outer diameter / inner diameter, the wall thickness, and the like.

(補正工程)
そして、本実施形態においては、結晶成長工程の前にルツボ3とサセプタ4との間に予め設けておいた熱量調整部11の肉厚を、予測された損耗量または前記損耗測定工程で得られた損耗量に応じて補正する。つまり、結晶成長工程によるルツボ3の損耗分を補うように、熱量調整部11の肉厚を補正する。これにより、結晶成長工程前すなわちルツボ3が損耗する前の熱伝導性と、化合物半導体結晶を製造した後に新たに化合物半導体結晶を製造する際の結晶成長工程における熱伝導性とを同等とすることができ、ひいては原料融液内の温度分布の再現性を確保することができる。その結果、化学半導体結晶の製造工程において、安定した単結晶歩留まりを得ることができる。
(Correction process)
In the present embodiment, the thickness of the calorific value adjusting unit 11 provided in advance between the crucible 3 and the susceptor 4 before the crystal growth step is obtained in the predicted wear amount or the wear measurement step. Correct according to the amount of wear. That is, the thickness of the heat quantity adjusting unit 11 is corrected so as to compensate for the wear of the crucible 3 due to the crystal growth process. Thereby, the thermal conductivity before the crystal growth process, that is, before the crucible 3 is worn out, and the thermal conductivity in the crystal growth process when a compound semiconductor crystal is newly manufactured after manufacturing the compound semiconductor crystal are made equal. As a result, the reproducibility of the temperature distribution in the raw material melt can be ensured. As a result, a stable single crystal yield can be obtained in the manufacturing process of the chemical semiconductor crystal.

なお、上述の構成は、化合物半導体結晶の製造を繰り返す際において、化合物半導体結晶の製造工程の再現性が重要になるRun−to−Runを用いる場合、原料融液内の温度分布の良好な再現性が得られ、その結果、複数の化合物半導体結晶間の偏差を小さくでき、さらに有効である。   In the above-described configuration, when the production of the compound semiconductor crystal is repeated, when using Run-to-Run, in which the reproducibility of the production process of the compound semiconductor crystal is important, the temperature distribution in the raw material melt is well reproduced. As a result, the deviation between a plurality of compound semiconductor crystals can be reduced, which is more effective.

前記補正工程にて行う具体的な補正方法であるが、一つには、結晶成長工程の前に予め設けておいた熱量調整部11の少なくとも一部を、予測された損耗量または前記損耗測定工程で得られた損耗量に応じた肉厚が加えられた熱量調整部の少なくとも一部と置換して、新たな熱量調整部とすることにより補正する方法が挙げられる。例えば、ルツボ3の損耗量に応じた肉厚(例えば、ルツボ底部上面331において削れた肉厚分を加えた肉厚)を有する新たな熱量調整部と、補正前の熱量調整部11全体を交換してもよい。   A specific correction method performed in the correction step is, for example, that at least a part of the heat amount adjusting unit 11 provided in advance before the crystal growth step is used for the predicted wear amount or the wear measurement. There is a method of correcting by replacing at least a part of the calorie adjustment unit to which the wall thickness corresponding to the amount of wear obtained in the process has been added to form a new calorie adjustment unit. For example, the new heat amount adjustment unit having a thickness corresponding to the amount of wear of the crucible 3 (for example, the thickness obtained by adding the thickness removed from the crucible bottom upper surface 331) and the entire heat amount adjustment unit 11 before correction are replaced. May be.

この際、図2に示すように、ルツボ底部上面331において削れた肉厚分を加えた肉厚のみならず、ルツボ内周面31の側部34において削れた肉厚分を加えた肉厚を有する新たな熱量調整部と、補正前の熱量調整部全体を交換してもよい。   At this time, as shown in FIG. 2, not only the thickness obtained by adding the shaved thickness on the crucible bottom upper surface 331 but also the thickness obtained by adding the shaved thickness on the side portion 34 of the crucible inner peripheral surface 31. You may replace | exchange the new heat amount adjustment part which has, and the whole heat amount adjustment part before correction | amendment.

また、図3に示すように、熱量調整部11の一部111を、ルツボ側熱量調整部11aおよびサセプタ側熱量調整部11bに対して着脱自在としておき、その一部111のみを、ルツボ底部上面331において削れた肉厚分が反映された熱量調整部の一部と置換して、結晶成長工程前のルツボ3と熱量調整部11との肉厚の和と、補正工程後のルツボ3と新たな熱量調整部との肉厚の和とを同じとするように構成してもよい。なおこのとき、ルツボ側熱量調整部11aおよびサセプタ側熱量調整部11bを、ルツボ3およびサセプタ4と一体となるように固定していてもよい。   Further, as shown in FIG. 3, a part 111 of the heat amount adjusting unit 11 is detachably attached to the crucible side heat amount adjusting unit 11a and the susceptor side heat amount adjusting unit 11b, and only the part 111 is placed on the top surface of the crucible bottom. Substituting a part of the calorie adjustment part reflecting the shaved thickness in 331, the sum of the wall thickness of the crucible 3 before the crystal growth process and the calorie adjustment part 11, the crucible 3 after the correction process, and a new one You may comprise so that the sum of the wall thickness with a proper calorie | heat amount adjustment part may be made the same. At this time, the crucible side heat amount adjusting unit 11 a and the susceptor side heat amount adjusting unit 11 b may be fixed integrally with the crucible 3 and the susceptor 4.

このように熱量調整部11の少なくとも一部を、肉厚が調節された熱量調整部の一部すなわち損耗量分の肉厚が加えられた熱量調整部の一部と交換することにより、熱量調整部11全体を交換するよりも容易に補正工程を行うことができる。さらに、種々の肉厚を有する、熱量調整部11の一部を予め準備しておけば、半導体結晶の製造の度に熱量調整部11を容易に補正することができる。   By exchanging at least a part of the calorie adjusting part 11 in this way with a part of the calorie adjusting part whose thickness is adjusted, that is, a part of the calorie adjusting part to which the thickness corresponding to the wear amount is added, the calorie adjustment The correction process can be performed more easily than exchanging the entire portion 11. Furthermore, if a part of the calorific value adjusting unit 11 having various thicknesses is prepared in advance, the calorific value adjusting unit 11 can be easily corrected every time a semiconductor crystal is manufactured.

好適な例を挙げると、円筒形状の熱量調整部11においてルツボ側熱量調整部11a,サセプタ側熱量調整部11bをルツボ3,サセプタ4に対して着脱自在とし、これらの部分以外の部分111を円板形状の部分としてもよい。この方法ならば、補正工程の際に、損耗量に応じた肉厚を有する円板形状の部分を、ルツボ3及びサセプタと接する部分の間に挟み込まれた部分111のみと交換すれば、熱量調整部11を容易に補正することができる。   As a preferred example, in the cylindrical heat amount adjusting portion 11, the crucible side heat amount adjusting portion 11a and the susceptor side heat amount adjusting portion 11b are detachable from the crucible 3 and the susceptor 4, and a portion 111 other than these portions is a circle. It is good also as a plate-shaped part. If this method is used, the amount of heat can be adjusted by replacing the disk-shaped portion having a thickness corresponding to the amount of wear with only the portion 111 sandwiched between the crucible 3 and the portion in contact with the susceptor during the correction process. The part 11 can be easily corrected.

また、具体的な補正方法としてもう一つには、結晶成長工程の前に予め設けておいた熱
量調整部11に、予測された損耗量または前記損耗測定工程で得られた損耗量に応じた肉厚を有する円板形状をなした熱量調整部の一部112を、置換するのではなく、加えることにより、新たな熱量調整部として補正する方法が挙げられる。図4に示すように、熱量調整部11においてルツボ3及びサセプタ4と接する部分11a,11bをルツボ3,サセプタ4に対して着脱自在とし、これらの部分以外の部分111,112を本実施形態においては円板形状の部分とする。この方法ならば、補正工程の際に、損耗量に応じた肉厚を有する円板形状の部分112を、ルツボ側熱量調整部11aとサセプタ側熱量調整部11bとの間に挟み込むことにより、熱量調整部11を容易に補正することができる。
なお、この方法を、上述の具体的な一つ目の補正方法と組み合わせてもよい。つまり、熱量調整部11の一部を置換しつつ、所定の肉厚を有する円板形状の部分を、ルツボ側熱量調整部11aとサセプタ側熱量調整部11bとの間に挟み込んでもよい。
Further, as another specific correction method, the calorific value adjustment unit 11 provided in advance before the crystal growth step corresponds to the predicted wear amount or the wear amount obtained in the wear measurement step. There is a method of correcting as a new heat quantity adjusting unit by adding a part 112 of the heat quantity adjusting unit having a disk shape with a thickness instead of replacing it. As shown in FIG. 4, the portions 11a and 11b in contact with the crucible 3 and the susceptor 4 in the heat quantity adjusting unit 11 are detachable from the crucible 3 and the susceptor 4, and the portions 111 and 112 other than these portions are used in this embodiment. Is a disk-shaped part. According to this method, the amount of heat is obtained by sandwiching a disk-shaped portion 112 having a thickness corresponding to the amount of wear between the crucible side heat amount adjusting unit 11a and the susceptor side heat amount adjusting unit 11b during the correction process. The adjustment unit 11 can be easily corrected.
Note that this method may be combined with the specific first correction method described above. That is, a disc-shaped portion having a predetermined thickness may be sandwiched between the crucible side heat amount adjusting unit 11a and the susceptor side heat amount adjusting unit 11b while replacing a part of the heat amount adjusting unit 11.

ここで、前記補正工程前後の熱量調整部11においては、ルツボ3と同じ材質とすることが好ましい。先にも述べたように、結晶成長工程前後のルツボ3の熱伝導性の変化を抑制することが求められることから、前記熱量調整部11がルツボ3と同じ材質であるならば、ルツボ3が損耗したとしても、熱量調整部11とルツボ3との材質の違いによる熱伝導性の差を考慮することなく、損耗量に応じて熱量調整部11を補正することができるためである。   Here, in the calorie | heat amount adjustment part 11 before and behind the said correction | amendment process, it is preferable to use the same material as the crucible 3. FIG. As described above, since it is required to suppress the change in the thermal conductivity of the crucible 3 before and after the crystal growth process, if the calorific value adjusting portion 11 is made of the same material as the crucible 3, the crucible 3 This is because, even if worn out, the heat quantity adjusting unit 11 can be corrected in accordance with the amount of wear without considering the difference in thermal conductivity due to the difference in material between the heat quantity adjusting unit 11 and the crucible 3.

さらに、熱量調整部11をルツボ3と同じ材質にすると同時に、熱量調整部11をサセプタ4と同じ材質にすることも望ましい。先にも述べたように、ヒータ8の温度制御の元となる原料融液温度検出のための熱電対9は、サセプタ4の下面を支えるペデスタル5の軸内上部に設けられているためサセプタ4と接しており、ルツボ4、熱量調整部11およびサセプタ4が同材質ならば、これらの肉厚の合計値一定にすることにより、ルツボ4、熱量調整部11およびサセプタ4との材質の違いによる熱伝導性の差を考慮することなく熱伝導性をほぼ一定に保つことができるためである。   Furthermore, it is desirable that the heat quantity adjusting unit 11 is made of the same material as the crucible 3 and at the same time the heat quantity adjusting unit 11 is made of the same material as the susceptor 4. As described above, the thermocouple 9 for detecting the temperature of the raw material melt that controls the temperature of the heater 8 is provided at the upper part in the shaft of the pedestal 5 that supports the lower surface of the susceptor 4. If the crucible 4, the heat amount adjusting unit 11 and the susceptor 4 are made of the same material, by making the total value of these thicknesses constant, the difference in material between the crucible 4, the heat amount adjusting unit 11 and the susceptor 4 This is because the thermal conductivity can be kept almost constant without considering the difference in thermal conductivity.

また、熱量調整部11の形状については、全体形状としては、ルツボ3およびサセプタ4の形状に合わせたものであればよく、円筒形状であっても良いし、直方体形状であっても良い。一方、上面および下面の形状としては、平面形状や平面形状を一部変形させた形状であっても球状であってもよいが、図1に示すように、前記補正工程前後の熱量調整部11を前記ルツボ3に対して密着自在な形状とすることも好ましい。このような形状にすれば、ルツボ3と熱量調整部11との間に隙間を無くすことができ、熱量調整部11とルツボ3との肉厚の差による熱伝導性の変動を抑えることができるためである。   Moreover, about the shape of the calorie | heat amount adjustment part 11, what is necessary is just to match | combine with the shape of the crucible 3 and the susceptor 4, and a cylindrical shape may be sufficient as a whole shape, and a rectangular parallelepiped shape may be sufficient as it. On the other hand, the shape of the upper surface and the lower surface may be a planar shape, a shape obtained by partially deforming the planar shape, or a spherical shape. However, as shown in FIG. It is also preferable to make the shape in close contact with the crucible 3. With such a shape, it is possible to eliminate a gap between the crucible 3 and the calorie adjusting unit 11, and to suppress a variation in thermal conductivity due to a difference in thickness between the calorie adjusting unit 11 and the crucible 3. Because.

同様に、前記補正工程前後の熱量調整部11を前記サセプタ4に対して密着自在な形状とすることも好ましい。両者の間に隙間を無くすことができ、ルツボ3、熱量調整部11およびサセプタ4における結晶成長工程前後の熱伝導性の変動を抑えることができるためである。   Similarly, it is also preferable that the heat amount adjusting unit 11 before and after the correction process has a shape that can be in close contact with the susceptor 4. This is because a gap can be eliminated between the two, and fluctuations in thermal conductivity before and after the crystal growth process in the crucible 3, the heat amount adjusting unit 11, and the susceptor 4 can be suppressed.

特に、これらの好ましい形状をまとめて、前記補正工程前後の熱量調整部11を前記ルツボ底部33形状と相似、または同一形状とすると、より好ましい。このような形状にすると、熱量調整部11とルツボ3及びサセプタ4間に、隙間がほとんどなくなるため、熱伝導性をより一定に維持することができるためである。   In particular, it is more preferable that these preferable shapes are put together to make the heat amount adjusting portion 11 before and after the correction step similar or identical to the shape of the crucible bottom portion 33. With such a shape, there is almost no gap between the heat amount adjusting unit 11 and the crucible 3 and the susceptor 4, so that the thermal conductivity can be maintained more constant.

