JP5151875B2 - 火花点火式エンジンの制御方法及び制御装置 - Google Patents

火花点火式エンジンの制御方法及び制御装置 Download PDF

Info

Publication number
JP5151875B2
JP5151875B2 JP2008254440A JP2008254440A JP5151875B2 JP 5151875 B2 JP5151875 B2 JP 5151875B2 JP 2008254440 A JP2008254440 A JP 2008254440A JP 2008254440 A JP2008254440 A JP 2008254440A JP 5151875 B2 JP5151875 B2 JP 5151875B2
Authority
JP
Japan
Prior art keywords
ignition
control
engine
failure
suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008254440A
Other languages
English (en)
Other versions
JP2010084620A (ja
Inventor
宏二 志々目
直也 松尾
博貴 森本
美貴典 大橋
秀俊 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008254440A priority Critical patent/JP5151875B2/ja
Publication of JP2010084620A publication Critical patent/JP2010084620A/ja
Application granted granted Critical
Publication of JP5151875B2 publication Critical patent/JP5151875B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は火花点火式エンジンの制御方法及び制御装置に関し、特に、プリイグニッションなどのエンジンにおける異常燃焼の抑制制御に関する。
圧縮比を高くすると燃費が向上することが従来より知られているが、高圧縮比にするとノッキングやプリイグニッションなどの異常燃焼が発生し易くなる。
ここで、プリイグニッション(以下、プリイグ)は、エンジンの運転環境の変化などによってシリンダ内の混合気が点火後の正常燃焼時点(例えば、MB10%CA)より前に自己着火する現象である。プリイグはエンジンの信頼性に影響を及ぼすため、従来より、このプリイグの発生を精度良く検出し、抑制する技術が提案されている。
例えば、特許文献1には、燃焼イオン電流によってプリイグの前兆現象であるポストイグニッションの発生の可否を判定し、発生時は燃料噴射増量又は点火時期をリタードすることが記載されている。
また、特許文献2には、プリイグを検出又は予測し、プリイグの発生時又は予測時は、燃料噴射時期をリタードさせることが記載されている。
さらに、特許文献3には、吸気弁閉時期を、プリイグを抑制できるタイミングに補正することが記載されている。
特開2006−046140号公報 特開2002−339780号公報 特開2001−159348号公報
しかしながら、上記した従来技術においては、プリイグ抑制制御系のフェイルセーフ設計については何ら検討されていない。かかるフェイルセーフ設計がなされない場合には、プリイグ抑制制御系が何らかの原因で故障した場合には、プリイグの抑制機能が働かず、プリイグの頻発による異音、エンジン出力の低下、あるいはエンジンの損傷を招きかねない。
そこで、本発明は、プリイグ抑制制御系のフェイルセーフを実現する火花点火式エンジンの制御方法及び制御装置を提供することを目的とする。
本発明の一側面によれば、火花点火式エンジンにおけるプリイグニッションの予測及び抑制を行うプリイグニッション抑制制御系を備える車両のエンジンの制御方法であって、前記プリイグニッション抑制制御系の故障を検出する検出工程と、前記検出工程で前記故障が検出されなかったときに、プリイグニッションを抑制するための第1制御量でエンジンを制御する正常時工程と、前記検出工程で前記故障が検出されたときに、プリイグニッションを抑制するための第2制御量でエンジンを制御する異常時工程とを有し、前記第2制御量は前記第1制御量よりもプリイグニッションをより強く抑制するように設定されていることを特徴とするエンジンの制御方法が提供される。
この構成によれば、故障が検出された場合には、正常時における第1制御量が、プリイグニッションをより強く抑制する第2制御量に増加されるので、プリイグニッションの抑制機能が働き、良好なエンジンの状態が確保される。
本発明の一側面によれば、前記検出工程で前記故障が検出されたときで、当該故障がプリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスであった場合には、前記異常時工程において、前記第2制御量よりもプリイグニッションをより強く抑制するための第3制御量でエンジンを制御する。
プリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスが故障した場合には、プリイグニッション抑制制御が不安定になる。これに対し上記構成によれば、かかる場合にはプリイグニッションを更に強く抑制するための第3制御量が強制的に使用されるため、プリイグニッションを効果的に抑制することができる。
前記第2制御量は、前記検出工程で前記故障が検出されたデバイスの数に応じて大きくなるように設定してもよい。
この構成によれば、故障が検出されたデバイスの数に応じて制御量が増加されるので、プリイグニッションを効果的に防止することができる。
本発明の好適な実施形態によれば、上記第1乃至第3制御量は、吸気弁閉時期の遅角であることが好ましい。これにより、筒内圧が下がり効果的にプリイグニッションを抑制することができる。
本発明の好適な実施形態によれば、上記第3制御量は吸気弁閉時期を最遅角にするものであることが好ましい。上記したように、プリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスが故障した場合には、プリイグニッション抑制制御が不安定になる。このような場合には、適正なプリイグニッション抑制制御は望めなくなる。これに対し上記構成によれば、吸気弁閉時期が最遅角にされるので、筒内圧を大きく低下させプリイグニッションを確実に抑制することができる。
本発明の別の側面によれば、火花点火式エンジンにおけるプリイグニッションの予測及び抑制を行うプリイグニッション抑制制御系を備える車両のエンジンの制御装置であって、前記プリイグニッション抑制制御系の故障を検出する検出手段と、前記検出手段により前記故障が検出されなかったときに、プリイグニッションを抑制するための第1制御量でエンジンを制御する正常時制御手段と、前記検出手段により前記故障が検出されたときに、プリイグニッションを抑制するための第2制御量でエンジンを制御する異常時制御手段とを有し、前記第2制御量は前記第1制御量よりもプリイグニッションをより強く抑制するように設定され、前記異常時制御手段は、前記検出手段により前記故障が検出されたときで、当該故障がプリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスであった場合には、前記第2制御量よりもプリイグニッションをより強く抑制するための第3制御量でエンジンを制御することを特徴とするエンジンの制御装置が提供される。
この構成によれば、故障が検出された場合には、正常時における第1制御量が、プリイグニッションをより強く抑制する第2制御量に増加されるので、プリイグニッションの抑制機能が働き、良好なエンジンの状態が確保される。
本発明によれば、プリイグ抑制制御系のフェイルセーフを実現する火花点火式エンジンの制御方法及び制御装置が提供される。
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の実施に有利な具体例を示すにすぎない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決手段として必須のものであるとは限らない。
[エンジンの制御装置]
図1は、本発明に係る実施形態のエンジン制御系を示す概略構成図である。図2は、本発明に係る実施形態のエンジン制御系のブロック図である。このエンジン制御系は、プリイグの抑制制御を行うプリイグ抑制制御系を含む。
図1に示すように、エンジン4は火花点火式直噴エンジンであって、4つのシリンダ11を有し、クランクシャフト14から自動変速機5に駆動力が伝達される。
エンジン4は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えており、ブロック12の内部にシリンダ11が形成されている。シリンダブロック12にはクランクシャフト14が回転自在に軸支されており、このクランクシャフト14が、コネクティングロッド16を介してピストン15に連結されている。
ピストン15は、各シリンダ11内に摺動自在に嵌挿されており、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画している。各シリンダ11に対して2つの吸気ポート18がシリンダヘッド13に形成され、それぞれが燃焼室17に連通している。同様に、各シリンダ11に対して2つの排気ポート19がシリンダヘッド13に形成され、それぞれが燃焼室17に連通している。
吸気弁21及び排気弁22は、それぞれ吸気ポート18及び排気ポート19を燃焼室17から遮断(閉)することができるように配設されている。吸気弁21は吸気弁駆動機構30により、排気弁22は排気弁駆動機構40により、それぞれ駆動され、それによって所定のタイミングで往復動して、吸気ポート18及び排気ポート19を開閉する。
吸気弁駆動機構30及び排気弁駆動機構40は、それぞれ吸気カムシャフト31及び排気カムシャフト41を有する。カムシャフト31,41は、チェーンやスプロケット等の動力伝達機構を介してクランクシャフト14に連結されている。
吸気弁駆動機構30は、吸気カムシャフト31の位相を所定の角度範囲内で連続的に変更可能な位相可変機構(Variable Valve Timing:VVT)32を含んでいる。VVT32は、動力伝達機構と吸気カムシャフト31との間に設けられている。このVVT32は、クランクシャフト14により直接駆動され且つ吸気カムシャフト31と同軸に配置された被駆動軸(不図示)と吸気カムシャフト31との間に、エンジン制御器100からの制御信号(バルブ位相角)VVTDに応じた位相差を設けるように構成されている。これにより、空気量(有効圧縮比)の調整が行われる。
VVT32は、例えば液圧式や電磁式等の位相可変機構とすることができる。液圧式の場合、被駆動軸と吸気カムシャフト31との間に周方向に並ぶ複数の液室を設け、それらの液室間に圧力差を設けることによって、上記位相差を作り出すことができる。電磁式の場合、被駆動軸と吸気カムシャフト31との間に電磁石と一方向に位相差を設けるような付勢力を生じるスプリングとを有する構成とし、その電磁石に電力を付与することによって前記位相差を作り出すことができる。
吸気カムシャフト31の位相角は、カム角センサ35により検出され、その出力信号VVTAがエンジン制御器100に入力される。
点火プラグ51は、シリンダヘッド13に取り付けられている。点火機構52は、エンジン制御器100からの制御信号(点火時期)SAを受けて、点火プラグ51が所望の点火タイミングで火花を発生するよう、それに通電する。これにより、点火時期の調整が行われる。
燃料噴射弁53は、周知の構造でシリンダヘッド13の一側(図では吸気側)に取り付けられている。燃料噴射弁53の先端は、上下方向については2つの吸気ポート18の下方に、また、水平方向については2つの吸気ポート18の中間に位置して、燃焼室17内に臨んでいる。
燃料供給機構54は、燃料噴射弁53に燃料を昇圧して供給する高圧ポンプ(不図示)と、この高圧ポンプに対して燃料タンクからの燃料を送る配管やホース等と、燃料噴射弁53を駆動する電気回路と、を備えている。この電気回路は、エンジン制御器100からの制御パルス信号(燃料噴射量FPおよび噴射時期FT)を受けて燃料噴射弁53のソレノイドを作動させ、所定量の燃料を所定の噴射タイミングで燃焼室17内に噴射させる。
吸気ポート18は、吸気マニホルド55内の吸気通路55bによってサージタンク55aに連通している。図示しないエアクリーナからの吸気流は、スロットルボデー56を通過してサージタンク55aに供給される。スロットルボデー56にはスロットル弁57が配置されており、このスロットル弁57は、サージタンク55aに向かう吸気流を絞って、その流量を調整する。スロットル・アクチュエータ58が、エンジン制御器100からの制御信号(スロットル開度)TVOを受けて、スロットル弁57の開度を調整する。これにより、空気量(吸気管圧力)の調整が行われる。
排気ポート19は、排気マニホルド60内の排気通路を介して排気管内の通路に連通している。排気マニホルド60内よりも下流の排気通路には、1つ以上の触媒コンバータ61を有する排気ガス浄化システムが配置されている。
また、排気ガスの一部を吸気系に循環させる(以下、EGR)ために、吸気マニホルド55(スロットル弁57よりも下流側)と排気マニホルド60との間がEGRパイプ62によって接続されている。排気側の圧力は吸入側よりも高いので、排気ガスの一部は吸気マニホルド55に流れ込むようになり(EGRガス)、この吸気マニホルド55から燃焼室17に吸入される新気と混ざることになる。EGRパイプ62にはEGRバルブ63が配設され、このバルブ63によってEGRガスの流量を調整する。EGRバルブ・アクチュエータ64は、エンジン制御器100からの制御信号EGRを受けて、EGRバルブ63の開度を調整する。
図2にも示すように、エンジン制御器100は、周知のマイクロコンピュータをベースとするコントローラであって、プリイグ予測部101aやプリイグ抑制部101bとして、後述するエンジン制御手順を記憶したプログラムを実行する中央演算処理装置(CPU)101と、例えばRAMやROMにより構成されてエンジン制御プログラムおよび燃焼制御パラメータテーブル102aなどのデータを格納するメモリ102と、電気信号の入出力をする入出力(I/O)バス103と、を備えている。
エンジン制御器100は、アクセル・ペダルの踏み込み量を検出するアクセル開度センサ75からのアクセル開度信号α、自動変速機5の出力軸の回転速度を検出する車速センサ76からの車速信号VSP、吸気温度センサ77からの吸気温度TA、吸気湿度センサ78からの吸気湿度TM、エンジン水温センサ79からの冷却水温度TE、ノックセンサ80からのノッキング検出信号NK、燃圧センサ81からの燃料圧力P、エアフローセンサ71からの吸気流量AF、吸気圧センサ72からの吸気マニホルド圧MAP、クランク角センサ73からのクランク角パルス信号CA、酸素濃度センサ74からの排気ガスの酸素濃度O等の種々の入力を受ける。エンジン制御器100は、クランク角パルス信号CAに基づいて、エンジン回転数neを演算する。
また、エンジン制御器100は、上述の種々の入力に基づいて、例えば、所定のスロットル開度TVO、燃料噴射量FPおよび噴射時期FT、点火時期SA、バルブ位相角VVTD等のエンジン4の制御パラメータを演算し、それらの信号を、スロットル・アクチュエータ58、燃料供給機構54、点火機構52、VVT32等に出力する。
また、エンジン制御器100は、オルタネータ82への発電制御信号Ge、自動変速機5の変速機構6への変速制御信号AT、ロックアップ機構7へのロックアップ制御信号L/Uを出力する。
[プリイグの予測・抑制方法]
図4は、本実施形態により予測されるプリイグを説明する図である。
図4(a)に示すように、本実施形態では、点火(イグニッション)後の正常燃焼におけるMB(Mass Burn:燃焼質量割合)10%に到達するCA(Crank Angle:クランク角度)より前で発生する初期プリイグ、および点火前に発生する暴走プリイグが予測可能であるが、以下では主に初期プリイグの予測方法について説明する。
また、図4(b)に示すように、初期プリイグは、エンジンが低速回転(750〜2000rpm程度)で運転されている領域において、牽引での発進時、坂道発進時、オーバーシフト時などのエンジン負荷が急激に上昇する高負荷時において発生する。これは高圧縮比の下で高負荷がかかることによって空燃比が理論空燃比よりリッチ側にふれて、自己着火し易い環境となることが一因と考えられる。
図3は、本実施形態のエンジン制御器が実行するプリイグ予測・抑制手順を示すフローチャートである。
図3において、先ず、エンジン制御器100のプリイグ予測部101aは、後で詳述するプリイグ予測ルーチンを実行する(S1)。その結果、プリイグの発生が予測されると判定されたならば(S2でYES)、プリイグ抑制部101bは、後で詳述するプリイグ抑制ルーチンを実行する(S3)。その後、エンジン制御器100は、メモリ102に記憶されたエンジン制御プログラムおよび予め設定された燃焼制御パラメータテーブル102aに基づいてエンジン制御を実行する(S4)。
また、プリイグの発生が予測されないと判定されたならば(S2でNO)、プリイグ抑制ルーチンを実行しないで、エンジン制御器100は、メモリ102に記憶されたエンジン制御プログラムおよび燃焼制御パラメータテーブル102aに基づいてエンジン制御を実行する(S4)。
ここで、図3のS1でのプリイグ予測ルーチンについて詳細に説明する。
図3において、プリイグ予測部101aは、エンジン負荷(ce:吸気充填量)および回転数neごとに予め設定された燃焼制御パラメータテーブル(空燃比(A/F)、吸気弁閉時期(VVTD)、燃料噴射時期(FT)、点火時期(SA)、EGR率等からなるテーブル:図7参照)を参照して、先ず、点火後の正常燃焼MB10%CAに到達する時点を演算もしくは実験により求め、そのデータを正常燃焼マップとして記憶する(S11、図7(a))。
次に、プリイグ予測部101aは、上記燃焼制御パラメータテーブル102aから点火時期SAを除外してプリイグMB10%CAに到達する時点を演算もしくは実験により求め、そのデータをプリイグマップとして記憶する(S12、図7(b))。
次に、プリイグ予測部101aは、上記プリイグマップを、現在のエンジンの運転状態などの外部環境因子によって補正する(S13)。
ここでは、図6(a)〜(d)に示すように、上記外部環境因子として、燃焼状態に影響を及ぼす吸気温度、吸気湿度、オクタン価、有効圧縮比に応じて補正する。例えば、図6(a)に示すように、吸気温度が高いほど高温なほど自己着火し易くなるので補正量を拡大し、25℃を境に吸気温度が高く、エンジン回転数が高いほど補正量が増加する傾きを大きくし、反対に25℃より吸気温度が低く、エンジン回転数が低いほど補正量の減少の傾きが小さくなる。また、図6(b)に示すように、吸気湿度(絶対湿度)が高いほど自己着火し難くなるので補正量を減少させ、エンジン回転数が高いほど補正量の減少の傾きが大きくなる。また、図6(c)に示すように、オクタン価が高いほど自己着火し難くなるので補正量を減少させる。なお、このオクタン価は、例えば点火時期のリタード量から判定できる。また、図6(d)に示すように、生産ばらつきやカーボン付着による実圧縮比が高いほど自己着火し易くなるので補正量を拡大させる。なお、実圧縮比は吸気弁閉時期や筒内圧をセンサなどにより検出することで判定できる。
そして、プリイグ予測部101aは、上記補正後のプリイグMB10%CAが、上記正常燃焼MB10%CAより前側であって、両時期の差が所定値以上のときに、上記燃焼制御パラメータテーブルを補正すべきプリイグが発生することを予測する(S2)。ここで、所定値は、例えば5°CA/750rpmとし、正常燃焼MB10%CAの範囲は点火時期が膨張行程にまでリタードされている場合を含むものとする。このようにプリイグの影響が少ない時期まで正常燃焼とみなすことでプリイグ抑制制御によるトルク低下を抑えることができる。
図7〜図9は、図3のプリイグ予測手順の具体例を示している。
ここで、図5に示すように、プリイグの特性として、正常燃焼MB10%CAより前側であるほど燃焼による熱発生量が多くなり、プリイグ強度が大きくなっていく。このプリイグ強度は、正常燃焼MB10%CAに対してどのくらい前でプリイグが発生するかを示す指標を表し、下記式により定義する。
プリイグ強度=MB10%CA正常燃焼マップ−MB10%CAプリイグマップ
また、本実施形態では、後述するように下記Livengood−Wu積分式を用いて点火後の自己着火時間t1を求めてプリイグの発生を予測する。
Figure 0005151875
また、MB10%CAは、下記式により定義する。
Figure 0005151875
例えば、図7(a)の1000rpm/ce0.9の条件でのプリイグ強度は、補正前の初期条件ではX10(正常燃焼マップ)−X10(プリイグマップ)=15−25=−10となり、プリイグ発生タイミングが正常燃焼MB10%CAより後になるため、プリイグは発生しないと予測できる。
これに対して、エンジンの運転状態が変化した場合(吸気温度TAが25℃→70℃、オクタン価RONが96→91RON、有効圧縮比εが14→15)、先ず、図8(a)のように、上記Livengood−Wu積分式を用いてプリイグ強度を演算すると、X10(プリイグマップ)=+4となる。よって、図8(b)のように、X10(正常燃焼マップ)−X10(プリイグマップ)=15−4=+11となり、プリイグの発生が予測される。
一方で、図9(a)〜(c)に示すように各補正パラメータを用いてプリイグ強度を演算する方法もある。この場合、X10(プリイグマップ)=+25(プリイグマップ初期条件)−6.0(吸気温度補正量)−7.5(オクタン価補正量)−7.5(圧縮比ε補正量)=+4となる。このように各補正量を加算することでもプリイグ強度が演算できる。
次に、図3のS3でのプリイグ抑制手順について説明する。
図10(a)〜(e)は、プリイグ抑制制御に用いる補正パラメータを例示している。
ここでは、図10(a)〜(e)に示すように、EGR率、吸気弁閉時期、燃料噴射時期、分割噴射比(後期噴射量/全噴射量×100)、空燃比などの補正パラメータが予め設定されている。例えば、図10(a)のようにEGR率が高くなるほど空燃比が高くなり自己着火し難くなるので補正量を減少させ、図10(b)のように吸気弁閉時期が遅いほど(有効圧縮比が低くなるほど)自己着火し難くなるので補正量を減少させ、図10(c)のように燃料噴射時期がリタード(遅角)されているほど正常燃焼MB10%CA近くで着火し易くなるので補正量を増加させ、図10(d)のように分割噴射比が大きいほど(後期噴射量が多いほど)正常燃焼MB10%CA近くで着火し易くなるので補正量を減少させる。また、図10(e)のように最も着火し易い理論空燃比14.7を境にして空燃比が小さい(リッチ側)、あるいは空燃比が大きい(リーン側)ほど自己着火し難くなるので補正量を減少させる。
なお、補正に係る優先順位としては、制御の応答性を考慮して、燃料噴射時期、分割噴射比、吸気弁閉時期、空燃比、EGR率の順にプリイグ抑制制御を実行することが好ましい。
具体的には、プリイグ抑制制御として、例えば図10(c)の燃料噴射時期を280°CA(X10=0)から20°CA(X10=−15)に変更するようにプリイグマップを補正すると、X10(正常燃焼MB10%CA)−X10(プリイグMB10%CA)=15−15=±0となる。
このように、図3のS4では、プリイグ強度が大きいほど補正量を拡大するように燃焼制御パラメータを補正して、補正後の燃焼制御パラメータに基づいてプリイグの発生を抑制しつつエンジンを制御する。
以上のように、本実施形態によれば、プリイグ強度を求めることでプリイグの予測精度が向上し、その後のプリイグ抑制制御が実行し易くなる。また、点火後の正常燃焼MB10%CAおよびプリイグMB10%CAに到達する時点を予め実験により求めておくことで、MB10%CAとなる燃焼開始時点でのプリイグの予測精度を向上させることができる。
本実施形態におけるプリイグ抑制制御は概ね以上のとおりである。ただし、本発明は特定のプリイグ抑制制御アルゴリズムに限定されるものではなく、種々のプリイグ抑制制御アルゴリズムにも適宜適用することが可能である。
また、上述のプリイグ予測処理に代えて、例えば、ノックセンサ80からのノッキング検出信号NKや従来の燃焼イオン電流を用いて実際に発生したプリイグを検出する処理を用いることも可能である。
[フェイルセーフ制御]
以下、上述したようなプリイグ抑制制御系に係るフェイルセーフの実施形態を説明する。
以下では、VVT32へとフィードバックされプリイグ抑制制御における制御対象となるパラメータを検出するセンサデバイス類を「抑制系」という。この抑制系には、例えば、吸気弁閉時期(以下「IVC」という。)を検出するVVT角度センサとしてのカム角センサ35、空燃比を規定する酸素濃度を検出する酸素濃度センサ74、ノッキングを検出するノックセンサ80が含まれる。
一方、上述したプリイグ抑制制御において用いられる補正パラメータを検出するセンサデバイス類を「検出系」という。この検出系には、例えば、吸気温度センサ77および吸気湿度センサ78が含まれる。なお、吸気温度センサ77の代わりに、外気温度センサ、サージタンク温度センサ、吸気ポート温度センサ等を用いることができることは当業者には容易に理解されよう。また、オクタン価の検出推定手段やEGR率の検出推定手段を備える場合には、これらの手段も検出系に含まれうる。
図11は、本実施形態におけるプリイグ抑制制御系のフェイルセーフ制御処理を示すフローチャートである。このフェイルセーフ制御処理はエンジン制御器100により所定周期で繰り返し実行される。
まず、ステップS1101で、プリイグニッション制御系における各デバイスの故障を検出する。ここで例えば、メモリ102に各デバイスの故障状況を記述する故障テーブルを構成しておき、あるデバイスの故障が検出された場合、故障テーブルにおける、そのデバイスの故障フラグを立てる(0→1にする)ようにするとよい。
次に、ステップS1102で故障の有無を判断する。故障がなければ正常時工程を実行する。すなわち、処理はステップS1103に進み、IVC通常制御として、上述したようなプリイグ予測・抑制制御を実行する。ここで、上述のプリイグ予測・抑制制御において制御されるIVCの遅角が、プリイグを抑制するための第1制御量となる。
一方、故障がある場合には、異常時工程としてステップS1104以降の処理を行う。ステップS1104では、検出された故障が抑制系の故障であるか否かを判断する。抑制系の故障ではない場合、ステップS1105で、検出系の故障であるか否かを判断する。ステップS1105でNOの場合、すなわち、検出された故障が抑制系の故障でもなく検出系の故障でもない場合は、故障がなかった場合と同様に、ステップS1103に進み、IVC通常制御として、上述したようなプリイグ予測・抑制制御を実行する。一方、検出された故障が検出系の故障である場合は、IVC通常制御を適正に行うことはできない。具体的には、すくなくとも上述したようなプリイグマップの補正を適正に行うことはできない。この場合、処理はステップS1106に進む。
ステップS1106では、検出系の故障箇所の数をカウントする。そして、ステップS1107において、IVCを、検出系の故障箇所の数に応じた遅角に制御する。例えば、検出系に使用するデバイスの総数で遅角なしから最遅角までを等分割して得た角度をβ、ステップS1106でカウントした検出系の故障箇所の数をNとすると、ステップS1107では、IVCをN・βだけ遅角する。もっとも、検出系に使用するデバイスの総数で遅角なしから最遅角までを等分割するのではなく、検出系に使用するデバイスごとにプリイグ強度への影響度等に応じて不均等に分割してもよい。ここで、ステップS1107で制御されるIVCの遅角が、プリイグを抑制するための第2制御量となる。ステップS1107において、この第2制御量は、ステップS1103のIVC通常制御において制御される第1制御量よりもプリイグをより強く抑制するように設定されることになる。
このようにIVCを遅角することにより、筒内圧が下がり効果的にプリイグを抑制することができる。
ステップS1104で、検出された故障が抑制系の故障であると判断された場合は、処理はステップS1108に進む。この場合は、プリイグ抑制制御系の重大な故障であるといえ、もはや適正なプリイグ予測・抑制制御は望めない。そこで、ステップS1108では、第3制御量として、IVCを強制的に最遅角に制御する。このようにIVCを最遅角にすることにより、筒内圧が大きく低下させ確実にプリイグを抑制することができる。
なお、検出された故障が抑制系であるか検出系であるかにかかわらず、一律にステップS1108でIVCを最遅角にするというフェイルセーフも考えられる。しかし、その場合にはエンジンの出力トルクの低下が避けられない。これに対し、上述の実施形態では、検出系の故障の場合にはIVCを最遅角までにはせず、検出系の故障数に応じて中間的な遅角に制御するようにしたので、極力トルク低下を防止できるという利点がある。
本発明に係る実施形態のエンジン制御系を示す概略構成図である。 本発明に係る実施形態のエンジン制御系のブロック図である。 本実施形態のエンジン制御器が実行するプリイグ予測・抑制手順を示すフローチャートである。 本実施形態により予測されるプリイグを説明する図(a)およびプリイグが発生し易い運転状態を示す図(b)である。 MB10%CAと熱発生量とプリイグ強度との関係を示す図である。 MB10%CAプリイグマップを補正するための各補正パラメータを例示する図である。 図3のプリイグ予測手順の具体例を示す図である。 図3のプリイグ予測手順の具体例を示す図である。 図3のプリイグ予測手順の具体例を示す図である。 プリイグ抑制制御に用いる補正パラメータを例示する図である。 実施形態におけるプリイグ抑制制御系のフェイルセーフ制御処理を示すフローチャートである。
符号の説明
4 エンジン
5 自動変速機
6 変速機構
7 ロックアップ機構
11 シリンダ
32 VVT
51 点火プラグ
52 点火機構
53 燃料噴射弁
54 燃料供給機構
71 エアフローセンサ
72 吸気圧センサ
73 クランク角センサ
74 酸素濃度センサ
75 アクセル開度センサ
76 車速センサ
77 吸気温度センサ
78 吸気湿度センサ
79 水温センサ
80 ノックセンサ
81 燃圧センサ
82 オルタネータ
100 エンジン制御器

Claims (4)

  1. 火花点火式エンジンにおけるプリイグニッションの予測及び抑制を行うプリイグニッション抑制制御系を備える車両のエンジンの制御方法であって、
    前記プリイグニッション抑制制御系の故障を検出する検出工程と、
    前記検出工程で前記故障が検出されなかったときに、プリイグニッションを抑制するための第1制御量でエンジンを制御する正常時工程と、
    前記検出工程で前記故障が検出されたときに、プリイグニッションを抑制するための第2制御量でエンジンを制御する異常時工程と、
    を有し、
    前記第2制御量は前記第1制御量よりもプリイグニッションをより強く抑制するように設定され
    前記検出工程で前記故障が検出されたときで、当該故障がプリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスであった場合には、前記異常時工程において、前記第2制御量よりもプリイグニッションをより強く抑制するための第3制御量でエンジンを制御することを特徴とするエンジンの制御方法。
  2. 前記第1乃至第3制御量は、吸気弁閉時期の遅角であることを特徴とする請求項に記載のエンジンの制御方法。
  3. 前記第3制御量は前記吸気弁閉時期を最遅角にするものであることを特徴とする請求項に記載のエンジンの制御方法。
  4. 火花点火式エンジンにおけるプリイグニッションの予測及び抑制を行うプリイグニッション抑制制御系を備える車両のエンジンの制御装置であって、
    前記プリイグニッション抑制制御系の故障を検出する検出手段と、
    前記検出手段により前記故障が検出されなかったときに、プリイグニッションを抑制するための第1制御量でエンジンを制御する正常時制御手段と、
    前記検出手段により前記故障が検出されたときに、プリイグニッションを抑制するための第2制御量でエンジンを制御する異常時制御手段と、
    を有し、
    前記第2制御量は前記第1制御量よりもプリイグニッションをより強く抑制するように設定され
    前記異常時制御手段は、前記検出手段により前記故障が検出されたときで、当該故障がプリイグニッション抑制制御における制御対象となるパラメータを検出するデバイスであった場合には、前記第2制御量よりもプリイグニッションをより強く抑制するための第3制御量でエンジンを制御することを特徴とするエンジンの制御装置。
JP2008254440A 2008-09-30 2008-09-30 火花点火式エンジンの制御方法及び制御装置 Expired - Fee Related JP5151875B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254440A JP5151875B2 (ja) 2008-09-30 2008-09-30 火花点火式エンジンの制御方法及び制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254440A JP5151875B2 (ja) 2008-09-30 2008-09-30 火花点火式エンジンの制御方法及び制御装置

Publications (2)

Publication Number Publication Date
JP2010084620A JP2010084620A (ja) 2010-04-15
JP5151875B2 true JP5151875B2 (ja) 2013-02-27

Family

ID=42248832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254440A Expired - Fee Related JP5151875B2 (ja) 2008-09-30 2008-09-30 火花点火式エンジンの制御方法及び制御装置

Country Status (1)

Country Link
JP (1) JP5151875B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472195B2 (ja) * 2011-04-22 2014-04-16 トヨタ自動車株式会社 可変圧縮比機構を備える内燃機関

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415454A (en) * 1987-07-07 1989-01-19 Nissan Motor Electronic control device for internal combustion engine
JPH11270450A (ja) * 1998-03-23 1999-10-05 Denso Corp 内燃機関制御装置
JP2001065374A (ja) * 1999-08-25 2001-03-13 Fuji Heavy Ind Ltd エンジンのバルブタイミング制御装置

Also Published As

Publication number Publication date
JP2010084620A (ja) 2010-04-15

Similar Documents

Publication Publication Date Title
JP2010084618A (ja) エンジンの制御装置
JP5151876B2 (ja) エンジンの制御方法および制御装置
JP2009287493A (ja) 内燃機関の点火時期制御装置
US8428854B2 (en) Internal EGR control system for internal combustion engine
US7168410B2 (en) Idle speed controller for internal combustion engine
EP1828576B1 (en) Valve characteristic control apparatus for internal combustion engine
JP5625842B2 (ja) 内燃機関の制御装置
EP2282034B1 (en) Internal egr control device for internal combustion engine
JP2008025405A (ja) 内燃機関の制御装置
US20100036581A1 (en) Internal Combustion Engine Control Device
JP5287103B2 (ja) 火花点火式エンジンの異常燃焼予測方法ならびにエンジンの制御装置および制御方法
JP5071333B2 (ja) エンジンの制御装置
JP5151875B2 (ja) 火花点火式エンジンの制御方法及び制御装置
JP4841382B2 (ja) 内燃機関
JP2007032364A (ja) 吸気系異常検知装置
JP2007182828A (ja) 内燃機関の制御装置
JP2014092146A (ja) 内燃機関の制御装置
JP2010084617A (ja) エンジンの制御装置
JP2009216035A (ja) 内燃機関の制御装置
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
JP2007285238A (ja) 内燃機関の制御装置
JP2015031241A (ja) 内燃機関の燃焼状態制御装置
JP2012255398A (ja) 内燃機関の制御装置
JP5041167B2 (ja) エンジンの制御装置
JP2007170198A (ja) 内燃機関のトルク制御装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees