JP5144960B2 - Magnetizing method and magnetizing apparatus for encoder - Google Patents

Magnetizing method and magnetizing apparatus for encoder Download PDF

Info

Publication number
JP5144960B2
JP5144960B2 JP2007140898A JP2007140898A JP5144960B2 JP 5144960 B2 JP5144960 B2 JP 5144960B2 JP 2007140898 A JP2007140898 A JP 2007140898A JP 2007140898 A JP2007140898 A JP 2007140898A JP 5144960 B2 JP5144960 B2 JP 5144960B2
Authority
JP
Japan
Prior art keywords
magnetizing
encoder
rotation
magnetization
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007140898A
Other languages
Japanese (ja)
Other versions
JP2008292418A (en
JP2008292418A5 (en
Inventor
俊一 矢部
豪 村上
成明 相原
和夫 岩撫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007140898A priority Critical patent/JP5144960B2/en
Publication of JP2008292418A publication Critical patent/JP2008292418A/en
Publication of JP2008292418A5 publication Critical patent/JP2008292418A5/ja
Application granted granted Critical
Publication of JP5144960B2 publication Critical patent/JP5144960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば回転速度検出装置に組み込んで使用する、被検出面にN極とS極とを円周方向に関して交互に且つ等間隔に配置したエンコーダの着磁方法及び着磁装置の改良に関する。   The present invention relates to an improvement in a magnetizing method and a magnetizing apparatus for an encoder in which N poles and S poles are alternately arranged at equal intervals in the circumferential direction on a detection surface, for example, incorporated in a rotational speed detecting device. .

例えば、自動変速機の場合には、切り換えのタイミングを求める為、回転軸の回転速度を検出する必要がある。又、自動車の場合には、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を適切に制御すべく、車輪の回転速度を検出する必要がある。この為、この様な各種機械装置を構成する回転軸や車輪等の回転部分を、使用時にも回転しないハウジングや懸架装置等の固定部分に対して回転自在に支持すると共に、この回転部分の回転速度を検出する為の回転速度検出装置付回転支持装置が、従来から広く使用されている。   For example, in the case of an automatic transmission, it is necessary to detect the rotational speed of the rotary shaft in order to obtain the switching timing. In the case of an automobile, it is necessary to detect the rotational speed of the wheel in order to appropriately control the antilock brake system (ABS) and the traction control system (TCS). For this reason, rotating parts such as rotating shafts and wheels constituting such various mechanical devices are supported rotatably with respect to fixed parts such as a housing and a suspension device that do not rotate even in use, and the rotating parts rotate. 2. Description of the Related Art Conventionally, a rotation support device with a rotation speed detection device for detecting a speed has been widely used.

図4〜6は、この様な回転速度検出装置付回転支持装置の従来構造の第1例として、特許文献1に記載されたものを示している。この従来構造の第1例は、使用時にも回転しないハウジング(図示せず)に内嵌固定する外輪1と、使用時に回転する回転軸(図示せず)に外嵌固定された状態で、上記外輪1の内径側に、複数個の玉3を介して回転自在に支持された内輪2(回転部材)とを備える。又、この内輪2の外周面と上記外輪1の内周面との間に存在する、上記各玉3を設置した空間の開口端部に、密封装置である、組み合わせシールリング4を設けている。この組み合わせシールリング4は、軟鋼板、ステンレス鋼板等の金属板により、断面L字形で全体を円環状に形成した芯金5と、この芯金5の全周に結合固定した、ゴムの如きエラストマー等の弾性材6と、軟鋼板、ステンレス鋼板等の金属板により、断面L字形で全体を円環状に形成した別の芯金(スリンガ)7とを備える。そして、図4〜5に示す様に、上記芯金5を上記外輪1の端部に内嵌固定すると共に、上記別の芯金7を上記内輪2の端部に外嵌固定した状態で、上記弾性材6を構成する複数本のシールリップの先端縁を、それぞれ上記別の芯金7の表面に全周に亙り摺接させている。   4-6 has shown what was described in patent document 1 as a 1st example of the conventional structure of such a rotation support apparatus with a rotational speed detection apparatus. In the first example of this conventional structure, the outer ring 1 that is fitted and fixed to a housing (not shown) that does not rotate during use, and the outer ring 1 that is fitted and fixed to a rotating shaft (not shown) that rotates when used, An inner ring 2 (rotating member) that is rotatably supported via a plurality of balls 3 is provided on the inner diameter side of the outer ring 1. Further, a combination seal ring 4 serving as a sealing device is provided at the opening end of the space where the balls 3 are installed, which exists between the outer peripheral surface of the inner ring 2 and the inner peripheral surface of the outer ring 1. . This combination seal ring 4 is made of a metal plate such as a mild steel plate, a stainless steel plate, or the like, and a cored bar 5 having an L-shaped cross section and formed in an annular shape as a whole, and an elastomer such as rubber that is fixedly bonded to the entire circumference of the cored bar And another metal core (slinger) 7 formed of a metal plate such as a mild steel plate or a stainless steel plate and having an L-shaped cross section and a ring shape as a whole. And as shown in FIGS. 4-5, while the said metal core 5 is fitted and fixed to the edge part of the said outer ring | wheel 1, the said another metal core 7 is fitted and fixed to the edge part of the said inner ring | wheel 2, The leading edges of the plurality of seal lips constituting the elastic material 6 are brought into sliding contact with the surface of the separate cored bar 7 over the entire circumference.

又、上記別の芯金7を構成する円筒部8と円輪部9とのうち、この円輪部9の外側面(図4〜5の右側面)に、上記別の芯金7と共にエンコーダ10を構成する円輪状のエンコーダ本体11を、この別の芯金7と同心に結合固定している。被検出面である、このエンコーダ本体11の外側面(図4〜5の右側面)には、図6に示す様に、N極とS極とを円周方向に関して交互に、且つ、中心角ピッチP(着磁ピッチ=2P)で、等間隔に形成している。又、同図に示す様に、この被検出面に配置したN極とS極との境界はそれぞれ、この被検出面の幅方向(放射方向)に対して平行である。又、この被検出面の円周方向一部には、上記ハウジング等の使用時にも回転しない部分に支持した、センサ12の検出部を近接対向させている。このセンサ12の検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。   Further, of the cylindrical portion 8 and the annular portion 9 constituting the another core metal 7, an encoder together with the other core metal 7 is provided on the outer surface (the right side surface in FIGS. 4 to 5) of the annular portion 9. A ring-shaped encoder main body 11 constituting 10 is coupled and fixed concentrically with the other metal core 7. As shown in FIG. 6, on the outer side surface (right side surface in FIGS. 4 to 5) of the encoder main body 11, which is a detection surface, the N pole and the S pole are alternately arranged in the circumferential direction and the central angle. They are formed at equal intervals with a pitch P (magnetization pitch = 2P). Further, as shown in the figure, the boundaries between the N pole and the S pole arranged on the detection surface are parallel to the width direction (radiation direction) of the detection surface. Further, a detection portion of the sensor 12 supported by a portion that does not rotate even when the housing or the like is used is disposed in close proximity to a part of the detection surface in the circumferential direction. A magnetic sensing element such as a Hall IC, a Hall element, an MR element, or a GMR element is incorporated in the detection unit of the sensor 12.

上述の様に構成する従来構造の第1例の場合、上記回転軸に外嵌固定した内輪2が回転すると、上記センサ12の検出部の近傍を、上記被検出面に配置したN極とS極とが交互に通過する。この結果、上記センサ12の出力が、上記回転軸の回転速度に比例した周波数で変化する。従って、このセンサ12の出力を図示しない制御器に送れば、上記回転軸の回転速度を検出して、この回転速度を利用した各種制御を適切に行なえる。   In the case of the first example of the conventional structure configured as described above, when the inner ring 2 that is externally fitted and fixed to the rotation shaft rotates, the vicinity of the detection portion of the sensor 12 is arranged in the vicinity of the N pole and S The poles pass alternately. As a result, the output of the sensor 12 changes at a frequency proportional to the rotational speed of the rotating shaft. Therefore, if the output of the sensor 12 is sent to a controller (not shown), the rotational speed of the rotating shaft can be detected, and various controls using the rotational speed can be appropriately performed.

次に、図7は、回転速度検出装置付回転支持装置の従来構造の第2例として、やはり特許文献1に記載されたものを示している。この従来構造の第2例の場合、自動車の懸架装置を構成するナックル(図示せず)に結合固定した静止部材である外輪1aの内径側に、車輪(図示せず)を支持固定してこの車輪と共に回転する、回転部材であるハブ13を、複数個の玉3、3を介して回転自在に支持している。又、上記外輪1aの内周面と上記ハブ13の外周面との間に存在する、上記各玉3、3を設置した空間の軸方向内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図7〜10の右側。反対に、自動車への組み付け状態で車両の幅方向外側となる図7〜10の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)に、上述した従来構造の第1例の場合と同様の、組み合わせシールリング4及びエンコーダ10を組み付けている。更に、上記ナックル又は上記外輪1の一部に支持固定したセンサ12の検出部を、上記エンコーダ10の被検出面の円周方向一部に近接対向させている。この様に構成する従来構造の第2例の場合、自動車の運転時に、上記センサ12の出力を図示しない制御器に送れば、上記車輪の回転速度を検出して、ABSやTCSの制御を適切に行なえる。   Next, FIG. 7 shows what is also described in Patent Document 1 as a second example of a conventional structure of a rotation support device with a rotation speed detection device. In the case of the second example of the conventional structure, a wheel (not shown) is supported and fixed on the inner diameter side of the outer ring 1a which is a stationary member coupled and fixed to a knuckle (not shown) that constitutes a suspension device for an automobile. A hub 13 that is a rotating member that rotates together with the wheels is rotatably supported via a plurality of balls 3 and 3. Also, the axially inner end of the space in which the balls 3, 3 are located between the inner peripheral surface of the outer ring 1a and the outer peripheral surface of the hub 13 ("inner" with respect to the axial direction is an automobile. 7-10, the right side of the vehicle in the width direction of the vehicle when assembled to the vehicle, and the right side of FIGS. The combination seal ring 4 and the encoder 10 are assembled in the same manner as in the first example of the conventional structure described above. Further, the detection part of the sensor 12 supported and fixed to a part of the knuckle or the outer ring 1 is made to face and oppose a part of the detected surface of the encoder 10 in the circumferential direction. In the case of the second example of the conventional structure configured as described above, when the output of the sensor 12 is sent to a controller (not shown) during driving of the automobile, the rotational speed of the wheel is detected and the ABS and TCS are appropriately controlled. It can be done.

次に、図8〜9は、回転速度検出装置付回転支持装置の従来構造の第3例として、やはり特許文献1に記載されたものを示している。この従来構造の第3例の場合には、上述した従来構造の第2例の場合との比較で、エンコーダ10aを構成する、円環状の芯金7aの断面形状が異なる。又、外輪1aの内周面とハブ13の外周面との間に存在する、複数個の玉3、3を設置した空間の軸方向内端部に組み合わせシールリング4(図7参照)を設ける代わりに、上記外輪1aの内端開口部に、当該空間と外部空間との間を遮断するカバー14を組み付けている。又、上記エンコーダ10aの被検出面にその検出部を近接対向させたセンサ12を、上記カバー14に支持している。その他の構成及び作用は、上述した従来構造の第2例の場合とほぼ同様である為、同等部分には同一符号を付して重複する説明を省略する。   Next, FIGS. 8 to 9 show a third example of a conventional structure of a rotation support device with a rotation speed detection device, which is also described in Patent Document 1. FIG. In the case of the third example of the conventional structure, the cross-sectional shape of the annular cored bar 7a constituting the encoder 10a is different from that of the second example of the conventional structure described above. Further, a combination seal ring 4 (see FIG. 7) is provided at the inner end in the axial direction of the space where a plurality of balls 3 and 3 exist between the inner peripheral surface of the outer ring 1a and the outer peripheral surface of the hub 13. Instead, a cover 14 that blocks between the space and the external space is assembled to the inner end opening of the outer ring 1a. The cover 14 supports a sensor 12 whose detection portion is close to and opposed to the detection surface of the encoder 10a. Other configurations and operations are substantially the same as in the case of the second example of the conventional structure described above, and therefore, the same parts are denoted by the same reference numerals and redundant description is omitted.