先にも述べたように、本実施形態においてはルツボ底部上面331及び下面332が球面形状をなしているものについて挙げているが、具体的にはルツボ3の底部上面332の曲率半径と、前記補正工程前後の熱量調整部11の上面の曲率半径を同じとすることが好ましい。これに加えて、サセプタ上面41の曲率半径と、前記補正工程前後の熱量調整部11の下面の曲率半径を同じとすることも好ましい。このような形状にすると、熱量調整
部11とルツボ3及びサセプタ4間に隙間がほとんどなくなるため、熱伝導性をより一定に維持することができるためである。
As described above, in this embodiment, the crucible bottom upper surface 331 and the lower surface 332 are described as having a spherical shape. Specifically, the curvature radius of the bottom upper surface 332 of the crucible 3 and the aforementioned It is preferable to make the curvature radius of the upper surface of the heat amount adjusting unit 11 before and after the correction process the same. In addition to this, it is preferable that the radius of curvature of the susceptor upper surface 41 and the radius of curvature of the lower surface of the heat quantity adjusting unit 11 before and after the correction process are the same. With such a shape, there is almost no gap between the heat amount adjusting unit 11 and the crucible 3 and the susceptor 4, so that the thermal conductivity can be maintained more constant.

また、前記補正工程前後の熱量調整部11の外径を、ルツボ外周面32の外径と同じとしてもよい。このような構成を採用することにより、熱量調整部がルツボ底部下面332全体を支持することになり、熱伝導性の変動を抑制することができるためである。さらに、両者の外径が同じであるため、一定の内径を有するサセプタに両者を収納することができ、製造工程が容易になる。   Further, the outer diameter of the heat quantity adjusting unit 11 before and after the correction step may be the same as the outer diameter of the crucible outer peripheral surface 32. This is because by adopting such a configuration, the heat amount adjusting unit supports the entire crucible bottom lower surface 332, and fluctuations in thermal conductivity can be suppressed. Furthermore, since both have the same outer diameter, both can be accommodated in a susceptor having a constant inner diameter, and the manufacturing process becomes easy.

また、熱量調整部11の肉厚を、ルツボ底部33の肉厚よりも厚くすることも好ましい。このような構成を採用することにより、熱伝導性においては熱量調整部11の肉厚による影響の方が支配的になるため、ルツボ底部33の肉厚が削れて薄くなったとしても、熱伝導性の変動を抑制することができるためである。
また、熱量調整部11全体としての肉厚は、上下方向に一定でなくとも良いが、熱伝導性を一定に保ち、かつ補正工程を容易にするという観点からは一定である方が好ましい。
Moreover, it is also preferable to make the thickness of the heat quantity adjusting unit 11 thicker than the thickness of the crucible bottom 33. By adopting such a configuration, the influence of the thickness of the calorie adjusting portion 11 becomes more dominant in the thermal conductivity. Therefore, even if the thickness of the crucible bottom 33 is reduced and thinned, the heat conduction This is because fluctuations in sex can be suppressed.
Further, the thickness of the heat quantity adjusting unit 11 as a whole need not be constant in the vertical direction, but is preferably constant from the viewpoint of keeping the thermal conductivity constant and facilitating the correction process.

また、化合物半導体結晶の製造方法を繰り返すことにより複数の化合物半導体結晶を製造するとき、前記熱量調整部11の肉厚と前記ルツボ底部33の肉厚との和を、少なくとも各々の補正工程において一定とすることが好ましい。化合物半導体結晶の製造工程の再現性が重要になるRun−to−Runを用いる場合、前記熱量調整部11の肉厚と前記ルツボ底部33の肉厚との和を一定にすることにより、熱伝導性の変動を抑制することができるためである。   In addition, when a plurality of compound semiconductor crystals are manufactured by repeating the method of manufacturing a compound semiconductor crystal, the sum of the thickness of the calorific value adjusting unit 11 and the thickness of the crucible bottom 33 is constant in at least each correction step. It is preferable that When using Run-to-Run where the reproducibility of the manufacturing process of the compound semiconductor crystal is important, the heat conduction is achieved by making the sum of the thickness of the heat quantity adjusting unit 11 and the thickness of the crucible bottom 33 constant. This is because fluctuations in sex can be suppressed.

なお、ルツボ底部上面331において削れた肉厚分を加えた肉厚のみならず、ルツボ内周面31において削れた肉厚分を考慮して、ルツボ底部33と同様の上記補正を、ルツボ側部34に対して行ってもよい。   The above correction similar to that of the crucible bottom 33 is performed in consideration of the thickness of the crucible inner peripheral surface 31 as well as the thickness obtained by adding the thickness of the crucible bottom top surface 331. 34 may be performed.

上述の通り、本実施形態によれば、結晶成長条件の再現性を確保し、安定した単結晶歩留まりを得る化合物半導体結晶の製造方法を提供することができる。本実施形態によって製造された化合物半導体結晶は、ICやLSIなどの半導体材料を用いた半導体装置に好適である。   As described above, according to the present embodiment, it is possible to provide a compound semiconductor crystal manufacturing method that ensures reproducibility of crystal growth conditions and obtains a stable single crystal yield. The compound semiconductor crystal manufactured according to this embodiment is suitable for a semiconductor device using a semiconductor material such as IC or LSI.

なお、本実施形態においては、成長結晶10がGaAs単結晶の場合を挙げたが、シリコン単結晶などであってもよい。また、ルツボ3の材料がpBNの場合を挙げたが、シリコンなどの他の材料であっても、ルツボ3内周面の損耗が発生する場合には、上述のような技術的思想を適用しうる。また、本実施形態においては予め熱量調整部11を設けていたが、結晶成長工程後にルツボ損耗量に応じた肉厚を有する熱量調整部11を設けてもよい。   In the present embodiment, the growth crystal 10 is a GaAs single crystal, but it may be a silicon single crystal. In addition, although the case where the material of the crucible 3 is pBN has been described, the wear of the inner peripheral surface of the crucible 3 occurs even when other materials such as silicon are used, the above technical idea is applied. sell. In the present embodiment, the heat amount adjusting unit 11 is provided in advance. However, the heat amount adjusting unit 11 having a thickness corresponding to the crucible wear amount may be provided after the crystal growth step.

以下に、本発明の実施例を、LEC法結晶成長炉の概略断面図である図1を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1 which is a schematic cross-sectional view of an LEC crystal growth furnace.

(実施例1)
直径300mmかつ底肉厚4mmのpBN製のルツボ3内に、GaAs多結晶原料40kgと、液体封止材7である三酸化硼素を3kg充填し、圧力容器である成長炉100内に設置した。
Example 1
A pBN crucible 3 having a diameter of 300 mm and a bottom wall thickness of 4 mm was filled with 40 kg of a GaAs polycrystalline raw material and 3 kg of boron trioxide as a liquid sealing material 7 and placed in a growth reactor 100 as a pressure vessel.

原料6を収容したpBN製のルツボ3は、グラファイト製のサセプタ4に収納した。このとき、サセプタ4とルツボ3の間には、肉厚5mmのpBN製の熱量調整部11を収容
し、ルツボ底部33の肉厚4mmと合計して、pBNの合計肉厚を9mmとした。
なお、このpBN製の熱量調整部11はルツボ3の外径および底部形状と同一とし、さらにその上面においてはルツボ底部下面332との曲面形状を同一とし、下面においてはサセプタ上面41との曲面形状を同一とした。
The pBN crucible 3 containing the raw material 6 was stored in a graphite susceptor 4. At this time, a pBN-made heat quantity adjusting unit 11 having a thickness of 5 mm was accommodated between the susceptor 4 and the crucible 3, and the total thickness of the pBN was 9 mm by totaling the thickness of the crucible bottom 33.
The pBN heat quantity adjusting section 11 is the same as the outer diameter and bottom shape of the crucible 3, and the upper surface thereof has the same curved surface shape as the bottom surface 332 of the crucible and the lower surface has a curved surface shape with the susceptor upper surface 41. Were the same.

これらを収容したサセプタ4を、回転、昇降自在なグラファイト製のペデスタル5上に載置した。   The susceptor 4 in which these were accommodated was placed on a graphite pedestal 5 that can be rotated and moved up and down.

ルツボ3に原料6および液体封止剤7をチャージした後は、成長炉100内雰囲気を真空引きにより排気した後、不活性ガスを充填した。   After charging the raw material 6 and the liquid sealant 7 to the crucible 3, the atmosphere in the growth furnace 100 was evacuated by evacuation and then filled with an inert gas.

次に、ルツボ3内をGaAsの融点である1238℃以上まで昇温させ、原料6であるGaAs多結晶原料を融解させた。このとき、炉内の圧力は、0.5MPaとした。   Next, the temperature in the crucible 3 was raised to 1238 ° C. or higher, which is the melting point of GaAs, and the GaAs polycrystalline raw material as the raw material 6 was melted. At this time, the pressure in the furnace was 0.5 MPa.

次に、引上げ軸1を降ろし、種結晶2の先端を原料融液6に接触させ、温度を十分なじませた後、温度コントローラによりヒータ8の設定温度を3℃/hの割合で下げながら、種結晶2を8〜12mm/hの速度でと引上げた。結晶成長時は、引上げ軸1及びペデスタル5により種結晶2とルツボ3とを回転させた。このとき、種結晶2の回転数は時計まわりに5rpm、ルツボ3の回転数は反時計まわりに20rpmとした。   Next, the pulling shaft 1 is lowered, the tip of the seed crystal 2 is brought into contact with the raw material melt 6, and the temperature is sufficiently adjusted, and then the set temperature of the heater 8 is lowered by a temperature controller at a rate of 3 ° C./h. The seed crystal 2 was pulled up at a speed of 8 to 12 mm / h. During crystal growth, the seed crystal 2 and the crucible 3 were rotated by the pulling shaft 1 and the pedestal 5. At this time, the rotation speed of the seed crystal 2 was 5 rpm clockwise, and the rotation speed of the crucible 3 was 20 rpm counterclockwise.

結晶肩部の成長が終了し、直径が約160mmになったところで、外径制御コントローラにより成長結晶10の外径の自動制御を開始した。これは、成長した結晶の重量を、引上げ軸1に設置したロードセル(図示せず)でリアルタイムに計測し、単位時間当たりの重量の増加分と引上げ軸1の移動量から結晶の外径をモニタし、外径が設定した値になるように、ヒータ8の温度制御を行う温度コントローラにフィードバックを行うものである。実施の形態において説明したように、結晶成長中においては、結晶成長量の増加に伴い融液量が徐々に減少し、液面位置が低下していく。これを補正すべく、前記ロードセル出力から液面の低下量を計算し、常に液面がヒータ8に対して定位置に来るように、ルツボ3を自動で上昇させる制御を行った。   When the growth of the crystal shoulder was completed and the diameter became about 160 mm, automatic control of the outer diameter of the grown crystal 10 was started by the outer diameter controller. This is because the weight of the grown crystal is measured in real time by a load cell (not shown) installed on the pulling shaft 1 and the outer diameter of the crystal is monitored from the increase in weight per unit time and the moving amount of the pulling shaft 1. Then, feedback is performed to a temperature controller that controls the temperature of the heater 8 so that the outer diameter becomes a set value. As described in the embodiment, during crystal growth, the amount of melt gradually decreases and the liquid level position decreases as the amount of crystal growth increases. In order to correct this, the amount of decrease in the liquid level was calculated from the load cell output, and control was performed to automatically raise the crucible 3 so that the liquid level was always at a fixed position with respect to the heater 8.

チャージした原料6が所定の重量含まれるまで成長させた結晶を引上げた時点でヒータ8の温度を上昇させ、結晶の尾部形状を形成した後、結晶を原料融液から切り離し、室温まで冷却した。   The temperature of the heater 8 was raised at the time when the grown crystal was pulled until the charged raw material 6 contained a predetermined weight, and after forming the tail shape of the crystal, the crystal was separated from the raw material melt and cooled to room temperature.

この一連の結晶成長過程を経て成長炉100から取り出したpBN製のルツボ3は、三酸化硼素7と接触しかつ三酸化硼素7が固着することによってルツボ内周面31がほぼ均一に剥がれた為、ルツボ3の肉厚が、0.1mm減少した。新たな別の化合物半導体結晶を製造、すなわち2回目の結晶成長を行うために、この肉厚が減少したルツボ3を再び使用した。この際に、損耗量である削れた肉厚0.1mm分を補正する為、pBN製の熱量調整部11を肉厚5.0mmのものから5.1mmに変更して、ルツボ3と熱量調整部11との合計肉厚が9.0mmとなるように配置した。この熱量調整部11の変更以外は、最初と同じ製造条件で2回目の結晶成長を行った。その結果、2本目も単結晶を得ることができた。   The crucible 3 made of pBN taken out from the growth furnace 100 through this series of crystal growth processes is in contact with the boron trioxide 7 and the boron trioxide 7 is fixed, so that the inner peripheral surface 31 of the crucible is peeled off almost uniformly. The thickness of the crucible 3 was reduced by 0.1 mm. In order to manufacture another new compound semiconductor crystal, that is, to perform the second crystal growth, the crucible 3 having a reduced thickness was used again. At this time, in order to correct the scraped thickness of 0.1 mm, which is the amount of wear, the heat amount adjusting unit 11 made of pBN is changed from the thickness of 5.0 mm to 5.1 mm to adjust the crucible 3 and the heat amount. It arrange | positioned so that the total thickness with the part 11 might be set to 9.0 mm. A second crystal growth was performed under the same manufacturing conditions as the first except for the change of the calorific value adjustment unit 11. As a result, a second single crystal could be obtained.

同様に3回目以降もpBN製のルツボ3の肉厚減少分、熱量調整部11の肉厚を厚くし、連続して20回の結晶成長を行った。その結果、全て結晶成長において単結晶が得られた。   Similarly, after the third time, the thickness of the crucible 3 made of pBN was reduced and the thickness of the calorific value adjusting unit 11 was increased, and crystal growth was continuously performed 20 times. As a result, a single crystal was obtained in all crystal growth.

さらに、ルツボ3の肉厚を変化させて上記の実験を行ったところ、以下の条件の場合、結晶成長において単結晶が安定して得られた。
・ルツボ底部の肉厚と熱量調整部の肉厚との合計が5mm以上とする。
・ルツボ底部の肉厚を1mm以上とし、結晶成長を連続して行う場合、ルツボ底部の肉厚が1mmを下回ったらルツボを交換する。
・ルツボ底部の肉厚に対する熱量調整部の肉厚を1〜10倍の範囲内とする。
Furthermore, when the above experiment was conducted while changing the thickness of the crucible 3, a single crystal was stably obtained in crystal growth under the following conditions.
-The sum of the thickness of the bottom of the crucible and the thickness of the calorie adjusting portion is 5 mm or more.
-When the thickness of the bottom of the crucible is 1 mm or more and crystal growth is continuously performed, the crucible is replaced when the thickness of the bottom of the crucible falls below 1 mm.
-The thickness of the calorie adjustment part with respect to the thickness of the bottom part of the crucible is set within a range of 1 to 10 times.

なお、本実施例のように、ルツボ底部33に対応する箇所に熱量調整部を設ければ、所望の単結晶を得ることができたが、さらに再現性よく結晶を成長させる場合には、ルツボ側部34においても熱量調整部を形成するのが好ましい。   It should be noted that a desired single crystal could be obtained by providing a calorific value adjusting portion at a location corresponding to the crucible bottom 33 as in the present embodiment. However, in the case of growing a crystal with higher reproducibility, It is preferable to form a calorie adjusting portion also in the side portion 34.

また、本実施例では結晶成長工程ごとに補正工程を実施したが、求められる結晶成長の再現性・単結晶の質によっては、所定の厚さが減少するごとに補正工程を実施してもよい。これにより、補正工程の回数を減らすことができ、生産性を向上させることができる。   In this embodiment, the correction process is performed for each crystal growth process. However, depending on the reproducibility of crystal growth required and the quality of the single crystal, the correction process may be performed every time the predetermined thickness decreases. . Thereby, the frequency | count of a correction | amendment process can be reduced and productivity can be improved.

(比較例)
以下、図5に示すように、熱量調整部を設けずに、LEC法成長炉100を用いてGaAsの結晶成長を行った比較例について説明する。
比較例においては、成長炉100を図5に示したものに変えた以外、すなわち本実施例における熱量調整部を設けなかったこと以外は、前述の実施例と全く同じ条件で結晶成長を10回行った。最初の4回の結晶成長では単結晶が得られたものの、5〜6回日では直胴部の途中から多結晶が発生してしまっており、単結晶を得ることができなかった。
さらに、7〜10回目の成長では、肩部を形成する段階で多結晶が発生してしまい、全長に亘って単結晶を得ることができなかった。結果として、全10回の結晶成長のうち、単結晶は4本しか得られなかった。
(Comparative example)
Hereinafter, as shown in FIG. 5, a comparative example in which GaAs crystal growth is performed using the LEC growth furnace 100 without providing a heat quantity adjustment unit will be described.
In the comparative example, the crystal growth was performed 10 times under exactly the same conditions as in the previous example, except that the growth furnace 100 was changed to the one shown in FIG. went. In the first four crystal growths, a single crystal was obtained, but in the 5th to 6th days, a polycrystal was generated in the middle of the straight body portion, and a single crystal could not be obtained.
Furthermore, in the 7th to 10th growth, polycrystals were generated at the stage of forming the shoulder, and a single crystal could not be obtained over the entire length. As a result, only four single crystals were obtained out of the total 10 crystal growths.

1 引上げ軸
2 種結晶
3 pBNルツボ
31 ルツボ内周面
32 ルツボ外周面
33 ルツボ底部
331 ルツボ底部上面
332 ルツボ底部下面
34 ルツボ側部
4 サセプタ
41 サセプタ上面
5 ペデスタル
6 原料
7 液体封止剤
8 ヒータ
9 熱電対
10 成長結晶
11 熱量調整部
11a ルツボ側熱量調整部
11b サセプタ側熱量調整部
111 着脱可能な熱量調整部の一部
112 加えられる熱量調整部の一部
1 Pulling shaft 2 Seed crystal 3 pBN crucible 31 Crucible inner peripheral surface 32 Crucible outer peripheral surface 33 Crucible bottom 331 Crucible bottom upper surface 332 Crucible bottom lower surface 34 Crucible side 4 Susceptor 41 Susceptor upper surface 5 Pedestal 6 Raw material 7 Liquid sealant 8 Heater 9 Thermocouple 10 Growing crystal 11 Heat amount adjusting unit 11a Crucible side heat amount adjusting unit 11b Susceptor side heat amount adjusting unit 111 Part of removable heat amount adjusting unit 112 Part of heat amount adjusting unit to be added

Claims (6)

サセプタによって支持されるルツボ内に原料及び液体封止剤を収容する収容工程と、前記ルツボを加熱し、前記原料及び液体封止剤を融解する融解工程と、前記ルツボ内の原料融液に種結晶を接触させ、前記種結晶を引き上げて結晶成長させて化合物半導体結晶を得る結晶成長工程と、
前記結晶成長工程の前に前記ルツボと前記サセプタとの間に予め設けておいた熱量調整部の肉厚を、ルツボ内周面の損耗量に応じて厚くするように補正する補正工程と、を有することを特徴とする化合物半導体結晶の製造方法。
An accommodating step for accommodating the raw material and the liquid sealant in the crucible supported by the susceptor; a melting step for heating the crucible to melt the raw material and the liquid sealant; and a seed for the raw material melt in the crucible A crystal growth step of bringing a crystal into contact and pulling up the seed crystal to grow a crystal to obtain a compound semiconductor crystal;
A correction step of correcting the thickness of the heat amount adjusting portion provided in advance between the crucible and the susceptor before the crystal growth step so as to increase in accordance with the amount of wear on the inner peripheral surface of the crucible. A method for producing a compound semiconductor crystal, comprising:
前記補正工程前後の熱量調整部を前記ルツボと同じ材質とすることを特徴とする請求項1に記載の化合物半導体結晶の製造方法。 The method for producing a compound semiconductor crystal according to claim 1, wherein the heat amount adjusting portion before and after the correction step is made of the same material as the crucible. 前記補正工程前後の熱量調整部を前記ルツボ底部形状と相似し、または同一形状とすることを特徴とする請求項1または2に記載の化合物半導体結晶の製造方法。 3. The method of manufacturing a compound semiconductor crystal according to claim 1, wherein the heat amount adjusting portion before and after the correction step is similar to or the same shape as the shape of the bottom of the crucible. 前記補正工程前後の熱量調整部を円筒形状としたとき、前記補正工程前後の熱量調整部の外径を、前記ルツボの外径と同じとすることを特徴とする請求項1ないしのいずれかに記載の化合物半導体結晶の製造方法。 When said correction step before and after the heat adjuster a cylindrical shape, said correction step the outer diameter of the heat adjuster before and after any one of claims 1 to 3, characterized in that the same as the outer diameter of the crucible The manufacturing method of the compound semiconductor crystal of description. 前記補正工程前後の熱量調整部の肉厚を、前記ルツボ底部の肉厚よりも厚くすることを特徴とする請求項1ないしのいずれかに記載の化合物半導体結晶の製造方法。 The method of manufacturing a compound semiconductor crystal according to any one of claims 1 to 4 , wherein the thickness of the heat amount adjusting portion before and after the correction step is made thicker than the thickness of the bottom portion of the crucible. 請求項に記載の化合物半導体結晶の製造方法を繰り返すことにより、前記熱量調整部の肉厚と前記ルツボ底部の肉厚との和を、少なくとも各々の補正工程において一定とすることを特徴とする化合物半導体結晶の製造方法。 Ri by the repeating the process for the preparation of a compound semiconductor crystal according to claim 2, the sum of the wall thickness of the wall thickness of the heat adjuster the crucible bottom, characterized in that the constant in at least each of the correction step A method for producing a compound semiconductor crystal.
JP2009197756A 2009-08-28 2009-08-28 Method for producing compound semiconductor crystal Expired - Fee Related JP5152128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197756A JP5152128B2 (en) 2009-08-28 2009-08-28 Method for producing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197756A JP5152128B2 (en) 2009-08-28 2009-08-28 Method for producing compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JP2011046573A JP2011046573A (en) 2011-03-10
JP5152128B2 true JP5152128B2 (en) 2013-02-27

Family

ID=43833316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197756A Expired - Fee Related JP5152128B2 (en) 2009-08-28 2009-08-28 Method for producing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP5152128B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017128507A (en) * 2017-03-02 2017-07-27 株式会社Sumco Method for pulling silicon single crystal
JP2017124972A (en) * 2017-03-02 2017-07-20 株式会社Sumco Silicon single crystal pull-up method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266680U (en) * 1988-11-10 1990-05-21
JP2006327879A (en) * 2005-05-26 2006-12-07 Hitachi Cable Ltd Method for manufacturing compound semiconductor single crystal
JP5029184B2 (en) * 2007-07-19 2012-09-19 日立電線株式会社 Semiconductor crystal manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
JP2011046573A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
KR101997608B1 (en) Silicon single crystal growing apparatus and silicon single crystal growing method
JP2011042560A (en) Method and equipment for producing sapphire single crystal
CN110408988A (en) The growing method of SiC single crystal grower and SiC single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
CN104651938A (en) Method for producing SiC single crystal
EP1757716B1 (en) Method and apparatus for preparing crystal
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP5152128B2 (en) Method for producing compound semiconductor crystal
JP6869077B2 (en) Method for manufacturing silicon carbide single crystal ingot
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP2010260747A (en) Method for producing semiconductor crystal
JP7398702B2 (en) Single crystal growth equipment and single crystal growth equipment protection method
KR101571958B1 (en) Apparatus and method for growing ingot
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof
KR102479334B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JP2013256424A (en) Apparatus for growing sapphire single crystal
JP2012006802A (en) Method and apparatus for producing silicon single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JP2019043787A (en) Crystal growth apparatus and method of manufacturing single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
WO2020241541A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL INGOT AND METHOD FOR PRODUCING SiC MODIFIED SEED
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2016132599A (en) Sapphire single crystal production device and sapphire single crystal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees