JP5150123B2 - Direct acting electric actuator for vibration control - Google Patents

Direct acting electric actuator for vibration control Download PDF

Info

Publication number
JP5150123B2
JP5150123B2 JP2007088909A JP2007088909A JP5150123B2 JP 5150123 B2 JP5150123 B2 JP 5150123B2 JP 2007088909 A JP2007088909 A JP 2007088909A JP 2007088909 A JP2007088909 A JP 2007088909A JP 5150123 B2 JP5150123 B2 JP 5150123B2
Authority
JP
Japan
Prior art keywords
phase
wiring board
stator
lead wire
armature coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007088909A
Other languages
Japanese (ja)
Other versions
JP2008253009A (en
Inventor
幸人 今村
忠 穴田
一雄 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2007088909A priority Critical patent/JP5150123B2/en
Publication of JP2008253009A publication Critical patent/JP2008253009A/en
Application granted granted Critical
Publication of JP5150123B2 publication Critical patent/JP5150123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

本発明は、電磁式ダンパー等の制御装置において直線的な駆動力を発生させる制振用直動形電動アクチュエータに関する。   The present invention relates to a vibration-controlling direct acting electric actuator that generates a linear driving force in a control device such as an electromagnetic damper.

従来より、直動形電動アクチュエータとして、円筒形状の可動子の内径側又は外径側に極性を交互に配置した永久磁石を設け、この永久磁石と所定の隙間を設けた複数の電機子コイルを固定子の作動方向に配置したものがある。こような直動形電動アクチュエータによれば、電機子コイルに所定の電流を印加することにより電機子と永久磁石の電磁作用によって永久磁石の長手方向に沿って推力が発生し(フレミングの左手の法則)、可動子を直線運動させることができる。   Conventionally, as a direct acting electric actuator, a permanent magnet having alternating polarity arranged on the inner diameter side or outer diameter side of a cylindrical mover is provided, and a plurality of armature coils provided with a predetermined gap are provided with the permanent magnet. Some are arranged in the operating direction of the stator. According to such a linear motion type electric actuator, thrust is generated along the longitudinal direction of the permanent magnet by the electromagnetic action of the armature and the permanent magnet by applying a predetermined current to the armature coil (the left hand of Fleming). Law), the mover can be moved linearly.

このような直動形電動アクチュエータの場合、電源相数の整数倍で電機子コイルが設けられており、例えば、三相電源によって電機子コイルが励磁される場合、作動長方向に設けられた3の整数倍の電機子コイルの同相間電機子コイルを配線で接続するような、所定のパターンで接続される。このような配線は、電機子コイルの個数や結線方法等の仕様に応じて決定される。しかし、電機子コイルの個数が増えると電機子コイルの引出線はその2倍あるため、その引出線を確認しながらリード線で接続する配線作業は煩雑で面倒な作業となる。また、通常、そのリード線は電機子コイルの周上の一箇所に集められて束ねられた状態となるため、複雑な配線となっている。   In the case of such a direct acting electric actuator, an armature coil is provided with an integral multiple of the number of power supply phases. For example, when the armature coil is excited by a three-phase power supply, 3 provided in the operating length direction. Are connected in a predetermined pattern such that the in-phase armature coils of the integral multiple of the armature coils are connected by wiring. Such wiring is determined according to specifications such as the number of armature coils and the connection method. However, as the number of armature coils increases, the number of lead wires of the armature coils is twice that of the armature coils, and therefore wiring work for connecting with lead wires while confirming the lead wires becomes complicated and troublesome. Moreover, since the lead wires are usually collected and bundled at one place on the circumference of the armature coil, the wiring is complicated.

そのため、この種の従来技術として、例えば、リニアモータの電機子コイルの同相間コイル導体の渡り線および異相間コイル導体の中間点を、所定の配線パターンを形成した配線基板で接続し、配線の接続処理を容易にしようとしたものがある(例えば、特許文献1参照)。
特開2000−308328号公報(第3頁、図3)
Therefore, as this type of prior art, for example, the connecting point of the in-phase coil conductor and the intermediate point of the inter-phase coil conductor of the armature coil of the linear motor are connected by a wiring board on which a predetermined wiring pattern is formed. Some attempt to facilitate connection processing (see, for example, Patent Document 1).
JP 2000-308328 A (page 3, FIG. 3)

ところで、この種の制振用直動形電動アクチュエータが用いられる制振装置において、その直動形電動アクチュエータの発生推力を増すことによって、より高負荷に対応したいという要望がある。   By the way, in a vibration damping device in which this kind of vibration-controlled direct acting electric actuator is used, there is a demand to cope with a higher load by increasing the generated thrust of the direct acting electric actuator.

しかしながら、直動形電動アクチュエータにおける発生推力を増やすために電機子コイルに印加する電流や電圧を上げようとすると、配線基板の発熱や耐電圧の制約を受ける。電流を上げる場合、配線基板上に配置したパターンの電気抵抗による発熱が増加する。通常は、配線基板の耐熱性能の改善と、パターンの電気抵抗削減のためのパターン幅の拡大で対応するが、これらの対応にも限界があり、常用できる手段ではない。例えば、耐熱性能の良好な基板材料はコスト高となって採用が難しい場合が多い。また、パターン幅の拡大は配線基板の形状を大きくするため、設置場所に制約が生じるとともに、同一平面上に配置した隣接するパターン同士の間隔をつめることになって両者間の絶縁性能が低下する。しかも、パターン幅を拡大すると、配線基板を挟んで表裏に配置(多層基板の場合は中間層も。)したパターン同士で構成する容量性負荷(コンデンサ)の容量も拡大し、高周波の電流を印加した際の漏洩電流が増加する問題が表面化する。なお、この点は、基板材料を低誘電率材料に置換することである程度解決できるが、これも技術的限界とコストの問題が生じる。   However, if an attempt is made to increase the current or voltage applied to the armature coil in order to increase the thrust generated in the direct acting type electric actuator, the circuit board is subject to heat generation and withstand voltage limitations. When the current is increased, heat generation due to the electrical resistance of the pattern arranged on the wiring board increases. Normally, this is dealt with by improving the heat resistance performance of the wiring board and increasing the pattern width to reduce the electrical resistance of the pattern. However, these measures are limited, and are not a means that can be used regularly. For example, a substrate material having good heat resistance is often difficult to adopt due to high costs. In addition, the expansion of the pattern width increases the shape of the wiring board, so that the installation location is restricted, and the spacing between adjacent patterns arranged on the same plane is reduced, resulting in a decrease in insulation performance between the two. . In addition, when the pattern width is increased, the capacity of the capacitive load (capacitor) composed of the patterns arranged on the front and back sides of the wiring board (in the case of a multilayer board) is also increased, and a high-frequency current is applied. The problem that the leakage current increases when it is exposed to the surface. This point can be solved to some extent by replacing the substrate material with a low dielectric constant material, but this also causes technical limitations and cost problems.

さらに、電圧を上げる場合には、同一平面上のパターン間隔や積層間隔を広げて絶縁性能を確保する必要があり、配線基板の大型化が避けられない。このように、電機子コイルへの電流を上げたり電圧を上げて発生推力を増す場合の課題は、前記特許文献1に記載された発明でも生じる。   Furthermore, when increasing the voltage, it is necessary to increase the pattern interval and the stack interval on the same plane to ensure insulation performance, and an increase in the size of the wiring board is inevitable. Thus, the problem in the case where the generated thrust is increased by increasing the current to the armature coil or increasing the voltage also occurs in the invention described in Patent Document 1.

そこで、本発明は、電流や電圧を上げて発生推力を増すことが安定してできる制振用直動形電動アクチュエータを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vibration-controlling direct acting electric actuator that can stably increase a generated thrust by increasing a current or a voltage.

前記目的を達成するために、本発明は、作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし、該引出した引出線を各相毎に設けられた配線基板にそれぞれ接続している。これにより、固定子の周方向に所定角度でずらして引出した各励磁相毎の引出線を各相毎に設けられた配線基板に接続すればよく、各相毎の引出線を容易に接続することができるとともに、この配線基板に形成した各相毎の所定のパターン回路によって、電流や電圧を上げても発熱や絶縁性能不足等を生じることなく発生推力を増すことができる。 To achieve the above object, the present invention includes a movable element whose polarity is arranged multiple permanent magnets any alternating the actuation direction, cylinder with a plurality of armature coils in actuating direction of the mover a stator shape, and a wiring substrate formed with a predetermined pattern circuit connecting the pull outgoing of the armature coil, the lead wire of each phase of the armature coil in the circumferential direction before Symbol stator The lead wires are drawn out at a predetermined angle, and the lead wires are connected to the wiring boards provided for each phase . Thus, it is only necessary to connect the lead wire for each excitation phase drawn out with a predetermined angle in the circumferential direction of the stator to the wiring board provided for each phase, and easily connect the lead wire for each phase. In addition, a predetermined pattern circuit for each phase formed on the wiring board can increase the generated thrust without causing heat generation or insufficient insulation performance even when the current or voltage is increased.

また、前記パターン回路を形成した各相毎の配線基板を前記固定子の外周に設け、該配線基板毎に前記電機子コイルの各相毎の引出線をそれぞれ接続してもよい。このようにすれば、固定子の外周の作動方向に設けられた各配線基板に各相の引出線を接続すればよく、各引出線の接続をより容易に行うことができるとともに、電流や電圧を上げても発熱や絶縁性能不足等を生じることなく発生推力を増すことができる。 In addition, a wiring board for each phase on which the pattern circuit is formed may be provided on the outer periphery of the stator, and a lead wire for each phase of the armature coil may be connected to each wiring board. In this way, it is only necessary to connect each phase lead wire to each wiring board provided in the operating direction on the outer periphery of the stator, and each lead wire can be connected more easily, and current and voltage can be connected. The generated thrust can be increased without increasing heat generation without causing heat generation or insufficient insulation performance.

さらに、作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし、前記配線基板を固定子の前記作動方向端部に設け、該配線基板に各相毎のパターン回路を分けて形成し、該各相毎のパターン回路に前記電機子コイルの各相毎の引出線をそれぞれ接続してもよい。このようにすれば、固定子の作動方向端部に設けられた配線基板に各相の引出線を引出して接続すればよく、固定子端部で各引出線の接続を容易に行うことができるとともに、電流や電圧を上げても発熱や絶縁性能不足等を生じることなく発生推力を増すことができる。 Furthermore, a mover in which a plurality of permanent magnets are arranged so that the polarities are alternately different in the operation direction, a cylindrical stator in which a plurality of armature coils are arranged in the operation direction of the mover, and the armature coil A wiring board on which a predetermined pattern circuit for connecting the lead wire is formed, and the lead wire for each phase of the armature coil is drawn out by being shifted by a predetermined angle in the circumferential direction of the stator, and the wiring board is Provided at the end of the stator in the operating direction, and separately form the pattern circuit for each phase on the wiring board, and connect the lead wire for each phase of the armature coil to the pattern circuit for each phase, respectively. May be. If it does in this way, what is necessary is just to draw out and connect the lead wire of each phase to the wiring board provided in the operation | movement direction edge part of the stator, and can connect each leader line easily at a stator edge part. In addition, even if the current and voltage are increased, the generated thrust can be increased without causing heat generation or insufficient insulation performance.

また、作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし、前記配線基板を固定子の前記作動方向両端部に設け、該両端部の配線基板に各相毎のパターン回路を分けて形成し、該各相毎のパターン回路に前記電機子コイルの各相毎の引出線をそれぞれ接続してもよい。このようにすれば、固定子の作動方向両端部に設けられた配線基板に各相毎の引出線を分けて引出して接続することにより、より発熱や絶縁性能不足を抑えて電流や電圧を上げることができる。 Further, a mover in which a plurality of permanent magnets are arranged so that the polarities are alternately different in the operation direction, a cylindrical stator in which a plurality of armature coils are arranged in the operation direction of the mover, and the armature coil A wiring board on which a predetermined pattern circuit for connecting the lead wire is formed, and the lead wire for each phase of the armature coil is drawn out by being shifted by a predetermined angle in the circumferential direction of the stator, and the wiring board is Provided at both ends of the stator in the operation direction, and separately formed pattern circuits for each phase on the wiring board at both ends, and lead lines for each phase of the armature coil in the pattern circuit for each phase Each may be connected. In this way, by pulling out and connecting the lead wires for each phase to the wiring boards provided at both ends of the stator in the operating direction, the current and voltage can be increased while suppressing heat generation and insufficient insulation performance. be able to.

さらに、前記電源相数を三相で構成し、該三相の各相毎の引出線を固定子の周方向に所定角度でずらして引出せば、三相電源の各相毎のパターン回路を大きく離して発熱や絶縁性能不足等を生じないようにできる。 Furthermore, if the number of power supply phases is constituted by three phases, and the lead lines for the respective phases of the three phases are drawn out by shifting them by a predetermined angle in the circumferential direction of the stator, the pattern circuit for each phase of the three-phase power source can be enlarged It is possible to avoid heat generation and insufficient insulation performance.

本発明は、以上説明したような手段により、通電電流や電圧を上げても発熱や絶縁性能不足等を生じることなく発生推力を増すことができる制振用直動形電動アクチュエータを提供することが可能となる。   The present invention provides a vibration-controlling direct acting electric actuator capable of increasing the generated thrust without causing heat generation or insufficient insulation performance even when the energizing current or voltage is increased by the means described above. It becomes possible.

以下、本発明の一実施の形態を図面に基づいて説明する。これらの実施の形態では、電機子コイルを三相のY結線で構成する場合を例に説明する。図1は、本発明の第1実施の形態に係る制振用直動形電動アクチュエータの断面図であり、図2は、図1の直動形電動アクチュエータにおける固定子の一部を分解した状態を模式的に示す斜視図、図3は、図2に示す固定子の組立状態を模式的に示す斜視図、図4は、図3に示す固定子の側面図、図5は、図3に示す固定子の電機子コイルの結線図、図6は、図5に示す電機子コイルの結線図のパターン回路図である。なお、これらの図面は模式的に記載している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In these embodiments, the case where the armature coil is configured by three-phase Y connection will be described as an example. FIG. 1 is a cross-sectional view of a vibration-controlling direct acting electric actuator according to a first embodiment of the present invention, and FIG. 2 is an exploded view of a part of the stator in the direct acting electric actuator of FIG. FIG. 3 is a perspective view schematically showing the assembled state of the stator shown in FIG. 2, FIG. 4 is a side view of the stator shown in FIG. 3, and FIG. FIG. 6 is a pattern circuit diagram of the connection diagram of the armature coil shown in FIG. 5. In addition, these drawings are described typically.

まず、図1に基いて本発明が採用される制振用直動形電動アクチュエータの一例を説明する。図示する制振用直動形電動アクチュエータ1には、内部に固定子2を備えた固定側本体3が設けられており、この固定側本体3の作動方向一端には固定側に軸支される反出力側ロッドエンド4が設けられている。固定側本体3の内部に設けられた固定子2には、制振用直動形電動アクチュエータ1の作動方向Aに電源の相数の整数倍で複数の鉄心5および電機子コイル6が設けられている。この実施の形態では三相電源を用いているため、12個の電機子コイル6が設けられている。また、図示する固定側本体3の下部には、電機子コイル6への電源供給口7が設けられており、この電源供給口7から三相電源が供給されている。   First, an example of a vibration-controlling direct acting electric actuator in which the present invention is adopted will be described with reference to FIG. The illustrated vibration-controlling direct acting electric actuator 1 is provided with a fixed-side main body 3 having a stator 2 therein, and one end of the fixed-side main body 3 in the operating direction is pivotally supported on the fixed side. A counter-output side rod end 4 is provided. A stator 2 provided inside the stationary main body 3 is provided with a plurality of iron cores 5 and armature coils 6 in the operation direction A of the vibration-controlling direct acting electric actuator 1 in an integral multiple of the number of phases of the power source. ing. Since this embodiment uses a three-phase power source, twelve armature coils 6 are provided. In addition, a power supply port 7 to the armature coil 6 is provided at the lower portion of the fixed side main body 3 shown in the figure, and three-phase power is supplied from the power supply port 7.

一方、前記固定側本体3の内部には、作動方向Aに移動する可動子8が設けられている。この可動子8に設けられた出力軸9は、前記固定側本体3に設けられたすべり軸受10によって支持されており、前記反出力側ロッドエンド4と逆方向に出力側ロッドエンド11が設けられている。可動子8の外周と前記固定子2の内周との間には所定の隙間が設けられている。この可動子8は、出力軸9に固定された可動子本体13と、この可動子本体13の周囲に設けられた永久磁石14,15とで構成されている。N極の永久磁石14とS極の永久磁石15とは、作動方向Aに極性が交互に異なるように配置されている。   On the other hand, a movable element 8 that moves in the operation direction A is provided inside the fixed-side main body 3. An output shaft 9 provided on the movable element 8 is supported by a slide bearing 10 provided on the fixed-side main body 3, and an output-side rod end 11 is provided in a direction opposite to the counter-output-side rod end 4. ing. A predetermined gap is provided between the outer periphery of the mover 8 and the inner periphery of the stator 2. The mover 8 includes a mover main body 13 fixed to the output shaft 9 and permanent magnets 14 and 15 provided around the mover main body 13. The N-pole permanent magnets 14 and the S-pole permanent magnets 15 are arranged so that the polarities are alternately different in the operation direction A.

このように構成された制振用直動形電動アクチュエータ1によれば、固定子2の電機子コイル6に所定の電流を印加すると、可動子8の永久磁石14,15を作動方向A(軸方向)に移動させる推力が発生する。この発生推力により、可動子8に設けられた出力軸9の出力側ロッドエンド11が移動させられるように構成されている。この出力側ロッドエンド11が、可動側に固定される。   According to the vibration-controlling direct acting electric actuator 1 configured as described above, when a predetermined current is applied to the armature coil 6 of the stator 2, the permanent magnets 14 and 15 of the mover 8 are moved in the operating direction A (axis Direction). By this generated thrust, the output side rod end 11 of the output shaft 9 provided in the mover 8 is moved. The output side rod end 11 is fixed to the movable side.

そして、前記固定子2の外周における作動方向Aに、複数の電機子コイル6の各相毎の引出線16を接続する配線基板17が設けられている。図示する配線基板17は、三相の内の一相を示しており、電機子コイル6の内の一相分の引出線16が接続されている。この配線基板17は、ガラスエポキシ樹脂等によって製作され、予め接続する電機子コイル6の数や結線方法に応じて所定のパターン回路が形成されている。引出線16と配線基板17との接続は、配線基板17に形成された接続穴(図示略)に一方から引出線16を挿入し、他方の引出線端部を配線基板17に半田付けすることによって行われる。この配線基板17は、鉄心5にボルト18で固定されている。また、電源供給部7の配線が接続部19に接続されている(図では一相分を示す。)。   And the wiring board 17 which connects the lead wire 16 for every phase of the several armature coil 6 in the operation direction A in the outer periphery of the said stator 2 is provided. The illustrated wiring board 17 shows one of the three phases, and a lead wire 16 for one phase of the armature coil 6 is connected thereto. The wiring substrate 17 is made of glass epoxy resin or the like, and a predetermined pattern circuit is formed according to the number of armature coils 6 to be connected in advance and the connection method. The lead wire 16 and the wiring substrate 17 are connected by inserting the lead wire 16 from one side into a connection hole (not shown) formed in the wiring substrate 17 and soldering the other lead wire end to the wiring substrate 17. Is done by. The wiring board 17 is fixed to the iron core 5 with bolts 18. The wiring of the power supply unit 7 is connected to the connection unit 19 (one phase is shown in the figure).

図2に示すように、前記固定子2の鉄心5には、内部に設ける電機子コイル6の引出線16を通す切り欠き部20が設けられており、1箇所の切り欠き部20から1個の電機子コイル6の引出線16が鉄心5の外周部に引き出されている。この図2では、左端の1個目の電機子コイル6の引出線16が手前に引き出され、2個目の電機子コイル6の引出線16が上部奥側、3個目の電機子コイル6の引出線(図示略)が下部奥側に引き出されており、この例では三相電源の各相毎の引出線16が鉄心5の周方向に所定角度でずれて引き出されている。これらの引出線16は、予め前記配線基板17を取付ける位置を決めておき、その位置にそろえて引き出される。   As shown in FIG. 2, the iron core 5 of the stator 2 is provided with a notch 20 through which the lead wire 16 of the armature coil 6 provided inside passes, and one piece is provided from one notch 20. The lead wire 16 of the armature coil 6 is drawn to the outer periphery of the iron core 5. In FIG. 2, the lead wire 16 of the first armature coil 6 at the left end is drawn forward, and the lead wire 16 of the second armature coil 6 is on the upper back side and the third armature coil 6. The lead wire (not shown) is drawn to the lower back side, and in this example, the lead wire 16 for each phase of the three-phase power source is drawn with a predetermined angle in the circumferential direction of the iron core 5. These lead wires 16 are drawn out in accordance with the positions where the wiring board 17 is previously determined.

図3,4に示すように、鉄心5と電機子コイル6とが積層された状態の固定子2の外周には、前記鉄心5の外周部に所定角度でずれて引き出された各相毎の引出線16を連結する前記配線基板17が作動方向Aに設けられている。この例では三相電源を用いているため、この配線基板17が、U相の配線基板17uと、V相の配線基板17vと、W相の配線基板17wとで構成されている。これら3枚の配線基板17u,17v,17wが、鉄心5の外周上の3箇所に120°間隔で設けられている。これら配線基板17u,17v,17wの位置は予め決められており、前記したように、これらの配線基板17u,17v,17wの位置に合致するように、前記電機子コイル6の各相毎の引出線16が引出される。これら各相毎の配線基板17u,17v,17wには、それぞれ一相分のパターン回路が内蔵されている。これらの配線基板17u,17v,17wの端部は、電線によって三相のY結線で接続されている。このY結線の中性点21は、配線以外に基板で構成してもよい。また、これらの配線基板17u,17v,17wの材質としては、前記ガラスエポキシ樹脂の他に、高温対応材としては、ナイロン系樹脂材料、フェノール系樹脂材料等が好適である。高周波数対応材としては、フッ素系樹脂、セラミック等が好適である。   As shown in FIGS. 3 and 4, the outer periphery of the stator 2 in a state where the iron core 5 and the armature coil 6 are laminated is provided for each phase drawn out from the outer periphery of the iron core 5 at a predetermined angle. The wiring board 17 for connecting the lead wires 16 is provided in the operation direction A. In this example, since a three-phase power source is used, the wiring board 17 is composed of a U-phase wiring board 17u, a V-phase wiring board 17v, and a W-phase wiring board 17w. These three wiring boards 17u, 17v, and 17w are provided at three positions on the outer periphery of the iron core 5 at intervals of 120 °. The positions of these wiring boards 17u, 17v, 17w are determined in advance, and as described above, the armature coil 6 is pulled out for each phase so as to match the positions of these wiring boards 17u, 17v, 17w. Line 16 is drawn. Each of the wiring boards 17u, 17v, 17w for each phase incorporates a pattern circuit for one phase. The ends of these wiring boards 17u, 17v, and 17w are connected to each other by a three-phase Y connection by electric wires. The neutral point 21 of this Y connection may be constituted by a substrate other than the wiring. In addition to the glass epoxy resin, the wiring board 17u, 17v, 17w is preferably made of a nylon resin material, a phenol resin material, or the like as the high temperature compatible material. As the high-frequency compatible material, a fluorine-based resin, ceramic, or the like is suitable.

図5、6に示すように、この実施の形態における12個の電機子コイル6(図の左側から、L1〜L12を付す。)の結線としては、三相電源であるため、4個を直列接続した三相で結線されている。図示するように、L1〜L12の12個の電機子コイル6の内、L1,L4,L7,L10がU相、L2,L5,L8,L11がW相、L3,L6,L9,L12がV相、として結線されている。このような結線のパターン回路は、電機子コイル6の数や電源相数等によって予め決められる。この実施の形態では、このようなパターン回路の一相分が、前記配線基板17u,17v,17w毎に内蔵されている。   As shown in FIGS. 5 and 6, the twelve armature coils 6 (L1 to L12 are attached from the left side of the drawing) in this embodiment are three-phase power sources, so four are connected in series. Connected with three connected phases. As shown in the figure, among the 12 armature coils 6 of L1 to L12, L1, L4, L7, and L10 are U phases, L2, L5, L8, and L11 are W phases, and L3, L6, L9, and L12 are V phases. Wired as a phase. The pattern circuit for such connection is determined in advance by the number of armature coils 6 and the number of power supply phases. In this embodiment, one phase of such a pattern circuit is built in each of the wiring boards 17u, 17v, 17w.

以上のように構成された固定子2を備えた前記制振用直動形電動アクチュエータ1によれば、電機子コイル6の相毎に設けられた配線基板17u,17v,17wにより、電流や電圧を上げて発生推力を増しても、配線基板17に温度上昇や絶縁性能低下などの問題を生じることなく、安定して使用することが可能となる。例えば、この実施の形態の三相電源の場合には、配線基板17を電源相数と同じ3枚の配線基板17u,17v,17wに分割し、これらの配線基板17u,17v,17wを従来の配線基板サイズと同等サイズにすることにより、各配線基板17u,17v,17wは従来と同等サイズであるが内蔵するパターン回路は一相分のみとなり、各配線基板17u,17v,17wでの温度上昇や絶縁性能低下等を生じないようにできる。しかも、これらの配線基板17には、予め接続する電機子コイル6の数や結線方法に応じて所定のパターン回路が形成されているので、配線基板17に形成された接続穴(図示略)に一方から引出線16を挿入して他方の引出線端部を配線基板17に半田付けすることによって引出線16と配線基板17との接続が完了するので、間違い等を生じることなく迅速な配線接続作業が可能となる。また、条件によるが、配線基板17u,17v,17wの材質を高価な材質にしなくても、温度上昇や絶縁性能低下等を生じないようにできる。   According to the vibration-controlling direct acting electric actuator 1 having the stator 2 configured as described above, current and voltage are provided by the wiring boards 17u, 17v, and 17w provided for each phase of the armature coil 6. Even if the generated thrust is increased by increasing the power, the wiring board 17 can be used stably without causing problems such as a rise in temperature and a decrease in insulation performance. For example, in the case of the three-phase power supply according to this embodiment, the wiring board 17 is divided into three wiring boards 17u, 17v, and 17w having the same number of power supply phases, and these wiring boards 17u, 17v, and 17w are divided into conventional ones. By making the size equal to the size of the wiring board, each wiring board 17u, 17v, 17w is the same size as the conventional one, but the built-in pattern circuit is only for one phase, and the temperature rise in each wiring board 17u, 17v, 17w It is possible to prevent the insulation performance from deteriorating. In addition, since a predetermined pattern circuit is formed on these wiring boards 17 according to the number of armature coils 6 to be connected in advance and the connection method, the connection holes (not shown) formed on the wiring board 17 are formed. The lead wire 16 is inserted from one side and the other lead wire end is soldered to the wiring board 17 to complete the connection between the lead line 16 and the wiring board 17, so that a quick wiring connection can be made without any errors. Work becomes possible. Further, although it depends on the conditions, it is possible to prevent the temperature rise and the insulation performance from deteriorating even if the material of the wiring boards 17u, 17v, 17w is not expensive.

さらに、この実施の形態では、配線基板17u,17v,17wを固定子2の外周に等間隔の角度でずらして設けているため、各配線基板17u17v17wが多少大きくなっても全体的な大きさを抑えることができるので、各配線基板17u,17v,17wを所望の電流・電圧に耐えうるように構成することが容易に可能である。   Furthermore, in this embodiment, since the wiring boards 17u, 17v, and 17w are provided on the outer periphery of the stator 2 at an equally spaced angle, the overall size can be increased even if the wiring boards 17u17v17w are somewhat larger. Therefore, it is possible to easily configure each wiring board 17u, 17v, 17w to withstand a desired current / voltage.

図7は、本発明の第2実施の形態に係る制振用直動形電動アクチュエータにおける固定子の一部を分解した状態を模式的に示す斜視図であり、図8は、図7に示す固定子の組立状態を模式的に示す斜視図、図9は、図8に示す配線基板の正面図である。前記第1実施の形態と同一の構成には同一符号を付して、その詳細な説明は省略する。この第2実施の形態では、固定子22の作動方向Aの端部に円盤状の配線基板23を設け、この配線基板23の広い面積を利用して各相毎にパターン回路の間隔を拡大し、発熱や絶縁性能低下の問題を解決したものである。   FIG. 7 is a perspective view schematically showing a state in which a part of the stator in the direct acting electric actuator for vibration control according to the second embodiment of the present invention is disassembled, and FIG. 8 is shown in FIG. FIG. 9 is a front view of the wiring board shown in FIG. 8. FIG. 9 is a perspective view schematically showing the assembled state of the stator. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the second embodiment, a disc-shaped wiring board 23 is provided at the end of the stator 22 in the operating direction A, and the wide area of the wiring board 23 is used to increase the spacing between the pattern circuits for each phase. It solves the problems of heat generation and deterioration of insulation performance.

図示するように、固定子22の一端に円盤状の配線基板23が設けられている。この配線基板23の内部には、前記図5,6に示されたパターン回路が各相毎に分けて形成されており、この実施の形態では、各相毎のパターン回路が周方向の異なった位置に内蔵されている。また、配線基板23の内部には三相Y結線のパターン回路も内蔵されている。一方、固定子22の鉄心5の外周には、各電機子コイル6の引出線16を作動方向Aに導くための溝部24が形成されている。この鉄心5に設けられた溝部24の中を通って、電機子コイル6の各相毎の引出線16が端部に設けられた配線基板23まで導かれている。   As illustrated, a disk-shaped wiring board 23 is provided at one end of the stator 22. The pattern circuit shown in FIGS. 5 and 6 is formed separately for each phase inside the wiring board 23. In this embodiment, the pattern circuit for each phase differs in the circumferential direction. Built in position. Further, a three-phase Y-connection pattern circuit is also built in the wiring board 23. On the other hand, on the outer periphery of the iron core 5 of the stator 22, a groove portion 24 for guiding the lead wire 16 of each armature coil 6 in the operation direction A is formed. The lead wire 16 for each phase of the armature coil 6 is led to the wiring board 23 provided at the end portion through the groove portion 24 provided in the iron core 5.

この第2実施の形態では、固定子22の一端に配線基板23を設けた例を示しているが、一方の端部(図の右側)に設けた配線基板23で十分な効果が得られない場合、図示する2点鎖線のように固定子22の他方の端部(図の左側)にも配線基板25を設け、これら固定子22の両端部に設けられた配線基板23,25に各相毎のパターン回路を分けて形成し、それらのパターン回路に引出線16を分けて接続することによって発熱や絶縁性能低下の問題を解決すればよい。また、この実施の形態における各相毎に分けて形成したパターン回路は、配線基板25を周方向に分けて形成しても、径方向に分けて形成してもよい。   In the second embodiment, an example in which the wiring board 23 is provided at one end of the stator 22 is shown, but a sufficient effect cannot be obtained with the wiring board 23 provided at one end (right side in the figure). In this case, a wiring board 25 is also provided at the other end (left side in the figure) of the stator 22 as shown by a two-dot chain line in the figure, and each phase is provided on the wiring boards 23 and 25 provided at both ends of the stator 22. What is necessary is just to solve the problem of heat_generation | fever and a degradation of insulation performance by forming each pattern circuit separately and connecting the leader line 16 to those pattern circuits separately. Further, the pattern circuit formed separately for each phase in this embodiment may be formed by dividing the wiring board 25 in the circumferential direction or in the radial direction.

以上のように構成された固定子22を備えた制振用直動形電動アクチュエータによっても、固定子22の端部に設けられた配線基板23(25)の広い面積に形成された各相毎のパターン回路により、電流や電圧を上げて発生推力を増しても温度上昇や絶縁性能低下の問題を生じることなく安定して使用することが可能となる。   Also for each phase formed in the wide area of the wiring board 23 (25) provided at the end of the stator 22 by the vibration-controlling linear motion type electric actuator provided with the stator 22 configured as described above. With this pattern circuit, even if the current and voltage are increased and the generated thrust is increased, the pattern circuit can be used stably without causing problems of temperature rise and insulation performance degradation.

なお、前記実施の形態では直動形電動アクチュエータを例に説明したが、他に直動形電動ソレノイド等にも同様に適用可能である。また、前記実施の形態では、三相電源のY結線で構成する例を説明したが、電源や結線は他の方法であってもよい。   In the above-described embodiment, the direct acting electric actuator has been described as an example. However, the present invention can be similarly applied to a direct acting electric solenoid or the like. In the above-described embodiment, an example in which the Y-connection of the three-phase power supply is used has been described. However, other methods may be used for the power supply and the connection.

さらに、前述した実施の形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は前述した実施の形態に限定されるものではない。   Furthermore, the above-described embodiment shows an example, and various modifications can be made without departing from the gist of the present invention, and the present invention is not limited to the above-described embodiment.

本発明に係る制振用直動形電動アクチュエータは、機械や構造物に設けられる電磁式ダンパー等の制振装置に有用である。   The vibration control linear motion type electric actuator according to the present invention is useful for a vibration control device such as an electromagnetic damper provided in a machine or a structure.

本発明の第1実施の形態に係る制振用直動形電動アクチュエータの断面図である。It is sectional drawing of the linear motion type electric actuator for damping | damping which concerns on 1st Embodiment of this invention. 図1の直動形電動アクチュエータにおける固定子の一部を分解した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which decomposed | disassembled a part of stator in the direct acting type electric actuator of FIG. 図2に示す固定子の組立状態を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing an assembled state of the stator shown in FIG. 2. 図3に示す固定子の側面図である。FIG. 4 is a side view of the stator shown in FIG. 3. 図3に示す固定子の電機子コイルの結線図である。FIG. 4 is a connection diagram of armature coils of the stator shown in FIG. 3. 図5に示す電機子コイルの結線図のパターン回路図である。It is a pattern circuit diagram of the connection diagram of the armature coil shown in FIG. 本発明の第2実施の形態に係る制振用直動形電動アクチュエータにおける固定子の一部を分解した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which decomposed | disassembled a part of stator in the direct-acting electric actuator for damping | damping which concerns on 2nd Embodiment of this invention. 図7に示す固定子の組立状態を模式的に示す斜視図である。It is a perspective view which shows typically the assembly state of the stator shown in FIG. 図8に示す配線基板の正面図である。It is a front view of the wiring board shown in FIG.

符号の説明Explanation of symbols

1…制振用直動形電動アクチュエータ
2…固定子
3…固定側本体
5…鉄心
6…電機子コイル(L1〜L12)
7…電源供給口
8…可動子
9…出力軸
10…すべり軸受
13…可動子本体
14…永久磁石
15…永久磁石
16…引出線
17(17u,17v,17w)…配線基板
18…ボルト
19…接続部
20…切り欠き部
21…中性点
23,25…配線基板
24…溝部
A…作動方向
1 ... Direct acting electric actuator for vibration control
2 ... Stator
3 ... Fixed side body
5 ... Iron core
6 ... Armature coils (L1 to L12)
7 ... Power supply port
8 ... Movers
DESCRIPTION OF SYMBOLS 9 ... Output shaft 10 ... Sliding bearing 13 ... Movable body 14 ... Permanent magnet 15 ... Permanent magnet 16 ... Leader wire 17 (17u, 17v, 17w) ... Wiring board 18 ... Bolt 19 ... Connection part 20 ... Notch part 21 ... Neutral point 23, 25 ... Wiring board 24 ... Groove
A ... Operating direction

Claims (5)

作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、
該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、
前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、
前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし、該引出した引出線を各相毎に設けられた配線基板にそれぞれ接続したことを特徴とする制振用直動形電動アクチュエータ。
A mover in which a plurality of permanent magnets are arranged so that the polarities are alternately different in the operation direction;
A cylindrical stator in which a plurality of armature coils are arranged in the operating direction of the mover;
A wiring board on which a predetermined pattern circuit for connecting the lead wire of the armature coil is formed;
The lead wire for each phase of the armature coil is drawn out with a predetermined angle shifted in the circumferential direction of the stator, and the lead wire is connected to a wiring board provided for each phase. A direct acting electric actuator for vibration control.
前記パターン回路を形成した各相毎の配線基板を前記固定子の外周に設け、該配線基板毎に前記電機子コイルの各相毎の引出線をそれぞれ接続したことを特徴とする請求項1に記載の制振用直動形電動アクチュエータ。 The wiring board for each phase in which the pattern circuit is formed is provided on the outer periphery of the stator, and a lead wire for each phase of the armature coil is connected to each wiring board, respectively. The direct acting electric actuator for vibration control as described. 作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、
該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、
前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、
前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし
前記配線基板を固定子の前記作動方向端部に設け、該配線基板に各相毎のパターン回路を分けて形成し、該各相毎のパターン回路に前記電機子コイルの各相毎の引出線をそれぞれ接続したことを特徴とする制振用直動形電動アクチュエータ。
A mover in which a plurality of permanent magnets are arranged so that the polarities are alternately different in the operation direction;
A cylindrical stator in which a plurality of armature coils are arranged in the operating direction of the mover;
A wiring board on which a predetermined pattern circuit for connecting the lead wire of the armature coil is formed;
The lead wire for each phase of the armature coil is drawn out with a predetermined angle shifted in the circumferential direction of the stator ,
The wiring board is provided at the end of the stator in the operation direction, and a pattern circuit for each phase is separately formed on the wiring board, and a lead wire for each phase of the armature coil is formed in the pattern circuit for each phase. the characteristics and to that system mutabilis direct-acting electric actuator that respectively connected.
作動方向に交互に極性が異なるように複数の永久磁石を配置した可動子と、
該可動子の作動方向に複数の電機子コイルを配置した円筒形状の固定子と、
前記電機子コイルの引出線を接続する所定のパターン回路を形成した配線基板とを備え、
前記電機子コイルの各相毎の引出線を前記固定子の周方向に所定角度でずらして引出すようにし
前記配線基板を固定子の前記作動方向両端部に設け、該両端部の配線基板に各相毎のパターン回路を分けて形成し、該各相毎のパターン回路に前記電機子コイルの各相毎の引出線をそれぞれ接続したことを特徴とする制振用直動形電動アクチュエータ。
A mover in which a plurality of permanent magnets are arranged so that the polarities are alternately different in the operation direction;
A cylindrical stator in which a plurality of armature coils are arranged in the operating direction of the mover;
A wiring board on which a predetermined pattern circuit for connecting the lead wire of the armature coil is formed;
The lead wire for each phase of the armature coil is drawn out with a predetermined angle shifted in the circumferential direction of the stator ,
The wiring board is provided at both ends of the stator in the operation direction, and a pattern circuit for each phase is separately formed on the wiring board at both ends, and each phase of the armature coil is formed in the pattern circuit for each phase. features and to that system mutabilis direct-acting electric actuator that is connected respectively to the lead lines.
前記電源相数を三相で構成し、該三相の各相毎の引出線を固定子の周方向に所定角度でずらして引出したことを特徴とする請求項2〜4のいずれか1項に記載の制振用直動形電動アクチュエータ。 The number of power supply phases is constituted by three phases, and a lead wire for each phase of the three phases is drawn out with a predetermined angle shifted in the circumferential direction of the stator. A direct acting electric actuator for vibration control as described in 1.
JP2007088909A 2007-03-29 2007-03-29 Direct acting electric actuator for vibration control Expired - Fee Related JP5150123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088909A JP5150123B2 (en) 2007-03-29 2007-03-29 Direct acting electric actuator for vibration control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088909A JP5150123B2 (en) 2007-03-29 2007-03-29 Direct acting electric actuator for vibration control

Publications (2)

Publication Number Publication Date
JP2008253009A JP2008253009A (en) 2008-10-16
JP5150123B2 true JP5150123B2 (en) 2013-02-20

Family

ID=39977315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088909A Expired - Fee Related JP5150123B2 (en) 2007-03-29 2007-03-29 Direct acting electric actuator for vibration control

Country Status (1)

Country Link
JP (1) JP5150123B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5516899B2 (en) * 2011-01-27 2014-06-11 株式会社安川電機 Linear motor and method for manufacturing linear motor
WO2014141317A1 (en) * 2013-03-12 2014-09-18 三菱電機株式会社 Interphase insulation structure for motor
JP6585894B2 (en) * 2014-10-29 2019-10-02 Kyb株式会社 Linear actuator
JP6360774B2 (en) * 2014-10-29 2018-07-18 Kyb株式会社 Linear actuator
CN112055935B (en) * 2018-02-09 2023-09-19 康普埃克特股份公司 linear motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228859A (en) * 1999-02-08 2000-08-15 Matsushita Electric Works Ltd Coil connecting structure of linear motor
JP2000278929A (en) * 1999-03-19 2000-10-06 Yaskawa Electric Corp Linear motor
JP2001244125A (en) * 2000-02-28 2001-09-07 Soshin Electric Co Ltd Thin transformer

Also Published As

Publication number Publication date
JP2008253009A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
US6849969B2 (en) Transverse flux linear motor with permanent magnet excitation
EP2136455A1 (en) An electric motor provided with a cooling arrangement
US20130015742A1 (en) Synchronous motor
JP5150123B2 (en) Direct acting electric actuator for vibration control
CN110832747B (en) Rotating electric machine and linear motor
US8427015B2 (en) Multihead-type coreless linear motor
JP2021036735A (en) motor
JP2007282475A (en) Linear motor and actuator
JP2009005530A (en) Brushless motor and printed circuit board therefor
JP5093567B2 (en) θZ actuator
US10651718B2 (en) Transverse flux linear motor
TWI613879B (en) Rotating electric motor
JP2008253014A (en) Rotating electrical machine for high voltage
WO2023203646A1 (en) Electric motor
RU2630254C2 (en) Electric motor with low short circuit moment, drive device with multiple engines and method of manufacturing such engine
CN108475975B (en) Electric machine
JP5487733B2 (en) Switching element integrated rotating electric machine
JP4972442B2 (en) Permanent magnet arrangement structure of direct acting motor
KR101619969B1 (en) Coreless Linear Motor using Parallel Coil and Interior Permanent Magnet
JP7391820B2 (en) Electric motor
US20050275293A1 (en) System for integrating linear motion guide and linear induction motor
JP4552573B2 (en) Linear motor device
WO2021246235A1 (en) Electric motor
JP4475059B2 (en) Linear motor
KR100618446B1 (en) The Integrated System of Linear Motion Guide and Linear Induction Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

R150 Certificate of patent or registration of utility model

Ref document number: 5150123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees