WO2023203646A1 - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
WO2023203646A1
WO2023203646A1 PCT/JP2022/018200 JP2022018200W WO2023203646A1 WO 2023203646 A1 WO2023203646 A1 WO 2023203646A1 JP 2022018200 W JP2022018200 W JP 2022018200W WO 2023203646 A1 WO2023203646 A1 WO 2023203646A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
tooth
coil
electric motor
turns
Prior art date
Application number
PCT/JP2022/018200
Other languages
French (fr)
Japanese (ja)
Inventor
優 ▲高▼村
迪 廣谷
ザイニ アリフ
功太郎 榊原
健太郎 橋本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/018200 priority Critical patent/WO2023203646A1/en
Priority to JP2022553208A priority patent/JP7191279B1/en
Priority to CN202280071968.6A priority patent/CN118160193A/en
Priority to KR1020247018947A priority patent/KR20240096775A/en
Priority to DE112022004572.8T priority patent/DE112022004572T5/en
Publication of WO2023203646A1 publication Critical patent/WO2023203646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure relates to an electric motor having teeth and a coil attached to the teeth.
  • Patent Document 1 states that the number of turns in a tooth to which a coil for only one of three phases is attached is the number of turns for each phase in each tooth to which coils for multiple phases out of three phases are attached. It is disclosed that the torque ripple can be reduced by making the torque ripple different from the sum of .
  • the electric motor shown in Patent Document 1 has a first tooth to which only one phase coil is attached, and a second tooth to which multiple phase coils are attached.
  • the stator includes two or more second teeth, and the first tooth is arranged between the second teeth.
  • the first tooth by disposing the first tooth between the second teeth, the phase difference between the magnetic fluxes generated in the coil becomes large, and the distributed winding coefficient becomes low. As the distributed winding coefficient becomes lower, the heat generated by the coil increases. Therefore, the technique disclosed in Patent Document 1 has a problem in that the coil generates a large amount of heat.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor that can reduce heat generation of a coil.
  • an electric motor includes a magnetic field and an armature that is disposed facing the magnetic field and is movable relative to the magnetic field.
  • the armature includes a core back, a plurality of teeth each extending from the core back toward the field, and arranged in the direction of movement of the armature with respect to the field, and a plurality of teeth attached to the plurality of teeth. It has a coil.
  • the plurality of teeth includes a first tooth that is a tooth to which only one phase coil is attached, and a second tooth that is a tooth to which a plurality of phase coils are attached.
  • Each of the plurality of coils is arranged so as not to straddle a slot formed by adjacent teeth.
  • the number of teeth of the armature is N, and the greatest common divisor of the number of teeth, N, and the number of magnetic poles of the field in the range facing the N teeth is C, and it is composed of N/C teeth.
  • C sections are arranged in the traveling direction. In the section, two second teeth are arranged consecutively in the traveling direction, or the section includes one second tooth.
  • the electric motor according to the present disclosure has the effect of reducing heat generation of the coil.
  • Cross-sectional view of the electric motor according to the first embodiment A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 1.
  • Cross-sectional view of an electric motor according to a comparative example of Embodiment 1 A diagram showing an example of the number of turns of the coil attached to each tooth in a comparative example of Embodiment 1.
  • Vector diagram representing induced voltage in each coil of the electric motor according to Embodiment 1 Vector diagram showing induced voltage in each coil of the motor according to the comparative example of Embodiment 1 A diagram for explaining an increase in the distributed winding coefficient in the electric motor according to the first embodiment A diagram for explaining mutual inductance reduction by the electric motor according to the first embodiment
  • Cross-sectional view of the electric motor according to the second embodiment A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 2.
  • Cross-sectional view of an electric motor according to a comparative example of Embodiment 2 A diagram showing an example of the number of turns of the coil attached to each tooth in a comparative example of Embodiment 2.
  • Vector diagram showing induced voltage in each coil of the electric motor according to Embodiment 2 Vector diagram showing induced voltage in each coil of the motor according to the comparative example of Embodiment 2 A diagram for explaining an increase in the distributed winding coefficient in the electric motor according to the second embodiment
  • Cross-sectional view of the electric motor according to Embodiment 4 A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 4.
  • a diagram for explaining an increase in distributed winding coefficient in the electric motor according to Embodiment 4 Cross-sectional view of the electric motor according to the fifth embodiment
  • FIG. 1 is a schematic diagram showing a schematic configuration of a motor system 100 including a motor 50 according to the first embodiment.
  • the electric motor system 100 includes an electric motor 50, a guide 60 that is a linearly extending installation object, and a slider 70 that is movable along the guide 60.
  • the electric motor 50 has a mover 1 and a stator 2.
  • the movable element 1 is arranged facing the stator 2.
  • Stator 2 is a magnetic field.
  • the mover 1 is an armature for obtaining thrust through interaction with a magnetic field.
  • the movable element 1 faces the stator 2 with a gap interposed therebetween.
  • the movable element 1 is fixed to a slider 70.
  • the movable element 1 moves along the guide 60 together with the slider 70 due to the thrust generated by the interaction between the movable element 1 and the stator 2 .
  • the movable element 1 is movable in a linear direction relative to the stator 2. That is, the mover 1 is movable relative to the stator 2.
  • the electric motor 50 is a direct-acting motor that operates the movable element 1 in a linear direction.
  • the double-headed arrow shown in FIG. 1 represents the direction in which the movable element 1 can move, that is, the direction in which the movable element 1 moves.
  • the stator 2 includes a stator core having a mounting seat 22 and a plurality of permanent magnets 21 provided on the surface of the mounting seat 22. Illustration of the stator core is omitted. Each permanent magnet 21 is attached to a mounting seat 22 on the surface of the stator core. The plurality of permanent magnets 21 are arranged in the direction in which the mover 1 moves.
  • FIG. 2 is a sectional view of the electric motor 50 according to the first embodiment.
  • the cross section shown in FIG. 2 is a cross section that includes the moving direction of the movable element 1 and the direction in which the movable element 1 and the stator 2 face each other.
  • the cross section of the stator 2 shown in FIG. 2 is a cross section of a portion of the stator 2 that faces the movable element 1.
  • the mover 1 has a mover core and a plurality of coils 13 attached to the mover core.
  • the mover core includes a core back 11 extending in the moving direction of the mover 1 and a plurality of teeth 12 extending from the core back 11 toward the stator 2.
  • the movable element 1 has five teeth 12.
  • the five teeth 12 are lined up in the moving direction of the movable element 1.
  • the field side tip of each tooth 12 has a straight shape.
  • the slot in which the coil 13 is arranged is a portion adjacent to the teeth 12 in the moving direction of the movable element 1. Teeth 12 adjacent to each other constitute a slot.
  • Each coil 13 is constructed by winding a conducting wire around the teeth 12 in a concentrated manner. That is, each of the plurality of coils 13 included in the movable element 1 is arranged so as not to straddle any slot.
  • the number of magnetic poles in the range facing the five teeth 12 in the moving direction of the movable element 1 is four.
  • a voltage is applied to the mover 1 from a three-phase AC power source. Illustration of the three-phase AC power supply is omitted.
  • the number of teeth 12 of the mover 1 is N, and the greatest common divisor of N, which is the number of teeth 12, and the number of magnetic poles in the range facing the N teeth 12 is C.
  • the number of magnetic poles is the number of magnetic poles in the range facing the N teeth 12.
  • N/C is 5, which is an integer other than a multiple of 3.
  • N is an integer other than a multiple of 3.
  • each tooth 12 of the movable element 1 is assigned a tooth number for convenience.
  • Teeth numbers t1, t2, t3, t4, and t5 are assigned to each tooth 12 from left to right in FIG. 2, respectively.
  • a three-phase coil 13 is attached to the five teeth 12.
  • a -U phase coil 13 is attached to the teeth 12 at t1.
  • a -V phase coil 13 is attached to the teeth 12 at t2.
  • a +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t3.
  • a +W phase coil 13 is attached to the teeth 12 at t4.
  • a +U phase coil 13 is attached to the teeth 12 at t5.
  • "+" and "-" represent the winding direction of the coil 13. Note that U-, V-, V+, W-, W+, and U+ shown in FIG. 2 represent -U phase, -V phase, +V phase, -W phase, +W phase, and +U phase, respectively.
  • Each of the teeth 12 t1, t2, t4, and t5 is a tooth 12 to which only a one-phase coil 13 is attached.
  • Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached.
  • the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached.
  • Each tooth 12 at t1, t2, t4, and t5 is a first tooth.
  • Teeth 12 at t3 is the second tooth.
  • Each of the teeth 12 at t1 and the teeth 12 at t5, which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth.
  • C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction.
  • one section 10 composed of five teeth 12 is arranged in the traveling direction.
  • the number of second teeth included in the section 10 is one.
  • FIG. 3 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the first embodiment.
  • FIG. 3 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12.
  • the number of turns shown in FIG. 3 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole.
  • the total number of turns shown in FIG. 3 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1.
  • FIG. 3 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
  • the total number of turns in the teeth 12 at t3 is 0.12.
  • Each of the teeth 12 at t2 and the teeth 12 at t4 is a first tooth adjacent to a second tooth.
  • the total number of turns of 0.27 in each of the teeth 12 at t2 and the teeth 12 at t4 is greater than the total number of turns of 0.12 in the teeth 12 at t3.
  • the total number of turns of the coil 13 in the first tooth adjacent to the second tooth is greater than the total number of turns of the coil 13 in the second tooth.
  • each of the teeth 12 at t1 and the teeth 12 at t5 is a first tooth adjacent to a second tooth via one first tooth.
  • the total number of turns of 0.17 in each of the teeth 12 at t1 and the teeth 12 at t5 is smaller than 0.27, which is the total number of turns in each of the teeth 12 at t2 and the teeth 12 at t4.
  • the total number of turns of the coil 13 in the first tooth adjacent to the second tooth via one first tooth is This is less than the total number of turns of the coil 13 in one tooth.
  • FIG. 4 is a sectional view of the electric motor 51 according to a comparative example of the first embodiment.
  • FIG. 5 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in a comparative example of the first embodiment. Similar to the electric motor 50 shown in FIG. 2, the mover 1 has five teeth 12. A +U phase coil 13 is attached to the teeth 12 at t1. A +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2. A -V phase coil 13 is attached to the teeth 12 at t3. A +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t4. A +W phase coil 13 is attached to the teeth 12 at t5.
  • Section 10 of electric motor 51 has two second teeth.
  • teeth 12 of t3 which are first teeth
  • teeth 12 of t2 which are second teeth
  • teeth 12 of t4 which are second teeth.
  • the number of coils 13 in section 10 of electric motor 51 is one more than the number of coils 13 in section 10 of electric motor 50 shown in FIG. Further, in the section 10 of the electric motor 51, there is no first tooth adjacent to a second tooth via one first tooth.
  • FIG. 6 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 50 according to the first embodiment.
  • FIG. 7 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 51 according to the comparative example of the first embodiment.
  • vectors indicated by solid arrows represent the amplitude and phase of the induced voltage in each coil 13 disposed on the teeth 12.
  • a phase angle of 360 degrees is defined as twice the pitch of the permanent magnets 21.
  • a vector representing the amplitude and phase of the induced voltage in the coil 13 will be referred to as an induced voltage vector.
  • FIGS. 6 and 7 are the induced voltage vector of the -U phase coil 13 attached to the teeth 12 at t1.
  • the induced voltage vector of each coil 13 is expressed in the same manner as in the case of "t1_U-".
  • the vector indicated by the broken line arrow is the induced voltage vector of each phase, and is a composite vector obtained by combining the induced voltage vectors of each coil 13 for each phase.
  • the phase difference between adjacent teeth 12 is expressed as ⁇ 360 ⁇ (P/2)/N ⁇ degrees using P, which is the number of magnetic poles, and N, which is the number of teeth 12.
  • P which is the number of magnetic poles
  • N which is the number of teeth 12.
  • Each tooth 12 of the electric motor 50 is arranged so that the phase difference between adjacent teeth 12 is 144 degrees. Note that the phase of the induced voltage when the winding direction is "-" is 180 degrees ahead of the phase of the induced voltage when the winding direction is "+".
  • k d,phase which is the distributed winding coefficient k d of each phase, is defined by the following equation (1).
  • N C represents the total number of coils 13 in each phase.
  • ⁇ phase,i represents the phase of the induced voltage vector in each coil 13.
  • ⁇ phase represents the phase of the composite vector of each phase.
  • ⁇ phase is defined by the following equation (2).
  • k d,U which is the distributed winding coefficient k d of the U phase, is calculated as shown in the following equation (3) by substituting values for each variable in equation (1).
  • N U,1 is the number of turns of the coil 13 of "t1_U-" which is the coil 13 constituting the U phase.
  • N U,2 is the number of turns of the coil 13 of "t5_U+” which is the coil 13 constituting the U phase.
  • k d,U ⁇ N U,1 ⁇ cos (180°-198°) + N U,2 ⁇ cos (216°-198°) ⁇ /(N U,1 +N U,2 ) ... (3)
  • k d,V which is the distributed winding coefficient k d of the V phase
  • k d,W which is the distributed winding coefficient k d of the W phase
  • FIG. 8 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 50 according to the first embodiment.
  • FIG. 8 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 51 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 50 according to the first embodiment.
  • the value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 51. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 51.
  • the distributed winding coefficient can be increased more than in the comparative example.
  • the electric motor 50 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 4 and the number of turns shown in FIG. You can get the desired effect.
  • the electric motor 50 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 50 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
  • the electric motor 50 can reduce the difference in induced voltage and inductance of each phase by setting the total number of turns of each tooth 12 as described above. Thereby, the electric motor 50 has the effect of reducing the difference in terminal voltage of the electric motor 50. Further, since the electric motor 50 can reduce the difference in the total number of turns of each phase, it can reduce the difference in resistance values. Thereby, the electric motor 50 has the effect of reducing local heat generation of the coil 13.
  • FIG. 9 is a diagram for explaining mutual inductance reduction by the electric motor 50 according to the first embodiment.
  • FIG. 9 shows a bar graph representing the mutual inductance value of the electric motor 51 according to the comparative example and a bar graph representing the mutual inductance value of the electric motor 50 according to the first embodiment.
  • the mutual inductance value is a value standardized based on the mutual inductance value of the electric motor 51. That is, the value of the mutual inductance is expressed by the ratio to the value of the mutual inductance of the electric motor 51.
  • the electric motor 50 is not limited to one in which the number of turns of the coil 13 attached to each tooth 12 is set as shown in FIG.
  • the number of turns of the tooth 12 to which the two-phase coil 13 is attached need not be extremely large compared to other teeth 12, and the combination of the number of turns of each tooth 12 may be different from the case shown in FIG. 3.
  • the electric motor 50 even if the combination of the number of turns of each tooth 12 is different from that shown in FIG. 3, the same effect as when the number of turns of each coil 13 is set as shown in FIG. 3 can be obtained.
  • the order of arrangement of the coils 13 on the teeth 12 to which the coils 13 of a plurality of phases are attached is arbitrary.
  • the order of the +V phase coil 13 and the -W phase coil 13 in the teeth 12 at t3 shown in FIG. 2 may be reversed from that shown in FIG.
  • the arrangement of the coils 13 in the plurality of teeth 12 may be as long as the order of the phases in the moving direction of the movable element 1 is the same as that shown in FIG. 2 .
  • the phase located at the end in the traveling direction may be any phase.
  • the electric motor 50 a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10.
  • C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 50 can obtain the above-mentioned effects in the same way as when C is 1.
  • the movable element 1 has a configuration in which a single section 10 or a plurality of sections 10 are arranged in the traveling direction.
  • auxiliary teeth which are teeth 12 without coils 13, may be attached to each of the ends of the mover 1 in the moving direction. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 50 can obtain the same effect as when no auxiliary teeth are attached.
  • Each of the plurality of teeth 12 is not limited to having a straight tip portion on the field side.
  • a protrusion or a depression oriented in the traveling direction may be formed at the tip of the tooth 12 on the field side. Even when the teeth 12 are formed with protrusions or depressions, the electric motor 50 can obtain the same effect as when the teeth 12 are straight.
  • a configuration was described in which a plurality of permanent magnets 21 are attached to the mounting seat 22 on the surface of the stator core, but in the electric motor 50, a plurality of permanent magnets 21 are embedded inside the stator core. It may be a configuration. Even when the plurality of permanent magnets 21 are embedded inside the stator core, the electric motor 50 can obtain the same effect as when the plurality of permanent magnets 21 are provided on the surface of the stator core.
  • the electric motor 50 in the electric motor 50, C sections 10 each including N/C teeth 12 are arranged in the traveling direction, and the second tooth in the section 10 is one.
  • the electric motor 50 can reduce heat generation of the coil 13 in the movable element 1 by increasing the distributed winding coefficient. As described above, the electric motor 50 has the effect of reducing heat generation of the coil 13.
  • FIG. 10 is a sectional view of the electric motor 52 according to the second embodiment.
  • the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first embodiment.
  • Embodiment 2 the same components as in Embodiment 1 described above are given the same reference numerals, and configurations that are different from Embodiment 1 will be mainly explained.
  • the cross section of the stator 2 shown in FIG. 10 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
  • N/C is 4, which is an integer other than a multiple of 3.
  • N is an integer other than a multiple of 3.
  • each tooth 12 of the movable element 1 is assigned a tooth number for convenience.
  • Teeth numbers t1, t2, t3, and t4 are assigned to each tooth 12 from left to right in FIG. 10, respectively.
  • a three-phase coil 13 is attached to the four teeth 12.
  • a +U phase coil 13 is attached to the teeth 12 at t1.
  • a +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2.
  • a -V phase coil 13 and a +W phase coil 13 are attached to the teeth 12 at t3.
  • a -W phase coil 13 is attached to the teeth 12 at t4.
  • Each of the teeth 12 at t1 and t4 is a tooth 12 to which only a one-phase coil 13 is attached.
  • Teeth 12 at t2 and t3 are teeth 12 to which two-phase coils 13 are attached.
  • the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached.
  • Each tooth 12 at t1 and t4 is a first tooth.
  • Teeth 12 at t2 and t3 are second teeth.
  • Each of the teeth 12 at t1 and the teeth 12 at t4 which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth.
  • C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction.
  • one section 10 composed of four teeth 12 is arranged in the traveling direction.
  • the number of second teeth included in the section 10 is two. In the section 10, two second teeth are arranged consecutively in the traveling direction. That is, the first teeth are not arranged between the second teeth.
  • FIG. 11 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the second embodiment.
  • FIG. 11 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12.
  • the number of turns shown in FIG. 11 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole.
  • the total number of turns shown in FIG. 11 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1. Further, FIG. 11 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
  • the sum of 0.27 which is the total number of turns on the teeth 12 at t1, and 0.27, which is the total number of turns on the teeth 12 at t4, is 0.54.
  • the total number of turns of the coil 13 in all the first teeth included in the section 10 is greater than the total number of turns of the coil 13 in all the second teeth included in the section 10.
  • FIG. 12 is a sectional view of an electric motor 53 according to a comparative example of the second embodiment.
  • FIG. 13 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in a comparative example of the second embodiment.
  • the mover 1 Similar to the electric motor 52 shown in FIG. 10, the mover 1 has four teeth 12.
  • a +U phase coil 13 is attached to the teeth 12 at t1.
  • a +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2.
  • a +W phase coil 13 is attached to the teeth 12 at t3.
  • a +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t4.
  • each of the teeth 12 at t1 and t3 is a first tooth to which only a one-phase coil 13 is attached.
  • a two-phase coil 13 is attached to each of the teeth 12 at t2 and t4.
  • Teeth 12 at t2 and t4 are second teeth to which a plurality of coils 13 are attached.
  • one first tooth is arranged between the second teeth.
  • the sum of 0.27 which is the total number of turns on the teeth 12 at t1, and 0.06, which is the total number of turns on the teeth 12 at t3, is 0.33.
  • the sum of 0.34 which is the total number of turns on the teeth 12 at t2, and 0.40, which is the total number of turns on the teeth 12 at t4, is 0.74.
  • unlike the case of Embodiment 2 shown in FIG. It is less than the total number of volumes of 13.
  • FIG. 14 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 52 according to the second embodiment.
  • FIG. 15 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 53 according to the comparative example of the second embodiment.
  • vectors indicated by solid arrows are induced voltage vectors.
  • a phase angle of 360 degrees is twice the length of the pitch of the permanent magnets 21.
  • the vector indicated by the broken line arrow is the induced voltage vector of each phase, and is a composite vector obtained by combining the induced voltage vectors of each coil 13 for each phase.
  • the phase difference between adjacent teeth 12 is expressed as ⁇ 360 ⁇ (P/2)/N ⁇ degrees using P, which is the number of magnetic poles, and N, which is the number of teeth 12.
  • P which is the number of magnetic poles
  • N which is the number of teeth 12.
  • Each tooth 12 of the electric motor 52 is arranged so that the phase difference between adjacent teeth 12 is 135 degrees.
  • k d,UVW which is the sum of the distributed winding coefficients k d of all phases, which are the U phase, V phase, and W phase, is determined by the same calculation as in the first embodiment.
  • the electric motor 52 according to the second embodiment has a phase difference between "t3_V-" in FIG. 14 and the V-phase composite vector, and "t4_V+” in FIG. 15 and the V-phase composite vector. It has the characteristic of being smaller than the phase difference with the vector.
  • FIG. 16 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 52 according to the second embodiment.
  • FIG. 16 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 53 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 52 according to the second embodiment.
  • the value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 53. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 53.
  • the electric motor 52 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 12 and the number of turns shown in FIG. You can get the desired effect.
  • the electric motor 52 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 52 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
  • the electric motor 52 can reduce the difference in induced voltage and inductance of each phase by setting the total number of turns of each tooth 12 as described above. As a result, the electric motor 52 has the effect of reducing the difference in terminal voltage of the electric motor 52. Further, since the electric motor 52 can reduce the difference in the total number of turns of each phase, it can reduce the difference in resistance values. Thereby, the electric motor 52 has the effect of reducing local heat generation of the coil 13.
  • the movable element 1 has a configuration in which a single section 10 or a plurality of sections 10 are arranged in the traveling direction.
  • auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 52 can obtain the same effect as when no auxiliary teeth are attached.
  • protrusions or depressions oriented in the traveling direction may be formed at the tip portions of the teeth 12 on the field side.
  • the electric motor 52 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
  • the electric motor 52 in the electric motor 52, C sections 10 each including N/C teeth 12 are arranged in the traveling direction, and in the section 10, two second teeth are arranged consecutively in the traveling direction. It is arranged as follows.
  • the electric motor 52 can reduce heat generation of the coil 13 in the movable element 1 by increasing the distributed winding coefficient. As described above, the electric motor 52 has the effect of reducing heat generation of the coil 13.
  • FIG. 17 is a sectional view of the electric motor 54 according to the third embodiment.
  • the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first or second embodiment.
  • the same components as in Embodiment 1 or 2 described above are given the same reference numerals, and configurations that are different from Embodiment 1 or 2 will be mainly explained.
  • the cross section of the stator 2 shown in FIG. 17 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
  • N/C is 5, which is an integer other than a multiple of 3.
  • N is an integer other than a multiple of 3.
  • each tooth 12 of the mover 1 is assigned a tooth number for convenience.
  • Teeth numbers t2, t3, t4, t5, and t1 are assigned to each tooth 12 from left to right in FIG. 17, respectively.
  • a three-phase coil 13 is attached to the five teeth 12.
  • a -V phase coil 13 is attached to the teeth 12 at t2.
  • a +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t3.
  • a +W phase coil 13 is attached to the teeth 12 at t4.
  • a +U phase coil 13 is attached to the teeth 12 at t5.
  • a -U phase coil 13 is attached to the teeth 12 at t1.
  • Each of the teeth 12 at t2, t4, t5, and t1 is a tooth 12 to which only a one-phase coil 13 is attached.
  • Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached.
  • the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached.
  • Each tooth 12 at t2, t4, t5, and t1 is a first tooth.
  • Teeth 12 at t3 is the second tooth.
  • Each of the teeth 12 at t2 and the teeth 12 at t1, which are the teeth 12 located at the end in the moving direction of the movable element 1, is a first tooth.
  • C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction.
  • one section 10 composed of five teeth 12 is arranged in the traveling direction.
  • the number of second teeth included in section 10 is one.
  • An insulator for insulation between phases is attached to the second teeth.
  • the winding area of the second teeth is smaller than that of the first teeth due to the area occupied by the insulator.
  • a protective component is attached to the teeth 12 located at the end of the movable element 1 in the direction of movement to protect the coil 13.
  • the winding area of the teeth 12 located at the ends is smaller than that of the teeth 12 located at positions other than the ends due to the area occupied by the protective component.
  • the second tooth is arranged at the end of the mover 1 in the direction of movement, an insulator and a protective component are attached to the second tooth, so that the winding area of the second tooth is becomes significantly smaller.
  • a coil 13 formed of a conductive wire with a small diameter is attached to the second tooth. In this case, as the wire diameter becomes smaller, the heat generated by the coil 13 increases.
  • the electric motor 54 since the tooth 12 located at the end in the traveling direction of the movable element 1 is the first tooth, the winding area of the tooth 12 located at the end in the traveling direction among the plurality of teeth 12 is localized. This prevents it from becoming smaller.
  • the coil 13 formed of a conductive wire with a large wire diameter can be placed on the first tooth located at the end in the traveling direction, so that the heat generation of the coil 13 can be reduced. As described above, the electric motor 54 has the effect that the heat generation of the coil 13 can be reduced because the tooth 12 located at the end in the moving direction of the movable element 1 is the first tooth.
  • the electric motors 50 and 52 have the effect of reducing the heat generation of the coil 13 by having the tooth 12 located at the end in the moving direction of the movable element 1 as the first tooth. I can do it.
  • the movable element 1 has a configuration in which one section 10 composed of five teeth 12 is arranged in the traveling direction.
  • a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10.
  • C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 54 can obtain the above-mentioned effect as in the case where C is 1.
  • the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction.
  • auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 54 can obtain the same effect as when no auxiliary teeth are attached.
  • a protrusion or a depression oriented in the traveling direction may be formed at the tip of the tooth 12 on the field side.
  • the electric motor 54 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
  • FIG. 18 is a sectional view of the electric motor 55 according to the fourth embodiment.
  • the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first to third embodiments.
  • the same components as in Embodiments 1 to 3 described above are given the same reference numerals, and configurations that are different from Embodiments 1 to 3 will be mainly explained.
  • the cross section of the stator 2 shown in FIG. 18 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
  • N/C is 4, which is an integer other than a multiple of 3.
  • N is an integer other than a multiple of 3.
  • each tooth 12 of the mover 1 is assigned a tooth number for convenience.
  • Teeth numbers t1, t2, t3, and t4 are assigned to each tooth 12 from left to right in FIG. 18, respectively.
  • a three-phase coil 13 is attached to the four teeth 12.
  • a +U phase coil 13 is attached to the teeth 12 at t1.
  • a +V phase coil 13 is attached to the teeth 12 at t2.
  • a +W phase coil 13 and a ⁇ V phase coil 13 are attached to the teeth 12 at t3.
  • a -W phase coil 13 is attached to the teeth 12 at t4.
  • Each of the teeth 12 at t1, t2, and t4 is a tooth 12 to which only a one-phase coil 13 is attached.
  • Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached.
  • the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached.
  • Each tooth 12 at t1, t2, and t4 is a first tooth.
  • Teeth 12 at t3 is the second tooth.
  • Each of the teeth 12 at t1 and the teeth 12 at t4, which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth.
  • the electric motor 55 can reduce heat generation of the coil 13 because the tooth 12 located at the end in the moving direction of the movable element 1 is the first tooth.
  • C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction.
  • one section 10 composed of four teeth 12 is arranged in the traveling direction.
  • the number of second teeth in section 10 is one.
  • FIG. 19 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the fourth embodiment.
  • FIG. 19 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12.
  • the number of turns shown in FIG. 19 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole.
  • the total number of turns shown in FIG. 19 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1. Further, FIG. 19 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
  • the total number of turns in the teeth 12 at t3 is 0.23.
  • Each of the teeth 12 at t2 and the teeth 12 at t4 is a first tooth adjacent to a second tooth.
  • Teeth 12 at t1 is a first tooth adjacent to a second tooth via one first tooth.
  • the total number of turns in the teeth 12 at t1, 0.32 is greater than the total number of turns, 0.23, in each of the teeth 12 at t2 and the teeth 12 at t4.
  • the total number of turns of the coil 13 in the first tooth adjacent to the second tooth via one first tooth is The number of turns is greater than the total number of turns of the coil 13 in one tooth.
  • FIG. 20 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 55 according to the fourth embodiment.
  • the configuration of the comparative example according to the fourth embodiment is the configuration of the electric motor 53 shown in FIG. 12.
  • FIG. 20 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 53 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 55 according to the fourth embodiment.
  • the value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 53. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 53.
  • the electric motor 55 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 12 and the number of turns shown in FIG. You can get the desired effect.
  • the electric motor 55 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 55 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
  • the electric motor 55 can reduce the difference in induced voltage in each phase, and can also reduce the difference in inductance in each phase. Furthermore, the electric motor 55 can increase the distributed winding coefficient. The electric motor 55 can reduce the heat generation of the coil 13 by being able to reduce the current value when obtaining the same thrust force. As described above, the electric motor 55 has the effect of reducing heat generation of the coil 13.
  • the movable element 1 has a configuration in which one section 10 composed of four teeth 12 is arranged in the traveling direction.
  • a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10.
  • C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 55 can obtain the above-mentioned effect as in the case where C is 1.
  • the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction.
  • auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the moving direction, the electric motor 55 can obtain the same effect as when no auxiliary teeth are attached.
  • a protrusion or a depression facing in the direction of movement may be formed at the tip of the tooth 12 on the field side.
  • the electric motor 55 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
  • FIG. 21 is a sectional view of the electric motor 56 according to the fifth embodiment.
  • the arrangement of each coil 13 in the tooth 12 of t3, which is the second tooth, is different from that of the electric motor 50 shown in FIG.
  • the configuration of the electric motor 56 is similar to that of the electric motor 50, except that the arrangement of each coil 13 in the teeth 12 at t3 is different from that of the electric motor 50.
  • the same components as those in Embodiments 1 to 4 described above are given the same reference numerals, and configurations that are different from Embodiments 1 to 4 will be mainly described.
  • the cross section of the stator 2 shown in FIG. 21 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
  • Each tooth 12 extends from the core back 11 toward the stator 2.
  • the direction from the core back 11 toward the stator 2 is defined as the longitudinal direction of the teeth 12.
  • the +V phase coil 13 and the -W phase coil 13 are adjacent to each other in the longitudinal direction of the teeth 12.
  • the +V phase coil 13 is wound inside, which is the tooth 12 side.
  • the -W phase coil 13 is wound outside the +V phase coil 13. That is, in the teeth 12 at t3, a +V phase coil 13 is attached and a -W phase coil 13 is attached. Note that, in addition to the ⁇ W phase coil 13 attached to the teeth 12 at t3, the +V phase coil 13 may also be attached.
  • the winding start position of the coil 13 and the winding end position of the coil 13 can be set at the position in contact with the core back 11. You can arrange them. That is, for all the coils 13 provided in the mover 1, the winding start position of the coil 13 and the winding end position of the coil 13 can be aligned on the core back 11 side. In this case, the distance from the winding end position of the coil 13 to the neutral point or the distance from the winding start position of the coil 13 to the terminal can be minimized, and the resistance of the coil 13 can be lowered. . Thereby, the electric motor 56 has the effect of reducing heat generation of the coil 13.
  • each coil 13 of the second teeth As described in Embodiment 5, the magnetic flux passing through the coil 13 can be kept the same. Therefore, the electric motor 56 can reduce the difference in inductance of each phase, and the effect of reducing the difference in terminal voltage of the electric motor 56 can be obtained.
  • the movable element 1 has a configuration in which one section 10 composed of five teeth 12 is arranged in the traveling direction.
  • a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10.
  • C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 56 can obtain the above-mentioned effect as in the case where C is 1.
  • the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction.
  • auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the moving direction, the electric motor 56 can obtain the same effect as when no auxiliary teeth are attached.
  • a protrusion or a depression facing in the direction of movement may be formed at the tip of the tooth 12 on the field side.
  • the electric motor 56 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
  • the configurations of electric motors 50, 52, 54, 55, and 56 according to Embodiments 1 to 5 may be applied to rotating electrical machines.
  • a rotating electric machine is an electric motor that includes a stator and a rotor and rotates the rotor. Even when the configuration of the electric motors 50, 52, 54, 55, 56 is applied to a rotating electric machine, the same effects as in the case of the electric motors 50, 52, 54, 55, 56 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

An electric motor (50) comprises a magnetic field and an armature. The armature has a core back (11), a plurality of teeth (12), and a plurality of coils (13). The plurality of teeth (12) include: first teeth, which are teeth (12) to which only coils (13) of one phase are attached; and second teeth, which are teeth (12) to which coils (13) of a plurality of phases are attached. Each of the plurality of coils (13) is arranged so as not to straddle a slot. When the quantity of teeth (12) in the armature is denoted by N, and a greatest common devisor between the quantity of teeth (12) N and the number of magnetic poles of the magnetic field in a range opposing the N teeth (12) is denoted by C, a quantity of C sections each configured by a quantity of N/C teeth (12) are arranged in an advancing direction. In a section, two second teeth are arranged in succession in the advancing direction, or the number of second teeth included in the section is one.

Description

電動機Electric motor
 本開示は、ティースと、ティースに取り付けられたコイルとを有する電動機に関する。 The present disclosure relates to an electric motor having teeth and a coil attached to the teeth.
 従来、回転子の磁極の数をP、固定子のティースの数をN、PおよびNの最大公約数をCとして、N/C=P/C±1、かつN/Cを3の倍数以外の整数とすることによって、コギングトルクを低減可能とした電動機が知られている。かかる電動機に関し、特許文献1には、3相のうちの1相のみのコイルが取り付けられたティースにおける巻数を、3相のうちの複数の相のコイルが取り付けられた各ティースにおける相ごとの巻数の合計とは異ならせることによって、トルクリップルを低減可能とすることが開示されている。特許文献1に示されている電動機は、1相のコイルのみが取り付けられた第1のティースと、複数の相のコイルが取り付けられた第2のティースとを有する。 Conventionally, when the number of magnetic poles of the rotor is P, the number of teeth of the stator is N, and the greatest common divisor of P and N is C, N/C = P/C ± 1, and N/C is other than a multiple of 3. An electric motor is known in which the cogging torque can be reduced by setting the value to an integer. Regarding such electric motors, Patent Document 1 states that the number of turns in a tooth to which a coil for only one of three phases is attached is the number of turns for each phase in each tooth to which coils for multiple phases out of three phases are attached. It is disclosed that the torque ripple can be reduced by making the torque ripple different from the sum of . The electric motor shown in Patent Document 1 has a first tooth to which only one phase coil is attached, and a second tooth to which multiple phase coils are attached.
国際公開第2019/008848号International Publication No. 2019/008848
 特許文献1の技術によると、固定子には2個以上の第2のティースが含まれており、第2のティースと第2のティースとの間には第1のティースが配置されている。第2のティースの数が多いほど、すなわち、コイルの数が多いほど、発生する磁束の位相が分散され、分布巻係数が低くなる。また、第2のティースと第2のティースとの間に第1のティースが配置されることによって、コイルで発生する磁束の位相差が大きくなり、分布巻係数が低くなる。分布巻係数が低くなることで、コイルの発熱が大きくなる。このため、特許文献1の技術では、コイルの発熱が大きくなるという問題があった。 According to the technology of Patent Document 1, the stator includes two or more second teeth, and the first tooth is arranged between the second teeth. The larger the number of second teeth, that is, the larger the number of coils, the more dispersed the phase of the generated magnetic flux becomes, and the lower the distributed winding coefficient becomes. Further, by disposing the first tooth between the second teeth, the phase difference between the magnetic fluxes generated in the coil becomes large, and the distributed winding coefficient becomes low. As the distributed winding coefficient becomes lower, the heat generated by the coil increases. Therefore, the technique disclosed in Patent Document 1 has a problem in that the coil generates a large amount of heat.
 本開示は、上記に鑑みてなされたものであって、コイルの発熱を低減可能とする電動機を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an electric motor that can reduce heat generation of a coil.
 上述した課題を解決し、目的を達成するために、本開示にかかる電動機は、界磁と、界磁に向かい合わせて配置され、界磁に対して相対的に移動可能な電機子と、を備える。電機子は、コアバックと、各々がコアバックから界磁の方へ延ばされており、界磁に対する電機子の進行方向へ並べられた複数のティースと、複数のティースに取り付けられた複数のコイルと、を有する。複数のティースは、1相のコイルのみが取り付けられたティースである第1のティースと、複数の相のコイルが取り付けられたティースである第2のティースとを含む。複数のコイルの各々は、互いに隣り合うティース同士により構成されるスロットを跨がないように配置されている。電機子のティースの数をN、ティースの数であるNと、N個のティースと対向する範囲にある界磁の磁極の数との最大公約数をCとして、N/C個のティースで構成されたセクションが進行方向にC個配置されている。セクションでは進行方向において2個の第2のティースが連続して配置されているか、または、セクションに含まれる第2のティースが1個である。 In order to solve the above-mentioned problems and achieve the objective, an electric motor according to the present disclosure includes a magnetic field and an armature that is disposed facing the magnetic field and is movable relative to the magnetic field. Be prepared. The armature includes a core back, a plurality of teeth each extending from the core back toward the field, and arranged in the direction of movement of the armature with respect to the field, and a plurality of teeth attached to the plurality of teeth. It has a coil. The plurality of teeth includes a first tooth that is a tooth to which only one phase coil is attached, and a second tooth that is a tooth to which a plurality of phase coils are attached. Each of the plurality of coils is arranged so as not to straddle a slot formed by adjacent teeth. The number of teeth of the armature is N, and the greatest common divisor of the number of teeth, N, and the number of magnetic poles of the field in the range facing the N teeth is C, and it is composed of N/C teeth. C sections are arranged in the traveling direction. In the section, two second teeth are arranged consecutively in the traveling direction, or the section includes one second tooth.
 本開示にかかる電動機は、コイルの発熱を低減できるという効果を奏する。 The electric motor according to the present disclosure has the effect of reducing heat generation of the coil.
実施の形態1にかかる電動機を備える電動機システムの概略構成を示す模式図A schematic diagram showing a schematic configuration of an electric motor system including an electric motor according to Embodiment 1. 実施の形態1にかかる電動機の断面図Cross-sectional view of the electric motor according to the first embodiment 実施の形態1において各ティースに取り付けられているコイルの巻数の例を示す図A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 1. 実施の形態1の比較例にかかる電動機の断面図Cross-sectional view of an electric motor according to a comparative example of Embodiment 1 実施の形態1の比較例において各ティースに取り付けられているコイルの巻数の例を示す図A diagram showing an example of the number of turns of the coil attached to each tooth in a comparative example of Embodiment 1. 実施の形態1にかかる電動機の各コイルにおける誘起電圧を表すベクトル図Vector diagram representing induced voltage in each coil of the electric motor according to Embodiment 1 実施の形態1の比較例にかかる電動機の各コイルにおける誘起電圧を表すベクトル図Vector diagram showing induced voltage in each coil of the motor according to the comparative example of Embodiment 1 実施の形態1にかかる電動機における分布巻係数の増加について説明するための図A diagram for explaining an increase in the distributed winding coefficient in the electric motor according to the first embodiment 実施の形態1にかかる電動機による相互インダクタンスの低減について説明するための図A diagram for explaining mutual inductance reduction by the electric motor according to the first embodiment 実施の形態2にかかる電動機の断面図Cross-sectional view of the electric motor according to the second embodiment 実施の形態2において各ティースに取り付けられているコイルの巻数の例を示す図A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 2. 実施の形態2の比較例にかかる電動機の断面図Cross-sectional view of an electric motor according to a comparative example of Embodiment 2 実施の形態2の比較例において各ティースに取り付けられているコイルの巻数の例を示す図A diagram showing an example of the number of turns of the coil attached to each tooth in a comparative example of Embodiment 2. 実施の形態2にかかる電動機の各コイルにおける誘起電圧を表すベクトル図Vector diagram showing induced voltage in each coil of the electric motor according to Embodiment 2 実施の形態2の比較例にかかる電動機の各コイルにおける誘起電圧を表すベクトル図Vector diagram showing induced voltage in each coil of the motor according to the comparative example of Embodiment 2 実施の形態2にかかる電動機における分布巻係数の増加について説明するための図A diagram for explaining an increase in the distributed winding coefficient in the electric motor according to the second embodiment 実施の形態3にかかる電動機の断面図Cross-sectional view of the electric motor according to Embodiment 3 実施の形態4にかかる電動機の断面図Cross-sectional view of the electric motor according to Embodiment 4 実施の形態4において各ティースに取り付けられているコイルの巻数の例を示す図A diagram showing an example of the number of turns of the coil attached to each tooth in Embodiment 4. 実施の形態4にかかる電動機における分布巻係数の増加について説明するための図A diagram for explaining an increase in distributed winding coefficient in the electric motor according to Embodiment 4 実施の形態5にかかる電動機の断面図Cross-sectional view of the electric motor according to the fifth embodiment
 以下に、実施の形態にかかる電動機を図面に基づいて詳細に説明する。 Below, an electric motor according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電動機50を備える電動機システム100の概略構成を示す模式図である。電動機システム100は、電動機50と、線状に延びた設置物であるガイド60と、ガイド60に沿って移動可能なスライダ70とを備える。
Embodiment 1.
FIG. 1 is a schematic diagram showing a schematic configuration of a motor system 100 including a motor 50 according to the first embodiment. The electric motor system 100 includes an electric motor 50, a guide 60 that is a linearly extending installation object, and a slider 70 that is movable along the guide 60.
 電動機50は、可動子1と固定子2とを有する。可動子1は、固定子2に向かい合わせて配置されている。固定子2は、界磁である。可動子1は、界磁との相互作用による推力を得るための電機子である。可動子1は、間隙を介して固定子2と対向する。可動子1は、スライダ70に固定されている。可動子1は、可動子1と固定子2との相互作用により発生する推力によって、スライダ70とともにガイド60に沿って移動する。可動子1は、固定子2に対して直線方向に移動可能である。すなわち、可動子1は、固定子2に対して相対的に移動可能である。電動機50は、可動子1を直線方向に動作させる直動電動機である。図1に示す両矢印は、可動子1が移動可能な方向、すなわち、可動子1の進行方向を表す。 The electric motor 50 has a mover 1 and a stator 2. The movable element 1 is arranged facing the stator 2. Stator 2 is a magnetic field. The mover 1 is an armature for obtaining thrust through interaction with a magnetic field. The movable element 1 faces the stator 2 with a gap interposed therebetween. The movable element 1 is fixed to a slider 70. The movable element 1 moves along the guide 60 together with the slider 70 due to the thrust generated by the interaction between the movable element 1 and the stator 2 . The movable element 1 is movable in a linear direction relative to the stator 2. That is, the mover 1 is movable relative to the stator 2. The electric motor 50 is a direct-acting motor that operates the movable element 1 in a linear direction. The double-headed arrow shown in FIG. 1 represents the direction in which the movable element 1 can move, that is, the direction in which the movable element 1 moves.
 固定子2は、取付座22を有する固定子鉄心と、取付座22の表面に設けられた複数の永久磁石21とを有する。固定子鉄心の図示は省略する。各永久磁石21は、固定子鉄心の表面の取付座22に貼り付けられている。複数の永久磁石21は、可動子1の進行方向に並ぶ。 The stator 2 includes a stator core having a mounting seat 22 and a plurality of permanent magnets 21 provided on the surface of the mounting seat 22. Illustration of the stator core is omitted. Each permanent magnet 21 is attached to a mounting seat 22 on the surface of the stator core. The plurality of permanent magnets 21 are arranged in the direction in which the mover 1 moves.
 図2は、実施の形態1にかかる電動機50の断面図である。図2に示す断面は、可動子1の進行方向と、可動子1および固定子2が対向する方向とを含む断面である。図2に示す固定子2の断面は、固定子2のうち可動子1と対向する部分の断面とする。 FIG. 2 is a sectional view of the electric motor 50 according to the first embodiment. The cross section shown in FIG. 2 is a cross section that includes the moving direction of the movable element 1 and the direction in which the movable element 1 and the stator 2 face each other. The cross section of the stator 2 shown in FIG. 2 is a cross section of a portion of the stator 2 that faces the movable element 1.
 可動子1は、可動子鉄心と、可動子鉄心に取り付けられた複数のコイル13とを有する。可動子鉄心は、可動子1の進行方向へ延ばされたコアバック11と、コアバック11から固定子2の方へ延ばされた複数のティース12とを有する。実施の形態1では、可動子1は、5個のティース12を有する。5個のティース12は、可動子1の進行方向に並ぶ。各ティース12のうち界磁側の先端部は、ストレート状である。コイル13が配置されるスロットは、可動子1の進行方向においてティース12と隣り合う部分である。互いに隣り合うティース12同士は、スロットを構成する。各コイル13は、ティース12に導線が集中的に巻回されることによって構成されている。すなわち、可動子1が有する複数のコイル13の各々は、スロットを跨がないように配置されている。 The mover 1 has a mover core and a plurality of coils 13 attached to the mover core. The mover core includes a core back 11 extending in the moving direction of the mover 1 and a plurality of teeth 12 extending from the core back 11 toward the stator 2. In the first embodiment, the movable element 1 has five teeth 12. The five teeth 12 are lined up in the moving direction of the movable element 1. The field side tip of each tooth 12 has a straight shape. The slot in which the coil 13 is arranged is a portion adjacent to the teeth 12 in the moving direction of the movable element 1. Teeth 12 adjacent to each other constitute a slot. Each coil 13 is constructed by winding a conducting wire around the teeth 12 in a concentrated manner. That is, each of the plurality of coils 13 included in the movable element 1 is arranged so as not to straddle any slot.
 実施の形態1では、可動子1の進行方向に並ぶ複数の永久磁石21のうちの4個が、5個のティース12と対向する。すなわち、可動子1の進行方向において5個のティース12と対向する範囲にある磁極の数は4である。 In the first embodiment, four of the plurality of permanent magnets 21 arranged in the moving direction of the mover 1 face the five teeth 12. That is, the number of magnetic poles in the range facing the five teeth 12 in the moving direction of the movable element 1 is four.
 可動子1には、3相交流電源から電圧が印加される。3相交流電源の図示は省略する。可動子1のティース12の数をN、ティース12の数であるNと、N個のティース12と対向する範囲にある磁極の数との最大公約数をCとする。以下、磁極の数とは、N個のティース12と対向する範囲にある磁極の数とする。実施の形態1では、磁極の数は4であって、N=5およびC=1である。実施の形態1では、N/Cは5であって、3の倍数以外の整数である。Nは3の倍数以外の整数である。電動機50は、かかる条件を満足することによって、コギングトルクを低減させることができるという効果を得られる。 A voltage is applied to the mover 1 from a three-phase AC power source. Illustration of the three-phase AC power supply is omitted. The number of teeth 12 of the mover 1 is N, and the greatest common divisor of N, which is the number of teeth 12, and the number of magnetic poles in the range facing the N teeth 12 is C. Hereinafter, the number of magnetic poles is the number of magnetic poles in the range facing the N teeth 12. In the first embodiment, the number of magnetic poles is 4, with N=5 and C=1. In the first embodiment, N/C is 5, which is an integer other than a multiple of 3. N is an integer other than a multiple of 3. By satisfying these conditions, the electric motor 50 can achieve the effect of reducing cogging torque.
 実施の形態1では、可動子1の各ティース12に、便宜的にティース番号を割り当てる。各ティース12には、図2において左から右へ向かって、それぞれティース番号であるt1,t2,t3,t4,t5が割り当てられている。 In the first embodiment, each tooth 12 of the movable element 1 is assigned a tooth number for convenience. Teeth numbers t1, t2, t3, t4, and t5 are assigned to each tooth 12 from left to right in FIG. 2, respectively.
 5個のティース12には、3相のコイル13が取り付けられている。t1のティース12には、-U相のコイル13が取り付けられている。t2のティース12には、-V相のコイル13が取り付けられている。t3のティース12には、+V相のコイル13と-W相のコイル13とが取り付けられている。t4のティース12には、+W相のコイル13が取り付けられている。t5のティース12には、+U相のコイル13が取り付けられている。「+」と「-」とは、コイル13の巻き方向を表す。なお、図2に示す、U-,V-,V+,W-,W+,U+は、それぞれ、-U相、-V相、+V相、-W相、+W相、+U相を表す。 A three-phase coil 13 is attached to the five teeth 12. A -U phase coil 13 is attached to the teeth 12 at t1. A -V phase coil 13 is attached to the teeth 12 at t2. A +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t3. A +W phase coil 13 is attached to the teeth 12 at t4. A +U phase coil 13 is attached to the teeth 12 at t5. "+" and "-" represent the winding direction of the coil 13. Note that U-, V-, V+, W-, W+, and U+ shown in FIG. 2 represent -U phase, -V phase, +V phase, -W phase, +W phase, and +U phase, respectively.
 t1,t2,t4,t5の各ティース12は、1相のコイル13のみが取り付けられたティース12である。t3のティース12は、2相のコイル13が取り付けられたティース12である。このように、可動子1の複数のティース12は、1相のコイル13のみが取り付けられたティース12である第1のティースと、複数の相のコイル13が取り付けられたティース12である第2のティースとを含む。t1,t2,t4,t5の各ティース12は、第1のティースである。t3のティース12は、第2のティースである。可動子1のうち進行方向における端に位置するティース12であるt1のティース12とt5のティース12との各々は、第1のティースである。 Each of the teeth 12 t1, t2, t4, and t5 is a tooth 12 to which only a one-phase coil 13 is attached. Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached. In this way, the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached. Including teeth. Each tooth 12 at t1, t2, t4, and t5 is a first tooth. Teeth 12 at t3 is the second tooth. Each of the teeth 12 at t1 and the teeth 12 at t5, which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth.
 電動機50では、N/C個のティース12で構成されたセクション10が進行方向にC個配置されている。実施の形態1では、5個のティース12で構成されたセクション10が進行方向に1個配置されている。また、実施の形態1において、セクション10に含まれる第2のティースは、1個である。 In the electric motor 50, C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction. In the first embodiment, one section 10 composed of five teeth 12 is arranged in the traveling direction. Further, in the first embodiment, the number of second teeth included in the section 10 is one.
 図3は、実施の形態1において各ティース12に取り付けられているコイル13の巻数の例を示す図である。図3には、各ティース12における相ごとのコイル13の巻数と、各ティース12の合計巻数とを示す。図3に示す巻数は、複数のティース12全体の巻数を基に規格化された巻数とする。図3に示す合計巻数は、複数のティース12全体の巻数を基に規格化された合計巻数とする。すなわち、可動子1の全体における巻数に対する比によって、各ティース12の巻数と合計巻数とを表す。また、図3には、可動子1の全体における直列導体数に対する、相ごとの直列導体数の比を示す。 FIG. 3 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the first embodiment. FIG. 3 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12. The number of turns shown in FIG. 3 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. The total number of turns shown in FIG. 3 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1. Moreover, FIG. 3 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
 図3に示すように、t3のティース12における合計巻数は、0.12である。t2のティース12とt4のティース12との各々は、第2のティースと隣り合う第1のティースである。t2のティース12とt4のティース12との各々における合計巻数である0.27は、t3のティース12における合計巻数である0.12よりも多い。このように、実施の形態1のセクション10では、第2のティースと隣り合う第1のティースにおけるコイル13の合計巻数が、第2のティースにおけるコイル13の合計巻数よりも多い。 As shown in FIG. 3, the total number of turns in the teeth 12 at t3 is 0.12. Each of the teeth 12 at t2 and the teeth 12 at t4 is a first tooth adjacent to a second tooth. The total number of turns of 0.27 in each of the teeth 12 at t2 and the teeth 12 at t4 is greater than the total number of turns of 0.12 in the teeth 12 at t3. Thus, in section 10 of the first embodiment, the total number of turns of the coil 13 in the first tooth adjacent to the second tooth is greater than the total number of turns of the coil 13 in the second tooth.
 また、t1のティース12とt5のティース12との各々は、1個の第1のティースを介して第2のティースと隣り合う第1のティースである。t1のティース12とt5のティース12との各々における合計巻数である0.17は、t2のティース12とt4のティース12との各々における合計巻数である0.27よりも少ない。このように、実施の形態1のセクション10では、1個の第1のティースを介して第2のティースと隣り合う第1のティースにおけるコイル13の合計巻数が、第2のティースと隣り合う第1のティースにおけるコイル13の合計巻数よりも少ない。 Furthermore, each of the teeth 12 at t1 and the teeth 12 at t5 is a first tooth adjacent to a second tooth via one first tooth. The total number of turns of 0.17 in each of the teeth 12 at t1 and the teeth 12 at t5 is smaller than 0.27, which is the total number of turns in each of the teeth 12 at t2 and the teeth 12 at t4. In this way, in the section 10 of the first embodiment, the total number of turns of the coil 13 in the first tooth adjacent to the second tooth via one first tooth is This is less than the total number of turns of the coil 13 in one tooth.
 ここで、実施の形態1の比較例にかかる電動機の構成を説明する。図4は、実施の形態1の比較例にかかる電動機51の断面図である。図5は、実施の形態1の比較例において各ティース12に取り付けられているコイル13の巻数の例を示す図である。図2に示す電動機50と同様に、可動子1は、5個のティース12を有する。t1のティース12には、+U相のコイル13が取り付けられている。t2のティース12には、+V相のコイル13と-U相のコイル13とが取り付けられている。t3のティース12には、-V相のコイル13が取り付けられている。t4のティース12には、+V相のコイル13と-W相のコイル13とが取り付けられている。t5のティース12には、+W相のコイル13が取り付けられている。 Here, the configuration of an electric motor according to a comparative example of Embodiment 1 will be described. FIG. 4 is a sectional view of the electric motor 51 according to a comparative example of the first embodiment. FIG. 5 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in a comparative example of the first embodiment. Similar to the electric motor 50 shown in FIG. 2, the mover 1 has five teeth 12. A +U phase coil 13 is attached to the teeth 12 at t1. A +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2. A -V phase coil 13 is attached to the teeth 12 at t3. A +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t4. A +W phase coil 13 is attached to the teeth 12 at t5.
 電動機51のセクション10は、2個の第2のティースを有する。電動機51のセクション10において、第2のティースであるt2のティース12と、第2のティースであるt4のティース12との間には、第1のティースであるt3のティース12が配置されている。電動機51のセクション10におけるコイル13の数は、図2に示す電動機50のセクション10におけるコイル13の数よりも1個多い。また、電動機51のセクション10には、1個の第1のティースを介して第2のティースと隣り合う第1のティースは存在しない。 Section 10 of electric motor 51 has two second teeth. In section 10 of electric motor 51, teeth 12 of t3, which are first teeth, are arranged between teeth 12 of t2, which are second teeth, and teeth 12 of t4, which are second teeth. . The number of coils 13 in section 10 of electric motor 51 is one more than the number of coils 13 in section 10 of electric motor 50 shown in FIG. Further, in the section 10 of the electric motor 51, there is no first tooth adjacent to a second tooth via one first tooth.
 図6は、実施の形態1にかかる電動機50の各コイル13における誘起電圧を表すベクトル図である。図7は、実施の形態1の比較例にかかる電動機51の各コイル13における誘起電圧を表すベクトル図である。図6および図7において、実線矢印で示すベクトルは、ティース12に配置された各コイル13における誘起電圧の振幅と位相とを表す。図6および図7の各ベクトル図では、永久磁石21のピッチの2倍長さを位相角360度とする。以下、コイル13における誘起電圧の振幅と位相とを表すベクトルを、誘起電圧ベクトルと称する。図6に示す「t1_U-」は、t1のティース12に取り付けられた-U相のコイル13の誘起電圧ベクトルとする。図6および図7では、各コイル13の誘起電圧ベクトルを、「t1_U-」の場合と同じ要領により表記するものとする。破線矢印で示すベクトルは、各相の誘起電圧ベクトルであって、各コイル13の誘起電圧ベクトルを相ごとに合成した合成ベクトルである。 FIG. 6 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 50 according to the first embodiment. FIG. 7 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 51 according to the comparative example of the first embodiment. In FIGS. 6 and 7, vectors indicated by solid arrows represent the amplitude and phase of the induced voltage in each coil 13 disposed on the teeth 12. In each vector diagram of FIGS. 6 and 7, a phase angle of 360 degrees is defined as twice the pitch of the permanent magnets 21. Hereinafter, a vector representing the amplitude and phase of the induced voltage in the coil 13 will be referred to as an induced voltage vector. "t1_U-" shown in FIG. 6 is the induced voltage vector of the -U phase coil 13 attached to the teeth 12 at t1. In FIGS. 6 and 7, the induced voltage vector of each coil 13 is expressed in the same manner as in the case of "t1_U-". The vector indicated by the broken line arrow is the induced voltage vector of each phase, and is a composite vector obtained by combining the induced voltage vectors of each coil 13 for each phase.
 互いに隣り合うティース12間の位相差は、磁極の数であるPと、ティース12の数であるNとを用いて、{360×(P/2)/N}度と表される。例えば、電動機50では、t1のティース12とt2のティース12との位相差は、360°×(4/2)/5=144°である。電動機50の各ティース12は、互いに隣り合うティース12間の位相差が144度となるように配置される。なお、巻き方向が「-」である場合における誘起電圧の位相は、巻き方向が「+」である場合における誘起電圧の位相に対して180度進む。 The phase difference between adjacent teeth 12 is expressed as {360×(P/2)/N} degrees using P, which is the number of magnetic poles, and N, which is the number of teeth 12. For example, in the electric motor 50, the phase difference between the teeth 12 at t1 and the teeth 12 at t2 is 360°×(4/2)/5=144°. Each tooth 12 of the electric motor 50 is arranged so that the phase difference between adjacent teeth 12 is 144 degrees. Note that the phase of the induced voltage when the winding direction is "-" is 180 degrees ahead of the phase of the induced voltage when the winding direction is "+".
 各コイル13の誘起電圧ベクトルを相ごとに合成することで、各相の誘起電圧ベクトルが得られる。各相の分布巻係数kdであるkd,phaseは、次の式(1)により定義される。 By combining the induced voltage vectors of each coil 13 for each phase, the induced voltage vector of each phase is obtained. k d,phase, which is the distributed winding coefficient k d of each phase, is defined by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 NCは、各相のコイル13の合計数を表す。Nphase,i(i=1,・・・,NC)は、各コイル13の巻数を表す。θphase,iは、各コイル13における誘起電圧ベクトルの位相を表す。θphaseは、各相の合成ベクトルの位相を表す。θphaseは、次の式(2)により定義される。 N C represents the total number of coils 13 in each phase. N phase,i (i=1,..., N C ) represents the number of turns of each coil 13. θ phase,i represents the phase of the induced voltage vector in each coil 13. θ phase represents the phase of the composite vector of each phase. θ phase is defined by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、電動機50におけるU相の合成ベクトルは、「t1_U-」と「t5_U+」とを合成した合成ベクトルである。「t1_U+」の位相を0度とすると、「t1_U-」の位相であるθU,1は180度である。「t5_U+」の位相であるθU,2は、144°×(5-1)=576°と計算される。かかるθU,2を0度から360度までの角度に換算すると、θU,2は、216度である。「t1_U-」のコイル13の巻数と「t5_U+」のコイル13の巻数とは互いに同等であるため、U相の合成ベクトルの位相であるθUは、(θU,1+θU,2)/2=(180°+216°)/2=198°と計算される。 For example, the U-phase composite vector in the electric motor 50 is a composite vector of "t1_U-" and "t5_U+". If the phase of "t1_U+" is 0 degrees, the phase θ U,1 of "t1_U-" is 180 degrees. θ U,2 , which is the phase of “t5_U+”, is calculated as 144°×(5−1)=576°. When θ U,2 is converted into an angle from 0 degrees to 360 degrees, θ U,2 is 216 degrees. Since the number of turns of the coil 13 in "t1_U-" and the number of turns in the coil 13 in "t5_U+" are equal to each other, θ U , which is the phase of the U-phase composite vector, is (θ U,1 + θ U,2 )/ It is calculated as 2=(180°+216°)/2=198°.
 U相の分布巻係数kdであるkd,Uは、式(1)の各変数に値が代入されることにより、次の式(3)のように計算される。NU,1は、U相を構成するコイル13である「t1_U-」のコイル13の巻数である。NU,2は、U相を構成するコイル13である「t5_U+」のコイル13の巻数である。
d,U={NU,1×cos(180°-198°)+NU,2×cos(216°-198°)}/(NU,1+NU,2)  ・・・(3)
k d,U, which is the distributed winding coefficient k d of the U phase, is calculated as shown in the following equation (3) by substituting values for each variable in equation (1). N U,1 is the number of turns of the coil 13 of "t1_U-" which is the coil 13 constituting the U phase. N U,2 is the number of turns of the coil 13 of "t5_U+" which is the coil 13 constituting the U phase.
k d,U = {N U,1 ×cos (180°-198°) + N U,2 ×cos (216°-198°)}/(N U,1 +N U,2 ) ... (3)
 V相の分布巻係数kdであるkd,Vと、W相の分布巻係数kdであるkd,Wとの各々は、kd,Uの場合と同様の計算によって求めることができる。U相、V相およびW相である全ての相の分布巻係数kdの合計であるkd,UVWは、次の式(4)により計算される。
d,UVW=(kd,U+kd,V+kd,W)/3  ・・・(4)
Each of k d,V, which is the distributed winding coefficient k d of the V phase, and k d,W, which is the distributed winding coefficient k d of the W phase, can be obtained by the same calculation as in the case of k d,U. . k d,UVW, which is the sum of the distributed winding coefficients k d of all phases, which are the U phase, V phase, and W phase, is calculated by the following equation (4).
k d,UVW = (k d,U +k d,V +k d,W )/3...(4)
 図8は、実施の形態1にかかる電動機50における分布巻係数の増加について説明するための図である。図8には、比較例にかかる電動機51の分布巻係数の値を表す棒グラフと、実施の形態1にかかる電動機50の分布巻係数の値を表す棒グラフとを示す。分布巻係数の値は、電動機51の分布巻係数の値を基に規格化された値とする。すなわち、電動機51の分布巻係数の値に対する比によって、分布巻係数の値を表す。 FIG. 8 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 50 according to the first embodiment. FIG. 8 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 51 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 50 according to the first embodiment. The value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 51. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 51.
 図6に示す実施の形態1の場合、U相のコイル13は2個、V相のコイル13は2個、W相のコイル13は2個である。図7に示す比較例の場合、U相のコイル13は2個、V相のコイル13は3個、W相のコイル13は2個である。実施の形態1では、比較例の場合よりもコイル13が1個少ないことから、比較例の場合よりも少ない巻数で、比較例の場合と同等の振幅を得ることができる。よって、実施の形態1では、比較例の場合よりも分布巻係数を増加させることができる。 In the case of the first embodiment shown in FIG. 6, there are two U-phase coils 13, two V-phase coils 13, and two W-phase coils 13. In the case of the comparative example shown in FIG. 7, there are two U-phase coils 13, three V-phase coils 13, and two W-phase coils 13. In the first embodiment, since the number of coils 13 is one less than in the comparative example, it is possible to obtain the same amplitude as in the comparative example with a smaller number of turns than in the comparative example. Therefore, in the first embodiment, the distributed winding coefficient can be increased more than in the comparative example.
 電動機50は、図2に示すコイル配置と図3に示す巻数とを採用することによって、図4に示すコイル配置と図5に示す巻数とを備える比較例の場合と比べて分布巻係数を増加できる効果が得られる。 By employing the coil arrangement shown in FIG. 2 and the number of turns shown in FIG. 3, the electric motor 50 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 4 and the number of turns shown in FIG. You can get the desired effect.
 電動機50では、第2のティースと第2のティースとの間に第1のティースが配置される構成は採用されていない。電動機50は、比較例の場合と比べて分布巻係数を高くすることができるため、可動子1におけるコイル13の発熱を低減できる。 The electric motor 50 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 50 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
 電動機50は、上述するように各ティース12の合計巻数が設定されることによって、各相の誘起電圧およびインダクタンスの差分を低減できる。これにより、電動機50は、電動機50の端子電圧の差異を低減できる効果が得られる。また、電動機50は、各相の合計巻数の差分を低減できるため、抵抗値の差分を低減できる。これにより、電動機50は、コイル13の局所的な発熱を低減できる効果が得られる。 The electric motor 50 can reduce the difference in induced voltage and inductance of each phase by setting the total number of turns of each tooth 12 as described above. Thereby, the electric motor 50 has the effect of reducing the difference in terminal voltage of the electric motor 50. Further, since the electric motor 50 can reduce the difference in the total number of turns of each phase, it can reduce the difference in resistance values. Thereby, the electric motor 50 has the effect of reducing local heat generation of the coil 13.
 図9は、実施の形態1にかかる電動機50による相互インダクタンスの低減について説明するための図である。図9には、比較例にかかる電動機51の相互インダクタンスの値を表す棒グラフと、実施の形態1にかかる電動機50の相互インダクタンスの値を表す棒グラフとを示す。相互インダクタンスの値は、電動機51の相互インダクタンスの値を基に規格化された値とする。すなわち、電動機51の相互インダクタンスの値に対する比によって、相互インダクタンスの値を表す。電動機50は、図2に示すコイル配置と図3に示す巻数とを採用することによって、図4に示すコイル配置と図5に示す巻数とを備える比較例の場合と比べて相互インダクタンスを低減できる効果が得られる。 FIG. 9 is a diagram for explaining mutual inductance reduction by the electric motor 50 according to the first embodiment. FIG. 9 shows a bar graph representing the mutual inductance value of the electric motor 51 according to the comparative example and a bar graph representing the mutual inductance value of the electric motor 50 according to the first embodiment. The mutual inductance value is a value standardized based on the mutual inductance value of the electric motor 51. That is, the value of the mutual inductance is expressed by the ratio to the value of the mutual inductance of the electric motor 51. By employing the coil arrangement shown in FIG. 2 and the number of turns shown in FIG. 3, the electric motor 50 can reduce mutual inductance compared to the comparative example having the coil arrangement shown in FIG. 4 and the number of turns shown in FIG. Effects can be obtained.
 なお、電動機50は、各ティース12に取り付けられるコイル13の巻数が図3に示すように設定されるものに限られない。2相のコイル13が取り付けられるティース12の巻数が他のティース12に比べて極端に大きくならなければ良く、各ティース12の巻数の組み合わせは、図3に示す場合とは異なっても良い。電動機50は、各ティース12の巻数の組み合わせが図3に示す場合とは異なる場合でも、図3に示すように各コイル13の巻数が設定される場合と同様の効果が得られる。 Note that the electric motor 50 is not limited to one in which the number of turns of the coil 13 attached to each tooth 12 is set as shown in FIG. The number of turns of the tooth 12 to which the two-phase coil 13 is attached need not be extremely large compared to other teeth 12, and the combination of the number of turns of each tooth 12 may be different from the case shown in FIG. 3. In the electric motor 50, even if the combination of the number of turns of each tooth 12 is different from that shown in FIG. 3, the same effect as when the number of turns of each coil 13 is set as shown in FIG. 3 can be obtained.
 複数の相のコイル13が取り付けられるティース12におけるコイル13の配置の順序は任意とする。図2に示すt3のティース12における、+V相のコイル13と-W相のコイル13との順序は、図2に示す場合とは逆でも良い。また、複数のティース12におけるコイル13の配置は、可動子1の進行方向における相の順序が図2に示す場合と同じであれば良い。図2に示す場合と相の順序が同じであれば、進行方向における端に位置する相はいずれの相であっても良い。 The order of arrangement of the coils 13 on the teeth 12 to which the coils 13 of a plurality of phases are attached is arbitrary. The order of the +V phase coil 13 and the -W phase coil 13 in the teeth 12 at t3 shown in FIG. 2 may be reversed from that shown in FIG. Further, the arrangement of the coils 13 in the plurality of teeth 12 may be as long as the order of the phases in the moving direction of the movable element 1 is the same as that shown in FIG. 2 . As long as the order of the phases is the same as in the case shown in FIG. 2, the phase located at the end in the traveling direction may be any phase.
 実施の形態1では、可動子1の構成を、N=5およびC=1を満足する構成とした。すなわち、可動子1は、5個のティース12で構成されたセクション10が進行方向に1個配置された構成とした。電動機50では、複数のセクション10が進行方向に配置されても良い。すなわち、可動子1は、複数のセクション10を備える構成であっても良い。この場合、Cは1よりも大きい自然数である。電動機50は、Cが1よりも大きい自然数である場合も、Cが1である場合と同様に上述の効果を得ることができる。 In the first embodiment, the movable element 1 has a configuration that satisfies N=5 and C=1. That is, the movable element 1 has a configuration in which one section 10 composed of five teeth 12 is arranged in the traveling direction. In the electric motor 50, a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10. In this case, C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 50 can obtain the above-mentioned effects in the same way as when C is 1.
 実施の形態1では、可動子1の構成を、単一または複数のセクション10が進行方向に配置される構成とした。これに加え、可動子1のうち進行方向の両端の各々には、コイル13を有しないティース12である補助ティースが取り付けられても良い。電動機50は、可動子1のうち進行方向の両端の各々に補助ティースが取り付けられる場合も、補助ティースが取り付けられない場合と同様の効果を得ることができる。 In the first embodiment, the movable element 1 has a configuration in which a single section 10 or a plurality of sections 10 are arranged in the traveling direction. In addition, auxiliary teeth, which are teeth 12 without coils 13, may be attached to each of the ends of the mover 1 in the moving direction. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 50 can obtain the same effect as when no auxiliary teeth are attached.
 複数のティース12の各々は、界磁側の先端部がストレート状であるものに限られない。ティース12の界磁側の先端部には、進行方向に向けられた突起、またはくぼみが形成されていても良い。電動機50は、ティース12に突起またはくぼみが形成されている場合も、ティース12がストレート状である場合と同様の効果を得ることができる。 Each of the plurality of teeth 12 is not limited to having a straight tip portion on the field side. A protrusion or a depression oriented in the traveling direction may be formed at the tip of the tooth 12 on the field side. Even when the teeth 12 are formed with protrusions or depressions, the electric motor 50 can obtain the same effect as when the teeth 12 are straight.
 実施の形態1では、複数の永久磁石21が固定子鉄心の表面にて取付座22に貼り付けられる構成について説明したが、電動機50は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる構成であっても良い。電動機50は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる場合も、複数の永久磁石21が固定子鉄心の表面に設けられる場合と同様の効果を得ることができる。 In the first embodiment, a configuration was described in which a plurality of permanent magnets 21 are attached to the mounting seat 22 on the surface of the stator core, but in the electric motor 50, a plurality of permanent magnets 21 are embedded inside the stator core. It may be a configuration. Even when the plurality of permanent magnets 21 are embedded inside the stator core, the electric motor 50 can obtain the same effect as when the plurality of permanent magnets 21 are provided on the surface of the stator core.
 実施の形態1によると、電動機50は、N/C個のティース12で構成されたセクション10が進行方向にC個配置されており、セクション10における第2のティースが1個である。電動機50は、分布巻係数を高くすることができることによって、可動子1におけるコイル13の発熱を低減できる。以上により、電動機50は、コイル13の発熱を低減できるという効果を奏する。 According to the first embodiment, in the electric motor 50, C sections 10 each including N/C teeth 12 are arranged in the traveling direction, and the second tooth in the section 10 is one. The electric motor 50 can reduce heat generation of the coil 13 in the movable element 1 by increasing the distributed winding coefficient. As described above, the electric motor 50 has the effect of reducing heat generation of the coil 13.
実施の形態2.
 図10は、実施の形態2にかかる電動機52の断面図である。実施の形態2では、可動子1におけるティース12およびコイル13の配置が、実施の形態1の場合とは異なる。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。図10に示す固定子2の断面は、図2の場合と同様に、固定子2のうち可動子1と対向する部分の断面とする。
Embodiment 2.
FIG. 10 is a sectional view of the electric motor 52 according to the second embodiment. In the second embodiment, the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first embodiment. In Embodiment 2, the same components as in Embodiment 1 described above are given the same reference numerals, and configurations that are different from Embodiment 1 will be mainly explained. The cross section of the stator 2 shown in FIG. 10 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
 実施の形態2では、磁極の数は3であって、N=4およびC=1である。実施の形態2では、N/Cは4であって、3の倍数以外の整数である。Nは3の倍数以外の整数である。電動機52は、かかる条件を満足することによって、コギングトルクを低減させることができるという効果を得られる。 In the second embodiment, the number of magnetic poles is three, N=4 and C=1. In the second embodiment, N/C is 4, which is an integer other than a multiple of 3. N is an integer other than a multiple of 3. By satisfying these conditions, the electric motor 52 can achieve the effect of reducing cogging torque.
 実施の形態2では、可動子1の各ティース12に、便宜的にティース番号を割り当てる。各ティース12には、図10において左から右へ向かって、それぞれティース番号であるt1,t2,t3,t4が割り当てられている。 In the second embodiment, each tooth 12 of the movable element 1 is assigned a tooth number for convenience. Teeth numbers t1, t2, t3, and t4 are assigned to each tooth 12 from left to right in FIG. 10, respectively.
 4個のティース12には、3相のコイル13が取り付けられている。t1のティース12には、+U相のコイル13が取り付けられている。t2のティース12には、+V相のコイル13と-U相のコイル13とが取り付けられている。t3のティース12には、-V相のコイル13と+W相のコイル13とが取り付けられている。t4のティース12には、-W相のコイル13が取り付けられている。 A three-phase coil 13 is attached to the four teeth 12. A +U phase coil 13 is attached to the teeth 12 at t1. A +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2. A -V phase coil 13 and a +W phase coil 13 are attached to the teeth 12 at t3. A -W phase coil 13 is attached to the teeth 12 at t4.
 t1,t4の各ティース12は、1相のコイル13のみが取り付けられたティース12である。t2,t3のティース12は、2相のコイル13が取り付けられたティース12である。このように、可動子1の複数のティース12は、1相のコイル13のみが取り付けられたティース12である第1のティースと、複数の相のコイル13が取り付けられたティース12である第2のティースとを含む。t1,t4の各ティース12は、第1のティースである。t2,t3のティース12は、第2のティースである。可動子1のうち進行方向における端に位置するティース12であるt1のティース12とt4のティース12との各々は、第1のティースである。 Each of the teeth 12 at t1 and t4 is a tooth 12 to which only a one-phase coil 13 is attached. Teeth 12 at t2 and t3 are teeth 12 to which two-phase coils 13 are attached. In this way, the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached. Including teeth. Each tooth 12 at t1 and t4 is a first tooth. Teeth 12 at t2 and t3 are second teeth. Each of the teeth 12 at t1 and the teeth 12 at t4, which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth.
 電動機52では、N/C個のティース12で構成されたセクション10が進行方向にC個配置されている。実施の形態2では、4個のティース12で構成されたセクション10が進行方向に1個配置されている。また、実施の形態2において、セクション10に含まれる第2のティースは2個である。セクション10では、進行方向において2個の第2のティースが連続して配置されている。すなわち、第2のティースと第2のティースとの間には、第1のティースが配置されていない。 In the electric motor 52, C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction. In the second embodiment, one section 10 composed of four teeth 12 is arranged in the traveling direction. Further, in the second embodiment, the number of second teeth included in the section 10 is two. In the section 10, two second teeth are arranged consecutively in the traveling direction. That is, the first teeth are not arranged between the second teeth.
 図11は、実施の形態2において各ティース12に取り付けられているコイル13の巻数の例を示す図である。図11には、各ティース12における相ごとのコイル13の巻数と、各ティース12の合計巻数とを示す。図11に示す巻数は、複数のティース12全体の巻数を基に規格化された巻数とする。図11に示す合計巻数は、複数のティース12全体の巻数を基に規格化された合計巻数とする。すなわち、可動子1の全体における巻数に対する比によって、各ティース12の巻数と合計巻数とを表す。また、図11には、可動子1の全体における直列導体数に対する、相ごとの直列導体数の比を示す。 FIG. 11 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the second embodiment. FIG. 11 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12. The number of turns shown in FIG. 11 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. The total number of turns shown in FIG. 11 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1. Further, FIG. 11 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
 図11に示す例では、t1のティース12における合計巻数である0.27とt4のティース12における合計巻数である0.27との和は、0.54である。t2のティース12における合計巻数である0.23とt3のティース12における合計巻数である0.23との和は、0.46である。このように、実施の形態2では、セクション10に含まれる全ての第1のティースにおけるコイル13の合計巻数が、セクション10に含まれる全ての第2のティースにおけるコイル13の合計巻数よりも多い。 In the example shown in FIG. 11, the sum of 0.27, which is the total number of turns on the teeth 12 at t1, and 0.27, which is the total number of turns on the teeth 12 at t4, is 0.54. The sum of 0.23, which is the total number of turns on the teeth 12 at t2, and 0.23, which is the total number of turns on the teeth 12 at t3, is 0.46. Thus, in the second embodiment, the total number of turns of the coil 13 in all the first teeth included in the section 10 is greater than the total number of turns of the coil 13 in all the second teeth included in the section 10.
 ここで、実施の形態2の比較例にかかる電動機の構成を説明する。図12は、実施の形態2の比較例にかかる電動機53の断面図である。図13は、実施の形態2の比較例において各ティース12に取り付けられているコイル13の巻数の例を示す図である。図10に示す電動機52と同様に、可動子1は、4個のティース12を有する。t1のティース12には、+U相のコイル13が取り付けられている。t2のティース12には、+V相のコイル13と-U相のコイル13とが取り付けられている。t3のティース12には、+W相のコイル13が取り付けられている。t4のティース12には、+V相のコイル13と-W相のコイル13とが取り付けられている。 Here, the configuration of the electric motor according to a comparative example of the second embodiment will be explained. FIG. 12 is a sectional view of an electric motor 53 according to a comparative example of the second embodiment. FIG. 13 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in a comparative example of the second embodiment. Similar to the electric motor 52 shown in FIG. 10, the mover 1 has four teeth 12. A +U phase coil 13 is attached to the teeth 12 at t1. A +V phase coil 13 and a -U phase coil 13 are attached to the teeth 12 at t2. A +W phase coil 13 is attached to the teeth 12 at t3. A +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t4.
 電動機53において、t1,t3の各ティース12は、1相のコイル13のみが取り付けられた第1のティースである。t2,t4のティース12の各々は、2相のコイル13が取り付けられている。t2,t4のティース12は、複数のコイル13が取り付けられた第2のティースである。電動機53では、第2のティースと第2のティースとの間に1個の第1のティースが配置されている。 In the electric motor 53, each of the teeth 12 at t1 and t3 is a first tooth to which only a one-phase coil 13 is attached. A two-phase coil 13 is attached to each of the teeth 12 at t2 and t4. Teeth 12 at t2 and t4 are second teeth to which a plurality of coils 13 are attached. In the electric motor 53, one first tooth is arranged between the second teeth.
 図13に示す比較例では、t1のティース12における合計巻数である0.27とt3のティース12における合計巻数である0.06との和は、0.33である。t2のティース12における合計巻数である0.34とt4のティース12における合計巻数である0.40との和は、0.74である。比較例では、図13に示す実施の形態2の場合とは異なり、セクション10に含まれる全ての第1のティースにおけるコイル13の合計巻数が、セクション10に含まれる全ての第2のティースにおけるコイル13の合計巻数よりも少ない。 In the comparative example shown in FIG. 13, the sum of 0.27, which is the total number of turns on the teeth 12 at t1, and 0.06, which is the total number of turns on the teeth 12 at t3, is 0.33. The sum of 0.34, which is the total number of turns on the teeth 12 at t2, and 0.40, which is the total number of turns on the teeth 12 at t4, is 0.74. In the comparative example, unlike the case of Embodiment 2 shown in FIG. It is less than the total number of volumes of 13.
 図14は、実施の形態2にかかる電動機52の各コイル13における誘起電圧を表すベクトル図である。図15は、実施の形態2の比較例にかかる電動機53の各コイル13における誘起電圧を表すベクトル図である。図14および図15において、実線矢印で示すベクトルは、誘起電圧ベクトルである。図14および図15の各ベクトル図では、永久磁石21のピッチの2倍長さを位相角360度とする。破線矢印で示すベクトルは、各相の誘起電圧ベクトルであって、各コイル13の誘起電圧ベクトルを相ごとに合成した合成ベクトルである。 FIG. 14 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 52 according to the second embodiment. FIG. 15 is a vector diagram showing the induced voltage in each coil 13 of the electric motor 53 according to the comparative example of the second embodiment. In FIGS. 14 and 15, vectors indicated by solid arrows are induced voltage vectors. In each vector diagram of FIGS. 14 and 15, a phase angle of 360 degrees is twice the length of the pitch of the permanent magnets 21. The vector indicated by the broken line arrow is the induced voltage vector of each phase, and is a composite vector obtained by combining the induced voltage vectors of each coil 13 for each phase.
 互いに隣り合うティース12間の位相差は、磁極の数であるPと、ティース12の数であるNとを用いて、{360×(P/2)/N}度と表される。例えば、電動機52では、t1のティース12とt2のティース12との位相差は、360°×(3/2)/4=135°である。電動機52の各ティース12は、互いに隣り合うティース12間の位相差が135度となるように配置される。実施の形態2においても、実施の形態1の場合と同様の計算によって、U相、V相およびW相である全ての相の分布巻係数kdの合計であるkd,UVWが求まる。 The phase difference between adjacent teeth 12 is expressed as {360×(P/2)/N} degrees using P, which is the number of magnetic poles, and N, which is the number of teeth 12. For example, in the electric motor 52, the phase difference between the teeth 12 at t1 and the teeth 12 at t2 is 360°×(3/2)/4=135°. Each tooth 12 of the electric motor 52 is arranged so that the phase difference between adjacent teeth 12 is 135 degrees. In the second embodiment as well, k d,UVW, which is the sum of the distributed winding coefficients k d of all phases, which are the U phase, V phase, and W phase, is determined by the same calculation as in the first embodiment.
 図14と図15とを比較すると、実施の形態2にかかる電動機52は、図14における「t3_V-」とV相の合成ベクトルとの位相差が、図15における「t4_V+」とV相の合成ベクトルとの位相差よりも小さいという特徴を有する。 Comparing FIG. 14 and FIG. 15, the electric motor 52 according to the second embodiment has a phase difference between "t3_V-" in FIG. 14 and the V-phase composite vector, and "t4_V+" in FIG. 15 and the V-phase composite vector. It has the characteristic of being smaller than the phase difference with the vector.
 図16は、実施の形態2にかかる電動機52における分布巻係数の増加について説明するための図である。図16には、比較例にかかる電動機53の分布巻係数の値を表す棒グラフと、実施の形態2にかかる電動機52の分布巻係数の値を表す棒グラフとを示す。分布巻係数の値は、電動機53の分布巻係数の値を基に規格化された値とする。すなわち、電動機53の分布巻係数の値に対する比によって、分布巻係数の値を表す。 FIG. 16 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 52 according to the second embodiment. FIG. 16 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 53 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 52 according to the second embodiment. The value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 53. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 53.
 電動機52は、図10に示すコイル配置と図11に示す巻数とを採用することによって、図12に示すコイル配置と図13に示す巻数とを備える比較例の場合と比べて分布巻係数を増加できる効果が得られる。 By adopting the coil arrangement shown in FIG. 10 and the number of turns shown in FIG. 11, the electric motor 52 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 12 and the number of turns shown in FIG. You can get the desired effect.
 電動機52では、第2のティースと第2のティースとの間に第1のティースが配置される構成は採用されていない。電動機52は、比較例の場合と比べて分布巻係数を高くすることができるため、可動子1におけるコイル13の発熱を低減できる。 The electric motor 52 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 52 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
 電動機52は、上述するように各ティース12の合計巻数が設定されることによって、各相の誘起電圧およびインダクタンスの差分を低減できる。これにより、電動機52は、電動機52の端子電圧の差異を低減できる効果が得られる。また、電動機52は、各相の合計巻数の差分を低減できるため、抵抗値の差分を低減できる。これにより、電動機52は、コイル13の局所的な発熱を低減できる効果が得られる。 The electric motor 52 can reduce the difference in induced voltage and inductance of each phase by setting the total number of turns of each tooth 12 as described above. As a result, the electric motor 52 has the effect of reducing the difference in terminal voltage of the electric motor 52. Further, since the electric motor 52 can reduce the difference in the total number of turns of each phase, it can reduce the difference in resistance values. Thereby, the electric motor 52 has the effect of reducing local heat generation of the coil 13.
 実施の形態2では、可動子1の構成を、N=4およびC=1を満足する構成とした。すなわち、可動子1は、4個のティース12で構成されたセクション10が進行方向に1個配置された構成とした。電動機52では、複数のセクション10が進行方向に配置されても良い。すなわち、可動子1は、複数のセクション10を備える構成であっても良い。この場合、Cは1よりも大きい自然数である。電動機52は、Cが1よりも大きい自然数である場合も、Cが1である場合と同様に上述の効果を得ることができる。 In the second embodiment, the movable element 1 has a configuration that satisfies N=4 and C=1. That is, the movable element 1 has a configuration in which one section 10 composed of four teeth 12 is arranged in the traveling direction. In the electric motor 52, a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10. In this case, C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 52 can obtain the above-mentioned effect as in the case where C is 1.
 実施の形態2では、可動子1の構成を、単一または複数のセクション10が進行方向に配置される構成とした。これに加え、可動子1のうち進行方向の両端の各々には補助ティースが取り付けられても良い。電動機52は、可動子1のうち進行方向の両端の各々に補助ティースが取り付けられる場合も、補助ティースが取り付けられない場合と同様の効果を得ることができる。また、実施の形態1の場合と同様に、ティース12の界磁側の先端部には、進行方向に向けられた突起、またはくぼみが形成されても良い。実施の形態1の場合と同様に、電動機52は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる構成であっても良い。 In the second embodiment, the movable element 1 has a configuration in which a single section 10 or a plurality of sections 10 are arranged in the traveling direction. In addition, auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 52 can obtain the same effect as when no auxiliary teeth are attached. Further, as in the case of Embodiment 1, protrusions or depressions oriented in the traveling direction may be formed at the tip portions of the teeth 12 on the field side. As in the first embodiment, the electric motor 52 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
 実施の形態2によると、電動機52は、N/C個のティース12で構成されたセクション10が進行方向にC個配置されており、セクション10では進行方向において2個の第2のティースが連続して配置されている。電動機52は、分布巻係数を高くすることができることによって、可動子1におけるコイル13の発熱を低減できる。以上により、電動機52は、コイル13の発熱を低減できるという効果を奏する。 According to the second embodiment, in the electric motor 52, C sections 10 each including N/C teeth 12 are arranged in the traveling direction, and in the section 10, two second teeth are arranged consecutively in the traveling direction. It is arranged as follows. The electric motor 52 can reduce heat generation of the coil 13 in the movable element 1 by increasing the distributed winding coefficient. As described above, the electric motor 52 has the effect of reducing heat generation of the coil 13.
実施の形態3.
 図17は、実施の形態3にかかる電動機54の断面図である。実施の形態3では、可動子1におけるティース12およびコイル13の配置が、実施の形態1または2の場合とは異なる。実施の形態3では、上記の実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。図17に示す固定子2の断面は、図2の場合と同様に、固定子2のうち可動子1と対向する部分の断面とする。
Embodiment 3.
FIG. 17 is a sectional view of the electric motor 54 according to the third embodiment. In the third embodiment, the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first or second embodiment. In Embodiment 3, the same components as in Embodiment 1 or 2 described above are given the same reference numerals, and configurations that are different from Embodiment 1 or 2 will be mainly explained. The cross section of the stator 2 shown in FIG. 17 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
 実施の形態3では、磁極の数は4であって、N=5およびC=1である。実施の形態3では、N/Cは5であって、3の倍数以外の整数である。Nは3の倍数以外の整数である。電動機54は、かかる条件を満足することによって、コギングトルクを低減させることができるという効果を得られる。 In the third embodiment, the number of magnetic poles is 4, with N=5 and C=1. In the third embodiment, N/C is 5, which is an integer other than a multiple of 3. N is an integer other than a multiple of 3. By satisfying these conditions, the electric motor 54 can achieve the effect of reducing cogging torque.
 実施の形態3では、可動子1の各ティース12に、便宜的にティース番号を割り当てる。各ティース12には、図17において左から右へ向かって、それぞれティース番号であるt2,t3,t4,t5,t1が割り当てられている。 In the third embodiment, each tooth 12 of the mover 1 is assigned a tooth number for convenience. Teeth numbers t2, t3, t4, t5, and t1 are assigned to each tooth 12 from left to right in FIG. 17, respectively.
 5個のティース12には、3相のコイル13が取り付けられている。t2のティース12には、-V相のコイル13が取り付けられている。t3のティース12には、+V相のコイル13と-W相のコイル13とが取り付けられている。t4のティース12には、+W相のコイル13が取り付けられている。t5のティース12には、+U相のコイル13が取り付けられている。t1のティース12には、-U相のコイル13が取り付けられている。 A three-phase coil 13 is attached to the five teeth 12. A -V phase coil 13 is attached to the teeth 12 at t2. A +V phase coil 13 and a -W phase coil 13 are attached to the teeth 12 at t3. A +W phase coil 13 is attached to the teeth 12 at t4. A +U phase coil 13 is attached to the teeth 12 at t5. A -U phase coil 13 is attached to the teeth 12 at t1.
 t2,t4,t5,t1の各ティース12は、1相のコイル13のみが取り付けられたティース12である。t3のティース12は、2相のコイル13が取り付けられたティース12である。このように、可動子1の複数のティース12は、1相のコイル13のみが取り付けられたティース12である第1のティースと、複数の相のコイル13が取り付けられたティース12である第2のティースとを含む。t2,t4,t5,t1の各ティース12は、第1のティースである。t3のティース12は、第2のティースである。可動子1のうち進行方向における端に位置するティース12であるt2のティース12とt1のティース12との各々は、第1のティースである。 Each of the teeth 12 at t2, t4, t5, and t1 is a tooth 12 to which only a one-phase coil 13 is attached. Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached. In this way, the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached. Including teeth. Each tooth 12 at t2, t4, t5, and t1 is a first tooth. Teeth 12 at t3 is the second tooth. Each of the teeth 12 at t2 and the teeth 12 at t1, which are the teeth 12 located at the end in the moving direction of the movable element 1, is a first tooth.
 電動機54では、N/C個のティース12で構成されたセクション10が進行方向にC個配置されている。実施の形態3では、5個のティース12で構成されたセクション10が進行方向に1個配置されている。また、実施の形態3において、セクション10に含まれる第2のティースは、1個である。 In the electric motor 54, C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction. In the third embodiment, one section 10 composed of five teeth 12 is arranged in the traveling direction. Furthermore, in the third embodiment, the number of second teeth included in section 10 is one.
 第2のティースには、相間の絶縁のためのインシュレータが取り付けられている。第2のティースでは、インシュレータが占める分、第1のティースに比べて巻線面積が小さくなる。また、可動子1のうち進行方向における端に位置するティース12には、コイル13を保護するため保護部品が取り付けられている。端に位置するティース12では、保護部品が占める分、端以外の位置のティース12に比べて巻線面積が小さくなる。 An insulator for insulation between phases is attached to the second teeth. The winding area of the second teeth is smaller than that of the first teeth due to the area occupied by the insulator. Furthermore, a protective component is attached to the teeth 12 located at the end of the movable element 1 in the direction of movement to protect the coil 13. The winding area of the teeth 12 located at the ends is smaller than that of the teeth 12 located at positions other than the ends due to the area occupied by the protective component.
 仮に、可動子1のうち進行方向における端に第2のティースが配置される場合、当該第2のティースにはインシュレータと保護部品とが取り付けられることによって、当該第2のティースにおける巻線面積は著しく小さくなる。当該第2のティースでは、巻数を稼ぐために、線径が細い導線によって形成されたコイル13が取り付けられることとなる。この場合、線径が細くなることによって、コイル13の発熱が大きくなる。 If the second tooth is arranged at the end of the mover 1 in the direction of movement, an insulator and a protective component are attached to the second tooth, so that the winding area of the second tooth is becomes significantly smaller. In order to increase the number of turns, a coil 13 formed of a conductive wire with a small diameter is attached to the second tooth. In this case, as the wire diameter becomes smaller, the heat generated by the coil 13 increases.
 電動機54では、可動子1のうち進行方向における端に位置するティース12が第1のティースであることによって、複数のティース12のうち進行方向における端に位置するティース12において巻線面積が局所的に小さくなることが防がれる。進行方向における端に位置する第1のティースには、線径が太い導線によって形成されたコイル13を配置可能であることによって、コイル13の発熱を低減できる。以上により、電動機54は、可動子1のうち進行方向における端に位置するティース12が第1のティースであることによって、コイル13の発熱を低減できるという効果を奏する。 In the electric motor 54, since the tooth 12 located at the end in the traveling direction of the movable element 1 is the first tooth, the winding area of the tooth 12 located at the end in the traveling direction among the plurality of teeth 12 is localized. This prevents it from becoming smaller. The coil 13 formed of a conductive wire with a large wire diameter can be placed on the first tooth located at the end in the traveling direction, so that the heat generation of the coil 13 can be reduced. As described above, the electric motor 54 has the effect that the heat generation of the coil 13 can be reduced because the tooth 12 located at the end in the moving direction of the movable element 1 is the first tooth.
 実施の形態1,2においても、電動機50,52は、可動子1のうち進行方向における端に位置するティース12が第1のティースであることによって、コイル13の発熱を低減できる効果を得ることができる。 Also in the first and second embodiments, the electric motors 50 and 52 have the effect of reducing the heat generation of the coil 13 by having the tooth 12 located at the end in the moving direction of the movable element 1 as the first tooth. I can do it.
 実施の形態3では、可動子1は、5個のティース12で構成されたセクション10が進行方向に1個配置された構成とした。電動機54では、複数のセクション10が進行方向に配置されても良い。すなわち、可動子1は、複数のセクション10を備える構成であっても良い。この場合、Cは1よりも大きい自然数である。電動機54は、Cが1よりも大きい自然数である場合も、Cが1である場合と同様に上述の効果を得ることができる。 In the third embodiment, the movable element 1 has a configuration in which one section 10 composed of five teeth 12 is arranged in the traveling direction. In the electric motor 54, a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10. In this case, C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 54 can obtain the above-mentioned effect as in the case where C is 1.
 実施の形態3では、可動子1の構成を、単一または複数のセクション10が進行方向に配置される構成とした。これに加え、可動子1のうち進行方向の両端の各々には補助ティースが取り付けられても良い。電動機54は、可動子1のうち進行方向の両端の各々に補助ティースが取り付けられる場合も、補助ティースが取り付けられない場合と同様の効果を得ることができる。また、実施の形態1または2の場合と同様に、ティース12の界磁側の先端部には、進行方向に向けられた突起、またはくぼみが形成されても良い。実施の形態1または2の場合と同様に、電動機54は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる構成であっても良い。 In the third embodiment, the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction. In addition, auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the direction of movement, the electric motor 54 can obtain the same effect as when no auxiliary teeth are attached. Further, as in the case of Embodiment 1 or 2, a protrusion or a depression oriented in the traveling direction may be formed at the tip of the tooth 12 on the field side. As in the case of Embodiment 1 or 2, the electric motor 54 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
実施の形態4.
 図18は、実施の形態4にかかる電動機55の断面図である。実施の形態4では、可動子1におけるティース12およびコイル13の配置が、実施の形態1から3の場合とは異なる。実施の形態4では、上記の実施の形態1から3と同一の構成要素には同一の符号を付し、実施の形態1から3とは異なる構成について主に説明する。図18に示す固定子2の断面は、図2の場合と同様に、固定子2のうち可動子1と対向する部分の断面とする。
Embodiment 4.
FIG. 18 is a sectional view of the electric motor 55 according to the fourth embodiment. In the fourth embodiment, the arrangement of the teeth 12 and the coil 13 in the movable element 1 is different from that in the first to third embodiments. In Embodiment 4, the same components as in Embodiments 1 to 3 described above are given the same reference numerals, and configurations that are different from Embodiments 1 to 3 will be mainly explained. The cross section of the stator 2 shown in FIG. 18 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
 実施の形態4では、磁極の数は3であって、N=4およびC=1である。実施の形態4では、N/Cは4であって、3の倍数以外の整数である。Nは3の倍数以外の整数である。電動機54は、かかる条件を満足することによって、コギングトルクを低減させることができるという効果を得られる。 In the fourth embodiment, the number of magnetic poles is three, N=4 and C=1. In the fourth embodiment, N/C is 4, which is an integer other than a multiple of 3. N is an integer other than a multiple of 3. By satisfying these conditions, the electric motor 54 can achieve the effect of reducing cogging torque.
 実施の形態4では、可動子1の各ティース12に、便宜的にティース番号を割り当てる。各ティース12には、図18において左から右へ向かって、それぞれティース番号であるt1,t2,t3,t4が割り当てられている。 In the fourth embodiment, each tooth 12 of the mover 1 is assigned a tooth number for convenience. Teeth numbers t1, t2, t3, and t4 are assigned to each tooth 12 from left to right in FIG. 18, respectively.
 4個のティース12には、3相のコイル13が取り付けられている。t1のティース12には、+U相のコイル13が取り付けられている。t2のティース12には、+V相のコイル13が取り付けられている。t3のティース12には、+W相のコイル13と-V相のコイル13とが取り付けられている。t4のティース12には、-W相のコイル13が取り付けられている。 A three-phase coil 13 is attached to the four teeth 12. A +U phase coil 13 is attached to the teeth 12 at t1. A +V phase coil 13 is attached to the teeth 12 at t2. A +W phase coil 13 and a −V phase coil 13 are attached to the teeth 12 at t3. A -W phase coil 13 is attached to the teeth 12 at t4.
 t1,t2,t4の各ティース12は、1相のコイル13のみが取り付けられたティース12である。t3のティース12は、2相のコイル13が取り付けられたティース12である。このように、可動子1の複数のティース12は、1相のコイル13のみが取り付けられたティース12である第1のティースと、複数の相のコイル13が取り付けられたティース12である第2のティースとを含む。t1,t2,t4の各ティース12は、第1のティースである。t3のティース12は、第2のティースである。可動子1のうち進行方向における端に位置するティース12であるt1のティース12とt4のティース12との各々は、第1のティースである。電動機55は、可動子1のうち進行方向における端に位置するティース12が第1のティースであることによって、コイル13の発熱を低減できる。 Each of the teeth 12 at t1, t2, and t4 is a tooth 12 to which only a one-phase coil 13 is attached. Teeth 12 at t3 is a tooth 12 to which a two-phase coil 13 is attached. In this way, the plurality of teeth 12 of the mover 1 are a first tooth 12 to which only one phase coil 13 is attached, and a second tooth 12 to which a plurality of phase coils 13 are attached. Including teeth. Each tooth 12 at t1, t2, and t4 is a first tooth. Teeth 12 at t3 is the second tooth. Each of the teeth 12 at t1 and the teeth 12 at t4, which are the teeth 12 located at the ends in the moving direction of the movable element 1, is a first tooth. The electric motor 55 can reduce heat generation of the coil 13 because the tooth 12 located at the end in the moving direction of the movable element 1 is the first tooth.
 電動機55では、N/C個のティース12で構成されたセクション10が進行方向にC個配置されている。実施の形態4では、4個のティース12で構成されたセクション10が進行方向に1個配置されている。また、実施の形態4において、セクション10における第2のティースは、1個である。 In the electric motor 55, C sections 10 each made up of N/C teeth 12 are arranged in the traveling direction. In the fourth embodiment, one section 10 composed of four teeth 12 is arranged in the traveling direction. Furthermore, in the fourth embodiment, the number of second teeth in section 10 is one.
 図19は、実施の形態4において各ティース12に取り付けられているコイル13の巻数の例を示す図である。図19には、各ティース12における相ごとのコイル13の巻数と、各ティース12の合計巻数とを示す。図19に示す巻数は、複数のティース12全体の巻数を基に規格化された巻数とする。図19に示す合計巻数は、複数のティース12全体の巻数を基に規格化された合計巻数とする。すなわち、可動子1の全体における巻数に対する比によって、各ティース12の巻数と合計巻数とを表す。また、図19には、可動子1の全体における直列導体数に対する、相ごとの直列導体数の比を示す。 FIG. 19 is a diagram showing an example of the number of turns of the coil 13 attached to each tooth 12 in the fourth embodiment. FIG. 19 shows the number of turns of the coil 13 for each phase in each tooth 12 and the total number of turns of each tooth 12. The number of turns shown in FIG. 19 is the number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. The total number of turns shown in FIG. 19 is the total number of turns standardized based on the number of turns of the plurality of teeth 12 as a whole. That is, the number of turns of each tooth 12 and the total number of turns are expressed by the ratio to the number of turns of the entire movable element 1. Further, FIG. 19 shows the ratio of the number of series conductors for each phase to the number of series conductors in the entire movable element 1.
 図19に示すように、t3のティース12における合計巻数は、0.23である。t2のティース12とt4のティース12との各々は、第2のティースと隣り合う第1のティースである。t1のティース12は、1個の第1のティースを介して第2のティースと隣り合う第1のティースである。t1のティース12における合計巻数である0.32は、t2のティース12とt4のティース12との各々における合計巻数である0.23よりも多い。このように、実施の形態4のセクション10では、1個の第1のティースを介して第2のティースと隣り合う第1のティースにおけるコイル13の合計巻数が、第2のティースと隣り合う第1のティースにおけるコイル13の合計巻数よりも多い。 As shown in FIG. 19, the total number of turns in the teeth 12 at t3 is 0.23. Each of the teeth 12 at t2 and the teeth 12 at t4 is a first tooth adjacent to a second tooth. Teeth 12 at t1 is a first tooth adjacent to a second tooth via one first tooth. The total number of turns in the teeth 12 at t1, 0.32, is greater than the total number of turns, 0.23, in each of the teeth 12 at t2 and the teeth 12 at t4. In this way, in section 10 of the fourth embodiment, the total number of turns of the coil 13 in the first tooth adjacent to the second tooth via one first tooth is The number of turns is greater than the total number of turns of the coil 13 in one tooth.
 図20は、実施の形態4にかかる電動機55における分布巻係数の増加について説明するための図である。ここでは、実施の形態4にかかる比較例の構成は、図12に示す電動機53の構成であるものとする。図20には、比較例にかかる電動機53の分布巻係数の値を表す棒グラフと、実施の形態4にかかる電動機55の分布巻係数の値を表す棒グラフとを示す。分布巻係数の値は、電動機53の分布巻係数の値を基に規格化された値とする。すなわち、電動機53の分布巻係数の値に対する比によって、分布巻係数の値を表す。 FIG. 20 is a diagram for explaining an increase in the distributed winding coefficient in the electric motor 55 according to the fourth embodiment. Here, it is assumed that the configuration of the comparative example according to the fourth embodiment is the configuration of the electric motor 53 shown in FIG. 12. FIG. 20 shows a bar graph representing the value of the distributed winding coefficient of the electric motor 53 according to the comparative example and a bar graph representing the value of the distributed winding coefficient of the electric motor 55 according to the fourth embodiment. The value of the distributed winding coefficient is a value standardized based on the value of the distributed winding coefficient of the electric motor 53. That is, the value of the distributed winding coefficient is expressed by the ratio to the value of the distributed winding coefficient of the electric motor 53.
 電動機55は、図18に示すコイル配置と図19に示す巻数とを採用することによって、図12に示すコイル配置と図13に示す巻数とを備える比較例の場合と比べて分布巻係数を増加できる効果が得られる。 By adopting the coil arrangement shown in FIG. 18 and the number of turns shown in FIG. 19, the electric motor 55 increases the distributed winding coefficient compared to the comparative example having the coil arrangement shown in FIG. 12 and the number of turns shown in FIG. You can get the desired effect.
 電動機55では、第2のティースと第2のティースとの間に第1のティースが配置される構成は採用されていない。電動機55は、比較例の場合と比べて分布巻係数を高くすることができるため、可動子1におけるコイル13の発熱を低減できる。 The electric motor 55 does not have a configuration in which the first teeth are arranged between the second teeth. Since the electric motor 55 can have a higher distributed winding coefficient than that of the comparative example, the heat generation of the coil 13 in the movable element 1 can be reduced.
 電動機55は、上述するように各ティース12の合計巻数が設定されることによって、各相における誘起電圧の差異を低減でき、かつ、各相におけるインダクタンスの差異を低減できる。また、電動機55は、分布巻係数を増加させることができる。電動機55は、同一の推力を得る場合における電流値を低減可能であることによって、コイル13の発熱を低減できる。以上により、電動機55は、コイル13の発熱を低減できるという効果を奏する。 By setting the total number of turns of each tooth 12 as described above, the electric motor 55 can reduce the difference in induced voltage in each phase, and can also reduce the difference in inductance in each phase. Furthermore, the electric motor 55 can increase the distributed winding coefficient. The electric motor 55 can reduce the heat generation of the coil 13 by being able to reduce the current value when obtaining the same thrust force. As described above, the electric motor 55 has the effect of reducing heat generation of the coil 13.
 実施の形態4では、可動子1は、4個のティース12で構成されたセクション10が進行方向に1個配置された構成とした。電動機55では、複数のセクション10が進行方向に配置されても良い。すなわち、可動子1は、複数のセクション10を備える構成であっても良い。この場合、Cは1よりも大きい自然数である。電動機55は、Cが1よりも大きい自然数である場合も、Cが1である場合と同様に上述の効果を得ることができる。 In the fourth embodiment, the movable element 1 has a configuration in which one section 10 composed of four teeth 12 is arranged in the traveling direction. In the electric motor 55, a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10. In this case, C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 55 can obtain the above-mentioned effect as in the case where C is 1.
 実施の形態4では、可動子1の構成を、単一または複数のセクション10が進行方向に配置される構成とした。これに加え、可動子1のうち進行方向の両端の各々には補助ティースが取り付けられても良い。電動機55は、可動子1のうち進行方向の両端の各々に補助ティースが取り付けられる場合も、補助ティースが取り付けられない場合と同様の効果を得ることができる。また、実施の形態1から3の場合と同様に、ティース12の界磁側の先端部には、進行方向に向けられた突起、またはくぼみが形成されても良い。実施の形態1から3の場合と同様に、電動機55は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる構成であっても良い。 In the fourth embodiment, the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction. In addition, auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the moving direction, the electric motor 55 can obtain the same effect as when no auxiliary teeth are attached. Further, as in the first to third embodiments, a protrusion or a depression facing in the direction of movement may be formed at the tip of the tooth 12 on the field side. As in the first to third embodiments, the electric motor 55 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
実施の形態5.
 図21は、実施の形態5にかかる電動機56の断面図である。実施の形態5では、第2のティースであるt3のティース12における各コイル13の配置が、図2に示す電動機50の場合とは異なる。電動機56の構成は、t3のティース12における各コイル13の配置が電動機50の場合とは異なる点を除いて、電動機50の構成と同様である。実施の形態5では、上記の実施の形態1から4と同一の構成要素には同一の符号を付し、実施の形態1から4とは異なる構成について主に説明する。図21に示す固定子2の断面は、図2の場合と同様に、固定子2のうち可動子1と対向する部分の断面とする。
Embodiment 5.
FIG. 21 is a sectional view of the electric motor 56 according to the fifth embodiment. In the fifth embodiment, the arrangement of each coil 13 in the tooth 12 of t3, which is the second tooth, is different from that of the electric motor 50 shown in FIG. The configuration of the electric motor 56 is similar to that of the electric motor 50, except that the arrangement of each coil 13 in the teeth 12 at t3 is different from that of the electric motor 50. In Embodiment 5, the same components as those in Embodiments 1 to 4 described above are given the same reference numerals, and configurations that are different from Embodiments 1 to 4 will be mainly described. The cross section of the stator 2 shown in FIG. 21 is the cross section of the portion of the stator 2 that faces the movable element 1, as in the case of FIG.
 各ティース12は、コアバック11から固定子2の方へ延ばされている。コアバック11から固定子2へ向かう方向を、ティース12の長手方向とする。図2に示すt3のティース12において、+V相のコイル13と-W相のコイル13とは、ティース12の長手方向において互いに隣り合う。一方、図21に示すt3のティース12において、+V相のコイル13は、ティース12側である内側に巻かれている。-W相のコイル13は、+V相のコイル13の外側に巻かれている。すなわち、t3のティース12では、+V相のコイル13が取り付けられた上に、-W相のコイル13が取り付けられている。なお、t3のティース12では、-W相のコイル13が取り付けられた上に、+V相のコイル13が取り付けられても良い。 Each tooth 12 extends from the core back 11 toward the stator 2. The direction from the core back 11 toward the stator 2 is defined as the longitudinal direction of the teeth 12. In the teeth 12 at t3 shown in FIG. 2, the +V phase coil 13 and the -W phase coil 13 are adjacent to each other in the longitudinal direction of the teeth 12. On the other hand, in the tooth 12 at t3 shown in FIG. 21, the +V phase coil 13 is wound inside, which is the tooth 12 side. The -W phase coil 13 is wound outside the +V phase coil 13. That is, in the teeth 12 at t3, a +V phase coil 13 is attached and a -W phase coil 13 is attached. Note that, in addition to the −W phase coil 13 attached to the teeth 12 at t3, the +V phase coil 13 may also be attached.
 実施の形態5で説明するように第2のティースの各コイル13が配置されていることによって、コアバック11に接する位置に、コイル13の巻き始めの位置とコイル13の巻き終わりの位置とを揃えることができる。すなわち、可動子1に備えられる全てのコイル13について、コイル13の巻き始めの位置とコイル13の巻き終わりの位置とをコアバック11側に揃えることができる。この場合、コイル13の巻き終わりの位置から中性点までの距離、または、コイル13の巻き始めの位置から端子までの距離を最小化させることができ、コイル13の抵抗を低くすることができる。これにより、電動機56は、コイル13の発熱を低減できる効果が得られる。 By arranging each coil 13 of the second teeth as described in Embodiment 5, the winding start position of the coil 13 and the winding end position of the coil 13 can be set at the position in contact with the core back 11. You can arrange them. That is, for all the coils 13 provided in the mover 1, the winding start position of the coil 13 and the winding end position of the coil 13 can be aligned on the core back 11 side. In this case, the distance from the winding end position of the coil 13 to the neutral point or the distance from the winding start position of the coil 13 to the terminal can be minimized, and the resistance of the coil 13 can be lowered. . Thereby, the electric motor 56 has the effect of reducing heat generation of the coil 13.
 実施の形態5で説明するように第2のティースの各コイル13が配置されていることによって、コイル13を通過する磁束を同一に保つことができる。したがって、電動機56は、各相のインダクタンスの差分を小さくすることができ、電動機56の端子電圧の差異を低減できる効果が得られる。 By arranging each coil 13 of the second teeth as described in Embodiment 5, the magnetic flux passing through the coil 13 can be kept the same. Therefore, the electric motor 56 can reduce the difference in inductance of each phase, and the effect of reducing the difference in terminal voltage of the electric motor 56 can be obtained.
 実施の形態5では、可動子1は、5個のティース12で構成されたセクション10が進行方向に1個配置された構成とした。電動機56では、複数のセクション10が進行方向に配置されても良い。すなわち、可動子1は、複数のセクション10を備える構成であっても良い。この場合、Cは1よりも大きい自然数である。電動機56は、Cが1よりも大きい自然数である場合も、Cが1である場合と同様に上述の効果を得ることができる。 In the fifth embodiment, the movable element 1 has a configuration in which one section 10 composed of five teeth 12 is arranged in the traveling direction. In the electric motor 56, a plurality of sections 10 may be arranged in the traveling direction. That is, the movable element 1 may have a configuration including a plurality of sections 10. In this case, C is a natural number greater than 1. Even when C is a natural number larger than 1, the electric motor 56 can obtain the above-mentioned effect as in the case where C is 1.
 実施の形態5では、可動子1の構成を、単一または複数のセクション10が進行方向に配置される構成とした。これに加え、可動子1のうち進行方向の両端の各々には補助ティースが取り付けられても良い。電動機56は、可動子1のうち進行方向の両端の各々に補助ティースが取り付けられる場合も、補助ティースが取り付けられない場合と同様の効果を得ることができる。また、実施の形態1から4の場合と同様に、ティース12の界磁側の先端部には、進行方向に向けられた突起、またはくぼみが形成されても良い。実施の形態1から4の場合と同様に、電動機56は、複数の永久磁石21が固定子鉄心の内部に埋め込まれる構成であっても良い。 In the fifth embodiment, the movable element 1 has a configuration in which a single section or a plurality of sections 10 are arranged in the traveling direction. In addition, auxiliary teeth may be attached to each of both ends of the movable element 1 in the direction of movement. Even when auxiliary teeth are attached to both ends of the movable element 1 in the moving direction, the electric motor 56 can obtain the same effect as when no auxiliary teeth are attached. Further, as in the first to fourth embodiments, a protrusion or a depression facing in the direction of movement may be formed at the tip of the tooth 12 on the field side. As in the first to fourth embodiments, the electric motor 56 may have a configuration in which a plurality of permanent magnets 21 are embedded inside the stator core.
 実施の形態1から5にかかる電動機50,52,54,55,56の構成は、回転電機に適用されても良い。回転電機は、固定子と回転子とを備え、回転子を回転動作させる電動機である。電動機50,52,54,55,56の構成が回転電機に適用される場合も、電動機50,52,54,55,56の場合と同様の効果を得ることができる。 The configurations of electric motors 50, 52, 54, 55, and 56 according to Embodiments 1 to 5 may be applied to rotating electrical machines. A rotating electric machine is an electric motor that includes a stator and a rotor and rotates the rotor. Even when the configuration of the electric motors 50, 52, 54, 55, 56 is applied to a rotating electric machine, the same effects as in the case of the electric motors 50, 52, 54, 55, 56 can be obtained.
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。 The configurations shown in each of the embodiments above are examples of the content of the present disclosure. The configuration of each embodiment can be combined with other known techniques. The configurations of each embodiment may be combined as appropriate. It is possible to omit or change a part of the configuration of each embodiment without departing from the gist of the present disclosure.
 1 可動子、2 固定子、10 セクション、11 コアバック、12 ティース、13 コイル、21 永久磁石、22 取付座、50,51,52,53,54,55,56 電動機、60 ガイド、70 スライダ、100 電動機システム。 1 Mover, 2 Stator, 10 Section, 11 Core back, 12 Teeth, 13 Coil, 21 Permanent magnet, 22 Mounting seat, 50, 51, 52, 53, 54, 55, 56 Electric motor, 60 Guide, 70 Slider, 100 Electric motor system.

Claims (5)

  1.  界磁と、
     前記界磁に向かい合わせて配置され、前記界磁に対して相対的に移動可能な電機子と、を備え、
     前記電機子は、コアバックと、各々が前記コアバックから前記界磁の方へ延ばされており、前記界磁に対する前記電機子の進行方向へ並べられた複数のティースと、複数の前記ティースに取り付けられた複数のコイルと、を有し、
     複数の前記ティースは、1相の前記コイルのみが取り付けられたティースである第1のティースと、複数の相の前記コイルが取り付けられたティースである第2のティースとを含み、
     複数の前記コイルの各々は、互いに隣り合うティース同士により構成されるスロットを跨がないように配置されており、
     前記電機子の前記ティースの数をN、前記ティースの数であるNと、N個の前記ティースと対向する範囲にある前記界磁の磁極の数との最大公約数をCとして、N/C個の前記ティースで構成されたセクションが前記進行方向にC個配置されており、
     前記セクションでは前記進行方向において2個の前記第2のティースが連続して配置されているか、または、前記セクションに含まれる前記第2のティースが1個であることを特徴とする電動機。
    Field magnet and
    an armature disposed facing the field and movable relative to the field;
    The armature includes a core back, a plurality of teeth each extending from the core back toward the field, and arranged in a direction in which the armature moves with respect to the field, and a plurality of teeth. a plurality of coils attached to the
    The plurality of teeth include a first tooth that is a tooth to which only the coil of one phase is attached, and a second tooth that is a tooth to which the coils of a plurality of phases are attached,
    Each of the plurality of coils is arranged so as not to straddle a slot formed by adjacent teeth,
    The number of teeth of the armature is N, and the greatest common divisor of N, which is the number of teeth, and the number of magnetic poles of the field in the range facing the N teeth, is N/C. C sections composed of C teeth are arranged in the traveling direction,
    An electric motor characterized in that, in the section, two of the second teeth are arranged consecutively in the traveling direction, or the number of the second teeth included in the section is one.
  2.  前記電機子のうち前記進行方向における端に位置する前記ティースは、前記第1のティースであることを特徴とする請求項1に記載の電動機。 The electric motor according to claim 1, wherein the teeth located at the ends of the armature in the direction of movement are the first teeth.
  3.  N/Cが4、かつ、前記セクションに含まれる前記第2のティースが1個であって、
     1個の前記第1のティースを介して前記第2のティースと隣り合う前記第1のティースにおける前記コイルの合計巻数が、前記第2のティースと隣り合う前記第1のティースにおける前記コイルの合計巻数よりも多いことを特徴とする請求項1または2に記載の電動機。
    N/C is 4 and the second teeth included in the section is one,
    The total number of turns of the coil in the first tooth adjacent to the second tooth via one of the first teeth is the total number of turns of the coil in the first tooth adjacent to the second tooth. The electric motor according to claim 1 or 2, characterized in that the number of turns is greater than the number of turns.
  4.  N/Cが4、かつ、前記セクションに含まれる前記第2のティースが2個であって、
     前記セクションに含まれる全ての前記第1のティースにおける前記コイルの合計巻数が、前記セクションに含まれる全ての前記第2のティースにおける前記コイルの合計巻数よりも多いことを特徴とする請求項1または2に記載の電動機。
    N/C is 4 and the second teeth included in the section are two,
    2. The total number of turns of the coil in all the first teeth included in the section is greater than the total number of turns of the coil in all the second teeth included in the section. 2. The electric motor according to 2.
  5.  N/Cが5、かつ、前記セクションに含まれる前記第2のティースが1個であって、
     前記第2のティースと隣り合う前記第1のティースにおける前記コイルの合計巻数が、前記第2のティースにおける前記コイルの合計巻数よりも多く、かつ、1個の前記第1のティースを介して前記第2のティースと隣り合う前記第1のティースにおける前記コイルの合計巻数が、前記第2のティースと隣り合う前記第1のティースにおける前記コイルの合計巻数よりも少ないことを特徴とする請求項1または2に記載の電動機。
    N/C is 5 and the number of the second teeth included in the section is one,
    The total number of turns of the coil in the first tooth adjacent to the second tooth is greater than the total number of turns of the coil in the second tooth, and the Claim 1, wherein the total number of turns of the coil in the first tooth adjacent to the second tooth is smaller than the total number of turns of the coil in the first tooth adjacent to the second tooth. or the electric motor described in 2.
PCT/JP2022/018200 2022-04-19 2022-04-19 Electric motor WO2023203646A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2022/018200 WO2023203646A1 (en) 2022-04-19 2022-04-19 Electric motor
JP2022553208A JP7191279B1 (en) 2022-04-19 2022-04-19 Electric motor
CN202280071968.6A CN118160193A (en) 2022-04-19 2022-04-19 Motor with a motor housing having a motor housing with a motor housing
KR1020247018947A KR20240096775A (en) 2022-04-19 2022-04-19 electric motor
DE112022004572.8T DE112022004572T5 (en) 2022-04-19 2022-04-19 engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/018200 WO2023203646A1 (en) 2022-04-19 2022-04-19 Electric motor

Publications (1)

Publication Number Publication Date
WO2023203646A1 true WO2023203646A1 (en) 2023-10-26

Family

ID=84488897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018200 WO2023203646A1 (en) 2022-04-19 2022-04-19 Electric motor

Country Status (5)

Country Link
JP (1) JP7191279B1 (en)
KR (1) KR20240096775A (en)
CN (1) CN118160193A (en)
DE (1) DE112022004572T5 (en)
WO (1) WO2023203646A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462309B2 (en) 2020-09-01 2024-04-05 Orbray株式会社 Polarization-dependent optical isolator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208039A (en) * 1990-11-30 1992-07-29 Victor Co Of Japan Ltd Dc polyphase motor
JP2014168369A (en) * 2013-01-29 2014-09-11 Okuma Corp Three-phase AC motor
WO2019008848A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Rotating electric machine and direct-acting electric motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4208039B2 (en) 1997-10-02 2009-01-14 澁谷工業株式会社 Flow rate filling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208039A (en) * 1990-11-30 1992-07-29 Victor Co Of Japan Ltd Dc polyphase motor
JP2014168369A (en) * 2013-01-29 2014-09-11 Okuma Corp Three-phase AC motor
WO2019008848A1 (en) * 2017-07-04 2019-01-10 三菱電機株式会社 Rotating electric machine and direct-acting electric motor

Also Published As

Publication number Publication date
DE112022004572T5 (en) 2024-07-11
JP7191279B1 (en) 2022-12-16
CN118160193A (en) 2024-06-07
JPWO2023203646A1 (en) 2023-10-26
KR20240096775A (en) 2024-06-26

Similar Documents

Publication Publication Date Title
JP7136272B2 (en) Rotating electric machine
US10326326B2 (en) IPM machine with specialized winding for automotive electric vehicles
US10862355B2 (en) Armature with a core having teeth of different circumferential widths and electric motor including the armature and a rotor
US8710786B1 (en) High performance actuator motor
KR102230326B1 (en) Rotating electric machines and direct-acting motors
EP2224578A1 (en) Stator winding scheme of a permanent magnet machine
WO2018180721A1 (en) Electric motor
JP2009528811A (en) Arrangement in electric machine and method of manufacturing coil relating to arrangement
KR20120093896A (en) Multi-phase stator device
US20080001481A1 (en) Linear motor
US20090039717A1 (en) Toothed module for primary parts of permanent-magnet synchronous motors
US20120086288A1 (en) Electric rotating machine
US20220094228A1 (en) Axial flux electrical machine
KR101604936B1 (en) Motor
JP5538984B2 (en) Permanent magnet motor
WO2023203646A1 (en) Electric motor
US20210313867A1 (en) Tubular linear motor
CN112470369B (en) Stator of rotating electric machine
US20220094230A1 (en) Axial flux electrical machine
US11955864B2 (en) Linear motor
KR102583430B1 (en) electric motor
WO2020261809A1 (en) Linear motor
WO2024127543A1 (en) Armature and electric machine
GB2468842A (en) Magnet assembly in an inductor machine
JP7200585B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022553208

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938449

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280071968.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022004572

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020247018947

Country of ref document: KR