JP5150282B2 - Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain - Google Patents

Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain Download PDF

Info

Publication number
JP5150282B2
JP5150282B2 JP2008018906A JP2008018906A JP5150282B2 JP 5150282 B2 JP5150282 B2 JP 5150282B2 JP 2008018906 A JP2008018906 A JP 2008018906A JP 2008018906 A JP2008018906 A JP 2008018906A JP 5150282 B2 JP5150282 B2 JP 5150282B2
Authority
JP
Japan
Prior art keywords
strain
present
bacterial strain
heavy metals
ssi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008018906A
Other languages
Japanese (ja)
Other versions
JP2009178074A (en
Inventor
健 佐々木
博史 奥畑
均 宮坂
Original Assignee
健 佐々木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 健 佐々木 filed Critical 健 佐々木
Priority to JP2008018906A priority Critical patent/JP5150282B2/en
Publication of JP2009178074A publication Critical patent/JP2009178074A/en
Application granted granted Critical
Publication of JP5150282B2 publication Critical patent/JP5150282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射性核種を含む広い範囲の重金属に対して高い吸着能力を示す光合成細菌株に関する。本発明はまた、かかる細菌株を使用した環境浄化方法に関する。   The present invention relates to a photosynthetic bacterial strain exhibiting a high adsorption capacity for a wide range of heavy metals including radionuclides. The present invention also relates to an environmental purification method using such a bacterial strain.

工場排水や核実験などによるヘドロや土壌などの重金属汚染は近年、世界各地で問題となっている。これに対する対策として、重金属を吸着する性質を有する光合成細菌を利用してヘドロや土壌から重金属を回収することが従来知られている。例えば、特許文献1には、多孔質セラミックに磁性体及び光合成細菌を固定化した表面改質多孔質セラミックをヘドロ中に分散させてヘドロ中の重金属を光合成細菌に吸着させ、吸着後に光合成細菌を固定化したセラミックごと磁石でヘドロ中から回収する方法が開示されている。   In recent years, heavy metal contamination such as sludge and soil due to factory effluent and nuclear tests has become a problem in various parts of the world. As countermeasures against this, it is conventionally known to recover heavy metals from sludge and soil using photosynthetic bacteria having the property of adsorbing heavy metals. For example, Patent Document 1 discloses that a surface-modified porous ceramic in which a magnetic substance and photosynthetic bacteria are immobilized on a porous ceramic is dispersed in sludge so that heavy metals in the sludge are adsorbed to the photosynthetic bacteria. A method for recovering the fixed ceramic together with the magnet from the sludge is disclosed.

特許文献1の方法では、Cu,Ag,Hgなどの一般的な重金属を吸着させるために使用する光合成細菌として、ロドバクター・スファエロイデスS株、ロドヴルム(Rhodovulum)sp PS88株、ロドプセウドモナス・パルスツリス(Rhodopseudomonas palustris)、及びロドバクター・カプスラータ(Rhodobacter capsulata)等が挙げられている。これらの光合成細菌は一定の重金属吸着能力を有することが知られているが、重金属を回収するには能力的になお不十分である。   In the method of Patent Document 1, as a photosynthetic bacterium used for adsorbing common heavy metals such as Cu, Ag, and Hg, Rhodobacter sphaeroides S strain, Rhodobulum sp PS88 strain, Rhodopus eudomonas pulse thuris (Rhodopseudomonas palustris), Rhodobacter capsulata and the like. Although these photosynthetic bacteria are known to have a certain heavy metal adsorption capacity, they are still insufficient in capacity to recover heavy metals.

また、前述のような種類の重金属の回収だけでなく、核施設や核実験などによる核汚染に対処するため、Sr,U,Coなどの放射性核種を環境から効果的に回収することも強く求められている。従って、放射性核種を含む広い範囲の重金属を効果的に吸着することができる光合成細菌株が求められている。
特開2001−25786号公報
In addition to the recovery of heavy metals of the kind described above, there is a strong demand for effective recovery of radionuclides such as Sr, U, and Co from the environment in order to deal with nuclear contamination caused by nuclear facilities and nuclear tests. It has been. Therefore, there is a need for a photosynthetic bacterial strain that can effectively adsorb a wide range of heavy metals including radionuclides.
Japanese Patent Laid-Open No. 2001-25786

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、放射性核種を含む広い範囲の重金属に対して高い吸着能力を示す光合成細菌株、及びかかる細菌株を使用した環境浄化方法を提供することである。   The present invention was devised in view of the current state of the prior art, and the object thereof is a photosynthetic bacterial strain exhibiting a high adsorption capacity for a wide range of heavy metals including radionuclides, and an environment using such a bacterial strain. It is to provide a purification method.

本発明者らは、光合成細菌株の中でも比較的高い重金属吸着能力を有することが知られるロドバクター・スファエロイデスS株(寄託番号:NBRC100038(NITE((独)製品評価技術基盤機構)のバイオテクノロジー分野 生物遺伝資源部門への寄託))を継代培養する間に、菌体同士が集合(凝集)する性質を示す自然変異体を見出した。そこで、本発明者らは、この自然変異株を単離してさらに調査したところ、この自然変異株の凝集性は多量の細胞表面タンパク質やRNAの生産によってもたらされること、そしてこれらのタンパク質やRNAを利用して重金属を電気的に強く吸着することができることを見出し、本発明を完成するに至った。   The present inventors are a biotechnology of Rhodobacter sphaeroides S strain (deposit number: NBRC100038 (NITE (National Institute for Product Evaluation Technology)), which is known to have a relatively high heavy metal adsorption capability among photosynthetic bacterial strains. Field Deposited in the Department of Biological and Genetic Resources)) We found a natural mutant that showed the property that cells gather (aggregate) during subculture. Therefore, the present inventors isolated this natural mutant and investigated further, and found that the aggregation of this natural mutant was brought about by the production of a large amount of cell surface proteins and RNA, and that these proteins and RNA were The present inventors have found that heavy metals can be strongly and electrically adsorbed by use, and have completed the present invention.

即ち、本発明によれば、重金属(例えばCu,Ag,Hgなどの一般的な重金属及びSr,U,Coなどの放射性核種に属する重金属)の吸着能力を有するロドバクター・スファエロイデスSSI株(FERM P−21462)が提供される。また、本発明によれば、上述のような重金属で汚染された環境(例えばヘドロ、堆積砂、土壌、又は砂漠の砂など)を浄化する方法であって、前記ロドバクター・スファエロイデスSSI株(FERM P−21462)に環境中の重金属を吸着させ、重金属を吸着した細菌株を環境中から回収することを特徴とする方法が提供される。   That is, according to the present invention, the Rhodobacter sphaeroides SSI strain (FERM) having the ability to adsorb heavy metals (for example, common heavy metals such as Cu, Ag and Hg and heavy metals belonging to radionuclides such as Sr, U and Co). P-21462) is provided. According to the present invention, there is also provided a method for purifying an environment contaminated with heavy metals as described above (for example, sludge, sediment sand, soil, desert sand, etc.), comprising the Rhodobacter sphaeroides SSI strain ( FERM P-21462) adsorbs heavy metals in the environment, and a bacterial strain adsorbed with the heavy metals is recovered from the environment.

本発明の細菌株は、細胞表面タンパク質やRNAを多量に生産するため、高い重金属吸着能力を示す。特に、本発明の細菌株は、Cu,Ag,Hgなどの一般的な重金属だけでなく、Sr,U,Coなどの放射性核種に対しても高い吸着能力を示す。従って、本発明の細菌株を利用すれば、工場排水などによる重金属で汚染された環境だけでなく、核施設や核実験などによる放射性核種で汚染された環境も効果的に浄化することができる。   Since the bacterial strain of the present invention produces a large amount of cell surface proteins and RNA, it exhibits a high heavy metal adsorption ability. In particular, the bacterial strain of the present invention exhibits high adsorption ability not only for common heavy metals such as Cu, Ag, and Hg but also for radionuclides such as Sr, U, and Co. Therefore, the use of the bacterial strain of the present invention can effectively purify not only the environment contaminated with heavy metals such as factory wastewater but also the environment contaminated with radionuclides by nuclear facilities and nuclear tests.

以下、まず本発明の細菌株について説明し、次にこの細菌株を使用した環境浄化方法について説明する。   Hereinafter, the bacterial strain of the present invention will be described first, and then the environmental purification method using this bacterial strain will be described.

本発明の細菌株であるロドバクター・スファエロイデスSSI株(以下、単にSSI株と称する)は、光合成細菌ロドバクター・スファエロイデスS株(以下、単にS株と称する)を継代培養する間に得られた自然変異株である。本発明のSSI株は、茨城県つくば市東1−1−1中央第6の独立行政法人産業技術総合研究所特許生物寄託センターに寄託されており、そこから容易に入手することができる。本発明のSSI株の受託番号はFERM P−21462である(平成19年12月7日受託)。   Rhodobacter sphaeroides SSI strain (hereinafter simply referred to as SSI strain), which is a bacterial strain of the present invention, is obtained during subculture of the photosynthetic bacterium Rhodobacter sphaeroides S strain (hereinafter simply referred to as S strain). It is a natural mutant obtained. The SSI strain of the present invention is deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi 1-1-1, Tsukuba, Ibaraki Prefecture, and can be easily obtained from there. The accession number of the SSI strain of the present invention is FERM P-21462 (consigned on December 7, 2007).

従来の光合成細菌株は、親株であるS株を含め、凝集性を全く示さないが、本発明のSSI株は、培養中に多量の細胞表面タンパク質やRNAを生産するため、これらのタンパク質やRNAによって菌体細胞同士が凝集する。これらのタンパク質やRNAの存在により、本発明のSSI株は、重金属を電気的に吸着するため、従来の光合成細菌株と比べて顕著に高い重金属吸着能力を有する。従って、本発明のSSI株は、従来の光合成細菌株と比べて吸着が困難な重金属も効果的に吸着することができる。なお、本発明のSSI株の菌学的性質は、多量の細胞表面タンパク質やRNAの生産による凝集性を示す点を除き親のS株と全く同じである。   Conventional photosynthetic bacterial strains, including the parent strain S, do not show any aggregation properties, but the SSI strain of the present invention produces a large amount of cell surface proteins and RNA during culture. As a result, bacterial cells aggregate. Due to the presence of these proteins and RNA, the SSI strain of the present invention has a significantly higher heavy metal adsorption capacity than conventional photosynthetic bacterial strains because it electrically adsorbs heavy metals. Therefore, the SSI strain of the present invention can also effectively adsorb heavy metals that are difficult to adsorb as compared to conventional photosynthetic bacterial strains. The bacteriological properties of the SSI strain of the present invention are exactly the same as the parent S strain, except that it exhibits agglutination due to the production of large amounts of cell surface proteins and RNA.

本発明のSSI株は、水溶液中でイオン化されるいかなる種類の重金属も効果的に吸着し、例えばCu,Ag,Hgなどの一般的な重金属、及び吸着が困難と思われるSr,U,Coなどの放射性核種に属する重金属を吸着することができる。   The SSI strain of the present invention effectively adsorbs any kind of heavy metal ionized in an aqueous solution, for example, common heavy metals such as Cu, Ag, Hg, and Sr, U, Co, etc. that are considered difficult to adsorb. It is possible to adsorb heavy metals belonging to these radionuclides.

本発明のSSI株の増殖は、菌株が効果的に増殖できる限りいかなる培養条件でも行うことができるが、例えば実施例の表1に記載される培地(グルタメート−マレート培地)を使用して30℃〜35℃の温度で、好気暗条件又は静置明条件(5klux〜10kluxのタングステン光照射下)で培養することによって容易に行うことができる。   The SSI strain of the present invention can be grown under any culture conditions as long as the strain can effectively grow. For example, the medium described in Table 1 of the Examples (glutamate-malate medium) is used at 30 ° C. It can be easily carried out by culturing at a temperature of ˜35 ° C. under aerobic dark conditions or standing bright conditions (under irradiation with tungsten light of 5 klux to 10 klux).

本発明の環境浄化方法は、本発明のSSI株に環境中の重金属を吸着させ、重金属を吸着した細菌株を環境中から回収することによって行う。本発明の方法で浄化することができる環境は、本発明のSSI株が生存できる限り特に限定されず、例えば海、河川、湖沼などの底質のヘドロや堆積砂、地上の土壌(田畑)や砂漠の砂であることができる。   The environmental purification method of the present invention is carried out by adsorbing heavy metals in the environment to the SSI strain of the present invention and recovering bacterial strains adsorbed with heavy metals from the environment. The environment that can be purified by the method of the present invention is not particularly limited as long as the SSI strain of the present invention can survive. For example, sediments such as seas, rivers, and lakes, sedimentary sand, ground soil (fields), Can be desert sand.

本発明の環境浄化方法では、まず重金属で汚染された環境中で本発明のSSI株を生存させるか又は培養してこの細菌株に環境中の重金属を吸着させる。例えばこの環境がヘドロや堆積砂である場合は、これらのヘドロや堆積砂の上の水に本発明のSSI株を添加する。また、この環境が地上の土壌(田畑)や砂漠の砂である場合は、これらの土壌や砂に本発明のSSI株を直接添加する。この際、本発明のSSI株を適当な担体に予め固定化して担体とともに添加することが好ましい。これは、重金属吸着後の菌株の回収を容易にするためである。かかる担体としては、菌株を固定化できる表面構造を有する限りいかなるものも使用できるが、例えば多孔質セラミック担体が好ましい。多孔質セラミック担体は、磁石による容易な回収のため、磁性体を含ませることが好ましい。   In the environmental purification method of the present invention, first, the SSI strain of the present invention is allowed to survive or cultured in an environment contaminated with heavy metals, and the heavy metals in the environment are adsorbed by the bacterial strains. For example, when the environment is sludge or sedimentary sand, the SSI strain of the present invention is added to water on the sludge or sedimentary sand. Moreover, when this environment is ground soil (field) or desert sand, the SSI strain of the present invention is directly added to these soil and sand. At this time, the SSI strain of the present invention is preferably immobilized in advance on a suitable carrier and added together with the carrier. This is to facilitate recovery of the strain after adsorption of heavy metal. Any carrier can be used as long as it has a surface structure capable of immobilizing strains. For example, a porous ceramic carrier is preferable. The porous ceramic carrier preferably contains a magnetic material for easy recovery by a magnet.

本発明のSSI株が重金属吸着能力を発揮するためには、細菌株が回収されるまで生きた状態であることが必要であり、環境中で細菌株が死んでしまうと、せっかく細菌株の細胞表面に吸着された重金属が再び放出されてしまうことがある。従って、環境中に本発明のSSI株の栄養源が不足していると考えられる場合は栄養源を添加して細菌株が死なないようにすることが好ましい。この栄養源としては、例えば下水や農業排水などを使用することができる。同様に、温度条件や通気条件などが本発明のSSI株にとって好適な条件でないと考えられる場合は、これらの条件を人工的に調節することが好ましい。   In order for the SSI strain of the present invention to exhibit the ability to adsorb heavy metals, it is necessary to remain alive until the bacterial strain is recovered, and if the bacterial strain dies in the environment, the bacterial strain cells Heavy metals adsorbed on the surface may be released again. Therefore, when it is considered that the nutrient source of the SSI strain of the present invention is insufficient in the environment, it is preferable to add the nutrient source so that the bacterial strain does not die. As this nutrient source, for example, sewage or agricultural drainage can be used. Similarly, when it is considered that temperature conditions, aeration conditions and the like are not suitable conditions for the SSI strain of the present invention, it is preferable to artificially adjust these conditions.

環境中に存在する重金属は、水に溶けてイオン化状態にあり、正に帯電している。一方、本発明のSSI株は、環境中で多量の細胞表面タンパク質やRNAを生産し、これらのタンパク質やRNAは負に帯電している。従って、本発明のSSI株の細胞表面タンパク質やRNAと環境中の重金属は互いに電気的に吸引する。本発明の方法は、従来の光合成細菌の持つ重金属の吸着力だけでなく、これらの表面タンパク質やRNAの電気的吸引力も利用する。従って、本発明の方法によれば、Cu,As,Hgなどの一般的な重金属の汚染だけでなく、従来吸着が困難であると考えられていたSr,U,Coなどの放射性核種の汚染にも対処することができる。   Heavy metals present in the environment dissolve in water and are in an ionized state, and are positively charged. On the other hand, the SSI strain of the present invention produces a large amount of cell surface proteins and RNA in the environment, and these proteins and RNA are negatively charged. Therefore, the cell surface protein or RNA of the SSI strain of the present invention and heavy metals in the environment are electrically attracted to each other. The method of the present invention uses not only the heavy metal adsorption force of conventional photosynthetic bacteria, but also the electrical attractive force of these surface proteins and RNA. Therefore, according to the method of the present invention, not only contamination of general heavy metals such as Cu, As, and Hg but also contamination of radionuclides such as Sr, U, and Co, which have been conventionally considered difficult to adsorb. Can also deal with.

本発明の環境浄化方法では、本発明のSSI株に環境中の重金属を吸着させた後、重金属を吸着した細菌株を環境中から回収する。この回収方法は、特に限定されず、例えば、本発明のSSI株を担体に固定化して使用した場合は、この担体を吸引することにより、本発明のSSI株を担体とともに環境中から容易に回収することができる。また、担体を利用しない場合は、本発明のSSI株が生存する液体をポンプで吸引して分離することにより本発明のSSI株を環境中から回収することができる。   In the environmental purification method of the present invention, after the heavy metal in the environment is adsorbed to the SSI strain of the present invention, the bacterial strain adsorbed with the heavy metal is recovered from the environment. The recovery method is not particularly limited. For example, when the SSI strain of the present invention is immobilized on a carrier, the carrier is sucked to easily recover the SSI strain of the present invention together with the carrier from the environment. can do. When the carrier is not used, the SSI strain of the present invention can be recovered from the environment by sucking and separating the liquid in which the SSI strain of the present invention survives with a pump.

本発明のSSI株の環境中からの回収は、本発明のSSI株が重金属を十分に吸着したと思われる時期に行えばよい。回収時期は、細菌株の濃度や重金属の種類や培養条件によって変動するが、一般に細菌株の添加から約3日〜約1週間後である。   The SSI strain of the present invention can be recovered from the environment at a time when the SSI strain of the present invention seems to have sufficiently adsorbed heavy metals. The collection time varies depending on the concentration of the bacterial strain, the type of heavy metal, and the culture conditions, but is generally about 3 days to about 1 week after the addition of the bacterial strain.

環境中から回収した菌体は、重金属を吸着しているので、必要により菌体からその重金属を分離することができるが、重金属の分離が必要でない場合は、そのまま焼却処分してもよい。重金属を分離する場合、その分離は、回収した菌体を酸洗浄することにより容易に行うことができる。   Since the microbial cells recovered from the environment adsorb heavy metals, the heavy metals can be separated from the microbial cells if necessary. However, if separation of heavy metals is not necessary, they may be incinerated as they are. When separating heavy metals, the separation can be easily performed by acid washing of the collected cells.

以下、本発明のSSI株の高い重金属吸着能力を実施例によって具体的に実証する。なお、実施例の記載は純粋に発明の理解のためのみに挙げるものであり、本発明はこれによって何ら限定されるものではない。   Hereinafter, the high heavy metal adsorption ability of the SSI strain of the present invention will be specifically demonstrated by Examples. In addition, description of an Example is given only for an understanding of invention, and this invention is not limited at all by this.

使用した細菌株
本発明例の細菌株として、ロドバクター・スファエロイデスSSI株(以下、単にSSI株と称する)を使用した。また、比較例の細菌株として、ロドバクター・スファエロイデスS株(以下、単にS株と称する)、ロドバクター・スファエロイデスIFO12203株(以下、単にIFO12203株と称する)、及びロドプセウドモナス・パルスツリス(以下、単にR.palustrisと称する)の3種の細菌株を使用した。なお、比較例の3種の細菌株のうち、S株は本発明例のSSI株の親株であり、IFO 12203株は本発明例のSSI株と同じ種に属する光合成細菌の株であり、R.palustrisは、本発明例のSSI株と異なる種に属する光合成細菌である。
Bacterial strain used Rhodobacter sphaeroides SSI strain (hereinafter simply referred to as SSI strain) was used as the bacterial strain of the present invention example. Further, as bacterial strains of comparative examples, Rhodobacter sphaeroides S strain (hereinafter simply referred to as S strain), Rhodobacter sphaeroides IFO12203 strain (hereinafter simply referred to as IFO12203 strain), and Rhodopus eudomonas pulse thuris ( Three bacterial strains (hereinafter simply referred to as R. palustris) were used. Of the three bacterial strains of the comparative examples, the S strain is the parent strain of the SSI strain of the present invention example, the IFO 12203 strain is a photosynthetic bacterial strain belonging to the same species as the SSI strain of the present invention example, and R . palustris is a photosynthetic bacterium belonging to a different species from the SSI strain of the present invention example.

調査した重金属
本実施例では、Sr,U,Co,Cu,As及びHgの6種類の重金属に対する吸着能力を調査した。このうち、Sr,U及びCoは放射性核種に属する重金属であり、Cu,As及びHgは一般的な重金属である。
Investigated heavy metals In this example, the adsorption capacity for six kinds of heavy metals, Sr, U, Co, Cu, As and Hg, was investigated. Among these, Sr, U and Co are heavy metals belonging to radionuclides, and Cu, As and Hg are general heavy metals.

細菌株の増殖及び菌体の固定化
各細菌株を、以下の表1に示す組成の培養液中で、30℃、10kluxのタングステン光の照射下で4日間静置培養して増殖させた。
Growth of Bacterial Strains and Immobilization of Bacteria Each bacterial strain was allowed to grow by standing culture for 4 days under irradiation of tungsten light at 30 ° C. and 10 klux in a culture solution having the composition shown in Table 1 below.

Figure 0005150282
Figure 0005150282

増殖後、それぞれの細菌株の菌体を遠心分離によって回収し、OD660≒50(25g/l)になるように濃度を調整し、そこに3.6重量%のアルギン酸ナトリウムを等量添加して混合液を調製した。この混合液を多孔質セラミック担体(ナガオ(株)製、空隙率80%、細孔径約1mm)に浸漬させた。混合液が多孔質セラミック担体中の細孔に十分浸透した後、多孔質セラミック担体を1.8重量%の塩化カルシウム溶液に浸漬し、ナトリウムイオンとカルシウムイオンを交換させた後、室温で乾燥して、菌体が担体中の細孔及び担体表面に固定化された多孔質セラミック担体(以下、菌体固定化担体と称する)を得た。 After growth, the cells of each bacterial strain were collected by centrifugation, the concentration was adjusted to OD 660 ≈50 (25 g / l), and an equal amount of 3.6% by weight sodium alginate was added thereto. To prepare a mixed solution. This mixed solution was immersed in a porous ceramic carrier (manufactured by Nagao Co., Ltd., porosity 80%, pore diameter about 1 mm). After the mixed solution has sufficiently penetrated into the pores in the porous ceramic carrier, the porous ceramic carrier is immersed in a 1.8 wt% calcium chloride solution to exchange sodium ions and calcium ions, and then dried at room temperature. Thus, a porous ceramic carrier (hereinafter referred to as a bacterial cell-immobilized carrier) in which the bacterial cells were immobilized on the pores in the carrier and on the surface of the carrier was obtained.

人工下水の調製
重金属汚染環境中での細菌株の栄養源として、以下の表2に示す組成の人工下水を調製した。
Preparation of artificial sewage Artificial sewage having the composition shown in Table 2 below was prepared as a nutrient source for bacterial strains in a heavy metal-contaminated environment.

Figure 0005150282
Figure 0005150282

実施例1.本発明の細菌株のSr吸着能力の検討
上述のようにして調製した人工下水にSrを硝酸化物の形で添加して、Srを溶解させた培養液を調製し、この培養液を容積1.5lの蓋付きのプラスチック容器に入れた。この際、Srの元素としての初発濃度が20mg/lになるように調節した。
Example 1. Examination of Sr adsorption capacity of the bacterial strain of the present invention Sr was added in the form of nitrate to the artificial sewage prepared as described above to prepare a culture solution in which Sr was dissolved. Placed in a 5 l plastic container with a lid. At this time, the initial concentration of Sr as an element was adjusted to 20 mg / l.

この培養液に、各細菌株の菌体固定化担体を入れたもの、菌体を固定化していない担体を入れたもの、及び菌体も担体も入れていないものを準備し、それぞれ開放系で6日間好気暗培養した。培養条件は、通気が1vvm、pHが6.5〜7.5、温度が約30℃になるように制御した。培養中、1日目、2日目、4日目及び6日目にサンプル溶液を採集してICP(高周波誘導結合プラズマ)発光分光分析法によりサンプル溶液中のSrの濃度を測定した。各実験は、培養液中に入れた担体の個数を4個又は8個にして3連で行い、3回の測定値の平均値を各時点での培養液中のSr濃度とした。担体の個数を4個、8個にして実験した場合の結果をそれぞれ図1及び図2に示す。   In this culture solution, prepare a cell in which the bacterial cell immobilization carrier of each bacterial strain is put, a cell in which the cell has not been immobilized, and a cell in which neither the cell nor the carrier is added. Aerobic dark culture was performed for 6 days. The culture conditions were controlled so that aeration was 1 vvm, pH was 6.5 to 7.5, and temperature was about 30 ° C. During the culture, the sample solution was collected on the first day, the second day, the fourth day, and the sixth day, and the concentration of Sr in the sample solution was measured by ICP (radio frequency inductively coupled plasma) emission spectrometry. Each experiment was performed in triplicate with 4 or 8 carriers in the culture solution, and the average of the three measurements was taken as the Sr concentration in the culture solution at each time point. The results when the experiment was conducted with 4 and 8 carriers were shown in FIGS. 1 and 2, respectively.

図1及び図2から明らかな通り、本発明例のSSI株を使用した系では、比較例のS株、IFO12203株及びR.palustrisを使用した系より培養液中のSr濃度が有意に低下し、本発明例のSSI株が従来公知の細菌株より顕著に高いSr吸着能力を有することが示された。また、図1と図2の対比から、使用する菌体の量が多いほどSrがよく吸着されることが示された。   As is clear from FIG. 1 and FIG. The Sr concentration in the culture broth was significantly lower than that of the system using palustris, indicating that the SSI strain of the present invention example has a significantly higher Sr adsorption capacity than the conventionally known bacterial strain. Further, the comparison between FIG. 1 and FIG. 2 shows that Sr is better adsorbed as the amount of cells used is larger.

実施例2.本発明の細菌株のU及びCo吸着能力の検討
重金属としてSrの代わりにU又はCoを使用し、比較例の細菌株としてR.palustrisのみを使用したことを除いては、実施例1と同様にして実験を行った。なお、Uは硝酸化物の形ではなく、酢酸ウランの形で人工下水に添加した。また、担体の個数は8個にして実験した。その結果を、Uについて図3に、Coについて図4に示す。
Example 2 Examination of U and Co adsorption ability of the bacterial strain of the present invention U or Co was used instead of Sr as a heavy metal, and R. as a bacterial strain of a comparative example. The experiment was performed in the same manner as in Example 1 except that only palristris was used. U was added to artificial sewage in the form of uranium acetate, not in the form of nitrate. The experiment was carried out with 8 carriers. The results are shown in FIG. 3 for U and in FIG. 4 for Co.

図3及び図4から明らかな通り、本発明例のSSI株を使用した系では、比較例のR.palustrisを使用した系より培養液中のU又はCo濃度が有意に低下し、本発明例のSSI株が従来公知の細菌株より顕著に高いU及びCo吸着能力を有することが示された。なお、Uについてコントロールでもかなりの濃度減少が見られるが、これは、時間が経過するにつれてUが一部酸化して沈殿物となり、ICP法では濃度測定できなくなったためであると考えられる。   As is clear from FIG. 3 and FIG. 4, in the system using the SSI strain of the present invention, R.I. The concentration of U or Co in the culture solution was significantly lower than that of the system using Palristris, indicating that the SSI strain of the present invention example has a significantly higher U and Co adsorption capacity than conventionally known bacterial strains. In addition, although a considerable concentration decrease is observed in the control for U, it is thought that this is because U is partially oxidized and becomes a precipitate as time passes, and the ICP method cannot measure the concentration.

以上の実施例1及び2の結果から、本発明のSSI株はSr,U,Coの放射性核種の重金属に対して高い吸着能力を有することが明らかである。   From the results of Examples 1 and 2 above, it is clear that the SSI strain of the present invention has a high adsorption capacity for heavy metals of radionuclides of Sr, U and Co.

実施例3.本発明の細菌株のCu,As及びHg吸着能力の検討
実施例1及び2から本発明のSSI株が放射性核種に対して高い吸着能力を有することが明らかになったので、それ以外の一般的な重金属に対しても本発明のSSI株が高い吸着能力を有するかどうかを調査した。具体的には、重金属としてSrの代わりにCu,As又はHgを使用したことを除いては、実施例1と同様にして実験を行った。担体の個数は、Cu及びAsについては2個、Hgについては8個にして実験した。また、比較例の細菌株は使用しなかった。Cu,As,Hgについての実験結果をそれぞれ図5〜7に示す。
Example 3 Examination of adsorption ability of Cu, As and Hg of bacterial strain of the present invention Examples 1 and 2 revealed that the SSI strain of the present invention has a high adsorption capacity for radionuclides. Whether or not the SSI strain of the present invention has a high adsorption capacity even for heavy metals was investigated. Specifically, the experiment was performed in the same manner as in Example 1 except that Cu, As, or Hg was used as the heavy metal instead of Sr. The experiment was carried out with the number of carriers being 2 for Cu and As and 8 for Hg. Moreover, the bacterial strain of the comparative example was not used. The experimental results for Cu, As, and Hg are shown in FIGS.

図5〜7から明らかな通り、Cu,As,Hgのいずれについても本発明例のSSI株は顕著に高い吸着能力を有する。以上の結果から、本発明のSSI株は、放射性核種のみならず、その他の一般的な重金属に対しても高い吸着能力を有することが明らかである。   As is apparent from FIGS. 5 to 7, the SSI strain of the present invention has a significantly high adsorption capacity for any of Cu, As, and Hg. From the above results, it is clear that the SSI strain of the present invention has a high adsorption ability not only for radionuclides but also for other common heavy metals.

本発明の新規細菌株ロドバクター・スファエロイデスSSI株は、放射性核種を含む様々な重金属に対して従来公知の光合成細菌より顕著に高い吸着能力を有する。従って、本発明の新規細菌株は、核施設や核実験などの放射性核種で汚染された環境や工場排水の重金属で汚染された環境を浄化するのに極めて有効に使用することができる。   The novel bacterial strain Rhodobacter sphaeroides SSI of the present invention has a significantly higher adsorption capacity than various conventionally known photosynthetic bacteria for various heavy metals including radionuclides. Therefore, the novel bacterial strain of the present invention can be used extremely effectively to purify environments contaminated with radionuclides such as nuclear facilities and nuclear tests and environments contaminated with heavy metals in factory wastewater.

菌体固定化担体4個投入時の培養液中のSr濃度変化を示す。The change in the Sr concentration in the culture solution when 4 cell-immobilized carriers are introduced is shown. 菌体固定化担体8個投入時の培養液中のSr濃度変化を示す。The change in Sr concentration in the culture solution when 8 cell-immobilized carriers are introduced is shown. 菌体固定化担体8個投入時の培養液中のU濃度変化を示す。The change in U concentration in the culture solution when 8 cell-immobilized carriers are introduced is shown. 菌体固定化担体8個投入時の培養液中のCo濃度変化を示す。The change in Co concentration in the culture solution when 8 cell-immobilized carriers are introduced is shown. 菌体固定化担体2個投入時の培養液中のCu濃度変化を示す。The change in Cu concentration in the culture solution when 2 cell-immobilized carriers are introduced is shown. 菌体固定化担体2個投入時の培養液中のAs濃度変化を示す。The change in As concentration in the culture medium when 2 cell-immobilized carriers are introduced is shown. 菌体固定化担体8個投入時の培養液中のHg濃度変化を示す。The change in Hg concentration in the culture solution when 8 cell-immobilized carriers are added is shown.

Claims (5)

重金属吸着能力を有するロドバクター・スファエロイデス(Rhodobacter sphaeroides)SSI株(FERM P−21462)。   Rhodobacter sphaeroides SSI strain (FERM P-21462) with heavy metal adsorption capacity. 重金属が放射性核種であることを特徴とする請求項1に記載のロドバクター・スファエロイデスSSI株(FERM P−21462)。   The Rhodobacter sphaeroides SSI strain (FERM P-21462) according to claim 1, wherein the heavy metal is a radionuclide. 重金属で汚染された環境を浄化する方法であって、請求項1又は2に記載のロドバクター・スファエロイデスSSI株(FERM P−21462)に環境中の重金属を吸着させ、重金属を吸着した細菌株を環境中から回収することを特徴とする方法。   A method for purifying an environment contaminated with heavy metals, comprising adsorbing heavy metals in the environment by adsorbing heavy metals in the Rhodobacter sphaeroides SSI strain (FERM P-21462) according to claim 1 or 2, Recovering from the environment. 環境がヘドロ、堆積砂、土壌、又は砂漠の砂であることを特徴とする請求項3に記載の方法。   4. The method of claim 3, wherein the environment is sludge, sediment sand, soil, or desert sand. 重金属が放射性核種であることを特徴とする請求項3又は4に記載の方法。   The method according to claim 3 or 4, wherein the heavy metal is a radionuclide.
JP2008018906A 2008-01-30 2008-01-30 Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain Expired - Fee Related JP5150282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018906A JP5150282B2 (en) 2008-01-30 2008-01-30 Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018906A JP5150282B2 (en) 2008-01-30 2008-01-30 Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain

Publications (2)

Publication Number Publication Date
JP2009178074A JP2009178074A (en) 2009-08-13
JP5150282B2 true JP5150282B2 (en) 2013-02-20

Family

ID=41032546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018906A Expired - Fee Related JP5150282B2 (en) 2008-01-30 2008-01-30 Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain

Country Status (1)

Country Link
JP (1) JP5150282B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102240670B (en) * 2011-05-12 2012-12-19 北京航空航天大学 Method for repairing microorganisms in heavy metal contaminated soil
JP2013068556A (en) * 2011-09-26 2013-04-18 Takeshi Sasaki Method for purifying environment contaminated by radioactive cesium
JP5074632B1 (en) * 2012-02-23 2012-11-14 健 佐々木 Method for purifying environmental media contaminated with radioactive cesium
CN102795712B (en) * 2012-09-03 2013-12-18 许继联华国际环境工程有限责任公司 Method for treating heavy metal-containing pollutant wastewater
JP6243184B2 (en) * 2012-11-14 2017-12-06 国立大学法人横浜国立大学 Radiocesium decontamination method for soil
JP6453530B2 (en) * 2013-01-30 2019-01-16 敬一郎 浅岡 Hazardous waste treatment method and compost manufacturing method used for the treatment method
JP6726637B2 (en) * 2017-03-30 2020-07-22 慧 佐々木 SSI precipitation and environmental purification method using SSI precipitation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025786A (en) * 1999-07-13 2001-01-30 Nagao Kk Surface modified porous ceramic and concentration method for concentrating heavy metal using the same
JP2004351318A (en) * 2003-05-29 2004-12-16 Kansai Electric Power Co Inc:The Catalyst for water purification and manufacturing method therefor
JP5074632B1 (en) * 2012-02-23 2012-11-14 健 佐々木 Method for purifying environmental media contaminated with radioactive cesium
JP5054246B1 (en) * 2012-06-20 2012-10-24 健 佐々木 Method for recovering radioactive cesium from contaminated environmental media using lactic acid bacteria

Also Published As

Publication number Publication date
JP2009178074A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5150282B2 (en) Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain
Kang et al. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea
JABBARI et al. Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent
CN112592855B (en) Bacillus subtilis and method for treating uranium and cadmium polluted water body by using same
Mathivanan et al. Tolerance and biosorption of cadmium (II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment
AU2007202974B2 (en) Bacterial strain for a metal biosorption process
Yazdani et al. An in vitro study on the adsorption, absorption and uptake capacity of Zn by the bioremediator Trichoderma atroviride
CN110669706A (en) Leersia hexandra endophytic bacterium capable of reducing hexavalent chromium as well as preparation method and application thereof
CN114410525A (en) Hypsizygus marmoreus capable of degrading high-ring polycyclic aromatic hydrocarbon and application thereof
CN109576159B (en) Chlorella W4 capable of removing heavy metals in water with high heavy metal content and application thereof
Singh et al. Microbial biofilms: development, structure, and their social assemblage for beneficial applications
JP2013068556A (en) Method for purifying environment contaminated by radioactive cesium
Parameswari et al. Biosorption of chromium (VI) and nickel (II) by bacterial isolates from an aqueous solution
JP5724217B2 (en) Method for preparing dehalococcides bacterium culture solution, chlorinated ethylene purification agent and purification method
CN116515665A (en) Pseudomonas capable of degrading microcystin, immobilized microbial agent and application
JP2017136002A (en) Halobacteria capable of solidifying radionuclides
CN107828679B (en) Rhodococcus roseus strain XHRR1 for purifying ammonia in aquaculture water and application thereof
CN115386520A (en) Rhodococcus pyridinivorans RL-GZ01 strain and application thereof
CN111471612B (en) Rhodococcus ruber HDRR2Y for purifying inorganic nitrogen and phosphorus in seawater pond culture tail water and application thereof
CN108672491B (en) Method for efficiently repairing heavy metal ions in wetland soil
Hrenovic et al. Occurrence of sepiolite in Croatia and its application in phosphate removal from wastewater
JP6964308B2 (en) Method for producing microbially produced manganese oxide, method for adsorbing heavy metals, adsorbent for heavy metals
CN112522158A (en) Marine bacterium and application thereof
CN110791437B (en) Filamentous fungus and method for enriching rare earth yttrium ions by using same
JP6602572B2 (en) Purification process for selenium-containing substances

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5150282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees