JP2017136002A - Halobacteria capable of solidifying radionuclides - Google Patents

Halobacteria capable of solidifying radionuclides Download PDF

Info

Publication number
JP2017136002A
JP2017136002A JP2016018075A JP2016018075A JP2017136002A JP 2017136002 A JP2017136002 A JP 2017136002A JP 2016018075 A JP2016018075 A JP 2016018075A JP 2016018075 A JP2016018075 A JP 2016018075A JP 2017136002 A JP2017136002 A JP 2017136002A
Authority
JP
Japan
Prior art keywords
radionuclide
microorganism
strain
culture
ability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016018075A
Other languages
Japanese (ja)
Inventor
光雄 山下
Mitsuo Yamashita
光雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Institute of Technology
Original Assignee
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Institute of Technology filed Critical Shibaura Institute of Technology
Priority to JP2016018075A priority Critical patent/JP2017136002A/en
Publication of JP2017136002A publication Critical patent/JP2017136002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide microorganisms that can highly remove dissolved strontium (Sr) in a short time under conditions of high salt concentration and coexistence of cobalt (Co).SOLUTION: Provided is a microorganism that produces a urease, and can solidify and remove 90% or more of a dissolved radionuclide (1 mM) under a condition of 0.3-5% NaCl concentration within two days from the start of culture.SELECTED DRAWING: None

Description

本発明は、放射性核種を固化する能力を有する好塩菌に関する。本発明はさらに、上記好塩菌による放射性核種の回収方法に関する。   The present invention relates to halophilic bacteria having the ability to solidify radionuclides. The present invention further relates to a method for recovering radionuclides by the halophilic bacteria.

微生物が生成する炭酸カルシウム (カルサイト) やリン酸カルシウム (アパタイト) は、バイオ鉱物 (バイオカルサイト、バイオアパタイト) と称される。バイオ鉱物を用いた地下水や土壌中の放射性Srの共沈や吸着による浄化の研究などが進められている(非特許文献1〜4)。一方、海水 (塩濃度3%) などの高塩濃度条件下における放射性Srの微生物の代謝物による浄化の研究はほとんど行われていない。   Calcium carbonate (calcite) and calcium phosphate (apatite) produced by microorganisms are called biominerals (biocalcite, bioapatite). Research on purification by coprecipitation and adsorption of radioactive Sr in groundwater and soil using biominerals is being promoted (Non-Patent Documents 1 to 4). On the other hand, studies on purification of radioactive Sr by microbial metabolites under high salt concentration conditions such as seawater (3% salt concentration) have not been conducted.

バイオ鉱物の1種であるバイオカルサイトは、微生物が産生するウレアーゼによって尿素が加水分解されてできた炭酸イオンと溶液体中のCaイオンが結合することで生成される (反応式1及び2)(非特許文献1及び5)。カルサイト生成の際に、溶存Srイオンは炭酸イオンと結合し、炭酸ストロンチウムとしてカルサイトと共沈し溶液体中から除去される (反応式2)。
2NCONH2+3H2O → 2NH4 ++HCO3 -+OH-(反応式1)
Sr2+/Ca2++2HCO3 - → Sr/CaCO3+CO2+H2O(反応式2)
Biocalcite, a kind of biomineral, is produced by the combination of carbonate ions formed by hydrolysis of urea by urease produced by microorganisms and Ca ions in solution (Reaction Formulas 1 and 2). (Non-Patent Documents 1 and 5). When calcite is generated, dissolved Sr ions are combined with carbonate ions, co-precipitated with calcite as strontium carbonate, and removed from the solution (Reaction Formula 2).
H 2 NCONH 2 + 3H 2 O → 2NH 4 + + HCO 3 + OH (Scheme 1)
Sr 2+ / Ca 2+ + 2HCO 3 → Sr / CaCO 3 + CO 2 + H 2 O (reaction formula 2)

本発明者は、ウレアーゼを産生し、NaCl濃度3%の条件下において放射性核種を固化する能力を有するBacillus属に属する微生物としてTK2d株を報告している(Coprecipitation of radioactive strontium in sea water during formation of biogeneic calcite. T. Ohnuki, N. Kozai, F. Sakamoto, T. Saito, Q. Yu, M. Yamashita, T. Horiike, S. Utsunomiya. 15th International Conference on the Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere. September 13-18, 2015, Santa Fe Community Convention Center, Santa Fe, NM, USA)。TK2d株は、特願2015-133419号明細書に記載されている。   The present inventor has reported the TK2d strain as a microorganism belonging to the genus Bacillus that produces urease and has the ability to solidify a radionuclide under the condition of a NaCl concentration of 3% (Coprecipitation of radioactive strontium in sea water during formation of biogeneic calcite.T. Ohnuki, N. Kozai, F. Sakamoto, T. Saito, Q. Yu, M. Yamashita, T. Horiike, S. Utsunomiya. 15th International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere. September 13-18, 2015, Santa Fe Community Convention Center, Santa Fe, NM, USA). The TK2d strain is described in Japanese Patent Application No. 2015-133419.

Y. Fujita,他、"Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation," Environ. Sci. Technol., vol. 42, no. 8, pp. 3025-3032, 2008Y. Fujita, et al., "Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation," Environ. Sci. Technol., Vol. 42, no. 8, pp. 3025-3032, 2008 Y. Fujita,他、"Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment," Environ. Sci. Technol., vol. 44, no. 19, pp. 7652-7658, 2010Y. Fujita, et al., "Evaluating the potential of native ureolytic microbes to remediate a 90Sr contaminated environment," Environ. Sci. Technol., Vol. 44, no. 19, pp. 7652-7658, 2010 V. Achal,他、"Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.," Chemosphere, vol. 89, no. 6, pp. 764-768, 2012V. Achal, et al., "Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.," Chemosphere, vol. 89, no. 6, pp. 764-768, 2012 S. Handley-Sidhu,他、"Bacterially Produced Calcium Phosphate Nanobiominerals: Sorption Capacity, Site Preferences, and Stability of Captured Radionuclides," 2014S. Handley-Sidhu, et al., "Bacterially Produced Calcium Phosphate Nanobiominerals: Sorption Capacity, Site Preferences, and Stability of Captured Radionuclides," 2014 Y. Fujita, 他、"Strontium incorporation into calcite generated by bacterial ureolysis," Geochim. Cosmochim. Acta, vol. 68, no. 15, pp. 3261-3270, 2004Y. Fujita, et al., "Strontium incorporation into calcite generated by bacterial ureolysis," Geochim. Cosmochim. Acta, vol. 68, no. 15, pp. 3261-3270, 2004

本発明が解決しようとする課題は、高塩濃度条件において、かつコバルト(Co)の共存下において、溶存ストロンチウム (Sr) を短時間に高度に除去できる微生物、並びに上記微生物を用いた放射性核種を固化する方法を提供することである。   The problem to be solved by the present invention is to provide a microorganism capable of highly removing dissolved strontium (Sr) in a short time under a high salt concentration condition and in the presence of cobalt (Co), and a radionuclide using the microorganism. It is to provide a way to solidify.

本発明者は上記課題を解決することを目的として、高塩濃度条件においてウレアーゼを産生する微生物を分離し、炭酸ストロンチウムとしてSr固化物が生じるかどうかを調べた結果、上記微生物が高塩濃度条件において、かつコバルト(Co)の共存下において、溶存ストロンチウム (Sr) を短時間に高度に除去できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor has separated urease producing microorganisms under high salt concentration conditions and examined whether or not Sr solidified product is produced as strontium carbonate. In addition, it was found that dissolved strontium (Sr) can be highly removed in a short time in the presence of cobalt (Co), and the present invention has been completed.

すなわち、本発明の態様は以下に関する。
[1] ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下において1mMの溶存放射性核種の90%以上を培養開始から2日以内に固化除去できる能力を有する微生物。
[2] ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下かつコバルト(Co)共存下において、放射性核種を固化する能力を有する微生物。
[3] ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下において1mMの溶存放射性核種の90%以上を培養開始から2日以内に固化除去できる能力を有し、さらにNaCl濃度0.3%〜5%の条件下かつコバルト(Co)共存下において放射性核種を固化する能力を有する、微生物。
[4] NaCl濃度0.3%〜3%の条件下において1mMの溶存放射性核種の95%以上を培養開始から1日以内に固化除去できる能力を有する、[1]から[3]の何れかに記載の微生物。
[5] NaCl濃度0.3%〜3%の条件下において、培養開始後1日目に、培養開始時の菌体数の1×106倍以上の菌体数まで増殖し、培養開始後3日目まで培養開始時の菌体数の1×106倍以上の菌体数が維持される、[1]から[4]の何れかに記載の微生物。
[6] 前記放射性核種がストロンチウム(Sr)である、[1]から[5]の何れかに記載の微生物。
[7] ストロンチウム(Sr)とカルシウム(Ca)の複合炭酸塩としてストロンチウム(Sr)を固化する能力を有する、[6]に記載の微生物。
[8] Sporosarcina 属に属する、[1]から[7]の何れかに記載の微生物。
[9] 受託番号NITE BP−02190である、微生物。
That is, the aspect of the present invention relates to the following.
[1] A microorganism that produces urease and has the ability to solidify and remove 90% or more of 1 mM dissolved radionuclide within 2 days from the start of culture under the conditions of NaCl concentration of 0.3% to 5%.
[2] A microorganism that produces urease and has the ability to solidify a radionuclide under the conditions of NaCl concentration of 0.3% to 5% and in the presence of cobalt (Co).
[3] Produces urease and has the ability to solidify and remove 90% or more of 1 mM dissolved radionuclide within 2 days from the start of culture under the conditions of NaCl concentration of 0.3% to 5%, and further, the NaCl concentration is 0 A microorganism having the ability to solidify a radionuclide under conditions of 3% to 5% and in the presence of cobalt (Co).
[4] Any one of [1] to [3], having an ability to solidify and remove 95% or more of a 1 mM dissolved radionuclide within a day from the start of culture under a condition where the NaCl concentration is 0.3% to 3%. The microorganism described in 1.
[5] Under the condition of NaCl concentration of 0.3% to 3%, on the first day after the start of the culture, it grows to the number of cells at least 1 × 10 6 times the number of the cells at the start of the culture. The microorganism according to any one of [1] to [4], wherein the number of cells at 1 × 10 6 times or more of the number of cells at the start of culture is maintained until the third day.
[6] The microorganism according to any one of [1] to [5], wherein the radionuclide is strontium (Sr).
[7] The microorganism according to [6], which has an ability to solidify strontium (Sr) as a complex carbonate of strontium (Sr) and calcium (Ca).
[8] The microorganism according to any one of [1] to [7], which belongs to the genus Sporosarcina.
[9] A microorganism having a deposit number of NITE BP-02190.

[10] 放射性核種を含む液体中で、[1]から[9]の何れかに記載の微生物を培養することを含む、放射性核種を固化する方法。
[11] 放射性核種を含む液体が、NaCl濃度3%以上である、[10]に記載の方法。
[12] 放射性核種を含む液体が、カルシウムイオンを含む液である、[10]又は[11]に記載の方法。
[13] 放射性核種を含む液体が、コバルト(Co)を含む液である、[10]から[12]の何れかに記載の方法。
[14] 放射性核種がストロンチウム(Sr)である、[10]から[13]の何れかに記載の方法。
[15] [10]から[14]の何れかに記載の方法により、放射性核種を含む液体中の放射性核種を固化する工程、及び固化した放射性核種を回収する工程を含む、放射性核種の回収方法。
[10] A method for solidifying a radionuclide, comprising culturing the microorganism according to any one of [1] to [9] in a liquid containing a radionuclide.
[11] The method according to [10], wherein the liquid containing the radionuclide has an NaCl concentration of 3% or more.
[12] The method according to [10] or [11], wherein the liquid containing a radionuclide is a liquid containing calcium ions.
[13] The method according to any one of [10] to [12], wherein the liquid containing the radionuclide is a liquid containing cobalt (Co).
[14] The method according to any one of [10] to [13], wherein the radionuclide is strontium (Sr).
[15] A method for recovering a radionuclide comprising a step of solidifying a radionuclide in a liquid containing a radionuclide and a step of recovering the solidified radionuclide by the method according to any one of [10] to [14] .

本発明の微生物は、放射性核種を回収する能力を有する新規微生物である。本発明の微生物を用いることにより、高塩濃度条件において、かつコバルト(Co)の共存下において、放射性核種を短時間に回収することができる。   The microorganism of the present invention is a novel microorganism having an ability to recover a radionuclide. By using the microorganism of the present invention, radionuclides can be recovered in a short time under high salt concentration conditions and in the presence of cobalt (Co).

図1は、分解用平板培地の赤色ハローを示す。FIG. 1 shows the red halo of the degradation plate medium. 図2は、候補株の溶存Sr除去能試験の結果を示す。FIG. 2 shows the result of the dissolved Sr removal ability test of the candidate strain. 図3は、KW3b1株およびKW3b2株の16SrRNA遺伝子解析に基づく系統樹を示す。FIG. 3 shows a phylogenetic tree based on 16S rRNA gene analysis of KW3b1 and KW3b2 strains. 図4は、TK2d株、KW3b1株、KW3b2株のSr除去能の比較を示す。FIG. 4 shows a comparison of the Sr removal ability of the TK2d strain, the KW3b1 strain, and the KW3b2 strain. 図5は、NaClの影響を調べるためのKW3b1株のSr除去能試験の結果を示す。FIG. 5 shows the result of the Sr removal ability test of KW3b1 strain to examine the influence of NaCl. 図6は、NaClの影響を調べるためのKW3b1株の菌体増殖試験の結果を示す。FIG. 6 shows the results of a cell growth test of KW3b1 strain to examine the influence of NaCl. 図7は、TK2d株、KW3b1株、KW3b2株のCo耐性試験の結果を示す。FIG. 7 shows the results of the Co resistance test of the TK2d strain, KW3b1 strain, and KW3b2 strain. 図8は、TK2d株、KW3b1株、KW3b2株が合成した固化Srの観察の結果を示す。FIG. 8 shows the results of observation of solidified Sr synthesized by the TK2d strain, KW3b1 strain, and KW3b2 strain. 図9は、KW3b1株が合成した固化Srの観察の結果を示す。FIG. 9 shows the results of observation of solidified Sr synthesized by the KW3b1 strain. 図10は、KW3b1株及びKW3b2株が合成した固化Srの観察の結果を示す。FIG. 10 shows the results of observation of solidified Sr synthesized by the KW3b1 and KW3b2 strains.

以下、本発明の実施の形態について説明する。
本発明の微生物は、ウレアーゼを産生し、以下の(1)及び/又は(2)に記載の能力を有する微生物である。
(1)NaCl濃度0.3%〜5%の条件下において1mMの溶存放射性核種(例えば、ストロンチウム等)の90%以上を培養開始から2日以内に固化除去できる能力;
(2)NaCl濃度0.3%〜5%の条件下かつコバルト(Co)共存下において、放射性核種(例えば、ストロンチウム等)を固化する能力:
Embodiments of the present invention will be described below.
The microorganism of the present invention is a microorganism that produces urease and has the ability described in (1) and / or (2) below.
(1) Ability to solidify and remove 90% or more of 1 mM dissolved radionuclide (for example, strontium etc.) within 2 days from the start of culture under the condition of NaCl concentration of 0.3% to 5%;
(2) Ability to solidify radionuclides (for example, strontium, etc.) under a NaCl concentration of 0.3% to 5% and in the presence of cobalt (Co):

微生物のウレアーゼ産生能は、尿素の加水分解による培地のpH上昇を微生物のウレアーゼ活性の指標とすることにより判定することができる。例えば、pH8以上で黄色から赤色に変化するPhenol redの呈色反応を利用することにより、培地のpH上昇を可視化することができる。ウレアーゼ産生微生物は、コロニー周辺に赤色のハローを形成するので、赤色のハローの観察により微生物のウレアーゼ産生能を判定することができる。   The ability of microorganisms to produce urease can be determined by using the increase in pH of the medium due to hydrolysis of urea as an indicator of the urease activity of microorganisms. For example, the pH increase of the medium can be visualized by utilizing the color reaction of Phenol red that changes from yellow to red at pH 8 or higher. Since the urease-producing microorganism forms a red halo around the colony, the ability of the microorganism to produce urease can be determined by observing the red halo.

本発明の微生物は、NaCl濃度0.3%〜5%の条件下において放射性核種を固化する能力を有することを特徴とする。NaCl濃度0.3%〜5%の条件下としては、他の塩が含まれていてもよく、また海水は、NaCl濃度3%の条件下を満たす一例である。   The microorganism of the present invention is characterized by having the ability to solidify the radionuclide under the condition of NaCl concentration of 0.3% to 5%. Other salt may be contained as the condition of the NaCl concentration of 0.3% to 5%, and seawater is an example that satisfies the condition of the NaCl concentration of 3%.

本発明の微生物は、好ましくは、NaCl濃度0.3%〜3%の条件下において1mMの溶存放射性核種(例えば、ストロンチウム等)の95%以上、より好ましくは98%以上、さらに好ましくは99%以上を培養開始から1日以内に固化除去できる能力を有する。   The microorganism of the present invention is preferably 95% or more, more preferably 98% or more, more preferably 99% of 1 mM dissolved radionuclide (for example, strontium) under the condition of NaCl concentration of 0.3% to 3%. It has the ability to solidify and remove the above within one day from the start of culture.

本発明の微生物は、好ましくは、NaCl濃度0.3%〜3%の条件下において、培養開始後1日目に、培養開始時の菌体数の1×106倍以上の菌体数まで増殖し、培養開始後3日目まで培養開始時の菌体数の1×106倍以上の菌体数が維持される。 The microorganism of the present invention preferably has a cell number of 1 × 10 6 times or more of the number of cells at the start of the culture on the first day after the start of the culture under the condition of NaCl concentration of 0.3% to 3%. Proliferate and maintain the number of cells at least 1 × 10 6 times the number of cells at the start of culture until 3 days after the start of culture.

放射性核種とは、放射能を有する核種を意味し、放射性同位体と称される場合もある。放射性核種としては、自然界に存在する天然放射性核種(ウラン238、カリウム40及びラジウム226、トリウム232など)及び人工放射性核種(セシウム134、セシウム137、ヨウ素131、キセノン133、ストロンチウム89、ストロンチウム90、クリプトン85、ジルコニウム95、ルテニウム106、セリウム144、コバルト60、炭素14、トリウム232)などを挙げることができる。   The radionuclide means a radionuclide that is sometimes called a radioisotope. Radionuclides include natural radionuclides existing in nature (uranium 238, potassium 40 and radium 226, thorium 232, etc.) and artificial radionuclides (cesium 134, cesium 137, iodine 131, xenon 133, strontium 89, strontium 90, krypton. 85, zirconium 95, ruthenium 106, cerium 144, cobalt 60, carbon 14, thorium 232) and the like.

本発明の微生物は、上記した放射性核種のうちの少なくとも1種以上を固化する能力を有すればよい。好ましくは、本発明の微生物は、人工放射性核種を固化する能力を有する微生物であり、より好ましくはストロンチウム(Sr)を固化する能力を有する微生物である。   The microorganism of the present invention only needs to have the ability to solidify at least one of the radionuclides described above. Preferably, the microorganism of the present invention is a microorganism having an ability to solidify an artificial radionuclide, more preferably a microorganism having an ability to solidify strontium (Sr).

本発明の微生物は好ましくは、放射性核種を炭酸塩として固化することができる微生物であり、特にカルシウムイオンが存在する場合には、放射性核種とカルシウム(Ca)の複合炭酸塩として、放射性核種を固化することができる微生物である。本発明の微生物の一例としては、ストロンチウム(Sr)とカルシウム(Ca)の複合炭酸塩としてストロンチウム(Sr)を固化する能力を有する微生物を挙げることができる。   The microorganism of the present invention is preferably a microorganism capable of solidifying a radionuclide as a carbonate, and particularly when calcium ions are present, the radionuclide is solidified as a composite carbonate of a radionuclide and calcium (Ca). Is a microorganism that can. As an example of the microorganism of the present invention, a microorganism having the ability to solidify strontium (Sr) as a complex carbonate of strontium (Sr) and calcium (Ca) can be mentioned.

本発明において、固化とは、液体中に溶存している放射性核種が不溶化することを意味する。微生物が放射性核種を固化する能力を有することは、実施例に記載の方法により確認することができる。具体的には、放射性核種を含む液を添加した微生物用培地に、微生物を含む試料を接種し、微生物を増殖できる条件下で培養した後、サンプリング試料の上清中における放射性核種を測定することによって、放射性核種を固化する能力を測定することができる。本発明の微生物は、上記又はそれに準じた方法により、野生株、変異株等の中からスクリーニングすることで単離採取することができる。   In the present invention, solidification means that the radionuclide dissolved in the liquid is insolubilized. The ability of the microorganism to solidify the radionuclide can be confirmed by the method described in the Examples. Specifically, after inoculating a microorganism-containing medium to which a liquid containing a radionuclide is added with a sample containing the microorganism and culturing the microorganism under conditions that allow the microorganism to grow, the radionuclide in the supernatant of the sampling sample is measured. The ability to solidify the radionuclide can be measured. The microorganism of the present invention can be isolated and collected by screening from wild strains, mutant strains and the like by the method described above or a method similar thereto.

本発明の微生物が属する属は、特に限定されない。環境試料などから採取した微生物について、16SrRNAの情報等に基づいて微生物を分類(属種の同定)する方法は公知である。本発明で使用する微生物は、野生株、変異株、遺伝子工学的手法等により作製される組換え体などの何れの微生物であってもよい。   The genus to which the microorganism of the present invention belongs is not particularly limited. A method of classifying microorganisms (identification of genus species) based on 16S rRNA information and the like for microorganisms collected from environmental samples and the like is known. The microorganism used in the present invention may be any microorganism such as a wild-type strain, a mutant strain, and a recombinant produced by genetic engineering techniques.

本発明の微生物が属する属は、好ましくはSporosarcina 属に属する微生物である。本発明においては、16SrRNA遺伝子の塩基配列において、Sporosarcina 属する微生物と95%以上、好ましくは98%以上、より好ましくは99%以上の相同性を有する微生物を使用することができる。   The genus to which the microorganism of the present invention belongs is preferably a microorganism belonging to the genus Sporosarcina. In the present invention, a microorganism having a homology of 95% or more, preferably 98% or more, more preferably 99% or more with a microorganism belonging to Sporosarcina in the base sequence of 16S rRNA gene can be used.

Sporosarcina 属に属する微生物の一例としては、本明細書の実施例で単離されたKW3b2株を挙げることができる。KW3b2株は、受託番号NITE BP−02190として、2016年1月12日に独立行政法人 製品評価技術基盤機構特許微生物寄託センター(郵便番号292−0818 日本国千葉県木更津市かずさ鎌足2−5−8)に寄託されている。KW3b2株は、桿菌(0.7−0.8x1.5−2.5μm)、LB培地でコロニーは淡黄色・円形・スムーズ、カタラーゼとオキシダ−ゼは+であるという微生物学的特徴を有している。KW3b2株の16SrRNA遺伝子配列を配列番号5に示す。   As an example of the microorganism belonging to the genus Sporosarcina, the KW3b2 strain isolated in the examples of the present specification can be mentioned. The KW3b2 strain was registered under the accession number NITE BP-02190 on January 12, 2016, at the National Institute of Technology and Evaluation of Microorganisms (Postal Code 292-0818, 2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). 8). The KW3b2 strain has a microbiological characteristic that colonies are pale yellow, round and smooth, and catalase and oxidase are positive in LB medium, gonococci (0.7-0.8x1.5-2.5 μm) ing. The 16S rRNA gene sequence of the KW3b2 strain is shown in SEQ ID NO: 5.

KW3b2株の培養に用いる培地としては、LB培地(Trypron 10g/L、Yeast Extract 5g/L, NaCl 5g/L, NaCl 30g/L)が好ましいが、Marine Brotth 2216でも増殖可能である。培地のpH(滅菌前)は7.6が好ましい。培養温度は30℃が好ましく、培養期間は1〜2日間が好ましい。培養は、好気培養で、振とう培養が好ましい。   As a medium used for culturing the KW3b2 strain, LB medium (Trypron 10 g / L, Yeast Extract 5 g / L, NaCl 5 g / L, NaCl 30 g / L) is preferable, but it can also be grown in Marine Broth 2216. The pH of the medium (before sterilization) is preferably 7.6. The culture temperature is preferably 30 ° C., and the culture period is preferably 1 to 2 days. The culture is aerobic culture, preferably shaking culture.

更に本発明によれば、放射性核種を含む液体中で、上記した本発明の微生物を培養することを含む、放射性核種を固化する方法が提供される。
放射性核種を含む液体が、NaCl濃度3%以上であることが好ましく、さらにカルシウムイオンを含む液体であることも好ましく、またコバルト(Co)を含む液体であることも好ましい。上記の条件を満たす液体としては、海水を挙げることができる。固化する放射性核種の具体例は、上記の通りであり、特に好ましくはストロンチウム(Sr)である。
Furthermore, according to this invention, the method of solidifying a radionuclide including culturing the microorganism of this invention mentioned above in the liquid containing a radionuclide is provided.
The liquid containing the radionuclide is preferably a NaCl concentration of 3% or more, more preferably a liquid containing calcium ions, and a liquid containing cobalt (Co) is also preferable. Seawater can be given as a liquid that satisfies the above conditions. Specific examples of the radionuclide to be solidified are as described above, and particularly preferably strontium (Sr).

本発明の微生物を培養する方法は、放射性核種を固化できる限り特に限定されず、使用する微生物の性質に応じて好適な培養条件を適宜選択することができる。例えば、実施例で使用したKW3b2株の場合には、振とう培養などの好気条件下、温度25〜40℃、好ましくは温度25〜35℃、特に好ましくは28〜32℃で培養を行うことができる。   The method for culturing the microorganism of the present invention is not particularly limited as long as the radionuclide can be solidified, and suitable culture conditions can be appropriately selected according to the properties of the microorganism to be used. For example, in the case of the KW3b2 strain used in the examples, the culture is performed at a temperature of 25 to 40 ° C., preferably at a temperature of 25 to 35 ° C., particularly preferably at 28 to 32 ° C. under aerobic conditions such as shaking culture. Can do.

本発明によれば、上記した方法により放射性核種を含む液体中の放射性核種を固化した後に、固化した放射性核種を回収することができる。放射性核種の回収は、遠心分離、フィルター濾過、又はそれらの組み合わせなど公知の方法で行うことができる。   According to the present invention, after solidifying the radionuclide in the liquid containing the radionuclide by the above-described method, the solidified radionuclide can be recovered. The collection of the radionuclide can be performed by a known method such as centrifugation, filter filtration, or a combination thereof.

本発明による放射性核種を固化する方法は、放射性核種を含む液体(たとえば、放射性核種で汚染された海水)などに適用することができる。   The method for solidifying a radionuclide according to the present invention can be applied to a liquid containing a radionuclide (for example, seawater contaminated with a radionuclide).

以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present invention is not particularly limited by the following examples.

(1)試験方法
(1−1)海洋性環境試料
微生物の分離源として、鹿児島湾(4ヶ所)の海底泥が採取された。環境試料は滅菌生理食塩水(NaCl0.9%(w/v))により10%(w/v)に希釈され、ボルテックスにより混合された。これらの環境試料希釈液はスクリーニングに用いられた。
(1) Test method (1-1) Marine environmental sample As the source of microorganisms, seabed mud from Kagoshima Bay (4 locations) was collected. Environmental samples were diluted to 10% (w / v) with sterile saline (NaCl 0.9% (w / v)) and mixed by vortexing. These environmental sample dilutions were used for screening.

(1−2)培地
Marine Broth 2216(MB;3.74g/L)(Becton Dickinson and Company、MD、USA)にNaCl(30g/L)および尿素(20g/L)を添加した培地(pH7.6)が基本培地として用いられた。分離用培地として、MBにpH指示薬のPhenol red(12mg/L)を添加された。Sr除去試験用培地として、MBにSrCl2溶液をSrが終濃度1.0mMとなるように添加された。スクリーニング時では静置培養、Sr除去試験では120rpmで振とう培養が共に温度30oCで行われた。Sr固化能の特徴付けには、オートクレーブ後に培地中に生じた不溶性成分をフィルター(0.45μm pore size、Corning、NY、USA)でろ過して取り除いたMB(ろ過済みMB)が使用された。固体培地を作製する時は寒天(15g/L)が使用された。
(1-2) Medium Medium (pH 7.6) in which NaCl (30 g / L) and urea (20 g / L) were added to Marine Broth 2216 (MB; 3.74 g / L) (Becton Dickinson and Company, MD, USA). ) Was used as the basal medium. As a separation medium, pH indicator Phenol red (12 mg / L) was added to MB. As a medium for Sr removal test, SrCl 2 solution was added to MB so that the final concentration of Sr was 1.0 mM. In the screening, stationary culture was performed, and in the Sr removal test, shaking culture at 120 rpm was performed at a temperature of 30 ° C. In order to characterize the Sr solidification ability, MB (filtered MB) was used in which insoluble components generated in the medium after autoclaving were removed by filtration with a filter (0.45 μm pore size, Corning, NY, USA). Agar (15 g / L) was used when preparing solid media.

(1−3)ウレアーゼ産生微生物の探索
海水中の放射性核種をバイオカルサイトにより除去するために、高塩濃度存在下においてウレアーゼを産生する微生物を海洋環境試料から分離を試みた。尿素の加水分解による培地のpH上昇(反応式1)を微生物のウレアーゼ活性の指標とした。すなわち、pH8以上で黄色から赤色に変化するPhenol redの呈色反応を利用し、分離用平板培地のpH上昇を可視化した。分離用平板培地でウレアーゼ産生微生物は、そのコロニー周辺に赤色のハローを形成すると思われる。この赤色のハローの観察により、その微生物のウレアーゼ活性の有無が判別される。希釈された環境試料溶液(20μL)は分離用平板培地に塗抹され、コロニーが出現するまで30oCで静置培養された。出現したコロニーのうち、赤色ハローを形成した株のみ、新しい分離用平板培地に継代培養された。継代培養を2回繰り返した後、赤色ハローの再現性が得られた株を、ウレアーゼ産生候補株とした。これら候補株は、後述のSr除去試験に供された。
(1-3) Search for urease-producing microorganisms In order to remove radionuclides in seawater with biocalcite, separation of microorganisms producing urease in the presence of high salt concentration from marine environmental samples was attempted. The increase in pH of the medium due to hydrolysis of urea (Reaction Formula 1) was used as an indicator of urease activity of microorganisms. That is, the pH increase of the plate medium for separation was visualized using the color reaction of Phenol red that changes from yellow to red at pH 8 or higher. It seems that urease-producing microorganisms form a red halo around the colonies in the separation plate medium. By observing this red halo, the presence or absence of urease activity of the microorganism is determined. The diluted environmental sample solution (20 μL) was smeared on a separation plate medium and statically cultured at 30 ° C. until colonies appeared. Of the colonies that appeared, only the strains that formed red halos were subcultured to a new separation plate medium. A strain in which reproducibility of a red halo was obtained after repeating subculture twice was designated as a urease production candidate strain. These candidate strains were subjected to the Sr removal test described below.

(1−4)候補株によるSr除去試験
候補株の溶存Srの除去時におけるSrを含むカルサイトの生成を明らかにするために、培養液体中のSr濃度の経時変化を調べた。候補株は、10mlのMBが入ったガラス試験管に白金耳を用いて無菌的に植菌され、12時間前培養(30℃、120rpm)された。前培養液は125ml三角フラスコ内の50ml試験用培地に1%(v/v)植菌され、7日間本培養(30℃、120rpm、Sr1.0mM)された。サンプリングは適時行われた。サンプリングされた培養液は、遠心分離(2,1000×g、15min、4oC)され、上清および沈殿に分画された。得られた上清は、フィルター(0.2μm pore size、KURABO、Osaka、Japan)でろ過され、元素濃度の分析用試料として用いられた。沈殿物は、菌体観察および固体分析の試料として用いられた。候補株を接種していないMBを同条件下におけるコントロールとした。
(1-4) Sr removal test by candidate strain In order to clarify the generation of calcite containing Sr at the time of removal of dissolved Sr of the candidate strain, the change with time of the Sr concentration in the culture liquid was examined. Candidate strains were aseptically inoculated into a glass test tube containing 10 ml of MB using a platinum loop and pre-cultured (30 ° C., 120 rpm) for 12 hours. The preculture was inoculated with 1% (v / v) in a 50 ml test medium in a 125 ml Erlenmeyer flask and main cultured (30 ° C., 120 rpm, Sr 1.0 mM) for 7 days. Sampling was done in a timely manner. The sampled culture broth was centrifuged (2,1000 × g, 15 min, 4 ° C.) and fractionated into a supernatant and a precipitate. The obtained supernatant was filtered with a filter (0.2 μm pore size, KURABO, Osaka, Japan) and used as a sample for analysis of element concentration. The precipitate was used as a sample for cell observation and solid analysis. MB not inoculated with the candidate strain was used as a control under the same conditions.

NaClの影響を調べるSr除去試験では、NaCl濃度を0.3%、3%、5%、10%に設定して行った。
Co耐性試験においては、以下の条件で実験を行った。
培地:
Marine broth;3.7g/L(0.3%NaCl含有)、
Urea;20g/L
NaCl添加;30g/L
Co濃度:終濃度0.06mM
Sr濃度:終濃度0.01mM(培地由来)
植菌量:1%(v/v)植菌
培養条件:
50mL in 100mL Erlenmeyer flask
30℃,120rpm,pH7.6
In the Sr removal test for examining the influence of NaCl, the NaCl concentration was set to 0.3%, 3%, 5%, and 10%.
In the Co resistance test, the experiment was performed under the following conditions.
Culture medium:
Marine broth; 3.7 g / L (containing 0.3% NaCl),
Urea; 20 g / L
NaCl addition; 30 g / L
Co concentration: final concentration 0.06 mM
Sr concentration: final concentration 0.01 mM (derived from medium)
Inoculum: 1% (v / v) inoculum culture conditions:
50mL in 100mL Erlenmeyer flash
30 ° C., 120 rpm, pH 7.6

(1−5)分離株によるSrの固化能の特徴付け
初発溶存Sr濃度の違いによるSr固化能への影響を明らかにするために、ろ過済みMBを用いてSr除去試験が行われた。試験は、初発溶存Sr濃度を5.0mM、1.0mM、0.1mM、0.02mMに設定して、上述のSr除去試験と同様の方法で10日間行われた。サンプリングは適時行われ、上述と同様の方法で分析試料が作られた、ろ過後の上清は元素濃度の分析用試料として用いられた。沈殿物は菌体観察および固体分析の試料として用いられた。分離株を接種していないろ過済みMBを同条件下においてコントロールとした。
(1-5) Characterization of Sr solidification ability by isolates In order to clarify the influence on the Sr solidification ability due to the difference in the initial dissolved Sr concentration, a Sr removal test was performed using the filtered MB. The test was performed for 10 days in the same manner as the Sr removal test described above, with the initial dissolved Sr concentration set to 5.0 mM, 1.0 mM, 0.1 mM, and 0.02 mM. Sampling was performed in a timely manner, and an analysis sample was prepared by the same method as described above. The filtered supernatant was used as an analysis sample for element concentration. The precipitate was used as a sample for cell observation and solid analysis. Filtered MB not inoculated with the isolate was used as a control under the same conditions.

(1−6)元素濃度分析
各分析用試料の原液を超純水(Barnstead NANOpureR DIamond、Thermo Fisher Scientific、Rockford、IL、USA)で適宜希釈し、誘導結合プラズマ発光分光分析装置(ICP−AES;iCAP6300DUO:Thermo Fisher Scientific)により元素の定量を行った。検量線は検量線用標準溶液(XSTC−622:SPEX CetriPrep、NJ、USA)を用いて作成された。1サンプルにつき3回繰り返し測定を行い、偏差が5%以内の値の平均値を測定結果とした。
(1-6) element concentration analyzing undiluted ultrapure water each analytical sample (Barnstead NANOpure R DIamond, Thermo Fisher Scientific, Rockford, IL, USA) diluted appropriately, inductively coupled plasma emission spectrometer (ICP-AES Elemental quantification was carried out by iCAP6300DUO: Thermo Fisher Scientific). A calibration curve was prepared using a standard solution for calibration curve (XSTC-622: SPEX CetriPrep, NJ, USA). Measurement was repeated three times per sample, and the average value of deviations within 5% was taken as the measurement result.

(1−7)走査型電子顕微鏡による菌体観察とエネルギー分散型X線解析装置による元素分析
培養液から得られた沈殿物は、0.9%滅菌生理食塩水で3回洗浄した後、滅菌イオン交換水で1回洗浄されてから観察に用いられた。試料は観察用フィルター(Nano−Percolator、JEOL、Tokyo、Japan)に滴下後に、シリンジで吸引され、電子顕微鏡観察用試料とした。観察に卓上型電子顕微鏡(SEM;TM3000:Hitachi High−Technologies、Tokyo、Japan)を用い、元素分析にはエネルギー分散型X線解析装置(EDX;Quantax70:Bruker AXS Microanalysis、Karlsruhe、Germany)が用いられた。
(1-7) Bacterial cell observation with a scanning electron microscope and elemental analysis with an energy dispersive X-ray analyzer The precipitate obtained from the culture solution is washed three times with 0.9% sterilized physiological saline and then sterilized. It was used for observation after being washed once with ion-exchanged water. The sample was dropped on an observation filter (Nano-Percolorator, JEOL, Tokyo, Japan) and then sucked with a syringe to obtain an electron microscope observation sample. A desktop electron microscope (SEM; TM3000: Hitachi High-Technologies, Tokyo, Japan) is used for observation, and an energy dispersive X-ray analyzer (EDX; Quantax70: Bruker AXS Microanalysis, Karlsrh is used for elemental analysis). It was.

(1−8)分子生物学試験(16SrRNA遺伝子の塩基配列の決定)
分離株の属種を同定するために、16SrRNA遺伝子の塩基配列を決定した。MBで3日間培養された分離株は、遠心分離(21,000×g、4℃、5分)により集菌され、0.9%滅菌生理食塩水を用いて2回洗浄された後に、ゲノムDNAがISOPLANT (Nippon Gene、Tokyo、Japan)のプロトコルに従って抽出された。16SrRNA遺伝子のPCR増幅は、抽出したゲノムDNAを鋳型に、9F (5'-GAGTTTGATCCTGGCTCAG-3')(配列番号1) と1541R (5'-AAGGAGGTGATCCAGCC-3')(配列番号2) のプライマーセットと、GO Taq Green Master Mix(Promega、Tokyo、Japan)を用い95℃で5分間保持後、次の条件(変性(95℃、1分)、アニーリング(56oC、1分)、伸長(72℃、1分))を30サイクルで行った。この反応はPCR増幅装置Mastercecler(Eppendorf、Tokyo、Japan)を用いて行われた。増幅されたDNAは、WizardRSV gel and PCR Clean−Up System(Promega)を用いて精製された。16SrRNA遺伝子塩基配列は、精製DNAを鋳型として、複数のプライマー(9F、515F(5'-GTGCCAGCAGCCGCGGT-3')(配列番号3)、1115R(5'-AGGGTTGCGCTCGTTG-3')(配列番号4)、1541R)を用いてApplied Biosy−stems 3730xl DNA Analyzer(Applied Biosystems、CA、USA)により決定、解析された。
(1-8) Molecular biology test (determination of the base sequence of 16S rRNA gene)
In order to identify the genus species of the isolate, the base sequence of the 16S rRNA gene was determined. Isolates cultured for 3 days in MB were collected by centrifugation (21,000 × g, 4 ° C., 5 minutes), washed twice with 0.9% sterile saline, and then genomic. DNA was extracted according to the protocol of ISOPLANT (Nippon Gene, Tokyo, Japan). PCR amplification of 16S rRNA gene was performed using 9F (5'-GAGTTTGATCCTGGCTCAG-3 ') (SEQ ID NO: 1) and 1541R (5'-AAGGAGGTGATCCAGCC-3') (SEQ ID NO: 2) primer set using the extracted genomic DNA as a template. , Using GO Taq Green Master Mix (Promega, Tokyo, Japan) at 95 ° C. for 5 minutes, followed by the following conditions (denaturation (95 ° C., 1 minute), annealing (56 ° C., 1 minute), extension (72 ° C., 1 minute) Min)) for 30 cycles. This reaction was carried out using a PCR amplifying device Mastercycler (Eppendorf, Tokyo, Japan). The amplified DNA was purified using the Wizard R SV gel and PCR Clean- Up System (Promega). The 16S rRNA gene base sequence was prepared using a plurality of primers (9F, 515F (5′-GTGCCAGCAGCCGCGGT-3 ′) (SEQ ID NO: 3), 1115R (5′-AGGGTTGCGCTCGTTG-3 ′) (SEQ ID NO: 4) using purified DNA as a template. 1541R) was determined and analyzed by Applied Biosystems 3730xl DNA Analyzer (Applied Biosystems, CA, USA).

(1−9)系統樹作成
決定した16SrRNA遺伝子配列は、NCBIの提供するBLAST(S. F. Altschul, 他、"Basic local alignment search tool," J. Mol. Biol., vol. 215, no. 3, pp. 403-410, 1990)(http://blast.ncbi.nlm.nih.gov/Bla-st.cgi)により相同性検索が行われた。高い相同性を示した菌種の塩基配列を基に、CLASTAL Wおよび系統樹作成ソフトMolecular Evolutionary Genetics Analysis(MEG5.0)を用いてneighbor−joining method(N. Saitou,他、"The neighbor-joining method: a new method for reconstructing phylogenetic trees," Mol. Biol. Evol., vol. 4, no. 4, pp. 406-425, 1987)により系統樹を作成した。
(1-9) Creation of Phylogenetic Tree The determined 16S rRNA gene sequence was obtained from BLAST (SF Altschul, et al., “Basic local alignment search tool,” J. Mol. Biol., Vol. 215, no. 3, pp provided by NCBI. (403-410, 1990) (http://blast.ncbi.nlm.nih.gov/Bla-st.cgi). Based on the base sequence of the bacterial species that showed high homology, neighbor-joining method (N. Saitou, et al., "The neighbor-joining" using CLASTAL W and phylogenetic tree generation software Molecular Evolutionary Genetics Analysis (MEG5.0) A new method for reconstructing phylogenetic trees, "Mol. Biol. Evol., vol. 4, no. 4, pp. 406-425, 1987).

(2)結果及び考察
(2−1)好塩性カルサイト生成微生物の分離
海底泥サンプルからウレアーゼ産生微生物の分離を試みた結果、分離用平板培地上で赤色ハロー(図1)を形成した8個のコロニーを得た。これらのコロニーは継代培養され、赤色ハローを繰り返し形成したことから安定してウレアーゼを産生する候補株と考えた。
(2) Results and discussion (2-1) Isolation of halophilic calcite-producing microorganisms As a result of attempts to isolate urease-producing microorganisms from seabed mud samples, red halos (Fig. 1) were formed on the separation plate medium. Colonies were obtained. Since these colonies were subcultured and repeatedly formed red halos, they were considered as candidate strains that stably produce urease.

これらの微生物候補株がSr固化物を生成するかどうかを調べるために、候補8株の培養液体中における溶存Srの濃度を経時的に測定した。培養2日目の各培養液体中の溶存Srの濃度は初発濃度の1.0mMから、KW3b株では0.02mMまで減少し、KW3b株は培養2日で溶存Srを98%除去することが判明した。以下、最も溶存Srの減少量が大きいKW3b株について実験を行った。KW3b株には、コロニーの色が異なる2種類の菌株が混在することが判明したので、コロニーアイソレーションによりKW3b1株及びKW3b2株を単離した。   In order to investigate whether these microorganism candidate strains produce Sr solidified product, the concentration of dissolved Sr in the culture liquid of the eight candidate strains was measured over time. It was found that the concentration of dissolved Sr in each culture liquid on the second day of culture decreased from the initial concentration of 1.0 mM to 0.02 mM in the KW3b strain, and the KW3b strain removed 98% of the dissolved Sr in the second day of culture. did. Hereinafter, an experiment was performed on the KW3b strain having the largest decrease in dissolved Sr. Since the KW3b strain was found to contain two types of strains having different colony colors, the KW3b1 strain and the KW3b2 strain were isolated by colony isolation.

(2−2)KW3b1株及びKW3b2株の系統分類学的同定
KW3b1株及びKW3b2株を分子生物学的に同定するために、16SrRNA遺伝子の一部の塩基配列を解読し、相同性検索を行った。KW3b1株及びKW3b2株の16SrRNA遺伝子のうち1431塩基の部分配列(配列表の配列番号5)を明らかにした。KW3b1株及びKW3b2株の塩基配列は100%一致していた。
BLASTのデーターベースとこの塩基配列を比較すると、Sporosarcina soli と99.3%、Sporosarcina contaminansと99.0%、及びSporosarcina ginsengisoliと99.0%の相同性が認められた。これらの微生物の16SrRNA遺伝子に基づいた系統樹は、KW3b1株及びKW3b2株がSporosarcina属に分類されることを示した (図3)。
(2-2) Phylogenetic identification of KW3b1 and KW3b2 strains In order to molecularly identify KW3b1 and KW3b2 strains, a partial base sequence of 16S rRNA gene was decoded and homology search was performed. . Among the 16S rRNA genes of the KW3b1 and KW3b2 strains, a partial sequence of 1431 bases (SEQ ID NO: 5 in the sequence listing) was clarified. The nucleotide sequences of the KW3b1 and KW3b2 strains were 100% identical.
When this nucleotide sequence was compared with the BLAST database, it was found that Sporosarcina soli was 99.3%, Sporosarcina contaminans was 99.0%, and Sporosarcina ginsengisoli was 99.0% homologous. The phylogenetic tree based on the 16S rRNA gene of these microorganisms showed that the KW3b1 and KW3b2 strains were classified into the genus Sporosarcina (FIG. 3).

(2−3)KW3b1株及びKW3b2株のSr除去能
KW3b1株及びKW3b2株のSr除去能を試験した(図4)。KW3b1株およびKW3b2株は、溶存Srを初発濃度の1mMから培養1日目に0.01mM以下まで減少させた。Sr初発濃度を100%と考えると、KW3b1株およびKW3b2株は、1日で溶存Sr99%以上を除去した。KW3b1株およびKW3b2株は、比較用のTK2d株よりSr除去能が高かった。
(2-3) Sr removal ability of KW3b1 strain and KW3b2 strain Sr removal ability of KW3b1 strain and KW3b2 strain was tested (FIG. 4). In the KW3b1 and KW3b2 strains, the dissolved Sr was reduced from the initial concentration of 1 mM to 0.01 mM or less on the first day of culture. Assuming that the initial concentration of Sr is 100%, KW3b1 strain and KW3b2 strain removed dissolved Sr 99% or more in one day. The KW3b1 and KW3b2 strains had higher Sr removal ability than the comparative TK2d strain.

(2−4)KW3b1株のSr除去能試験及び菌体増殖試験
NaCl濃度を0.3%、3%、5%、10%に設定して、KW3b1株のSr除去能及び菌体増殖を評価した。結果を図5及び図6に示す。
KW3b1株のSr除去率の最適NaCl濃度は0.3%および3%であり、増殖の最適NaCl濃度は3.0%であった。KW3b2株も、KW3b1株の場合と同じ結果であった。
(2-4) Sr removal ability test and cell growth test of KW3b1 strain The NaCl concentration was set to 0.3%, 3%, 5% and 10% to evaluate the Sr removal ability and cell growth of KW3b1 strain. did. The results are shown in FIGS.
The optimum NaCl concentration for Sr removal rate of KW3b1 strain was 0.3% and 3%, and the optimum NaCl concentration for growth was 3.0%. The KW3b2 strain had the same results as the KW3b1 strain.

(2−5)KW3b1株及びKW3b2株のCo耐性試験
KW3b1株及びKW3b2株のCo存在下におけるSr除去能を評価した結果を図7に示す。
KW3b1株及びKW3b2株はCo溶存下でSr除去可能であった。
なお、TK2d株はCo 0.06mM(3.5 mg/L)で増殖しなかった。
(2-5) Co resistance test of KW3b1 and KW3b2 strains The results of evaluating the Sr removal ability in the presence of Co in the KW3b1 and KW3b2 strains are shown in FIG.
Kr3b1 and KW3b2 strains were able to remove Sr under Co dissolution.
The TK2d strain did not grow at Co 0.06 mM (3.5 mg / L).

上記(2−3)〜(2−5)までの結果を以下の表1にまとめる。KW3b1株及びKW3b2株は優れたSr除去能(Sr除去率・NaCl耐性・Co耐性)を示す。   The results from the above (2-3) to (2-5) are summarized in Table 1 below. The KW3b1 strain and the KW3b2 strain show excellent Sr removal ability (Sr removal rate, NaCl resistance, Co resistance).

(2−6)KW3b1株及びKW3b2株が合成した固化Srの観察
KW3b1株及びKW3b2株が培養5日目に生成した固化物をSEM−EDXにより解析した(図8〜図10)。
図8は、TK2d株、KW3b1株及びKW3b2株が合成した沈殿物(固化Sr)の形状を比較したものである。沈殿物の立体構造が菌株により異なり、KW3b1株及びKW3b2株では冠状であった。
(2-6) Observation of solidified Sr synthesized by KW3b1 strain and KW3b2 strain The solidified product produced by KW3b1 strain and KW3b2 strain on the fifth day of culture was analyzed by SEM-EDX (FIGS. 8 to 10).
FIG. 8 compares the shapes of precipitates (solidified Sr) synthesized by the TK2d strain, the KW3b1 strain, and the KW3b2 strain. The three-dimensional structure of the precipitate was different depending on the strain, and the KW3b1 and KW3b2 strains were coronal.

図9は、KW3b1株が合成した固化SrのSEM画像とEDX解析の結果を示す。KW3b1株は、約10 μmの冠状のSr/Ca固化物を合成することが示された。
図10は、KW3b1株およびKW3b2株が合成した固化Srの観察結果を示す。KW3b1株とKW3b2株は同じ冠状のSr固化物を合成することが示された。
FIG. 9 shows the SEM image of the solidified Sr synthesized by the KW3b1 strain and the results of EDX analysis. The KW3b1 strain was shown to synthesize approximately 10 μm coronal Sr / Ca solidified material.
FIG. 10 shows the observation results of solidified Sr synthesized by the KW3b1 and KW3b2 strains. KW3b1 and KW3b2 strains were shown to synthesize the same coronal Sr solidified product.

(3)まとめ
本実施例により得られた成果は以下の通りである。
鹿児島湾海底泥試料から溶存Srの減少を示す菌株を分離した。このうちKW3b1株およびKW3b2株は、0.3〜5%の塩濃度で使用可能でSr除去能が高く、Co存在下でも使用可能である。KW3b1株およびKW3b2株は、迅速にSrを除去したい場合、Co含有溶液中のSrを除去したい場合に特に適している。
(3) Summary The results obtained by this example are as follows.
A strain showing a decrease in dissolved Sr was isolated from the Kagoshima Bay submarine mud sample. Among these, the KW3b1 and KW3b2 strains can be used at a salt concentration of 0.3 to 5%, have high Sr removal ability, and can be used even in the presence of Co. The KW3b1 strain and the KW3b2 strain are particularly suitable when it is desired to remove Sr quickly and when it is desired to remove Sr in the Co-containing solution.

Claims (15)

ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下において1mMの溶存放射性核種の90%以上を培養開始から2日以内に固化除去できる能力を有する微生物。 A microorganism producing urease and capable of solidifying and removing 90% or more of 1 mM dissolved radionuclide within 2 days from the start of culture under the condition of NaCl concentration of 0.3% to 5%. ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下かつコバルト(Co)共存下において、放射性核種を固化する能力を有する微生物。 A microorganism that produces urease and has the ability to solidify radionuclides under the conditions of NaCl concentration of 0.3% to 5% and in the presence of cobalt (Co). ウレアーゼを産生し、NaCl濃度0.3%〜5%の条件下において1mMの溶存放射性核種の90%以上を培養開始から2日以内に固化除去できる能力を有し、さらにNaCl濃度0.3%〜5%の条件下かつコバルト(Co)共存下において放射性核種を固化する能力を有する、微生物。 It produces urease and has the ability to solidify and remove 90% or more of 1 mM dissolved radionuclide within 2 days from the start of culture under the conditions of NaCl concentration of 0.3% to 5%, and further, the NaCl concentration of 0.3% Microorganisms having the ability to solidify radionuclides under ~ 5% conditions and in the presence of cobalt (Co). NaCl濃度0.3%〜3%の条件下において1mMの溶存放射性核種の95%以上を培養開始から1日以内に固化除去できる能力を有する、請求項1から3の何れか1項に記載の微生物。 4. The method according to any one of claims 1 to 3, which has an ability to solidify and remove 95% or more of 1 mM dissolved radionuclide within a day from the start of culture under a condition of NaCl concentration of 0.3% to 3%. Microorganisms. NaCl濃度0.3%〜3%の条件下において、培養開始後1日目に、培養開始時の菌体数の1×106倍以上の菌体数まで増殖し、培養開始後3日目まで培養開始時の菌体数の1×106倍以上の菌体数が維持される、請求項1から4の何れか1項に記載の微生物。 Under the condition of NaCl concentration of 0.3% to 3%, on the first day after the start of the culture, the cells grew to the number of cells that is 1 × 10 6 times or more the number of the cells at the start of the culture, and the third day after the start of the culture. The microorganism according to any one of claims 1 to 4, wherein the number of cells at least 1 x 10 6 times the number of cells at the start of culture is maintained. 前記放射性核種がストロンチウム(Sr)である、請求項1から5の何れか1項に記載の微生物。 The microorganism according to any one of claims 1 to 5, wherein the radionuclide is strontium (Sr). ストロンチウム(Sr)とカルシウム(Ca)の複合炭酸塩としてストロンチウム(Sr)を固化する能力を有する、請求項6に記載の微生物。 The microorganism according to claim 6, which has an ability to solidify strontium (Sr) as a complex carbonate of strontium (Sr) and calcium (Ca). Sporosarcina 属に属する、請求項1から7の何れか1項に記載の微生物。 The microorganism according to any one of claims 1 to 7, which belongs to the genus Sporosarcina. 受託番号NITE BP−02190である、微生物。 A microorganism having an accession number of NITE BP-02190. 放射性核種を含む液体中で、請求項1から9の何れか1項に記載の微生物を培養することを含む、放射性核種を固化する方法。 A method for solidifying a radionuclide, comprising culturing the microorganism according to any one of claims 1 to 9 in a liquid containing the radionuclide. 放射性核種を含む液体が、NaCl濃度3%以上である、請求項10に記載の方法。 The method according to claim 10, wherein the liquid containing the radionuclide has an NaCl concentration of 3% or more. 放射性核種を含む液体が、カルシウムイオンを含む液である、請求項10又は11に記載の方法。 The method according to claim 10 or 11, wherein the liquid containing a radionuclide is a liquid containing calcium ions. 放射性核種を含む液体が、コバルト(Co)を含む液である、請求項10から12の何れか1項に記載の方法。 The method according to any one of claims 10 to 12, wherein the liquid containing a radionuclide is a liquid containing cobalt (Co). 放射性核種がストロンチウム(Sr)である、請求項10から13の何れか1項に記載の方法。 The method according to any one of claims 10 to 13, wherein the radionuclide is strontium (Sr). 請求項10から14の何れか1項に記載の方法により、放射性核種を含む液体中の放射性核種を固化する工程、及び固化した放射性核種を回収する工程を含む、放射性核種の回収方法。 A method for recovering a radionuclide comprising the steps of solidifying a radionuclide in a liquid containing a radionuclide and recovering the solidified radionuclide by the method according to any one of claims 10 to 14.
JP2016018075A 2016-02-02 2016-02-02 Halobacteria capable of solidifying radionuclides Pending JP2017136002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016018075A JP2017136002A (en) 2016-02-02 2016-02-02 Halobacteria capable of solidifying radionuclides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016018075A JP2017136002A (en) 2016-02-02 2016-02-02 Halobacteria capable of solidifying radionuclides

Publications (1)

Publication Number Publication Date
JP2017136002A true JP2017136002A (en) 2017-08-10

Family

ID=59564404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016018075A Pending JP2017136002A (en) 2016-02-02 2016-02-02 Halobacteria capable of solidifying radionuclides

Country Status (1)

Country Link
JP (1) JP2017136002A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994049B1 (en) * 2018-12-23 2019-06-27 양승창 Biological microbial treating agent for removing radioactive material
CN115010269A (en) * 2022-05-10 2022-09-06 新疆大学 Application of Canpannia salina in uranium-containing wastewater treatment
WO2022250207A1 (en) * 2021-05-28 2022-12-01 한국과학기술원 Apparatus and method for removing radionuclides by using microorganisms

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994049B1 (en) * 2018-12-23 2019-06-27 양승창 Biological microbial treating agent for removing radioactive material
WO2020138518A1 (en) * 2018-12-23 2020-07-02 양승창 Biological microbial treating agent for radioactive material removal
WO2022250207A1 (en) * 2021-05-28 2022-12-01 한국과학기술원 Apparatus and method for removing radionuclides by using microorganisms
CN115010269A (en) * 2022-05-10 2022-09-06 新疆大学 Application of Canpannia salina in uranium-containing wastewater treatment
CN115010269B (en) * 2022-05-10 2023-08-11 新疆大学 Application of halophila campaigns in uranium-containing wastewater treatment

Similar Documents

Publication Publication Date Title
Horiike et al. A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium
Pineiro et al. Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake, Utah
JP6278475B2 (en) Microorganism having ability to elute rare earth elements, method for eluting rare earth elements, microorganism having ability to solidify rare earth elements, and method for solidifying rare earth elements
JP2017136002A (en) Halobacteria capable of solidifying radionuclides
JP5150282B2 (en) Novel photosynthetic bacterial strain having high heavy metal adsorption ability and environmental purification method using such bacterial strain
CN109182205B (en) Rhodococcus with carbon fixing capacity and application thereof
JP5608725B2 (en) Novel microorganism, selenate compound reduced preparation, selenate compound reduction method, selenate compound removal method, and metal selenium production method
CN113122463A (en) Bacillus megaterium and method for restoring chromium-contaminated soil by using same
JP2020054302A (en) Heavy metal ion insolubilizing method and microorganism group for insolubilizing heavy metal ion
JP5724217B2 (en) Method for preparing dehalococcides bacterium culture solution, chlorinated ethylene purification agent and purification method
JP6566473B2 (en) Novel microorganisms capable of resolving organic compounds having a cyclic ether structure and their use
CN116891809B (en) Pseudomonas asiatica and microbial agent and application thereof
US8614084B2 (en) Microbial strain Alteromonas SP. SN2 for degrading polycyclic aromatic hydrocarbon
WO2017002962A1 (en) Halobacteria having ability to solidify radionuclide
CN111826302B (en) Iron oxidizing bacteria, and application thereof in arsenic-polluted soil remediation, product and method
CN111378592A (en) Bacillus licheniformis and method for treating malodorous organic wastewater by using same to purify water
WO2009154234A1 (en) Novel microorganisms, selenium oxide compound reducing agent, method for reducing and method for removing a selenium oxide compound, and process for producing metallic selenium
JP4088690B2 (en) New microorganisms and methods for removing arsenic by microorganisms
JP5227673B2 (en) Novel microorganism, reduced selenate compound preparation, method for reducing and removing selenate compound, and method for producing metal selenium
CN113512511A (en) Acinetobacter AVYS1 in sunstroke-prevention reef lagoon and application of acinetobacter AVYS1 in degradation of high-concentration diesel oil
JPH09248595A (en) Method for reducing selenic compound by novel microorganism
JP2007519419A (en) Rhodococcus erythropolis LG12 having acrylic acid decomposing activity and method for removing acrylic acid using the same
CN107287128B (en) Leptospira ferriphila BYL with high copper resistance and high iron resistance and application thereof
JP2015227482A (en) Method for separating rare earth element using microorganism and novel microorganism
CN114480189B (en) Microbial composite microbial agent and preparation method and application thereof