次に、図10は、回転速度検出装置付回転支持装置の従来構造の第4例として、やはり特許文献1に記載されたものを示している。この従来構造の第4例の場合、エンコーダ10bは、ハブ13の内端部に外嵌固定した、断面クランク形で全体を円環状に形成した芯金7bと、この芯金7bの大径側円筒部の内周面の全周に添着固定した円筒状のエンコーダ本体11bとから成る。被検出面である、このエンコーダ本体11bの内周面には、N極とS極とを、円周方向に関して交互に且つ等間隔に配置している。尚、図示は省略するが、この被検出面に配置したN極とS極との境界は、この被検出面の幅方向(軸方向)に対して平行である。そして、この被検出面の円周方向一部に、外輪1aの内端部に組み付けたカバー14に支持したセンサ12の検出部を近接対向させている。その他の部分の構成及び作用は、上述した従来構造の第3例の場合とほぼ同様である為、同等部分には同一符号を付して、重複する図示並びに説明を省略する。   Next, FIG. 10 shows what is also described in Patent Document 1 as a fourth example of a conventional structure of a rotation support device with a rotation speed detection device. In the case of the fourth example of the conventional structure, the encoder 10b includes a cored bar 7b that is externally fitted and fixed to the inner end portion of the hub 13 and is formed into a circular shape with a cross-sectional crank shape, and a large diameter side of the cored bar 7b. It comprises a cylindrical encoder body 11b attached and fixed to the entire circumference of the inner peripheral surface of the cylindrical portion. N poles and S poles are alternately arranged at equal intervals in the circumferential direction on the inner circumferential surface of the encoder main body 11b, which is a detected surface. In addition, although illustration is abbreviate | omitted, the boundary of the N pole and S pole which are arrange | positioned on this to-be-detected surface is parallel with respect to the width direction (axial direction) of this to-be-detected surface. And the detection part of the sensor 12 supported by the cover 14 assembled | attached to the inner end part of the outer ring | wheel 1a is made to oppose and adjoin to a part of circumferential direction of this to-be-detected surface. Since the configuration and operation of the other parts are almost the same as in the case of the third example of the conventional structure described above, the same parts are denoted by the same reference numerals, and overlapping illustrations and descriptions are omitted.

尚、上述した各従来構造に組み込まれたエンコーダ10、10a、10bの場合には何れも、被検出面に存在するN極とS極との境界を、この被検出面の幅方向に対して平行にしている。これに対し、特許文献1には、図11〜12に示す様な、被検出面(外周面)に存在するN極とS極との境界を、この被検出面の幅方向(軸方向)に対して非平行にしたエンコーダ10c、10dも記載されている。これら各エンコーダ10c、10dは、回転支持装置に作用する荷重等を測定する為に使用されるものである(例えば特許文献2参照)。   In each of the encoders 10, 10a and 10b incorporated in the conventional structures described above, the boundary between the N pole and the S pole existing on the detected surface is defined with respect to the width direction of the detected surface. They are parallel. On the other hand, in Patent Document 1, as shown in FIGS. 11 to 12, the boundary between the N pole and the S pole existing on the detected surface (outer peripheral surface) is defined in the width direction (axial direction) of the detected surface. Also shown are encoders 10c, 10d which are non-parallel to the. Each of these encoders 10c and 10d is used for measuring a load or the like acting on the rotation support device (see, for example, Patent Document 2).

ところで、上述した様な各従来構造に組み込むエンコーダ10(10a〜10d)は、芯金7(7a〜7d)の全周に、エンコーダ本体11(11b〜11d)の素材である未着磁の磁性部材を結合固定した後、この磁性部材の一部に存在する、被検出面となるべき
面を着磁する事により造る。この際の着磁方法として従来から、一発着磁法とインデックス着磁法とが知られている。以下、これら一発着磁法とインデックス着磁法とに就いて説明する。
By the way, the encoder 10 (10a to 10d) incorporated in each conventional structure as described above has an unmagnetized magnetic material that is a material of the encoder body 11 (11b to 11d) around the entire circumference of the core metal 7 (7a to 7d). After the members are coupled and fixed, the surface to be detected, which is part of the magnetic member, is magnetized. Conventionally, a one-shot magnetization method and an index magnetization method are known as magnetization methods at this time. Hereinafter, the one-shot magnetization method and the index magnetization method will be described.

図13は、特許文献3等に記載されて従来から知られている、一発着磁法を実施する場合の概略構成図を示している。この一発着磁法で使用する着磁装置は、多数の着磁端子15、15を円周方向に関して等間隔に配置した着磁ヘッド16と、これら各着磁端子15、15同士の間を縫う様にして、円周方向に関して蛇行配置した、一繋がりの(連続した1本の)導線17とを含んで構成する、着磁ヨーク21を備える。この様な着磁装置を使用して、一発着磁法を実施する場合には、先ず、芯金(図示せず)の全周に磁性部材18を結合固定して成るエンコーダ中間体19を用意する。そして、図示の様に、上記磁性部材18の側面(被検出面となるべき面)を、上記着磁ヘッド16の側面(上記各着磁端子15、15の先端面)に対し、全周に亙り同心に接触させる。そして、この状態で、上記導線17に着磁電流を流す事に基づき、上記各着磁端子15、15の先端面から出入りし、且つ、円周方向に隣り合う先端面同士で出入りの向きが互いに逆になる、磁束を発生させる。そして、これら各磁束を上記磁性部材18の側面に貫通させる事により、この磁性部材18の側面の全周に対して同時に、円周方向に関して交互に且つ等間隔に配置されるN極とS極とを着磁形成する。尚、図示の例は、被着磁面を軸方向側面とする場合であるが、被着磁面を周面とする場合も、同様の方法で一発着磁を行なえる。   FIG. 13 is a schematic configuration diagram in the case where the one-shot magnetization method described in Patent Document 3 and the like is conventionally known. The magnetizing apparatus used in this one-shot magnetizing method sews between a magnetizing head 16 in which a large number of magnetized terminals 15 and 15 are arranged at equal intervals in the circumferential direction, and between the magnetized terminals 15 and 15. In this way, a magnetizing yoke 21 is provided, which is configured to include a continuous (one continuous) conductor 17 arranged in a meandering manner in the circumferential direction. When carrying out the one-shot magnetization method using such a magnetizing device, first, an encoder intermediate body 19 is prepared, in which a magnetic member 18 is coupled and fixed to the entire circumference of a core metal (not shown). To do. Then, as shown in the figure, the side surface (surface to be detected) of the magnetic member 18 is placed around the entire circumference with respect to the side surface of the magnetizing head 16 (tip surfaces of the magnetized terminals 15 and 15). Make contact in a concentric manner. In this state, on the basis of passing a magnetizing current through the conducting wire 17, the direction of entering / exiting between the tip surfaces of the magnetized terminals 15, 15 and the tip surfaces adjacent to each other in the circumferential direction is determined. Generate magnetic fluxes that are opposite to each other. Then, by passing these magnetic fluxes through the side surface of the magnetic member 18, N poles and S poles that are alternately arranged at equal intervals in the circumferential direction at the same time with respect to the entire circumference of the side surface of the magnetic member 18. And magnetized. In the illustrated example, the magnetized surface is an axial side surface. However, when the magnetized surface is a circumferential surface, one-shot magnetization can be performed by the same method.

次に、図14は、特許文献4等に記載されて従来から知られている、インデックス着磁法の第1例を示している。本例で使用する着磁装置は、互いの先端面同士を向かい合わせに配置した1対の着磁ヘッド16a、16bを有する芯材20と、これら各着磁ヘッド16a、16bの基端部に巻回した図示しないコイルとを含んで構成する、着磁ヨーク21aを備える。この様な着磁装置を使用して、本例のインデックス着磁法を実施する場合には、先ず、芯金7の全周に磁性部材18を結合固定して成るエンコーダ中間体19を用意する。そして、上記両着磁ヘッド16a、16bにより、上記磁性部材18の側面(被検出面となるべき面で、図14の上面)の全周にN極とS極とを1極ずつ、円周方向に関して交互に且つ等間隔に順次着磁形成する。   Next, FIG. 14 shows a first example of the index magnetization method described in Patent Document 4 and the like and conventionally known. The magnetizing apparatus used in this example includes a core member 20 having a pair of magnetizing heads 16a and 16b in which the tip surfaces of the magnetizing heads face each other, and proximal ends of these magnetizing heads 16a and 16b. A magnetized yoke 21a is provided that includes a wound coil (not shown). In order to implement the index magnetization method of this example using such a magnetizing device, first, an encoder intermediate body 19 is prepared in which a magnetic member 18 is coupled and fixed to the entire circumference of the cored bar 7. . Then, with the two magnetized heads 16a and 16b, the N pole and the S pole are arranged on the entire circumference of the side surface of the magnetic member 18 (the surface to be detected, the upper surface in FIG. 14). Magnetization is sequentially performed alternately at equal intervals with respect to the direction.

この為に具体的には、図示の様に、上記磁性部材18の側面(図14の上面)と、上記芯金7の側面(図14の下面)とのうち、互いに整合する部分に、それぞれ上記両着磁ヘッド16a、16bの先端面を近接対向させる。そして、この状態で、上記エンコーダ中間体19のみを(着磁ヨーク21aを静止したまま)円周方向に一定速度で回転させる事に基づき、上記磁性部材18の側面及び上記芯金7の側面に対する、上記両着磁ヘッド16a、16bの先端面の近接対向位置を、円周方向に連続的に移動させる。これと共に、上記各コイルにそれぞれ、上記回転の速度に対応した周期で正逆の流れを交互に繰り返す、周期波状の着磁電流を流す事に基づき、上記両着磁ヘッド16a、16bの先端面同士の間に、上記磁性部材18及び芯金7の円周方向一部分を軸方向(図14の上下方向)に貫通し、且つ、その向きが周期的に交互に変化する、磁束αを発生させる。これにより、上記磁性部材18の側面の全周にN極とS極とを1極ずつ、円周方向に関して交互に且つ等間隔に順次着磁形成する。尚、図示の例は、被着磁面を軸方向側面とする場合であるが、被着磁面を周面とする場合も、同様の方法でインデックス着磁を行なえる。   Specifically, as shown in the drawing, each of the side surfaces of the magnetic member 18 (upper surface in FIG. 14) and the side surfaces of the core metal 7 (lower surface in FIG. 14) are aligned with each other. The front end surfaces of the two magnetized heads 16a and 16b are brought close to each other. In this state, only the encoder intermediate body 19 is rotated in the circumferential direction at a constant speed (while the magnetized yoke 21a is stationary), and the side surface of the magnetic member 18 and the side surface of the cored bar 7 are rotated. The adjacent opposing positions of the tip surfaces of the two magnetized heads 16a and 16b are continuously moved in the circumferential direction. At the same time, the front end surfaces of the two magnetized heads 16a and 16b are supplied to each of the coils based on flowing a periodic wave-shaped magnetizing current that alternately repeats forward and reverse flows at a period corresponding to the rotation speed. Between them, the magnetic member 18 and a part of the circumferential direction of the cored bar 7 are penetrated in the axial direction (vertical direction in FIG. 14), and the magnetic flux α is generated whose direction changes periodically and alternately. . As a result, one N-pole and one S-pole are formed on the entire circumference of the side surface of the magnetic member 18 alternately and at equal intervals in the circumferential direction. In the example shown in the figure, the magnetized surface is an axial side surface, but index magnetization can be performed in the same manner when the magnetized surface is a peripheral surface.

次に、図15は、特許文献4等に記載されて従来から知られている、インデックス着磁法の第2例を示している。本例で使用する着磁装置は、その両端部に1対の着磁ヘッド16a、16bを設けた欠環状の芯材20aと、この芯材20aの中間部に巻回したコイル22とを含んで構成する、着磁ヨーク21bを備える。この様な着磁装置を使用して、本例のインデックス着磁法を実施する場合には、先ず、芯金7の全周に磁性部材18を結合固定して成るエンコーダ中間体19を用意する。そして、上記両着磁ヘッド16a、16bにより、上記磁性部材18の側面(被検出面となるべき面で、図15の上面)の全周にN極とS極との組を1組ずつ、円周方向に関して順次着磁形成する。   Next, FIG. 15 shows a second example of the index magnetization method described in Patent Document 4 and the like and conventionally known. The magnetizing apparatus used in this example includes a ring-shaped core member 20a provided with a pair of magnetizing heads 16a and 16b at both ends thereof, and a coil 22 wound around an intermediate portion of the core member 20a. A magnetized yoke 21b is provided. In order to implement the index magnetization method of this example using such a magnetizing device, first, an encoder intermediate body 19 is prepared in which a magnetic member 18 is coupled and fixed to the entire circumference of the cored bar 7. . Then, by means of the two magnetized heads 16a and 16b, one set of N and S poles is formed on the entire circumference of the side surface of the magnetic member 18 (the surface to be detected, the upper surface in FIG. 15). Magnetization is sequentially performed in the circumferential direction.

この為に具体的には、図示の様に、上記磁性部材18の側面(図15の上面)のうち、円周方向に関して互いに隣り合う2個所位置に、それぞれ上記両着磁ヘッド16a、16bの先端面を近接対向させる。そして、この状態で、上記エンコーダ中間体19のみを(着磁ヨーク21bを静止したまま)円周方向に一定速度で回転させる事に基づき、上記2個所位置を円周方向に連続的に移動させる。これと共に、上記コイル22に、上記回転の速度に対応した周期でONとOFFとを交互に繰り返す、パルス波状の着磁電流を流す事に基づき、上記両着磁ヘッド16a、16bの先端面同士の間に、発生と消滅とを交互に繰り返し、且つ、発生時に上記2個所位置を、それぞれ出入り方向に関して互いに逆向きに貫通する、磁束αを発生させる。これにより、上記磁性部材18の側面の全周にN極とS極との組を1組ずつ、円周方向に関して順次着磁形成する。尚、図示の例は、被着磁面を軸方向側面とする場合であるが、被着磁面を周面とする場合も、同様の方法でインデックス着磁を行なえる。   Specifically, as shown in the drawing, the two magnetized heads 16a and 16b are respectively located at two positions adjacent to each other in the circumferential direction on the side surface (upper surface in FIG. 15) of the magnetic member 18. Make the tip faces close to each other. Then, in this state, only the encoder intermediate body 19 is rotated in the circumferential direction at a constant speed (while the magnetized yoke 21b is stationary), and the two positions are continuously moved in the circumferential direction. . At the same time, the front end surfaces of the two magnetized heads 16a and 16b are caused to flow through the coil 22 by applying a pulse-wave-like magnetizing current that alternately repeats ON and OFF at a cycle corresponding to the rotation speed. In the meantime, generation and disappearance are alternately repeated, and magnetic flux α is generated that penetrates the two positions at the time of occurrence in directions opposite to each other in the direction of entering and exiting. As a result, one set of N and S poles is sequentially magnetized in the circumferential direction on the entire circumference of the side surface of the magnetic member 18. In the example shown in the figure, the magnetized surface is an axial side surface, but index magnetization can be performed in the same manner when the magnetized surface is a peripheral surface.

尚、図示は省略するが、エンコーダ中間体を構成する磁性部材の側面又は周面(被検出面となるべき面)にN極とS極とを3極ずつ、円周方向に関して順次着磁形成するインデックス着磁法も、従来から知られている(例えば、特許文献3参照)。   Although not shown in the figure, the magnetic member constituting the encoder intermediate body is formed with three N poles and three S poles on the side surface or the peripheral surface (surface to be detected) and sequentially magnetized in the circumferential direction. An index magnetization method is also conventionally known (see, for example, Patent Document 3).

以上に説明した様な一発着磁法とインデックス着磁法とのうち、図13に示した一発着磁法の場合には、着磁ヘッド16を構成する各着磁端子15、15の先端面を、それぞれ磁性部材18の側面に接触させた状態で、この磁性部材18の着磁を行なう。この為、着磁電流の大きさを調節する(5〜10kA程度とする)事により、上記磁性部材18の着磁強度を十分に(飽和レベルまで)大きくできる。ところが、図13に示した一発着磁法の場合には、上記着磁ヘッド16の製造誤差(上記各着磁端子15、15の形状誤差及びピッチ誤差等)が、そのままN極及びS極の着磁ピッチ誤差に結び付く。この為、これらN極及びS極の総数が多い場合には特に、これらN極及びS極の着磁ピッチ精度を良好にする事が難しくなる。   Of the one-shot magnetization method and the index magnetization method as described above, in the case of the one-shot magnetization method shown in FIG. 13, the front end surfaces of the respective magnetization terminals 15, 15 constituting the magnetization head 16. The magnetic member 18 is magnetized in a state where the magnetic member 18 is in contact with the side surface of the magnetic member 18. For this reason, by adjusting the magnitude of the magnetizing current (about 5 to 10 kA), the magnetizing strength of the magnetic member 18 can be sufficiently increased (to the saturation level). However, in the case of the one-shot magnetization method shown in FIG. 13, the manufacturing error of the magnetizing head 16 (the shape error and pitch error of the magnetized terminals 15 and 15) is the same as that of the N pole and the S pole. It leads to the magnetization pitch error. For this reason, especially when the total number of these N poles and S poles is large, it becomes difficult to improve the magnetization pitch accuracy of these N poles and S poles.

これに対し、上述の図14〜15に示したインデックス着磁法の場合には、エンコーダ中間体19のみを円周方向に一定速度で回転させながら、1対の着磁ヘッド16a、16bにより、磁性部材18の側面にN極とS極とを1極ずつ(図14)又は2極ずつ(図15)、円周方向に順次着磁形成する方法を採用している。この為、上記磁性部材18の回転速度と着磁電流の周期との関係を適切に制御しておけば、N極及びS極の総数が多い場合であっても、上記両着磁ヘッド16a、16bを備えた着磁ヨーク21a(21b)の製造誤差の影響を殆ど受ける事なく、上記N極及びS極の着磁ピッチ精度を良好にできる。   On the other hand, in the case of the index magnetization method shown in FIGS. 14 to 15 described above, while only the encoder intermediate body 19 is rotated at a constant speed in the circumferential direction, the pair of magnetization heads 16a and 16b A method is adopted in which N poles and S poles are formed on the side surface of the magnetic member 18 one by one (FIG. 14) or two poles (FIG. 15) and sequentially magnetized in the circumferential direction. For this reason, if the relationship between the rotation speed of the magnetic member 18 and the period of the magnetizing current is appropriately controlled, even if the total number of N poles and S poles is large, the both magnetized heads 16a, The magnetization pitch accuracy of the N pole and the S pole can be improved without being substantially affected by the manufacturing error of the magnetizing yoke 21a (21b) provided with 16b.

ところが、上述の図14〜15に示したインデックス着磁法の場合には、着磁を行なう際に、上記両着磁ヘッド16a、16bの先端面と、回転するエンコーダ中間体19(磁性部材18及び芯金7)の側面又は周面との間に、それぞれ干渉(擦れ合い)防止用の隙間を設ける必要がある。これと共に、着磁電流を1〜10A程度と低くせざるを得ない。この為、上記両着磁ヘッド16a、16bの形状を工夫する事により磁束αの流れを効率良く制御しても、上記磁性部材18の着磁強度を十分に(飽和レベルまで)大きくする事が難しい(通常は、最高でも飽和レベルの80〜90%程度のレベルまでしか着磁できない)。又、着磁電流が低く抑えられる分、着磁コイルの巻き数を多くしなければならなくなり、この着磁コイルの信頼性、耐久性の確保が難しくなる。尚、上述の図15に示したインデックス着磁法の第2例よりも、上述の図14に示したインデックス着磁法の第1例の方が、上記磁性部材18の内部に磁束αを効率良く貫通させる事ができる為、この磁性部材18の着磁強度を大きくする事が比較的容易となる。 However, in the case of the index magnetization method shown in FIGS. 14 to 15 described above, when the magnetization is performed, the tip surfaces of the two magnetization heads 16a and 16b and the rotating encoder intermediate body 19 (magnetic member 18) are used. In addition, it is necessary to provide a gap for preventing interference (rubbing) between the side surface or the peripheral surface of the metal core 7). At the same time, the magnetizing current has to be lowered to about 1 to 10A. For this reason, even if the flow of the magnetic flux α is efficiently controlled by devising the shapes of the two magnetized heads 16a and 16b, the magnetization strength of the magnetic member 18 can be sufficiently increased (to the saturation level). Difficult (usually, it can be magnetized only to a level of 80 to 90% of the saturation level at the maximum). In addition, the number of turns of the magnetizing coil has to be increased as much as the magnetizing current is suppressed, and it becomes difficult to ensure the reliability and durability of the magnetizing coil. 14 is more efficient than the second example of the index magnetization method shown in FIG. 15 described above. In the first example of the index magnetization method shown in FIG. Since it can penetrate well, it is relatively easy to increase the magnetization strength of the magnetic member 18.

特開2007−3223号公報JP 2007-3223 A 特開2006−317420号公報JP 2006-317420 A 特開2003−59718号公報JP 2003-59718 A 特開2001−242187号公報JP 2001-242187 A

本発明は、上述の様な事情に鑑み、上述した一発着磁法と同程度に着磁強度を大きくできると共に、上述した各インデックス着磁法と同程度に着磁ピッチ精度を良好にできる、エンコーダの着磁方法及び着磁装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can increase the magnetization strength to the same extent as the above-described one-shot magnetization method, and can improve the magnetization pitch accuracy to the same extent as each index magnetization method described above. The invention was invented to realize a magnetizing method and a magnetizing device for an encoder.

本発明の着磁方法及び着磁装置の対象となるエンコーダは、芯金とエンコーダ本体とを備える。このうちの芯金は、全体を円環状に造られて、使用時に回転部材の一部に、この回転部材と同心に支持固定される。又、上記エンコーダ本体は、上記芯金の全周に磁性部材を結合固定した後、この磁性部材を着磁する事により造ったもので、上記芯金と同心の被検出面(軸方向側面又は周面)を備え、この被検出面にN極とS極とを円周方向に関して交互に且つ等間隔に配置している。
そして、本発明のエンコーダの着磁方法及び着磁装置のうち、請求項1に記載したエンコーダの着磁方法は、上記芯金の全周に上記磁性部材を結合固定して成るエンコーダ中間体を造った後、着磁装置を構成する2個の着磁ヘッドの先端面を、それぞれ上記磁性部材の一部に存在する、上記被検出面となるべき面のうち、円周方向に関して互いに隣接し且つ両者間の回転角ピッチがP(着磁ピッチ2Pの1/2)である2個所位置に近接対向させる。又、この状態で、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる事に基づき、上記被検出面となるべき面に対する上記両着磁ヘッドの先端面の近接対向位置である上記2個所位置を、円周方向に関して上記回転角ピッチPずつ間欠的に移動させながら、これら2個所位置の移動が停止している間だけ、上記着磁装置に着磁電流を流す。そして、この着磁電流に基づいて、上記両着磁ヘッドの先端面同士の間に、上記2個所位置をそれぞれ出入り方向に関して互いに逆向きに貫通する磁束を発生させる。更に、上記2個所位置の移動が停止する度毎に、上記着磁電流の向きを交互に反転させる事に基づいて上記磁束の向きを交互に反転させる事により、上記被検出面となるべき面にN極とS極とを、円周方向に関して交互に、且つ、上記回転角ピッチPで等間隔に着磁形成する。
特に、本発明のエンコーダの着磁方法の場合には、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる作業を、「1回転−1回転角ピッチP」分だけ行なう。これと共に、このエンコーダ中間体の最初の間欠回転を行なう前の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の1回目の着磁を行ない、上記エンコーダ中間体の間欠回転が「1回転−1回転角ピッチP」分だけ行なわれた後の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の最終回目の着磁を行なう。更に、この最終回目の着磁を行なう際の上記着磁電流を、他の回数目の着磁を行なう際の上記着磁電流よりも小さくする。
尚、本発明を実施する場合、上記回転角ピッチPの大きさは、上記エンコーダ本体の被検出面に設ける磁極(N極、S極)の総数に合わせて決定する。即ち、この被検出面に設ける磁極の総数がK個である場合には、上記回転角ピッチP=360(度)/Kとする。
An encoder that is a target of a magnetization method and a magnetization apparatus according to the present invention includes a mandrel and an encoder body. Of these, the core metal is formed in an annular shape as a whole, and is supported and fixed to a part of the rotating member concentrically with the rotating member during use. The encoder body is formed by bonding and fixing a magnetic member around the entire circumference of the core metal, and then magnetizing the magnetic member. The detected surface concentric with the core metal (axial side surface or The N pole and the S pole are alternately arranged at equal intervals in the circumferential direction on the detected surface.
Of the encoder magnetizing method and magnetizing apparatus according to the present invention, the encoder magnetizing method according to claim 1 includes an encoder intermediate body formed by coupling and fixing the magnetic member to the entire circumference of the core metal. After the construction, the tip surfaces of the two magnetizing heads constituting the magnetizing device are adjacent to each other in the circumferential direction among the surfaces to be detected, which are part of the magnetic member. And it is made to oppose and adjoin two positions where the rotation angle pitch between both is P (1/2 of the magnetization pitch 2P). Further, in this state, based on the intermittent rotation of only the encoder intermediate body by the rotation angle pitch P, the position where the tip surfaces of the two magnetized heads are in close proximity to the surface to be the detection surface. While moving the two positions intermittently by the rotation angle pitch P with respect to the circumferential direction, a magnetizing current is supplied to the magnetizing device only while the movement of the two positions is stopped. Based on this magnetizing current, a magnetic flux is generated between the tip surfaces of the two magnetizing heads so as to pass through the two positions in opposite directions with respect to the exit / entry direction. Further, each time the movement of the two positions stops, the surface to be the detected surface is obtained by alternately reversing the direction of the magnetic flux based on alternately reversing the direction of the magnetization current. N poles and S poles are alternately magnetized and formed at equal intervals with the rotation angle pitch P in the circumferential direction.
Particularly, in the case of the encoder magnetizing method of the present invention, the operation of rotating only the encoder intermediate body intermittently by the rotation angle pitch P is carried out by “1 rotation-1 rotation angle pitch P”. At the same time, in the stopped state before the first intermittent rotation of the encoder intermediate body, the first time at the two positions where the tip surfaces of the two magnetized heads are close to each other among the surfaces to be detected surfaces. Magnetization is performed, and after the intermittent rotation of the encoder intermediate body is performed by “1 rotation-1 rotation angle pitch P”, the two magnetizing heads of the surfaces to be detected among the surfaces to be detected are stopped. The final magnetization is performed at the two positions where the front end faces are close to each other. Further, the magnetizing current at the time of the last magnetization is made smaller than the magnetizing current at the other number of times of magnetization.
When the present invention is implemented, the magnitude of the rotation angle pitch P is determined in accordance with the total number of magnetic poles (N pole, S pole) provided on the detection surface of the encoder body. That is, when the total number of magnetic poles provided on the detected surface is K, the rotation angle pitch P is set to 360 (degrees) / K.

上述の様な請求項1に記載したエンコーダの着磁方法を実施する場合に、好ましくは、請求項2に記載した様に、上記着磁電流を1〜10kAの範囲内の大きさとする。   When the encoder magnetizing method described in claim 1 as described above is performed, preferably, as described in claim 2, the magnetizing current is set to a magnitude in the range of 1 to 10 kA.

又、本発明のエンコーダの着磁方法及び着磁装置のうち、請求項3に記載したエンコーダの着磁装置は、上述の請求項1〜2に記載したエンコーダの着磁方法を実施する為の着磁装置であって、回転駆動装置と、着磁ヨークと、着磁電源装置と、集中制御装置とを備える。
このうちの回転駆動装置は、芯金の全周に磁性部材を結合固定して成るエンコーダ中間体を支持した状態で、このエンコーダ中間体を、中心角ピッチPずつ、間欠的に回転させる。
又、上記着磁ヨークは、2個の着磁ヘッドとコイルとを備える。このうちの両着磁ヘッドは、上記磁性部材の一部に存在する、被検出面となるべき面のうち、円周方向に関して互いに隣接し且つ両者間の回転角ピッチがPである2個所位置に、それぞれの先端面を近接対向させる。そして、上記コイルに着磁電流を流す事に基づき、上記両着磁ヘッドの先端面同士の間に、上記2個所位置をそれぞれ出入り方向に関して互いに逆向きに貫通する、上記着磁電流の向きに対応した向きの磁束を発生させる。
又、上記着磁電源装置は、上記エンコーダ中間体の回転が停止している間だけ、上記コイルに上記着磁電流を流すと共に、上記エンコーダ中間体の回転が停止する度毎に、上記着磁電流の向きを交互に反転させる。
更に、上記集中制御装置は、上記回転駆動装置の制御と、上記着磁電源装置の制御とを、互いに関連付けて実行する。これにより、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる作業を、「1回転−1回転角ピッチP」分だけ行なう。これと共に、このエンコーダ中間体の最初の間欠回転を行なう前の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の1回目の着磁を行ない、上記エンコーダ中間体の間欠回転が「1回転−1回転角ピッチP」分だけ行なわれた後の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の最終回目の着磁を行なう。更に、この最終回目の着磁を行なう際の上記着磁電流を、他の回数目の着磁を行なう際の上記着磁電流よりも小さくする。
Of the encoder magnetizing method and magnetizing apparatus according to the present invention, the encoder magnetizing apparatus according to claim 3 is for carrying out the encoder magnetizing method according to claims 1 and 2 described above. A magnetizing device, which includes a rotation drive device, a magnetizing yoke, a magnetizing power supply device, and a centralized control device .
Among these, the rotary drive device intermittently rotates the encoder intermediate body by a central angle pitch P while supporting the encoder intermediate body formed by coupling and fixing a magnetic member to the entire circumference of the core metal.
The magnetizing yoke includes two magnetizing heads and a coil. Among these, the two magnetized heads are located at two positions, which are adjacent to each other in the circumferential direction and have a rotational angle pitch P among the surfaces to be detected, which are part of the magnetic member. Next, the respective front end faces are made to face each other. Then, based on passing a magnetizing current through the coil, the positions of the two locations penetrate between the tip surfaces of the two magnetizing heads in directions opposite to each other in the direction of entering and exiting. Generate magnetic flux in the corresponding direction.
In addition, the magnetizing power supply device allows the magnetizing current to flow through the coil only while the rotation of the encoder intermediate body is stopped, and the magnetizing power supply device every time the encoder intermediate body stops rotating. The direction of the current is reversed alternately.
Furthermore, the centralized control device executes control of the rotary drive device and control of the magnetized power supply device in association with each other. Thus, the operation of intermittently rotating only the encoder intermediate body by the rotation angle pitch P is performed by “1 rotation-1 rotation angle pitch P”. At the same time, in the stopped state before the first intermittent rotation of the encoder intermediate body, the first time at the two positions where the tip surfaces of the two magnetized heads are close to each other among the surfaces to be detected surfaces. Magnetization is performed, and after the intermittent rotation of the encoder intermediate body is performed by “1 rotation-1 rotation angle pitch P”, the two magnetizing heads of the surfaces to be detected among the surfaces to be detected are stopped. The final magnetization is performed at the two positions where the front end faces are close to each other. Further, the magnetizing current at the time of the last magnetization is made smaller than the magnetizing current at the other number of times of magnetization.

上述した様な本発明のエンコーダの着磁方法及び着磁装置の場合、エンコーダ中間体を構成する磁性部材の着磁は、このエンコーダ中間体の回転を停止させた状態で行なう。この為、この磁性部材の着磁を、前述の図13に示した一発着磁法の場合と同程度の大きさの着磁電流を流しながら行なえる。しかも、上記エンコーダ中間体が1回転した時点で、上記磁性部材の一部に存在する、被検出面となるべき面の各部分(N極又はS極を配置すべき部分)が、それぞれ2回ずつ着磁された状態となる。この為、本発明の場合には、上記一発着磁法の場合と同程度に、上記磁性部材の着磁強度を大きくできる。又、着磁電流を大きくできる分、着磁コイルの巻き数を少なくでき、この着磁コイルを構成する導線の曲げ数を少なくできて、この着磁コイルの信頼性及び耐久性の向上を図れる。   In the case of the magnetizing method and magnetizing apparatus of the present invention as described above, the magnetic member constituting the encoder intermediate is magnetized in a state where the rotation of the encoder intermediate is stopped. For this reason, the magnetic member can be magnetized while flowing a magnetizing current having the same magnitude as in the case of the one-shot magnetization method shown in FIG. In addition, when the encoder intermediate body makes one rotation, each part of the surface to be detected (part where the N pole or S pole is to be disposed) present in a part of the magnetic member is twice each. It becomes a state of being magnetized one by one. For this reason, in the case of the present invention, the magnetization strength of the magnetic member can be increased to the same extent as in the case of the one-shot magnetization method. Further, since the magnetizing current can be increased, the number of turns of the magnetizing coil can be reduced, and the number of bending of the conducting wire constituting the magnetizing coil can be reduced, so that the reliability and durability of the magnetizing coil can be improved. .

又、本発明の場合には、上記エンコーダ中間体のみを回転角ピッチPで間欠的に回転させながら、この回転が停止する度毎に、1対の着磁ヘッドにより、上記被検出面となるべき面を2個所ずつ着磁する方法を採用している。この為、上記間欠的に回転させる制御を精度良く行なえば、上記両着磁ヘッド等の製造誤差の影響を殆ど受ける事なく、前述の図14〜15に示したインデックス着磁法の場合と同程度に、上記被検出面となるべき面に設けるN極及びS極の着磁ピッチ精度を良好にできる。   In the case of the present invention, only the encoder intermediate body is intermittently rotated at the rotation angle pitch P, and each time this rotation stops, the pair of magnetizing heads provide the detected surface. A method is adopted in which the power plane is magnetized in two places. For this reason, if the intermittent rotation control is performed with high accuracy, it is almost unaffected by the manufacturing error of the above-mentioned double magnetizing heads and the same as in the case of the index magnetizing method shown in FIGS. It is possible to improve the magnetization pitch accuracy of the N pole and the S pole provided on the surface to be the surface to be detected.

図1〜3は、本発明の実施の形態の1例を示している。尚、本例の特徴は、前述の図4〜7に示したエンコーダ10の中間体である、芯金7の全周に未着磁の磁性部材18を結合固定して成るエンコーダ中間体19のうち、この磁性部材18を着磁する方法及び装置にある。図1に示す様に、本例のエンコーダの着磁装置は、回転駆動装置23と、着磁ヨーク24と、着磁電源装置25とを備える。   1 to 3 show an example of an embodiment of the present invention. The feature of this example is that of an encoder intermediate body 19 which is an intermediate body of the encoder 10 shown in FIGS. Among them, the magnetic member 18 is in a method and apparatus for magnetizing. As shown in FIG. 1, the encoder magnetizing apparatus of the present example includes a rotation driving device 23, a magnetizing yoke 24, and a magnetizing power supply device 25.

このうちの回転駆動装置23は、スピンドル装置(高精度軸受装置)26と、モータ27と、面振れ補正装置28と、回転角度検出装置29と、回転制御手段30とを備える。このうちのスピンドル装置26は、中心部に、上下方向に配設した図示しない主軸(回転軸)を備える。そして、この主軸の上端部に治具31を、固定用チャック32により同心に把持固定している。後述する着磁作業を行なう際に、上記治具31の外周面には、上記エンコーダ中間体19を構成する芯金7を同心に支持固定する。又、上記モータ27は、上記主軸を回転駆動する為のもので、上記スピンドル装置26の下方に設けている。又、上記面振れ補正装置28は、後述する着磁作業を行なう際に、上記エンコーダ中間体19を構成する磁性部材18の側面(被検出面となるべき面で、図1〜3の上面)の面振れ(回転に伴うアキシアル方向振れ)を補正する為のもので、上記スピンドル装置26と上記モータ27との間に設けている。又、上記回転角度検出装置29は、上記主軸の回転角度を検出する為のもので、上記モータ27の下方に設けている。又、上記回転制御手段30は、上記モータ27により、上記主軸を回転角ピッチPずつ間欠的に回転させる制御を実行するもので、この制御を実行する際に、上記回転角度検出装置29の検出信号(上記主軸の回転角度)をフィードバック信号として利用する。 Among these, the rotation drive device 23 includes a spindle device (high-precision bearing device) 26, a motor 27, a surface shake correction device 28, a rotation angle detection device 29, and a rotation control means 30. Of these, the spindle device 26 includes a main shaft (rotating shaft) (not shown) disposed in the vertical direction at the center. A jig 31 is held and fixed concentrically by a fixing chuck 32 at the upper end of the main shaft. When performing a magnetizing operation to be described later, the metal core 7 constituting the encoder intermediate body 19 is concentrically supported and fixed to the outer peripheral surface of the jig 31. The motor 27 is for rotating the main shaft and is provided below the spindle device 26. The surface shake correction device 28 is a side surface of the magnetic member 18 constituting the encoder intermediate body 19 (a surface to be detected, the upper surface in FIGS. This is provided between the spindle device 26 and the motor 27 for correcting the surface vibration (axial vibration due to rotation). The rotation angle detection device 29 is provided below the motor 27 for detecting the rotation angle of the main shaft. The rotation control means 30 executes control for intermittently rotating the main shaft by a rotation angle pitch P by the motor 27. When this control is executed, the rotation angle detecting device 29 detects the rotation. The signal (the rotation angle of the spindle) is used as a feedback signal.

又、上記着磁ヨーク24は、1対の着磁ヘッド16a、16bを有する芯材20bと、この芯材20bの一部に巻回した図示しないコイルとを備える。そして、後述する図3の(A)(B)(C)に示す様に、上記コイルに着磁電流を流す事に基づき、上記両着磁ヘッド16a、16bの先端面同士の間に、これら両先端面同士の間を通る磁束αを発生させる事ができ、且つ、上記着磁電流の向きを反転させる事に基づき、上記磁束αの向きを反転させる事ができる様にしている。この様な着磁ヨーク24は、この着磁ヨーク24の位置を、互いに直交する3軸(X軸、Y軸、Z軸)方向に関して微調節可能とする、位置決め装置33により支持している。   The magnetizing yoke 24 includes a core member 20b having a pair of magnetizing heads 16a and 16b, and a coil (not shown) wound around a part of the core member 20b. Then, as shown in FIGS. 3A, 3B, and 3C, which will be described later, based on passing a magnetizing current through the coil, between the front end surfaces of the magnetized heads 16a and 16b, A magnetic flux α passing between the two end faces can be generated, and the direction of the magnetic flux α can be reversed based on reversing the direction of the magnetization current. Such a magnetized yoke 24 is supported by a positioning device 33 that makes it possible to finely adjust the position of the magnetized yoke 24 in the directions of three axes (X axis, Y axis, Z axis) orthogonal to each other.

又、上記着磁電源装置25は、着磁電源本体34と、着磁制御手段35とを備える。このうちの着磁電源本体34は、上記着磁ヨーク24を構成するコイルに流す着磁電流を発生させるもの(例えばコンデンサ式等の電源)であって、上記コイルに流す着磁電流の向きを切り換える機能を備える。又、上記着磁制御手段35は、上述した回転制御手段30による主軸の間欠回転制御が行なわれる際に、この主軸の回転が停止している間だけ、上記着磁電源本体34により上記コイルに着磁電流を流すと共に、上記主軸の回転が停止する度毎に、この着磁電流の向きを交互に反転させる制御を実行するものである。又、本例の場合、この着磁制御手段35による制御と、上記回転制御手段30による制御とは、集中制御装置36(パソコン)により、互いに関連付けて実行する。又、本例のエンコーダの着磁装置の場合には、他の構成要素として、次述する着磁作業を行なう際に、上記エンコーダ中間体19を構成する磁性部材18の側面のうちで、着磁が済んだ部分の着磁強度を測定する、品質検査用の磁気センサ37を備える。更に、本例の場合には、この磁気センサ37の検出信号を上記着磁制御手段35に入力する事により、この検出信号を、上述した着磁電流の制御を実行する際のフィードバック信号として利用できる様にしている。   The magnetization power supply device 25 includes a magnetization power supply main body 34 and a magnetization control means 35. Among these, the magnetized power source main body 34 generates a magnetizing current (for example, a capacitor-type power source) that flows through the coil constituting the magnetizing yoke 24, and determines the direction of the magnetizing current that flows through the coil. A switching function is provided. Further, the magnetization control means 35, when intermittent rotation control of the main shaft by the rotation control means 30 described above is performed, is applied to the coil by the magnetization power source main body 34 only while the rotation of the main shaft is stopped. The magnetizing current is allowed to flow, and every time the rotation of the main shaft stops, control for alternately reversing the direction of the magnetizing current is executed. In the case of this example, the control by the magnetization control means 35 and the control by the rotation control means 30 are executed in association with each other by the central control device 36 (personal computer). In the case of the magnetizing apparatus for the encoder of the present example, as another constituent element, when performing the magnetizing operation described below, the magnetizing device is formed on the side surface of the magnetic member 18 constituting the encoder intermediate body 19. A magnetic sensor 37 for quality inspection is provided for measuring the magnetization intensity of the magnetized portion. Further, in the case of this example, the detection signal of the magnetic sensor 37 is input to the magnetization control means 35, and this detection signal is used as a feedback signal when executing the above-described magnetization current control. I am trying to do it.

次に、上述の様なエンコーダの着磁装置を使用して、上記エンコーダ中間体19を構成する磁性部材18を着磁する方法に就いて説明する。この磁性部材18の着磁作業を行なう際には、先ず、図1に示す様に、上記エンコーダ中間体19を治具31にセットする。具体的には、上記磁性部材18の側面(被検出面となるべき面)を上に向けた状態で、上記エンコーダ中間体19を構成する芯金7を、上記治具31の外周面に同心に支持固定する。これと共に、図2に示す様に、着磁ヨーク24を構成する2個の着磁ヘッド16a、16bの先端面を、それぞれ上記磁性部材18の側面のうち、円周方向に関して互いに隣接し且つ両者間の回転角ピッチがPである、2個所位置に近接対向させる。尚、着磁効率を十分に確保する観点より、これら2個所位置と上記両着磁ヘッド16a、16bの先端面との間隔(近接対向距離)は、これら2個所位置とこれら両先端面とが干渉しない範囲で、極力小さくする事が好ましい。本例の場合には、次述する上記エンコーダ中間体19の回転時に発生する、上記磁性部材18の側面の面振れを考慮して、上記間隔を30〜100μm程度とする。又、上記磁性部材18の側面のうち、円周方向に関して上記2個所位置から外れた位置(次述する回転方向に関して、これら2個所位置よりも少しだけ前方の位置)に、前記磁気センサ37の検出部を近接対向させる。
Next, a method of magnetizing the magnetic member 18 constituting the encoder intermediate body 19 using the encoder magnetizing apparatus as described above will be described. When the magnetic member 18 is magnetized, first, the encoder intermediate body 19 is set on a jig 31 as shown in FIG. Specifically, the metal core 7 constituting the encoder intermediate body 19 is concentric with the outer peripheral surface of the jig 31 with the side surface (surface to be detected) of the magnetic member 18 facing upward. Support and fix to. At the same time, as shown in FIG. 2, the tip surfaces of the two magnetizing heads 16a and 16b constituting the magnetizing yoke 24 are adjacent to each other in the circumferential direction of the side surfaces of the magnetic member 18, and both The rotation angle pitch between them is set to be close to and opposed to two positions. From the viewpoint of sufficiently securing the magnetization efficiency, the distance between these two positions and the tip surfaces of the two magnetized heads 16a and 16b (proximity facing distance) is such that these two positions and the two tip surfaces are the same. It is preferable to make it as small as possible without causing interference. In the case of this example, the distance is set to about 30 to 100 μm in consideration of the surface deflection of the side surface of the magnetic member 18 that occurs when the encoder intermediate body 19 described below rotates. Further, the magnetic sensor 37 has a side surface of the magnetic member 18 that is out of the two positions in the circumferential direction (a position slightly ahead of the two positions in the rotational direction described below). The detectors are placed close to each other.

そして、この状態で、集中制御装置36により、回転制御手段30による制御と、着磁制御手段35による制御とを、互いに関連付けて実行する。即ち、上記回転制御手段30による制御を実行する事により、スピンドル装置26を構成する主軸と共に、上記エンコーダ中間体19を、回転角ピッチPずつ、間欠的に回転させる。そして、この間欠回転に基づき、図3の(A)→(B)→(C)の順に示す様に、上記磁性部材18の側面に対する上記両着磁ヘッド16a、16bの先端面の近接対向位置である2個所位置を、円周方向に関して回転角ピッチPずつ、間欠的に移動させる。又、この様な回転制御手段30による制御と同時に、上記着磁制御手段35による制御を実行する。具体的には、図3の(A)(B)(C)に示す様に、上記2個所位置の移動(上記エンコーダ中間体19の回転)が停止している間だけ、上記着磁ヨーク24を構成するコイルに、1〜10kAの範囲内の大きさの着磁電流を流す。そして、この着磁電流に基づき、上記両着磁ヘッド16a、16bの先端面同士の間に、上記2個所位置をそれぞれ出入り方向に関して互いに逆向きに貫通する、磁束αを発生させる。更に、図3の(A)→(B)→(C)の順に示す様に、上記2個所位置の移動(上記エンコーダ中間体19の回転)が停止する度毎に、上記着磁電流の向きを交互に反転させて、上記磁束αの向きを交互に反転させる。   In this state, the centralized control device 36 executes the control by the rotation control means 30 and the control by the magnetization control means 35 in association with each other. That is, by executing the control by the rotation control means 30, the encoder intermediate body 19 is rotated intermittently by the rotation angle pitch P together with the main shaft constituting the spindle device 26. Then, based on this intermittent rotation, as shown in the order of (A) → (B) → (C) in FIG. 3, the adjacent opposing positions of the front end surfaces of the two magnetized heads 16 a and 16 b with respect to the side surface of the magnetic member 18. These two positions are intermittently moved by a rotation angle pitch P in the circumferential direction. At the same time as the control by the rotation control means 30, the control by the magnetization control means 35 is executed. Specifically, as shown in FIGS. 3A, 3B, and 3C, the magnetizing yoke 24 is only moved while the movement of the two positions (rotation of the encoder intermediate body 19) is stopped. A magnetizing current having a magnitude in the range of 1 to 10 kA is passed through the coil constituting the. Based on this magnetizing current, a magnetic flux α is generated between the tip surfaces of the two magnetizing heads 16a and 16b so as to penetrate the two positions in opposite directions with respect to the entering / exiting direction. Further, as shown in the order of (A) → (B) → (C) in FIG. 3, every time the movement of the two positions (rotation of the encoder intermediate body 19) stops, the direction of the magnetization current Are alternately reversed to reverse the direction of the magnetic flux α alternately.

即ち、上述の様な2つの制御を同時に実行する事により、図3の(A)→(B)→(C)の順に示す様に、上記磁性部材18の側面に対する上記両着磁ヘッド16a、16bの先端面の近接対向位置である2個所位置を、円周方向に関して回転角ピッチPずつ間欠的に移動させながら、この移動が停止する度毎に、当該2個所位置をN極とS極とに着磁する作業と、同じくS極とN極とに着磁する作業とを、交互に繰り返す。本例の場合には、この様な作業を、上記エンコーダ中間体19を「1回転−1回転角ピッチP」分だけ間欠的に回転させた時点で終了する(但し、最初の間欠回転を行なう前の停止状態で1回目の着磁を行なう)。この結果、上記磁性部材18の側面にN極とS極とが、円周方向に関して交互に且つ回転角ピッチPで等間隔に着磁形成される。これと共に、上記各極(N極、S極)が、それぞれ2回ずつ着磁された状態となる。尚、上記エンコーダ中間体19の「1回転−1回転角ピッチP」分の間欠回転で、最後の停止時の着磁を行なう際に、最初に着磁した2個所位置のうち、回転方向前側の1個所の2回目の着磁を行なう。但し、この際に、最初に着磁した2個所位置のうち、回転方向後側の1個所が若干減磁される傾向となる。この為、この様な減磁を抑えられる様にすべく、上記最後の停止時の着磁を行なう際の着磁電流は、他の停止時の着磁を行なう際の着磁電流よりも、若干小さくする。又、本例の場合には、以上の様な着磁作業と並行して、磁気センサ37により、上記磁性部材18の側面のうちで着磁が済んだ部分の着磁強度を測定する、品質検査を行なう。これにより、上述した着磁作業を行なった後に、別途、着磁強度の品質検査を実施せずに済む様にしている。 That is, by executing the two controls as described above simultaneously, as shown in the order of (A) → (B) → (C) in FIG. Each time the movement is stopped while intermittently moving the two positions, which are adjacently facing positions of the tip surface of 16b, by the rotation angle pitch P in the circumferential direction, the two positions are set to the N pole and the S pole. The work of magnetizing the magnetic field and the work of magnetizing the S pole and the N pole are repeated alternately. In the case of this example, such an operation is terminated when the encoder intermediate body 19 is intermittently rotated by “1 rotation-1 rotation angle pitch P” (however, the first intermittent rotation is performed). The first magnetization is performed in the previous stop state). As a result, N poles and S poles are alternately magnetized and formed on the side surfaces of the magnetic member 18 at equal intervals with the rotation angle pitch P in the circumferential direction. At the same time, each of the poles (N pole and S pole) is magnetized twice. In addition, when performing the magnetization at the time of the last stop by the intermittent rotation of the encoder intermediate body 19 corresponding to “1 rotation-1 rotation angle pitch P”, the front side in the rotation direction among the two positions magnetized first. The second magnetization is performed at one place. However, at this time, of the two positions magnetized first, one position on the rear side in the rotation direction tends to be slightly demagnetized. For this reason, in order to suppress such demagnetization, the magnetization current at the time of magnetization at the time of the last stop is larger than the magnetization current at the time of magnetization at the time of other stops, Make it slightly smaller. In the case of this example, in parallel with the above-described magnetization operation, the magnetic sensor 37 measures the magnetization intensity of the magnetized portion of the side surface of the magnetic member 18. Perform an inspection. Thus, after performing the above-described magnetization operation, it is not necessary to separately perform a quality inspection of the magnetization intensity.

上述した様に、本例のエンコーダの着磁方法及び着磁装置の場合、エンコーダ中間体19を構成する磁性部材18の着磁は、このエンコーダ中間体19の回転を停止させた状態で行なう。この為、この磁性部材18の着磁を、前述の図13に示した一発着磁法の場合と同程度の(1〜10kAの範囲内の)大きさの着磁電流を流しながら行なえる。しかも、上記エンコーダ中間体19が1回転した時点で、上記磁性部材18の側面の各部分(N極又はS極を配置すべき部分)が、それぞれ2回ずつ着磁された状態となる。この為、本例の場合には、上記一発着磁法の場合と同様、上記磁性部材18の着磁強度を十分に(飽和レベルまで)大きくできる。尚、本例を実施する場合、上記着磁電流を大きくすると、その分だけ着磁ヨーク24の耐久性が損なわれる為、上記着磁電流の大きさは、上記着磁強度を十分に(飽和レベルまで)大きくできる条件を満たした上で、極力小さくする事が好ましい。又、上記着磁ヨーク24の耐久性を向上させる為に、この着磁ヨーク24に関しては、内部に冷却水を循環させる冷却ジャケット構造を採用するのが好ましい。   As described above, in the case of the magnetizing method and magnetizing apparatus of the encoder of this example, the magnetic member 18 constituting the encoder intermediate body 19 is magnetized while the rotation of the encoder intermediate body 19 is stopped. For this reason, the magnetic member 18 can be magnetized while flowing a magnetizing current having the same magnitude (within a range of 1 to 10 kA) as in the case of the one-shot magnetization method shown in FIG. In addition, when the encoder intermediate body 19 makes one rotation, each part of the side surface of the magnetic member 18 (the part where the N pole or S pole is to be disposed) is magnetized twice. For this reason, in the case of this example, the magnetization intensity of the magnetic member 18 can be sufficiently increased (to the saturation level) as in the case of the one-shot magnetization method. In the case of carrying out this example, if the magnetizing current is increased, the durability of the magnetizing yoke 24 is impaired by that amount. Therefore, the magnitude of the magnetizing current is sufficient to saturate the magnetizing strength (saturation). It is preferable to make it as small as possible after satisfying the condition that can be increased. In order to improve the durability of the magnetized yoke 24, it is preferable to employ a cooling jacket structure that circulates cooling water inside the magnetized yoke 24.

又、本例の場合には、上記エンコーダ中間体19のみを回転角ピッチPで間欠的に回転させながら、この回転が停止する度毎に、1対の着磁ヘッド16a、16bにより、上記磁性部材18の側面を2個所ずつ着磁する方法を採用している。この為、上記間欠的に回転させる制御を精度良く行なえば、上記磁性部材18の側面に着磁形成すべきN極及びS極の総数が多い場合でも、着磁ヨーク24の製造誤差の影響を殆ど受ける事なく、上記N極及びS極の着磁ピッチ精度を良好に(前述の図14〜15に示したインデックス着磁法の場合と同程度に)できる。   In the case of this example, only the encoder intermediate body 19 is intermittently rotated at the rotation angle pitch P, and each time this rotation stops, the pair of magnetizing heads 16a and 16b A method is employed in which the side surfaces of the member 18 are magnetized in two places. Therefore, if the intermittent rotation control is performed with high accuracy, even if the total number of N poles and S poles to be magnetized on the side surface of the magnetic member 18 is large, the manufacturing error of the magnetizing yoke 24 is affected. The magnetization pitch accuracy of the N pole and S pole can be improved satisfactorily (similar to the index magnetization method shown in FIGS. 14 to 15).

又、本例の場合、上記エンコーダ中間体19の間欠回転時に、上記磁性部材18の側面に回転振れが生じ、これに伴って、この磁性部材18の側面と上記両着磁ヘッド16a、16bの先端面との近接対向距離が変化すると、上記磁性部材18の側面に着磁形成した各磁極(N極、S極)の着磁強度がばらつく。この様な不都合は、前述の図14〜15に示した従来のインデックス着磁法に於いても、同様にして生じる。これに対して、本例の場合には、上記一発着磁法と同程度の着磁電流で着磁を行なう事により、上記各磁極(N極、S極)の着磁強度の絶対値を大きくできる。この為、これら各磁極(N極、S極)の着磁強度のばらつき率を十分に低減できる。   Further, in the case of this example, during the intermittent rotation of the encoder intermediate body 19, rotational vibration occurs on the side surface of the magnetic member 18, and accordingly, the side surface of the magnetic member 18 and the both magnetized heads 16 a and 16 b When the proximity facing distance with the front end surface changes, the magnetization intensity of each magnetic pole (N pole, S pole) formed on the side surface of the magnetic member 18 varies. Such inconvenience occurs in the same manner in the conventional index magnetization method shown in FIGS. On the other hand, in the case of this example, the absolute value of the magnetization intensity of each of the magnetic poles (N pole, S pole) is obtained by performing magnetization with a magnetizing current similar to that in the one-shot magnetization method. Can be bigger. For this reason, the variation rate of the magnetization intensity | strength of each of these magnetic poles (N pole, S pole) can fully be reduced.

尚、上述した実施の形態では、前述の図4〜7に示したエンコーダ10を対象として、製造時の着磁作業を実施した。但し、本発明はこれに限らず、例えば前述の図8〜12に示したエンコーダ10a〜10dを対象として、製造時の着磁作業を実施する事もできる。   In the above-described embodiment, the magnetizing operation at the time of manufacture is performed for the encoder 10 shown in FIGS. However, the present invention is not limited to this. For example, the magnetizing operation at the time of manufacture can be performed for the encoders 10a to 10d shown in FIGS.

尚、本発明のエンコーダの着磁方法及び着磁装置を実施する場合に、着磁対象となる、エンコーダ中間体を構成する磁性部材(エンコーダ本体の素材)は、特に限定される事はない。但し、このエンコーダ中間体を構成する芯金への接合性を考慮すると、上記磁性部材としては、磁性粉を70〜92重量%程度含有し、且つ、熱可塑性樹脂或はゴムをバインダーとした、磁石コンパウンドを好適に採用できる。   Incidentally, when the encoder magnetizing method and magnetizing apparatus of the present invention are implemented, the magnetic member constituting the encoder intermediate body (the material of the encoder main body) to be magnetized is not particularly limited. However, considering the bondability to the metal core constituting the encoder intermediate, the magnetic member contains about 70 to 92% by weight of magnetic powder, and a thermoplastic resin or rubber is used as a binder. A magnet compound can be suitably employed.

この場合に、上記磁性粉としては、ストロンチウムフェライト、バリウムフェライト等のフェライト系の磁性粉や、ネオジウム−鉄−ボロン、サマリウム−コバルト、サマリウム−鉄等の希土類系の磁性粉を採用する事ができ、更に、フェライトの磁気特性を向上させる為に、ランタン等の希土類元素を混入させた磁性粉を採用する事もできる。尚、上記磁性粉の含有量を70〜92重量%にするのが好適である理由は、当該含有量を70重量%未満にすると、磁気特性が劣ると共に、細かいピッチで円周方向に多極磁化させる事が困難になる為であり、又、当該含有量を92重量%よりも多くすると、上記バインダーの量が少なくなり過ぎて、上記磁性部材全体の強度が低くなると共に、この磁性部材の成形が困難になり、実用性が低下する為である。   In this case, ferrite magnetic powders such as strontium ferrite and barium ferrite, and rare earth magnetic powders such as neodymium-iron-boron, samarium-cobalt, and samarium-iron can be used as the magnetic powder. Furthermore, in order to improve the magnetic properties of ferrite, magnetic powder mixed with rare earth elements such as lanthanum can be employed. The reason why the content of the magnetic powder is preferably 70 to 92% by weight is that when the content is less than 70% by weight, the magnetic properties are inferior and the magnetic poles are multipolar in the circumferential direction with a fine pitch. This is because it becomes difficult to magnetize, and when the content is more than 92% by weight, the amount of the binder becomes too small, and the strength of the entire magnetic member is lowered. This is because molding becomes difficult and practicality is lowered.

又、上記バインダーとして、上記熱可塑性樹脂を採用する場合は、射出成形可能なものを採用するのが好適である。具体的には、ポリアミド6、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイド(PPS)、ポリアミド12等のポリアミド樹脂から成るハードセグメントと、ポリエステル成分とポリエーテル成分とのうちの少なくとも一方のソフトセグメントとを有する、ブロック共重合体である変性ポリアミド樹脂や、ポリブチレンテレフタレート等のポリエステル系樹脂をハードセグメントとする、同様のブロック共重合体である変性ポリエステル系樹脂等を採用するのが好適である。又、使用環境で、融雪剤として使用される塩化カルシウムと水とが一緒にかかる可能性がある場合には、吸水性が少ない、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイド(PPS)、変性ポリアミド12樹脂、変性ポリエステル系樹脂を、樹脂バインダーとする事が、より好適である。更に、使用環境で想定される急激な温度変化(熱衝撃)による亀裂発生を防止するバインダーとして、添加する事で、曲げたわみ性、耐亀裂性が向上する、変性ポリアミド12樹脂、変性ポリエステル系樹脂、変性ポリアミド12樹脂のうちの何れかの樹脂とポリアミド12との混合物や、変性ポリエステル系樹脂とポリエステル樹脂との混合物を、好適に採用できる。又、亀裂発生を防止するバインダーとして、上記熱可塑性樹脂と、ニトリルゴム、アクリルゴム等の加硫ゴム微粒子等の耐衝撃性向上剤とを組み合わせのものを採用しても良い。
又、上記バインダーとして、上記ゴムを用いる場合は、耐油性と耐熱性とを兼ね備えた、ニトリルゴム、アクリルゴム、水素添加ニトリルゴム、フッ素ゴム等を用いるのが好適である。
In addition, when the thermoplastic resin is used as the binder, it is preferable to use an injection moldable one. Specifically, at least one soft segment of a hard segment made of a polyamide resin such as polyamide 6, polyamide 12, polyamide 612, polyamide 11, polyphenylene sulfide (PPS), polyamide 12 or the like, and a polyester component and a polyether component. It is preferable to employ a modified polyamide resin, which is a block copolymer, or a modified polyester resin, which is a similar block copolymer, using a polyester resin such as polybutylene terephthalate as a hard segment. . In addition, when there is a possibility that calcium chloride used as a snow melting agent and water are applied together in the usage environment, polyamide 12, polyamide 612, polyamide 11, polyphenylene sulfide (PPS), modified It is more preferable to use a polyamide 12 resin or a modified polyester resin as a resin binder. In addition, modified polyamide 12 resin and modified polyester resin improve flexural flexibility and crack resistance by adding as a binder to prevent cracking due to rapid temperature change (thermal shock) assumed in the usage environment. A mixture of any one of the modified polyamide 12 resins and the polyamide 12 or a mixture of the modified polyester resin and the polyester resin can be suitably employed. Further, as the binder for preventing the occurrence of cracks, a combination of the thermoplastic resin and an impact resistance improver such as fine particles of vulcanized rubber such as nitrile rubber and acrylic rubber may be employed.
Further, when the rubber is used as the binder, it is preferable to use nitrile rubber, acrylic rubber, hydrogenated nitrile rubber, fluorine rubber or the like having both oil resistance and heat resistance.

又、上記磁性粉としては、コストや耐酸化性を考慮すると、フェライト系の磁性粉を採用するのが最も好適である。これに対して、磁気特性を優先して、希土類系の磁性粉を使用する場合には、フェライト系の磁性粉に比べて耐酸化性が低いので、長期間に亙って安定した磁気特性を維持させる為に、上記磁性部材の表面のうち周囲に露出した部分に、表面処理層を設けるのが好適である。尚、この表面処理層としては、例えば、電気或は無電解ニッケルメッキ、エポキシ樹脂塗膜、シリコン樹脂塗膜、フッ素樹脂塗膜等を採用できる。   In view of cost and oxidation resistance, it is most preferable to use ferrite magnetic powder as the magnetic powder. On the other hand, when using rare earth magnetic powders giving priority to magnetic characteristics, the oxidation resistance is lower than that of ferrite magnetic powders, so stable magnetic characteristics over a long period of time. In order to maintain the surface, it is preferable to provide a surface treatment layer on a portion of the surface of the magnetic member exposed to the periphery. As the surface treatment layer, for example, electric or electroless nickel plating, an epoxy resin coating film, a silicon resin coating film, a fluorine resin coating film or the like can be employed.

又、前記エンコーダ中間体を構成する芯金の材料としては、上記磁性部材の磁気特性を低下させず、且つ、使用環境との関係で、一定レベル以上の耐食性を有する、フェライト系ステンレス(SUS430等)、マルテンサイト系ステンレス(SUS410等)等の他、Mo等を添加して耐食性を向上させた、SUS434、SUS444等の高耐食性フェライト系ステンレス等を採用するのが好適である。   In addition, as a material of the metal core constituting the encoder intermediate body, ferritic stainless steel (SUS430, etc.) that does not deteriorate the magnetic characteristics of the magnetic member and has a corrosion resistance of a certain level or more in relation to the use environment. In addition to martensitic stainless steel (SUS410, etc.), it is preferable to employ high corrosion resistance ferritic stainless steel, such as SUS434, SUS444, etc., which has been improved in corrosion resistance by adding Mo or the like.

又、上記芯金の表面のうち、上記磁性部材との接合面は、接着剤との接合力を向上させる為に、微細な凹凸を設けるのが好適である。この凹凸を設ける方法としては、ショットブラスト処理による方法、プレス成形時の金型表面の凹凸の転写による方法等の機械的な方法の他、一度表面処理した表面を酸等によって化学エッチングする方法も採用できる。又、上記磁性部材のバインダーをゴムとする場合には、この磁性部材の表面のうち、上記芯金との接合面に凹凸を設ければ、この凹凸の凹部に接着剤が入り込み、アンカー効果により、上記磁性部材と上記芯金との接合力が強固になる為、より好適である。   Moreover, it is preferable to provide fine unevenness on the surface of the core bar to be bonded to the magnetic member in order to improve the bonding force with the adhesive. In addition to mechanical methods such as a method by shot blasting and a method by transferring irregularities on the mold surface during press molding, the method of chemically etching the surface once surface-treated with an acid or the like can be used as a method for providing the unevenness. Can be adopted. Also, when the binder of the magnetic member is rubber, if an irregularity is provided on the surface of the magnetic member, the bonding surface with the cored bar, an adhesive enters the concave portion of the irregularity, and due to the anchor effect. Since the bonding force between the magnetic member and the cored bar becomes strong, it is more preferable.

又、上記磁性部材のバインダーを、射出成形可能な熱可塑性樹脂とする場合、上記エンコーダ中間体は、金型内で、接着剤を塗布された上記芯金の一部に上記磁性部材を射出成形(インサート成形)する事により造る。この場合に、上記接着剤は、溶融した高圧の上記磁性部材の材料(プラスチック磁石材料、ゴム磁石材料等)の流動物によって、脱着して流失しない程度まで半硬化状態になっており、溶融樹脂・流動ゴムからの熱、或はそれに加えて成形後の2次加熱によって完全に硬化状態となる。この場合に使用可能な接着剤としては、溶剤での希釈が可能で、2段階に近い硬化反応が進む、フェノール樹脂系接着剤、エポキシ樹脂系接着剤等が、耐熱性、耐薬品性、ハンドリング性を十分に確保できる点で好適である。   When the binder of the magnetic member is a thermoplastic resin that can be injection-molded, the encoder intermediate is injection-molded on a part of the core metal coated with an adhesive in the mold. Made by (insert molding). In this case, the adhesive is semi-cured to the extent that it is not detached and washed away by the molten material of the high-pressure magnetic member material (plastic magnet material, rubber magnet material, etc.). -Completely cured by heat from fluid rubber or in addition to secondary heating after molding. Adhesives that can be used in this case can be diluted with a solvent, and the curing reaction proceeds in almost two stages, such as phenol resin adhesives and epoxy resin adhesives, which have heat resistance, chemical resistance, and handling. This is preferable in that sufficient properties can be secured.

又、上記エンコーダ中間体を上述したインサート成形により造る場合で、上記磁性部材を、熱可塑性プラスチックをバインダーとするプラスチック磁石とする場合、この磁性部材の成形は、内径厚み部から溶融したプラスチック磁石材料が同時に金型中に高圧で流れ込み、この金型中で急冷され固形化する、ディスクゲート方式の射出成形とするのが好ましい。この様なディスクゲート方式の射出成形を採用すれば、溶融樹脂はディスク状に広がってから、内径厚み部に該当する部分の金型に流入する事で、中に含有する燐片状の磁性粉が面に対して平行に配向する。特に、内径厚み部近傍の、センサの検出部が対向する内径部と外径部との間の部分は、より配向性が高く、厚さ方向に配向させたアキシアル異方性に非常に近い状態になる。成形時に金型に、厚さ方向に磁場をかける様にすると、異方性はより完全に近いものとなる。尚、この様な磁場成形を行なっても、ゲートをディスクゲート以外の、例えばピンゲートとした場合、徐々に固形化に向って樹脂粘度が上がって行く過程で、ウェルド部での配向を完全に異方化するのは困難であり、それによって、磁気特性が低下すると共に、機械的強度が低下するウェルド部に長期間の使用によって、亀裂等が発生する可能性があり、好ましくない。   Further, when the encoder intermediate is made by the above-described insert molding, and the magnetic member is a plastic magnet having a thermoplastic plastic as a binder, the magnetic member is molded from a plastic magnet material melted from the inner diameter thick portion. At the same time, it is preferable to use a disk gate type injection molding in which the metal flows into the mold at a high pressure and is rapidly cooled and solidified in the mold. If such a disk gate type injection molding is adopted, the molten resin spreads in a disk shape, and then flows into the mold corresponding to the inner diameter thick portion, thereby containing the flake-like magnetic powder contained therein. Are oriented parallel to the plane. In particular, the portion between the inner diameter part and the outer diameter part near the inner diameter thick part facing the detection part of the sensor has a higher orientation and is very close to the axial anisotropy oriented in the thickness direction. become. If a magnetic field is applied to the mold in the thickness direction during molding, the anisotropy becomes closer to perfection. Even if such a magnetic field molding is performed, if the gate is a disk gate other than a pin gate, for example, a pin gate, the orientation of the weld is completely different in the process of gradually increasing the resin viscosity toward solidification. It is difficult to form a crystallizing structure, which causes a decrease in magnetic properties and a possibility that cracks or the like may occur in a welded portion where mechanical strength is reduced for a long period of time.

又、上記磁性部材のバインダーをゴムとする場合、この磁性部材の成形は、射出成形で行なうのであれば、やはり上述したディスクゲート方式の射出成形で造るのが好ましい。これに対し、上記磁性部材の成形を、圧縮成形で行なうのであれば、金型中(下型)にスリンガを配設した状態で、その上にシート状にした未加硫の上記磁性部材の材料を置き、、その上から金型(上型)を被せる事で、上記スリンガに上記磁性部材を加硫接着する。   In the case where the binder of the magnetic member is rubber, if the magnetic member is molded by injection molding, it is preferable that the magnetic gate is also manufactured by the above-described disk gate type injection molding. On the other hand, if the magnetic member is molded by compression molding, the unvulcanized magnetic member formed into a sheet on the slinger is disposed in the mold (lower mold). The magnetic member is vulcanized and bonded to the slinger by placing a material and placing a mold (upper mold) on it.

次に、本発明の効果を確認する為に行なった実験に就いて説明する。実験では、以下の表1に示す様な各種の着磁方法[実施例{本発明の着磁方法(図1〜3参照)}、比較例1{従来の一発着磁法(図13参照)}、比較例2{従来の挟み込み着磁ヘッド方式のインデックス着磁法(図14参照)}]により、それぞれエンコーダ中間体19(図1〜3参照)を構成する磁性部材18の着磁を行なう事で、被検出面である軸方向側面(内径60mm、外径72mm)に合計86個の磁極(N極、S極)を設けたエンコーダ10(図4〜7参照)を完成させた後、このエンコーダ10の被検出面の磁気特性を調べた。

Figure 0005144960
尚、比較例1では、東洋磁気工業株式会社製の着磁ヨーク及び着磁電源を使用し、比較例2では、東洋磁気工業株式会社製の多極着磁装置に挟み込み着磁ヘッド16a、16bを取り付けたものを使用した。又、実施例では着磁ヘッド16bに1巻きの、比較例2では着磁ヘッド16aに100巻の、それぞれコイルを巻回した。又、比較例2で流す着磁電流に対しては、この着磁電流の大きさを、(着磁開始→)上昇→保持→下降(→着磁終了)の順に変化させる、台形制御を実施した。 Next, an experiment conducted for confirming the effect of the present invention will be described. In the experiment, various magnetization methods as shown in Table 1 below [Examples {magnetization method of the present invention (see FIGS. 1 to 3)}, Comparative Example 1 {conventional one-shot magnetization method (see FIG. 13) }, The magnetic member 18 constituting the encoder intermediate body 19 (see FIGS. 1 to 3) is magnetized by the comparative example 2 {index magnetizing method of the conventional sandwiching and magnetizing head system (see FIG. 14)}. Thus, after completing the encoder 10 (see FIGS. 4 to 7) in which a total of 86 magnetic poles (N poles, S poles) are provided on the axial side surface (inner diameter 60 mm, outer diameter 72 mm), which is the detected surface, The magnetic characteristics of the detected surface of the encoder 10 were examined.
Figure 0005144960
In Comparative Example 1, a magnetizing yoke and magnetizing power source manufactured by Toyo Magnetic Industry Co., Ltd. are used. In Comparative Example 2, magnetizing heads 16a and 16b are sandwiched between multipolar magnetizing devices manufactured by Toyo Magnetic Industry Co., Ltd. The one with attached was used. In the example, one coil was wound around the magnetizing head 16b, and in the second comparative example, 100 coils were wound around the magnetizing head 16a. For the magnetizing current that flows in Comparative Example 2, trapezoidal control is performed in which the magnitude of the magnetizing current is changed in the order of (magnetization start →) rise → hold → fall (→ magnetization end). did.

又、実験で使用した、上記エンコーダ中間体19の仕様は、以下の通りである。
<芯金7の仕様>
板厚0.6mm。No.2仕上げ(JIS G 4305、算術平均粗さRa0.06μm程度)のSUS430を母材に使用。上記磁性部材18の接合面のみを、ショットブラスト加工により算術平均粗さRa1.3μmに粗らしてある。
<芯金7と磁性部材18とを接合する接着剤の仕様>
ノボラック型フェノール樹脂を主成分とする固形分30%のフェノール樹脂系接着剤(東洋化学研究所製のメタロックN−15)を、更にメチルエチルケトンで3倍に希釈し、浸漬処理でスリンガ表面に塗布。その後、室温で30分乾燥してから、120℃で30分乾燥器中に放置する事で半硬化状態とした。
<磁性部材18の仕様>
材料(成形試験用磁石材料):戸田工業株式会社製のストロンチウムフェライト含有12ナイロン系異方性プラスチック磁石コンパウンド「FEROTOP TP−A27N」(ストロンチウムフェライトの含有量90重量%)。磁場成形を行なう事で、最大エネルギー積:2.1MGOe。
成形方法:成形時に厚み方向(軸方向)に磁場をかけて、ディスクゲート方式で射出成形。金型内での冷却時に反転脱磁を行ない、磁石を完全に脱磁。上記接着剤を完全に硬化させる為に、150℃で1時間加熱した。完成後の厚さ0.9mm。
The specifications of the encoder intermediate 19 used in the experiment are as follows.
<Specifications of cored bar 7>
Plate thickness 0.6mm. No. SUS430 of 2 finishes (JIS G 4305, arithmetic average roughness Ra of about 0.06 μm) is used as a base material. Only the joint surface of the magnetic member 18 is roughened to an arithmetic average roughness Ra of 1.3 μm by shot blasting.
<Specifications of the adhesive for joining the cored bar 7 and the magnetic member 18>
A 30% solid phenol resin adhesive (Metal Lock N-15, manufactured by Toyo Chemical Laboratories) consisting mainly of a novolak-type phenol resin is further diluted 3 times with methyl ethyl ketone, and applied to the slinger surface by dipping treatment. Then, after drying at room temperature for 30 minutes, it was made into the semi-hardened state by leaving it to stand in 120 degreeC for 30 minutes.
<Specifications of the magnetic member 18>
Material (magnet material for molding test): Strontium ferrite-containing 12 nylon-based anisotropic plastic magnet compound “FEROTOP TP-A27N” manufactured by Toda Kogyo Co., Ltd. (strontium ferrite content 90% by weight). By performing magnetic field shaping, the maximum energy product: 2.1 MGOe.
Molding method: A magnetic field is applied in the thickness direction (axial direction) during molding, and injection molding is performed by the disk gate method. The magnet is completely demagnetized by reversal demagnetization during cooling in the mold. In order to completely cure the adhesive, it was heated at 150 ° C. for 1 hour. Thickness 0.9mm after completion.

又、実験では、上述した完成後のエンコーダ10の被検出面の磁気特性として、この被検出面に近接対向する部分(測定径66mm、エアギャップ1mmの部分)の磁束密度(平均)と、この被検出面に設けた磁極(N極、S極)の単一ピッチ誤差(降下時の最大値)とを調べた。実験結果を、以下の表2に示す。

Figure 0005144960
In the experiment, as the magnetic characteristics of the detected surface of the encoder 10 after completion as described above, the magnetic flux density (average) of the portion (measuring diameter 66 mm, air gap 1 mm) facing and close to the detected surface, The single pitch error (maximum value when descending) of the magnetic pole (N pole, S pole) provided on the detection surface was examined. The experimental results are shown in Table 2 below.
Figure 0005144960

この表2に示した実験結果から、本発明の着磁方法(実施例)によれば、従来の一発着磁法(実施例1)と同程度に磁束密度を高くできると共に、従来のインデックス着磁法(実施例2)と同程度に単一ピッチ誤差を小さくする事ができる事が分かる。   From the experimental results shown in Table 2, according to the magnetization method (Example) of the present invention, the magnetic flux density can be increased to the same extent as that of the conventional one-shot magnetization method (Example 1), and the conventional index magnetization method can be achieved. It can be seen that the single pitch error can be reduced to the same extent as in the magnetic method (Example 2).

本発明の実施の形態の1例を示す、エンコーダの着磁装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the magnetizing apparatus of an encoder which shows one example of embodiment of this invention. 図1のA部を、この図1の右方から見た拡大図。The enlarged view which looked at the A section of FIG. 1 from the right side of this FIG. 図2のB部拡大図。The B section enlarged view of FIG. 回転速度検出装置付回転支持装置の第1例を示す半部断面図。The half part sectional view which shows the 1st example of a rotation support apparatus with a rotational speed detection apparatus. 図4のC部拡大図Part C enlarged view of FIG. この第1例に組み込むエンコーダの被検出面を示す図。The figure which shows the to-be-detected surface of the encoder integrated in this 1st example. 回転速度検出装置付回転支持装置の第2例を示す断面図。Sectional drawing which shows the 2nd example of a rotation support apparatus with a rotational speed detection apparatus. 同第3例を示す断面図。Sectional drawing which shows the 3rd example. 図8のD部拡大図。The D section enlarged view of FIG. 回転速度検出装置付回転支持装置の第4例を示す要部断面図。Sectional drawing of the principal part which shows the 4th example of a rotation support apparatus with a rotational speed detection apparatus. 回転支持装置の荷重測定装置に組み付けて使用可能なエンコーダの第1例を示す斜視図。The perspective view which shows the 1st example of the encoder which can be assembled | attached and used for the load measuring device of a rotation support apparatus. 同第2例を示す斜視図。The perspective view which shows the 2nd example. 従来から知られている一発着磁法を説明する為の図。The figure for demonstrating the one-shot magnetization method known conventionally. 従来から知られているインデックス着磁法の第1例を説明する為の図。The figure for demonstrating the 1st example of the index magnetization method known conventionally. 同第2例を説明する為の図。The figure for demonstrating the 2nd example.

符号の説明Explanation of symbols

1、1a 外輪
2 内輪
3 玉
4 組み合わせシールリング
5 芯金
6 弾性材
7、7a〜7d 芯金
8 円筒部
9 円輪部
10、10a〜10d エンコーダ
11、11b〜11d エンコーダ本体
12 センサ
13 ハブ
14 カバー
15 着磁端子
16、16a、16b 着磁ヘッド
17 導線
18 磁性部材
19 エンコーダ中間体
20、20a、20b 芯材
21、21a、21b 着磁ヨーク
22 コイル
23 回転駆動装置
24 着磁ヨーク
25 着磁電源装置
26 スピンドル装置
27 モータ
28 面振れ補正装置
29 回転角度検出装置
30 回転制御手段
31 治具
32 固定用チャック
33 位置決め装置
34 着磁電源本体
35 着磁制御手段
36 集中制御装置
37 磁気センサ
DESCRIPTION OF SYMBOLS 1, 1a Outer ring 2 Inner ring 3 Ball 4 Combination seal ring 5 Core metal 6 Elastic material 7, 7a-7d Core metal 8 Cylindrical part 9 Circular ring part 10, 10a-10d Encoder 11, 11b-11d Encoder main body 12 Sensor 13 Hub 14 Cover 15 Magnetized terminal 16, 16a, 16b Magnetized head 17 Conductor 18 Magnetic member 19 Encoder intermediate 20, 20a, 20b Core material 21, 21a, 21b Magnetized yoke 22 Coil 23 Rotation drive device 24 Magnetized yoke 25 Magnetized Power supply device 26 Spindle device 27 Motor 28 Surface shake correction device 29 Rotation angle detection device 30 Rotation control means 31 Jig 32 Fixing chuck 33 Positioning device 34 Magnetization power source body 35 Magnetization control means 36 Central control device 37 Magnetic sensor

Claims (3)

芯金とエンコーダ本体とを備え、このうちの芯金は、全体を円環状に造られて、使用時に回転部材の一部に、この回転部材と同心に支持固定されるものであり、上記エンコーダ本体は、上記芯金の全周に磁性部材を結合固定した後、この磁性部材を着磁する事により造ったもので、上記芯金と同心の被検出面を備え、この被検出面にN極とS極とを円周方向に関して交互に且つ等間隔に配置しているエンコーダを製造すべく、上記芯金の全周に上記磁性部材を結合固定して成るエンコーダ中間体を造った後、着磁装置を構成する2個の着磁ヘッドの先端面を、それぞれ上記磁性部材の一部に存在する、上記被検出面となるべき面のうち、円周方向に関して互いに隣接し且つ両者間の回転角ピッチがPである2個所位置に近接対向させた状態で、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる事に基づき、上記被検出面となるべき面に対する上記両着磁ヘッドの先端面の近接対向位置である上記2個所位置を、円周方向に関して回転角ピッチPずつ間欠的に移動させながら、これら2個所位置の移動が停止している間だけ、上記着磁装置に着磁電流を流す事に基づいて、上記両着磁ヘッドの先端面同士の間に、上記2個所位置をそれぞれ出入り方向に関して互いに逆向きに貫通する磁束を発生させると共に、上記2個所位置の移動が停止する度毎に、上記着磁電流の向きを交互に反転させる事に基づいて上記磁束の向きを交互に反転させる事により、上記被検出面となるべき面にN極とS極とを、円周方向に関して交互に且つ回転角ピッチPで等間隔に着磁形成するエンコーダの着磁方法であって、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる作業を、「1回転−1回転角ピッチP」分だけ行なうと共に、このエンコーダ中間体の最初の間欠回転を行なう前の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の1回目の着磁を行ない、上記エンコーダ中間体の間欠回転が「1回転−1回転角ピッチP」分だけ行なわれた後の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の最終回目の着磁を行ない、且つ、この最終回目の着磁を行なう際の上記着磁電流を、他の回数目の着磁を行なう際の上記着磁電流よりも小さくする事を特徴とするエンコーダの着磁方法。 A core metal and an encoder main body are provided, and the core metal is formed in an annular shape as a whole, and is supported and fixed to a part of the rotation member concentrically with the rotation member during use. The main body is formed by coupling and fixing a magnetic member to the entire circumference of the core metal, and then magnetizing the magnetic member. The main body has a detected surface concentric with the core metal, and the detected surface has N In order to manufacture an encoder in which poles and S poles are alternately arranged at equal intervals in the circumferential direction, after making an encoder intermediate body in which the magnetic member is coupled and fixed to the entire circumference of the core metal, The tip surfaces of the two magnetizing heads constituting the magnetizing device are adjacent to each other in the circumferential direction among the surfaces to be detected, which are part of the magnetic member, and between the two. In a state where the rotation angle pitch is in close proximity to two positions where P is P Based on the intermittent rotation of only the encoder intermediate body by the rotation angle pitch P, the positions of the two positions, which are adjacently facing positions of the front end surfaces of the two magnetized heads, with respect to the surface to be the detected surface, While the movement of these two positions is stopped while intermittently moving the rotation angle pitch P with respect to the circumferential direction, based on passing a magnetization current through the magnetizing device, A magnetic flux penetrating the two positions in opposite directions with respect to the entry / exit directions is generated between the front end surfaces, and the direction of the magnetizing current is alternately changed every time the movement of the two positions is stopped. By alternately reversing the direction of the magnetic flux based on the reversal, the N pole and the S pole are alternately arranged at equal intervals at the rotation angle pitch P in the circumferential direction on the surface to be detected. Magnetization formation That a magnetizing method of the encoder, the work to intermittently rotate only the encoder intermediates by rotation angle pitch P, along with performing only "1 rotation -1 rotational angle pitch P" component, the first encoder intermediate In the stopped state before the intermittent rotation of the encoder, the first intermediate magnetization is performed at the two positions where the tip surfaces of the two magnetized heads are close to each other among the surfaces to be detected. In the stop state after the intermittent rotation of "1 rotation-1 rotation angle pitch P" is performed, two positions where the tip surfaces of the two magnetized heads are close to each other among the surfaces to be detected surfaces The position is magnetized at the last time, and the magnetizing current at the time of the last magnetizing is made smaller than the magnetizing current at the other times of magnetizing. The encoder magnetizing method. 着磁電流を1〜10kAの範囲内の大きさとする、請求項1に記載したエンコーダの着磁方法。   The method for magnetizing an encoder according to claim 1, wherein the magnetizing current is set to a magnitude within a range of 1 to 10 kA. 請求項1〜2のうちの何れか1項に記載したエンコーダの着磁方法を実施する為の着磁装置であって、回転駆動装置と、着磁ヨークと、着磁電源装置と、集中制御装置とを備え、
このうちの回転駆動装置は、芯金の全周に磁性部材を結合固定して成るエンコーダ中間体を支持した状態で、このエンコーダ中間体を、中心角ピッチPずつ間欠的に回転させるものであり、
上記着磁ヨークは、上記磁性部材の一部に存在する、被検出面となるべき面のうち、円周方向に関して互いに隣接し且つ両者間の回転角ピッチがPである2個所位置に、それぞれの先端面を近接対向させる2個の着磁ヘッドと、コイルとを備え、且つ、このコイルに着磁電流を流す事に基づき、これら両着磁ヘッドの先端面同士の間に、上記2個所位置をそれぞれ出入り方向に関して互いに逆向きに貫通する、上記着磁電流の向きに対応した向きの磁束を発生させられるものであり、
上記着磁電源装置は、上記エンコーダ中間体の回転が停止している間だけ、上記コイルに上記着磁電流を流すと共に、上記エンコーダ中間体の回転が停止する度毎に、上記着磁電流の向きを交互に反転させるものであり、
上記集中制御装置は、上記回転駆動装置の制御と、上記着磁電源装置の制御とを、互いに関連付けて実行する事により、上記エンコーダ中間体のみを回転角ピッチPずつ間欠的に回転させる作業を、「1回転−1回転角ピッチP」分だけ行なうと共に、このエンコーダ中間体の最初の間欠回転を行なう前の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の1回目の着磁を行ない、上記エンコーダ中間体の間欠回転が「1回転−1回転角ピッチP」分だけ行なわれた後の停止状態で、上記被検出面となるべき面のうち上記両着磁ヘッドの先端面を近接対向させた2個所位置の最終回目の着磁を行ない、且つ、この最終回目の着磁を行なう際の上記着磁電流を、他の回数目の着磁を行なう際の上記着磁電流よりも小さくするものである、
エンコーダの着磁装置。
A magnetizing device for carrying out the encoder magnetizing method according to any one of claims 1 to 2, comprising: a rotary drive device, a magnetizing yoke, a magnetizing power supply device, and centralized control. With the device ,
Among these, the rotary drive device is configured to intermittently rotate the encoder intermediate body by a central angle pitch P in a state where the encoder intermediate body formed by coupling and fixing a magnetic member to the entire circumference of the core metal is supported. ,
The magnetized yokes are located at two positions where the rotation angle pitch between the two adjacent to each other in the circumferential direction is P among the surfaces to be detected that are present in a part of the magnetic member. Two magnetizing heads that are close to each other, and a coil, and by passing a magnetizing current through the coils, the two locations are arranged between the tip surfaces of the two magnetizing heads. A magnetic flux in a direction corresponding to the direction of the magnetization current passing through the positions in opposite directions with respect to the exit / entry directions can be generated.
The magnetizing power supply device allows the magnetizing current to flow through the coil only while the rotation of the encoder intermediate is stopped, and the magnetizing current is reduced every time the encoder intermediate body stops rotating. The direction is reversed alternately ,
The centralized control device performs an operation of intermittently rotating only the encoder intermediate body by a rotation angle pitch P by executing the control of the rotary drive device and the control of the magnetized power supply device in association with each other. , For one rotation and one rotation angle pitch P, and in the stop state before the first intermittent rotation of the encoder intermediate body, the front ends of the two magnetized heads among the surfaces to be detected. First detection is performed at two positions with the surfaces facing each other, and the encoder intermediate body is intermittently rotated by “1 rotation-1 rotation angle pitch P”, and then the detected state is detected. The final magnetization of the two positions where the tip surfaces of the two magnetizing heads are closely opposed to each other among the surfaces to be the surface, and the magnetization current when performing the final magnetization, When performing other number of magnetizations It is intended to be smaller than the deposition current,
Encoder magnetizer.
JP2007140898A 2007-05-28 2007-05-28 Magnetizing method and magnetizing apparatus for encoder Expired - Fee Related JP5144960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140898A JP5144960B2 (en) 2007-05-28 2007-05-28 Magnetizing method and magnetizing apparatus for encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140898A JP5144960B2 (en) 2007-05-28 2007-05-28 Magnetizing method and magnetizing apparatus for encoder

Publications (3)

Publication Number Publication Date
JP2008292418A JP2008292418A (en) 2008-12-04
JP2008292418A5 JP2008292418A5 (en) 2010-07-15
JP5144960B2 true JP5144960B2 (en) 2013-02-13

Family

ID=40167280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140898A Expired - Fee Related JP5144960B2 (en) 2007-05-28 2007-05-28 Magnetizing method and magnetizing apparatus for encoder

Country Status (1)

Country Link
JP (1) JP5144960B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101556214B1 (en) 2014-03-28 2015-09-30 (주)대한특수금속 Magnetizing yoke device with cooling system
US9583244B2 (en) * 2014-09-30 2017-02-28 Nichia Corporation Bonded magnet, bonded magnet component, and bonded magnet production method
JP2020053515A (en) * 2018-09-26 2020-04-02 日亜化学工業株式会社 Manufacturing method of multipole bonded magnet composite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940305A (en) * 1982-08-31 1984-03-06 Sony Corp Magnetizing method of magnetic material
JP4018313B2 (en) * 2000-03-01 2007-12-05 Ntn株式会社 Manufacturing method of magnetic encoder

Also Published As

Publication number Publication date
JP2008292418A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP1707923B1 (en) Magnetic encoder and bearing
US20090256551A1 (en) Rolling Bearing With Rotational Speed Sensor
JP4189696B2 (en) Manufacturing method of magnetic encoder
JP4993017B2 (en) Magnetic encoder and rolling bearing unit including the magnetic encoder
JP5082646B2 (en) Manufacturing method of seal ring with encoder and manufacturing method of rolling bearing provided with seal ring with encoder
JP2006313117A (en) Manufacturing method of encoder
JP5144960B2 (en) Magnetizing method and magnetizing apparatus for encoder
WO2011135957A1 (en) Rolling bearing
JP4821123B2 (en) Magnetic encoder and rolling bearing unit
JP5085982B2 (en) Magnetizing method and magnetizing apparatus for encoder
JP2007316024A (en) Rolling bearing
JP4682919B2 (en) Manufacturing method of rolling bearing
JP2009185965A (en) Rolling bearing unit with combination seal ring
JP5573592B2 (en) Magnetization method of multi-pole magnet encoder
JP5200654B2 (en) Manufacturing method of slinger with encoder and rolling bearing unit with encoder
JP2007101443A (en) Rolling bearing unit with magnetic encoder, and manufacturing method therefor
JP2010249536A (en) Magnetic encoder and method of manufacturing same
JP4968374B2 (en) Magnetic encoder and rolling bearing unit including the magnetic encoder
JP2006133018A (en) Magnetic encoder
JP2009198420A (en) Magnetic encoder, and rolling bearing unit equipped with magnetic encoder
JP4952087B2 (en) Rolling bearing unit
JP4706392B2 (en) Magnetic encoder, manufacturing method thereof, and rolling bearing unit
JP4682737B2 (en) Encoder manufacturing method and rolling bearing device
JP2006170308A (en) Rolling bearing unit for wheel
JP4178412B2 (en) Magnetic encoder, method of manufacturing the same, and rolling bearing unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees