JP5144866B2 - Method for producing diesel fuel composition - Google Patents
Method for producing diesel fuel composition Download PDFInfo
- Publication number
- JP5144866B2 JP5144866B2 JP2001300281A JP2001300281A JP5144866B2 JP 5144866 B2 JP5144866 B2 JP 5144866B2 JP 2001300281 A JP2001300281 A JP 2001300281A JP 2001300281 A JP2001300281 A JP 2001300281A JP 5144866 B2 JP5144866 B2 JP 5144866B2
- Authority
- JP
- Japan
- Prior art keywords
- light oil
- fuel composition
- oil
- polar substance
- substance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、軽油燃料組成物に関し、特にシリカゲルに吸着され、メタノール又はエタノールで抽出される極性物質を30mg/L以下含む軽油燃料組成物に関するものである。
【0002】
【従来の技術】
軽油がユーザーに供給される場合に起こる不具合の一つに軽油特有の泡立ちという問題がある。軽油はガソリン及び灯油と比較して粘度が高いため、振とうすると泡立ちやすい性質を有する。この泡が消えるまでの時間、いわゆる消泡時間が短い場合には特に問題はないが、消泡時間が1分を大きく超える場合には、給油時に泡立ちが大きくなって、タンクが満タンになる前に給油が停止したり、給油に時間がかかったり、あるいは給油口から泡があふれ出たりといった不具合を生じる。これらの不具合は、ガソリンスタンドにとっては、給油機会損失という不都合を生じ、またユーザーにとっては、特に今後その数の増大が予想されるセルフ給油のガソリンスタンドにおいて、給油時のふきこぼれといった問題として顕在化してくることが予想され、当該ふきこぼれ対策が必要となる。
【0003】
これらの泡立ちは、形成された泡の安定性が高く、泡が容易に消失しないために起こる現象で、泡の安定性を増大させる物質が存在することにより起こりやすくなると考えられる。ところが、該泡立ち原因物質は微量でも顕著に泡立ち及び消泡時間の増大を引き起こし、また、軽油自体が種々の炭化水素の混合物であることから、該物質の同定はガスクロ−質量分析(GC−MS)等を用いても、困難であるのが現状である。
【0004】
ところで、軽油はいくつかの基材を混合して製造されるが、その製造過程において、泡立ち原因物質の混入経路は種々考えられる。例えば、原油そのものに泡立ち原因物質が混入している場合、製油所間の取引で他所から入手した軽油基材に泡立ち原因物質が混入している場合、あるいは泡立ち原因物質が後から混入してしまう場合等が考えられる。
【0005】
こうした軽油の泡立ち問題を解決する方法として、(1)消泡剤を添加して泡の安定性を低下させる方法、(2)常圧蒸留装置または水素化脱硫装置に通油して、再精製する方法などがある。
しかしながら、(1)消泡剤(油脂系、脂肪酸系、脂肪酸エステル系、アルコール系、エーテル系、リン酸エステル系、アミン系、アマイド系、シリカ系)を使用する方法では、消泡剤が燃焼に悪影響を及ぼすおそれがあり、特に近年の環境対策で装着される排ガス処理装置に悪影響を及ぼす可能性がある。また、消泡剤は高価であり、軽油の製造コストを増大させるという経済的問題点もある。
一方(2)常圧蒸留装置に通油する方法では、泡立ち原因物質を含有しない原油と混合することによって、泡立ち原因物質が希釈されることが期待されるが、具体的に泡立ち原因物質をどの程度低減することで、どの程度の泡立ち防止効果が得られるのか、その指標を決定することが困難であるという問題点がある。
また、水素化脱硫装置に通油する場合も同様で、明確な運転目標を設定することが困難であるという問題点がある。
【0006】
また、特開2000−265180には、硫黄分が0.005質量%以下、芳香族分が24容量%以下、かつ30℃における動粘度が4.0mm2/s以上5.2mm2/s以下である発泡性を低減した軽油が開示されているが、泡立ちの原因が軽油の性状に由来するものではなく、上述したような泡立ち原因物質によるものである場合には、軽油の性状規定のみでは泡立ちを防止することはできない。
【0007】
【発明が解決しようとする課題】
本発明は、消泡時間の短い軽油燃料組成物及び泡立ち原因物質を含有する軽油燃料組成物または軽油基材を処理して、消泡時間の短い軽油燃料組成物の製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、軽油燃料組成物中に存在するシリカゲルに吸着され、メタノール又はエタノールによって抽出される極性物質を30mg/L以下とすることで、本発明の目的を達成し得ることを見出し、本発明に至ったものである。
【0009】
【発明の実施の形態】
本発明における軽油燃料組成物は、シリカゲルに吸着され、メタノール又はエタノールで抽出される極性物質を、該メタノール又はエタノール除去後の重量で、軽油1Lあたり30mg以下含むことを特徴とするが、ここで、極性物質とは、具体的には次のようにして特定される物質をいう。すなわち、室温において、ガラスカラム等に充填されたシリカゲルに、軽油燃料組成物を流下して、極性物質を吸着させ、該シリカゲルを、非極性溶媒、次いでアルコール以外の極性溶媒で洗浄し、その後メタノール又はエタノールで抽出し、該メタノール又はエタノール溶媒を除去した後に得られる極性物質をいう(以下、単に「極性物質」という)。当該極性物質が、軽油燃料組成物の泡立ち原因物質と考えられ、軽油燃料組成物中に30mg/Lを超えて存在すると、消泡時間の長い軽油燃料組成物となり、本発明の効果を示さない。
【0010】
前記シリカゲルについては特に限定されず、市販のものを使用し得る。但し、吸着性能を確保するためには、使用前に脱水することが必要である。
また、前記非極性溶媒は、シリカゲルに吸着した軽油燃料組成物を構成する炭化水素等を洗浄するためのものであり、炭化水素溶媒、エーテル系溶媒などを使用し得る。炭化水素溶媒としては、例えばペンタン、ヘキサン、ヘプタン等、エーテル系としてはジエチルエーテル等が好適に使用される。
その後に使用されるアルコール以外の極性溶媒は、泡立ち原因物質でない極性物質を除去、洗浄するためのものであり、クロロホルムなどのハロゲン化炭化水素溶媒、アセトン等のケトン類等を好適に使用し得る。
尚、本発明におけるメタノール又はエタノールによって抽出される極性物質は、該メタノール又はエタノールをロータリーエバポレーター等によって、蒸発除去することによって回収される。
【0011】
本発明において、軽油燃料組成物は、主成分が沸点140〜400℃(ASTM D86に準じて測定した場合の値)の炭化水素油であり、硫黄分、密度、セタン指数等は特に限定されない。すなわち、本発明においては、これら軽油燃料組成物自体の性状には関係なく、泡立ち原因物質を除去することで本発明の目的を達成し得る。
【0012】
本発明の軽油燃料組成物を得る方法としては、前記極性物質を金属酸化物にて吸着除去する方法、前記極性物質を水素化処理により除去する方法等を採用することができる。
【0013】
前記金属酸化物としては、種々のものが使用でき、特に限定はされないが、例えば、シリカ、シリカゲル、シリカアルミナ、活性白土、シリカマグネシア、アルミナ、活性炭、カルシア、シリカカルシア、水素型Y型ゼオライトなどが使用できる。この中で、イオン交換水中に浸した時にpH7以下となる金属酸化物が好ましく、具体的にはシリカ、シリカゲル、シリカアルミナ、活性白土、シリカマグネシアが好ましい。また、その中でも特にシリカゲルが好ましい。
尚、これら金属酸化物の比表面積は、吸着能力の観点から30m2/g以上であることが好ましい。
また、吸着除去は、通常、円筒形状の吸着塔に上記金属酸化物を充填し、該極性物質を含有する軽油燃料組成物または軽油基材を液空間速度(LHSV)0.2〜5.0h-1で流通させることで達成され得る。
【0014】
水素化処理により極性物質を除去する方法としては、一般に用いられる水素化脱硫装置を使用することができ、また処理条件は、軽油燃料組成物中の極性物質を30mg/L以下にするような条件であれば、特に限定されない。通常は、LHSVが0.2〜5.0h-1、好ましくは0.4〜2.5h-1、水素分圧が2〜10MPa、好ましくは2.5〜8.0MPa、反応温度が220〜400℃、好ましくは250〜360℃、水素/原料油比が50〜1500Nm3/kl、好ましくは200〜800Nm3/klである。
【0015】
上記水素化処理に使用し得る触媒としては、水素化能を有する触媒であれば特に限定されないが、単なるオレフィンや芳香環への水素化能を持つのみではなく、水素化脱硫、水素化脱窒素、水素化脱酸素などの機能をも有する水素化処理触媒が好ましい。従って、これらの機能を有する市販触媒が好適に使用し得る。
水素化金属としては、通常Ni−Mo,Co−Mo,Ni−Co−Mo,Ni−WあるいはPt,Pd,Rh,Ru等の金属が好適に用いられる。触媒担体としては、特に限定されないが、通常、アルミナ、シリカ等が用いられる。これらの触媒系のうち、特に好ましいのはCo−Mo/アルミナ、Ni−Mo/アルミナ等である。尚、これらの水素化処理触媒は、通常、予備硫化処理などの前処理を行った後に使用される。
【0016】
尚、極性物質を金属酸化物にて吸着除去する方法及び水素化処理により除去する方法等においては、最終製品である軽油燃料組成物を処理することもできるし、また極性物質を含有する軽油基材を処理し、その後他の軽油基材と混合して、最終製品である軽油燃料組成物を調製してもよい。さらには、極性物質を含有する軽油基材と、極性物質を含有しない軽油基材を混合した後に、上記処理を行った後、最終製品である軽油燃料組成物を調製してもよい。
【0017】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
評価方法
1)極性物質の定量方法
シリカゲル45mlをガラスカラムに充填し、軽油燃料組成物250mlを流下させ、極性物質をシリカゲルに吸着させた。その後、n−ペンタン500ml、ジエチルエーテル500ml、クロロホルム500mlで洗浄し、エタノールで該極性物質の抽出を行った。次にエタノールをロータリーエバポレーターで蒸発除去し、極性物質を回収、秤量した。
【0018】
2)消泡時間
共栓付きの10mlのメスシリンダーに試料60mlを採取し、メスシリンダーを30秒間(60回)上下に振りまぜ、発生した泡が消え、油面の一部が見えるまでの消泡時間を測定した。
【0019】
実施例1
内径15mmの円筒カラムにシリカゲル45mlを充填し、第1表に示す泡立ちが生じる軽油留分A2をLHSV1.7h-1、室温の条件で通油し、シリカゲル通油軽油留分B2を調製した。また、第1表に示す中東系原油直留軽油留分A1を、市販のCo−Mo/アルミナ触媒にて、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、硫黄濃度を330重量ppmまで低減した水素化処理軽油留分B1を調製した。
水素化処理軽油留分B1、850mlとシリカゲル通油軽油留分B2、150mlを混合し、試作軽油C1を調製した。試作軽油C1について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0020】
実施例2
泡立ちを示す軽油留分A2を、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、水素化処理軽油留分B3を調製した。
水素化処理軽油留分B1、850mlと水素化処理軽油留分B3、150mlを混合し、試作軽油C2を調製した。試作軽油C2について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0021】
実施例3
直留軽油留分A1、850mlと泡立ちを示す軽油留分A2、150mlを混合し、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、試作軽油C3を調製した。試作軽油C3について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0022】
比較例1
水素化処理軽油留分B1、850mlと泡立ちを示す軽油留分A2、150mlを混合し、比較軽油D1を調製した。比較軽油D1について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0023】
実施例4
比較例1で調製した比較軽油D1を、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、試作軽油C4を調製した。試作軽油C4について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0024】
比較例2
水素化処理軽油留分B1、1000mlに、泡立ちを示す軽油留分A2から実施例1と同様の方法で抽出した極性物質10mgを添加し、比較軽油D2を調製した。比較軽油D2について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0025】
実施例5
比較例2で調製した比較軽油D2を、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、試作軽油C5を調製した。試作軽油C5について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0026】
比較例3
泡立ちを示す軽油留分A2を、LHSV2.2h-1、水素分圧2.9MPa、反応温度280℃、水素/原料油比250Nm3/klの条件で水素化処理し、水素化処理軽油留分B4を調製した。水素化処理軽油留分B1、850mlに水素化処理軽油留分B4、150mlを加え、試作油D3を調製した。試作軽油D3について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0027】
比較例4
直留軽油留分A1を、LHSV1.0h-1、水素分圧4.9MPa、反応温度350℃、水素/原料油比250Nm3/klの条件で水素化処理し、水素化処理軽油留分B5を調製した。
水素化処理軽油留分B5、1000mlに、泡立ちを示す軽油留分A2から実施例1と同様の方法で抽出した極性物質25mgを添加し、比較軽油D4を調製した。比較軽油D4について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0028】
実施例6
比較軽油D4を、LHSV1.5h-1、水素分圧4.9MPa、反応温度330℃、水素/原料油比250Nm3/klの条件で水素化処理し、試作軽油C6を調製した。試作軽油C6について、極性物質の量及び消泡時間の測定を行った。その結果を第2表に示す。
【0029】
【表1】
【0030】
【表2】
【0031】
【発明の効果】
本発明の軽油燃料組成物は泡立ち物質である極性物質の含有量が少ないために、消泡時間が短く、泡立ち現象が無視できるほど小さい。また本発明によれば、泡立ち原因物質及びその定量方法が確立されたため、低コストで泡立ちの少ない軽油燃料組成物を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light oil fuel composition, and more particularly to a light oil fuel composition containing 30 mg / L or less of a polar substance adsorbed on silica gel and extracted with methanol or ethanol.
[0002]
[Prior art]
One of the problems that occurs when diesel oil is supplied to users is the problem of foaming peculiar to diesel oil. Since light oil has a higher viscosity than gasoline and kerosene, it has the property of easily foaming when shaken. There is no particular problem when the so-called defoaming time is short until the bubbles disappear, but when the defoaming time is much longer than 1 minute, foaming increases during refueling and the tank becomes full. There is a problem that refueling has stopped before, refueling takes time, or bubbles overflow from the refueling port. These problems have caused inconveniences such as loss of refueling opportunities for gas stations, and for users, especially in self-fueling gas stations where the number is expected to increase in the future, it has become a problem such as spills when refueling. It is expected to come, and measures against such spillage are necessary.
[0003]
Such foaming is a phenomenon that occurs because the formed foam has high stability and the foam does not easily disappear, and is considered to be easily caused by the presence of a substance that increases the stability of the foam. However, since the foam-causing substance causes a significant increase in foaming and defoaming time even in a small amount, and the light oil itself is a mixture of various hydrocarbons, the substance is identified by gas chromatography-mass spectrometry (GC-MS ) Etc. are currently difficult.
[0004]
By the way, although light oil is manufactured by mixing several base materials, in the manufacturing process, various mixing routes of the foam-causing substances are conceivable. For example, if foam-causing substances are mixed in the crude oil itself, if foam-causing substances are mixed in light oil base materials obtained from other locations in transactions between refineries, or foam-causing substances are mixed later Cases can be considered.
[0005]
As a method of solving such foaming problems of light oil, (1) a method of adding a defoaming agent to reduce foam stability, (2) passing through an atmospheric distillation apparatus or hydrodesulfurization apparatus, and re-refining There are ways to do it.
However, (1) In the method using an antifoaming agent (oil and fat, fatty acid, fatty acid ester, alcohol, ether, phosphate, amine, amide, silica), the defoamer burns. In particular, there is a possibility that it may adversely affect the exhaust gas treatment apparatus installed in recent environmental measures. In addition, the antifoaming agent is expensive, and there is an economic problem of increasing the production cost of light oil.
On the other hand, in (2) the method of passing through the atmospheric distillation apparatus, it is expected that the foam-causing substance is diluted by mixing with crude oil not containing the foam-causing substance. There is a problem that it is difficult to determine how much foaming prevention effect can be obtained by reducing the degree.
The same applies to the case where oil is passed through the hydrodesulfurization apparatus, and there is a problem that it is difficult to set a clear operation target.
[0006]
Japanese Patent Application Laid-Open No. 2000-265180 discloses that the sulfur content is 0.005% by mass or less, the aromatic content is 24% by volume or less, and the kinematic viscosity at 30 ° C. is 4.0 mm 2 / s or more and 5.2 mm 2 / s or less. Although gas oil with reduced foaming properties is disclosed, if the cause of foaming is not derived from the properties of light oil, but due to the foam-causing substance as described above, only the property regulations of light oil It is not possible to prevent foaming.
[0007]
[Problems to be solved by the invention]
The present invention provides a method for producing a light oil fuel composition having a short defoaming time by treating a light oil fuel composition having a short defoaming time and a light oil fuel composition or a light oil base material containing a foam-causing substance. It is the purpose.
[0008]
[Means for Solving the Problems]
As a result of conducting various studies to achieve the above object, the present inventors have made the polar substance adsorbed on silica gel present in the gas oil fuel composition and extracted by methanol or ethanol be 30 mg / L or less. Thus, the inventors have found that the object of the present invention can be achieved and have reached the present invention.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The light oil fuel composition according to the present invention is characterized in that it contains 30 mg or less of a polar substance adsorbed on silica gel and extracted with methanol or ethanol per 1 liter of light oil by weight after removal of the methanol or ethanol. The polar substance specifically refers to a substance specified as follows. That is, at room temperature, the light oil fuel composition is allowed to flow down on silica gel packed in a glass column or the like to adsorb polar substances, and the silica gel is washed with a nonpolar solvent and then with a polar solvent other than alcohol, and then methanol. Alternatively, it refers to a polar substance obtained after extraction with ethanol and removal of the methanol or ethanol solvent (hereinafter simply referred to as “polar substance”). The polar substance is considered to be a cause of foaming of the light oil fuel composition. When the polar substance is present in the light oil fuel composition in an amount exceeding 30 mg / L, the light oil fuel composition has a long defoaming time and does not exhibit the effects of the present invention. .
[0010]
The silica gel is not particularly limited, and commercially available products can be used. However, in order to ensure adsorption performance, it is necessary to dehydrate before use.
The nonpolar solvent is used for washing hydrocarbons and the like constituting the light oil fuel composition adsorbed on the silica gel, and a hydrocarbon solvent, an ether solvent, or the like can be used. As the hydrocarbon solvent, for example, pentane, hexane, heptane and the like are suitably used, and as the ether solvent, diethyl ether and the like are suitably used.
The polar solvent other than alcohol used thereafter is for removing and washing the polar substance that is not a foam-causing substance, and a halogenated hydrocarbon solvent such as chloroform and ketones such as acetone can be suitably used. .
The polar substance extracted with methanol or ethanol in the present invention is recovered by evaporating and removing the methanol or ethanol with a rotary evaporator or the like.
[0011]
In the present invention, the light oil fuel composition is a hydrocarbon oil having a boiling point of 140 to 400 ° C. (value measured according to ASTM D86), and the sulfur content, density, cetane index and the like are not particularly limited. That is, in the present invention, the object of the present invention can be achieved by removing the foam-causing substances regardless of the properties of these light oil fuel compositions themselves.
[0012]
As a method for obtaining the light oil fuel composition of the present invention, a method in which the polar substance is adsorbed and removed with a metal oxide, a method in which the polar substance is removed by hydrogenation, and the like can be employed.
[0013]
Various metal oxides can be used, and are not particularly limited. For example, silica, silica gel, silica alumina, activated clay, silica magnesia, alumina, activated carbon, calcia, silica calcia, hydrogen type Y zeolite, etc. Can be used. Among these, metal oxides that have a pH of 7 or less when immersed in ion-exchanged water are preferable, and specifically, silica, silica gel, silica alumina, activated clay, and silica magnesia are preferable. Of these, silica gel is particularly preferable.
The specific surface area of these metal oxides is preferably 30 m 2 / g or more from the viewpoint of adsorption capacity.
Further, the adsorption removal is usually performed by filling a cylindrical adsorption tower with the metal oxide, and applying a light oil fuel composition or a light oil base material containing the polar substance to a liquid space velocity (LHSV) of 0.2 to 5.0 h. It can be achieved by distributing at -1 .
[0014]
As a method for removing polar substances by hydrotreating, a commonly used hydrodesulfurization apparatus can be used, and the treatment conditions are such that the polar substances in the light oil fuel composition are 30 mg / L or less. If it is, it will not be specifically limited. Usually, LHSV is 0.2 to 5.0 h −1 , preferably 0.4 to 2.5 h −1 , hydrogen partial pressure is 2 to 10 MPa, preferably 2.5 to 8.0 MPa, and reaction temperature is 220 to 400 ° C., preferably 250 to 360 ° C., hydrogen / raw oil ratio is 50 to 1500 Nm 3 / kl, preferably 200 to 800 Nm 3 / kl.
[0015]
The catalyst that can be used for the above hydrotreatment is not particularly limited as long as it is a catalyst having hydrogenation ability, but not only has a hydrogenation ability to olefins and aromatic rings, but also hydrodesulfurization, hydrodenitrogenation. A hydrotreating catalyst having functions such as hydrodeoxygenation is preferred. Therefore, a commercially available catalyst having these functions can be preferably used.
As the metal hydride, usually, a metal such as Ni—Mo, Co—Mo, Ni—Co—Mo, Ni—W or Pt, Pd, Rh, Ru is preferably used. Although it does not specifically limit as a catalyst support | carrier, Usually, an alumina, a silica, etc. are used. Of these catalyst systems, particularly preferred are Co—Mo / alumina, Ni—Mo / alumina and the like. These hydrotreating catalysts are usually used after performing a pretreatment such as a preliminary sulfidation treatment.
[0016]
In addition, in the method of adsorbing and removing a polar substance with a metal oxide and the method of removing by a hydrogenation process, a light oil fuel composition as a final product can be treated, or a light oil base containing a polar substance can be treated. The material may be treated and then mixed with other light oil bases to prepare the final light oil fuel composition. Furthermore, after the light oil base material containing the polar substance and the light oil base material not containing the polar substance are mixed and then subjected to the above treatment, the light oil fuel composition as the final product may be prepared.
[0017]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Evaluation Method 1) Quantitative Method for Polar Substance 45 ml of silica gel was packed in a glass column, 250 ml of light oil fuel composition was allowed to flow down, and the polar substance was adsorbed onto silica gel. Thereafter, the resultant was washed with 500 ml of n-pentane, 500 ml of diethyl ether and 500 ml of chloroform, and the polar substance was extracted with ethanol. Next, ethanol was removed by evaporation with a rotary evaporator, and polar substances were collected and weighed.
[0018]
2) Sample 60ml in a 10ml graduated cylinder with a defoaming time stopper and shake the graduated cylinder up and down for 30 seconds (60 times) until the generated bubbles disappear and part of the oil level is visible. The foam time was measured.
[0019]
Example 1
A cylindrical column with an inner diameter of 15 mm was filled with 45 ml of silica gel, and light oil fraction A2 causing foaming shown in Table 1 was passed under conditions of LHSV 1.7 h −1 and room temperature to prepare silica gel oil-fueled gas oil fraction B2. In addition, a Middle Eastern crude oil straight-run gas oil fraction A1 shown in Table 1 was obtained by using a commercially available Co-Mo / alumina catalyst, LHSV 1.5 h -1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C, hydrogen / raw material. Hydrotreated gas oil fraction B1 having a sulfur concentration reduced to 330 ppm by weight was prepared by hydrotreating under an oil ratio of 250 Nm 3 / kl.
Hydrogenated gas oil fraction B1, 850 ml and silica gel oil-permeable gas oil fraction B2, 150 ml were mixed to prepare trial gas oil C1. For the prototype light oil C1, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0020]
Example 2
Gas oil fraction A2 showing foaming was hydrotreated under the conditions of LHSV 1.5 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C., hydrogen / feed oil ratio 250 Nm 3 / kl, and hydrotreated gas oil fraction B3 was prepared.
Hydrogenated gas oil fraction B1, 850 ml and hydrogenated gas oil fraction B3, 150 ml were mixed to prepare trial gas oil C2. For the prototype light oil C2, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0021]
Example 3
A straight oil fraction A1, 850 ml, and a light oil fraction A2, 150 ml showing foaming were mixed, LHSV 1.5 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C., hydrogen / raw oil ratio 250 Nm 3 / kl Hydrogenation treatment was carried out under conditions to prepare trial gas oil C3. For the prototype light oil C3, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0022]
Comparative Example 1
Hydrogenated gas oil fraction B1, 850 ml, and gas oil fraction A2, 150 ml showing foaming, were mixed to prepare comparative gas oil D1. For the comparative light oil D1, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0023]
Example 4
Comparative light oil D1 prepared in Comparative Example 1 was hydrotreated under the conditions of LHSV 1.5 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C., hydrogen / raw oil ratio 250 Nm 3 / kl, and prototype light oil C4 was produced. Prepared. For the prototype light oil C4, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0024]
Comparative Example 2
A comparative light oil D2 was prepared by adding 10 mg of a polar substance extracted from the light oil fraction A2 showing foaming in the same manner as in Example 1 to 1000 ml of the hydrotreated gas oil fraction B1. For the comparative light oil D2, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0025]
Example 5
Comparative light oil D2 prepared in Comparative Example 2 was hydrotreated under the conditions of LHSV 1.5 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C., hydrogen / raw oil ratio 250 Nm 3 / kl, and prototype light oil C5 was produced. Prepared. For the prototype light oil C5, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0026]
Comparative Example 3
Gas oil fraction A2 showing foaming was hydrotreated under the conditions of LHSV 2.2h −1 , hydrogen partial pressure 2.9 MPa, reaction temperature 280 ° C., hydrogen / feed oil ratio 250 Nm 3 / kl, and hydrotreated gas oil fraction B4 was prepared. Hydrogenated gas oil fraction B4 (150 ml) was added to hydrotreated gas oil fraction B1 (850 ml) to prepare trial oil D3. For the prototype light oil D3, the amount of polar substance and the defoaming time were measured. The results are shown in Table 2.
[0027]
Comparative Example 4
The straight-run gas oil fraction A1 was hydrotreated under the conditions of LHSV 1.0 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 350 ° C., hydrogen / feed oil ratio 250 Nm 3 / kl, and hydrotreated gas oil fraction B5 Was prepared.
25 mg of a polar substance extracted in the same manner as in Example 1 from the light oil fraction A2 showing foaming was added to 1000 ml of the hydrotreated gas oil fraction B5 to prepare a comparative light oil D4. For the comparative light oil D4, the amount of the polar substance and the defoaming time were measured. The results are shown in Table 2.
[0028]
Example 6
Comparative light oil D4 was hydrotreated under the conditions of LHSV 1.5 h −1 , hydrogen partial pressure 4.9 MPa, reaction temperature 330 ° C., and hydrogen / raw oil ratio 250 Nm 3 / kl to prepare trial light oil C6. About trial light oil C6, the quantity of the polar substance and the defoaming time were measured. The results are shown in Table 2.
[0029]
[Table 1]
[0030]
[Table 2]
[0031]
【Effect of the invention】
Since the light oil fuel composition of the present invention has a small content of a polar substance that is a foaming substance, the defoaming time is short and the foaming phenomenon is negligibly small. Further, according to the present invention, since the foam-causing substance and its quantification method have been established, it is possible to produce a light oil fuel composition with low foaming and low foaming.
Claims (1)
前記水素化処理後の軽油燃料組成物において、室温において、ガラスカラムに充填したシリカゲル45mlに当該軽油燃料組成物250mlを流下させ、n−ペンタン500ml、ジエチルエーテル500ml、クロロホルム500mlの順で洗浄した後、エタノールで抽出することにより得られる極性物質の含有量を、軽油1Lあたり30mg以下とすることを特徴とする軽油燃料組成物の製造方法。In the light oil fuel composition after the hydrogenation treatment, 250 ml of the light oil fuel composition was allowed to flow down to 45 ml of silica gel packed in a glass column at room temperature, and washed in the order of 500 ml of n-pentane, 500 ml of diethyl ether, and 500 ml of chloroform. A method for producing a diesel fuel composition, wherein the content of a polar substance obtained by extraction with ethanol is 30 mg or less per liter of diesel oil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001300281A JP5144866B2 (en) | 2001-09-28 | 2001-09-28 | Method for producing diesel fuel composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001300281A JP5144866B2 (en) | 2001-09-28 | 2001-09-28 | Method for producing diesel fuel composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003105356A JP2003105356A (en) | 2003-04-09 |
JP5144866B2 true JP5144866B2 (en) | 2013-02-13 |
Family
ID=19120886
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001300281A Expired - Fee Related JP5144866B2 (en) | 2001-09-28 | 2001-09-28 | Method for producing diesel fuel composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5144866B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06100870A (en) * | 1992-09-22 | 1994-04-12 | Nippon Oil Co Ltd | Preparation of base of light diesel oil good in hue and hue stability |
EP1057879A3 (en) * | 1999-06-02 | 2001-07-04 | Haldor Topsoe A/S | A combined process for improved hydrotreating of diesel fuels |
-
2001
- 2001-09-28 JP JP2001300281A patent/JP5144866B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003105356A (en) | 2003-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4313265B2 (en) | Hydrodesulfurization catalyst and hydrodesulfurization method for petroleum hydrocarbons | |
KR20080038208A (en) | Process for the desulfurization of gasolines comprising a desulfurization by adsorption of the light fraction and a hydrodesulfurization of the heavy fraction | |
Rana et al. | Total Acid Number (TAN) reduction of high acidic crude oil by catalytic esterification of naphthenic acids in fixed-bed continuous flow reactor | |
CN101120075B (en) | Process for producing ultra low sulfur and low aromatic diesel fuel | |
TW201120205A (en) | Aviation fuel oil composition | |
Pérez-Romo et al. | Morphological and structural study of the Si deposition on the sulfided NiMo/γ-Al2O3 catalyst: Effect on the support | |
Song | New approaches to deep desulfurization for ultra-clean gasoline and diesel fuels: an overview | |
Marafi et al. | Deep desulfurization of full range and low boiling diesel streams from Kuwait Lower Fars heavy crude | |
WO2020196924A1 (en) | Method for producing lubricant base oil | |
JP5144866B2 (en) | Method for producing diesel fuel composition | |
CN201154953Y (en) | System for preparing high quality gasoline by catalytic hydrocarbon recombination | |
CN1219033C (en) | Fractional oil hydrogenation desulphurizing and deacromating process | |
JP5291940B2 (en) | Hydrorefining method for naphtha fraction | |
WO2007094199A1 (en) | Process for hydrogenation of synthetic oil and process for production of fuel base | |
JP3990676B2 (en) | Hydrodesulfurization method of light oil | |
JP5751876B2 (en) | Method for hydrorefining heavy oil | |
JP3791966B2 (en) | Light oil composition | |
JP2006035052A (en) | Catalyst for hydro-desulfurizing petroleum hydrocarbon and hydro-desulfurizing method | |
JP4812314B2 (en) | Method for producing low aromatic solvent | |
EP3619285A1 (en) | Jet fuel treating for blending compatibility | |
WO2009156713A1 (en) | Purification method | |
CN101735855A (en) | Production method of clean diesel | |
JP4931052B2 (en) | Method for producing gasoline base material | |
Gasimova et al. | HYDROTREATMENT OF DIESEL FUEL INVOLVING DISTILLATE FRACTIONS | |
WO2020117119A1 (en) | A process for converting glycerol to propane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110329 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110405 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120905 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121113 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121126 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5144866 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |