JP5144231B2 - Deposition equipment - Google Patents

Deposition equipment Download PDF

Info

Publication number
JP5144231B2
JP5144231B2 JP2007304398A JP2007304398A JP5144231B2 JP 5144231 B2 JP5144231 B2 JP 5144231B2 JP 2007304398 A JP2007304398 A JP 2007304398A JP 2007304398 A JP2007304398 A JP 2007304398A JP 5144231 B2 JP5144231 B2 JP 5144231B2
Authority
JP
Japan
Prior art keywords
film forming
film
gap
substrate
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007304398A
Other languages
Japanese (ja)
Other versions
JP2009127100A (en
Inventor
靖 西方
修司 大園
伸 浅利
一也 齋藤
英之 小形
智彦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007304398A priority Critical patent/JP5144231B2/en
Publication of JP2009127100A publication Critical patent/JP2009127100A/en
Application granted granted Critical
Publication of JP5144231B2 publication Critical patent/JP5144231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成膜装置に関する。   The present invention relates to a film forming apparatus.

大型FPD(Flat Panel Display )の製造技術においては、成膜ガスの化学反応を利
用することによって、ガラス基板に薄膜を成膜する化学的気相成長(CVD:Chemical Vapor Deposition )法が用いられている。
In the manufacturing technology of a large FPD (Flat Panel Display), a chemical vapor deposition (CVD) method in which a thin film is formed on a glass substrate by using a chemical reaction of a film forming gas is used. Yes.

CVD法としては、高温に加熱した基板表面で化学反応を進行させる熱CVD法と、反応容器内に発生させたプラズマによって化学反応を進行させるプラズマCVD法とが知られている。熱CVD法とプラズマCVD法とは、それぞれ基板をプラズマ空間に曝したり、あるいは基板を高温に加熱したりするため、基板や下地膜に電気的、熱的損傷を与え易い問題を有している。また、これらのCVD法は、膜厚や膜質の均一性を得るために、プラズマ密度や基板温度に高い均一性を要求することから、基板の大型化に対応し難い。そこで、CVD技術では、従来から、上記問題を解決するため、加熱したタングステン等の触媒線に成膜ガスを接触させて成膜ガスを成膜種に分解する触媒CVD法が注目されている。   As the CVD method, a thermal CVD method in which a chemical reaction is advanced on a substrate surface heated to a high temperature and a plasma CVD method in which a chemical reaction is advanced by plasma generated in a reaction vessel are known. The thermal CVD method and the plasma CVD method each have a problem that the substrate and the base film are liable to be electrically and thermally damaged because the substrate is exposed to a plasma space or the substrate is heated to a high temperature. . In addition, these CVD methods require high uniformity in plasma density and substrate temperature in order to obtain uniformity in film thickness and film quality, and thus it is difficult to cope with an increase in substrate size. Therefore, in the CVD technique, in order to solve the above-described problem, a catalytic CVD method in which a film forming gas is brought into contact with a heated catalyst wire such as tungsten to decompose the film forming gas into film forming species has attracted attention.

触媒作用を成膜反応に利用する触媒CVD法は、触媒線の表面が化学反応の進行を担い、基板へのプラズマ照射や基板の高温加熱を必要としないことから、基板や下地膜への電気的、熱的損傷を大幅に抑制できる。また、触媒CVD法は、触媒線を増量するだけで反応系を拡張できるため、基板の大型化に対しても比較的容易に対応できる。   Catalytic CVD, which uses catalytic action for the film-forming reaction, does not require plasma irradiation or high-temperature heating of the substrate because the surface of the catalyst wire is responsible for the progress of the chemical reaction. And thermal damage can be greatly suppressed. In addition, since the catalytic CVD method can expand the reaction system simply by increasing the number of catalyst wires, it can relatively easily cope with an increase in the size of the substrate.

触媒CVD法における触媒線と基板主面との間の距離は、基板へ供給する成膜種の量を規定する要素であるため、薄膜の成膜速度や膜厚均一性を大きく左右する。例えば、基板主面が触媒線に近づくと、成膜速度は速くなり、基板主面と触媒線との間の距離が均一になると、膜厚分布は均一になる。特許文献1は、成膜速度や膜厚均一性を向上させるため、基板主面の面方向と鉛直方向とを平行に配置させ、U字状を呈する触媒線を鉛直方向に沿って、すなわち基板主面に沿って吊下げる。これによれば、触媒線の熱膨張や触媒線の伸長による撓みが大幅に軽減されることから、基板主面を触媒線へ近づける場合であっても、基板主面と触媒線との間の距離の均一化を図ることができる。
特許2000−303182号公報
In the catalytic CVD method, the distance between the catalyst wire and the main surface of the substrate is an element that defines the amount of film forming species supplied to the substrate, and thus greatly affects the film forming speed and film thickness uniformity. For example, when the substrate main surface approaches the catalyst line, the deposition rate increases, and when the distance between the substrate main surface and the catalyst line becomes uniform, the film thickness distribution becomes uniform. In Patent Document 1, in order to improve the film forming speed and film thickness uniformity, the surface direction of the substrate main surface and the vertical direction are arranged in parallel, and the U-shaped catalyst wire is arranged along the vertical direction, that is, the substrate. Suspend along the main surface. According to this, since the deflection due to the thermal expansion of the catalyst wire and the extension of the catalyst wire is greatly reduced, even when the substrate main surface is brought close to the catalyst wire, the space between the substrate main surface and the catalyst wire is The distance can be made uniform.
Japanese Patent No. 2000-303182

CVD法を用いて連続的に成膜処理を施す場合、成膜ガスの化学反応が成膜室内で繰り返されることから、成膜処理ごとに残存する成膜種が、成膜室の内部で堆積し続けてしまう。成膜室内に堆積する成膜残渣は、特に、成膜ガスを噴射する噴射ノズルの近傍に堆積することから、噴射ノズルの目詰まりを来たし、成膜ガスの供給量に変動を招いてしまう。こうした問題は、噴射ノズルを成膜室から定期的に取外して洗浄する、あるいは、ハロゲン等のクリーニングガスの活性種を成膜室内へ供給し、成膜残渣を化学的に除去する、いわゆるクリーニングを定期的に実施することによって解決可能と考えられる。   When the film formation process is continuously performed using the CVD method, the chemical reaction of the film formation gas is repeated in the film formation chamber, so that the film formation species remaining after each film formation process is deposited inside the film formation chamber. Will continue to do. The film-forming residue deposited in the film-forming chamber is particularly deposited in the vicinity of the injection nozzle for injecting the film-forming gas, which causes the injection nozzle to be clogged and causes the film-forming gas supply amount to fluctuate. These problems can be caused by cleaning the spray nozzle by periodically removing it from the deposition chamber, or by supplying activated species of a cleaning gas such as halogen into the deposition chamber to chemically remove the deposition residue. It is thought that it can be solved by carrying out regularly.

しかしながら、噴射ノズルを取り外す場合には、成膜室を一旦大気に曝すことから、成膜環境を再現させるために、多大なメンテナンス時間を要してしまう。また、クリーニングを実施する場合には、触媒CVD法に用いる触媒線がクリーニングガスと反応して揮発性の化合物を生成することから、加熱温度の不安定化や断線等の問題を招いてしまう。そ
のため、触媒CVD法を利用する成膜装置においては、噴射ノズルの交換や成膜室内のクリーニングを頻繁に実施し難い。
However, when removing the spray nozzle, the film forming chamber is once exposed to the atmosphere, so that a great amount of maintenance time is required to reproduce the film forming environment. Further, when cleaning is performed, the catalyst wire used in the catalytic CVD method reacts with the cleaning gas to generate a volatile compound, which causes problems such as unstable heating temperature and disconnection. Therefore, in a film forming apparatus using the catalytic CVD method, it is difficult to frequently perform replacement of the injection nozzle and cleaning of the film forming chamber.

本発明は、上記問題を解決するためになされたものであって、触媒線を利用した成膜処理において成膜ガスの供給状態を安定させた成膜装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a film forming apparatus that stabilizes the supply state of a film forming gas in a film forming process using a catalyst wire.

請求項1に記載の成膜装置は、基板に薄膜を成膜する成膜装置であって、一対の基板を立てた状態で保持して各基板を対向させるステージと、前記各基板の間隙に配設された複数の触媒線と、前記間隙へ成膜ガスを供給するガス供給部とを有し、前記ガス供給部が、前記間隙の外側に配設されて前記基板の面方向に沿って延びる供給ノズルと、前記供給ノズルの開口を囲う遮蔽板とを有することを要旨とする。   The film forming apparatus according to claim 1 is a film forming apparatus for forming a thin film on a substrate, wherein a pair of substrates are held in a standing state and each substrate is opposed to each other, and a gap between each substrate A plurality of catalyst wires disposed, and a gas supply unit configured to supply a film forming gas to the gap, the gas supply unit being disposed outside the gap along the surface direction of the substrate. The gist of the invention is to have a supply nozzle that extends and a shielding plate that surrounds the opening of the supply nozzle.

請求項1に記載の成膜装置は、間隙から開口へ向けて飛散する成膜種が遮蔽板へ衝突することから、開口における成膜残渣の堆積量を低減できる。したがって、本成膜装置は、触媒線を利用した成膜処理において、成膜ガスの供給状態を安定させられる。   In the film forming apparatus according to the first aspect, since the film forming species scattered from the gap toward the opening collide with the shielding plate, the deposition amount of the film forming residue in the opening can be reduced. Therefore, this film forming apparatus can stabilize the supply state of the film forming gas in the film forming process using the catalyst wire.

請求項2に記載の成膜装置は、請求項1に記載の成膜装置であって、前記供給ノズルが、前記間隙の外側から前記間隙へ向けて配設され、前記遮蔽板が、前記開口から前記間隙へ向けて、前記面方向に沿って延びることを要旨とする。   The film forming apparatus according to claim 2 is the film forming apparatus according to claim 1, wherein the supply nozzle is arranged from the outside of the gap toward the gap, and the shielding plate is the opening. It extends from the surface toward the gap along the surface direction.

請求項2に記載の成膜装置は、供給ノズルからの成膜ガスが基板の面方向に沿って流動することから、成膜ガスと触媒線との接触を効果的に実現させることができ、成膜ガスを有効に利用できる。   In the film forming apparatus according to claim 2, since the film forming gas from the supply nozzle flows along the surface direction of the substrate, the contact between the film forming gas and the catalyst wire can be effectively realized. The film forming gas can be used effectively.

請求項3に記載の成膜装置は、請求項1又は2に記載の成膜装置であって、前記供給ノズルが、前記間隙の外側から前記間隙へ向けて配設され、前記遮蔽板が、前記開口から見て前記間隙の側に配設されることを要旨とする。   The film forming apparatus according to claim 3 is the film forming apparatus according to claim 1 or 2, wherein the supply nozzle is arranged from the outside of the gap toward the gap, and the shielding plate is The gist is that it is disposed on the side of the gap as viewed from the opening.

請求項3に記載の成膜装置は、遮蔽板が開口の間隙の側を囲うことから、開口における成膜残渣の堆積量を、さらに低減できる。
請求項4に記載の成膜装置は、請求項1に記載の成膜装置であって、前記供給ノズルが、前記間隙の外側へ向けて配設され、前記遮蔽板が、前記開口から見て前記間隙の反対側に配設されることを要旨とする。
In the film forming apparatus according to the third aspect, since the shielding plate surrounds the gap side of the opening, the deposition amount of the film forming residue in the opening can be further reduced.
The film forming apparatus according to claim 4 is the film forming apparatus according to claim 1, wherein the supply nozzle is disposed toward the outside of the gap, and the shielding plate is viewed from the opening. The gist is to be disposed on the opposite side of the gap.

請求項4に記載の成膜装置は、ノズルの開口が間隙の外側に向くことから、開口における成膜残渣の堆積量を、より確実に低減できる。また、間隙の外側へ向けて供給される成膜ガスが遮蔽板に衝突し、その後、間隙へ供給されることから、成膜ガスの利用効率を損なうことが無い。   In the film forming apparatus according to the fourth aspect, since the opening of the nozzle faces the outside of the gap, the deposition amount of the film forming residue in the opening can be more reliably reduced. Further, since the film forming gas supplied toward the outside of the gap collides with the shielding plate and is then supplied to the gap, the use efficiency of the film forming gas is not impaired.

請求項5に記載の成膜装置は、請求項1〜4のいずれか一つに記載の成膜装置であって、前記遮蔽板が前記間隙の外側に配設されることを要旨とする。
請求項5に記載の成膜装置は、遮蔽板が間隙へ進入しないことから、触媒線からの成膜種を、より円滑に基板へ飛散させられる。したがって、この成膜装置は、薄膜の膜厚均一性を損なうこと無く、成膜ガスの供給状態を安定させられる。
A film forming apparatus according to a fifth aspect is the film forming apparatus according to any one of the first to fourth aspects, wherein the shielding plate is disposed outside the gap.
In the film forming apparatus according to the fifth aspect, since the shielding plate does not enter the gap, the film forming species from the catalyst wire can be scattered more smoothly onto the substrate. Therefore, this film forming apparatus can stabilize the supply state of the film forming gas without impairing the film thickness uniformity of the thin film.

請求項6に記載の成膜装置は、請求項1〜5のいずれか一つに記載の成膜装置であって、前記間隙の圧力を10Pa以下にする減圧手段を有することを要旨とする。
請求項6に記載の成膜装置は、分子流の圧力領域で成膜処理を実施することから、遮蔽板に起因した成膜ガスの流動変動に関し、成膜種の濃度分布への影響、すなわち薄膜の膜
厚分布への影響を抑制できる。したがって、この成膜装置は、遮蔽板の設計の自由度を向上できる。
A film forming apparatus according to a sixth aspect of the present invention is the film forming apparatus according to any one of the first to fifth aspects, further including a pressure reducing unit that makes the pressure of the gap 10 Pa or less.
Since the film forming apparatus according to claim 6 performs the film forming process in the pressure region of the molecular flow, the film forming gas flow fluctuation caused by the shielding plate affects the concentration distribution of the film forming species, that is, The influence on the film thickness distribution of the thin film can be suppressed. Therefore, this film forming apparatus can improve the degree of freedom in designing the shielding plate.

上記したように、本発明によれば、触媒線を利用した成膜処理において成膜ガスの供給状態を安定させた成膜装置を提供する。   As described above, according to the present invention, there is provided a film forming apparatus that stabilizes a supply state of a film forming gas in a film forming process using a catalyst wire.

(第一実施形態)
以下、本発明を具体化した第一実施形態を図面に従って説明する。図1は、成膜装置としての触媒CVD装置10を鉛直方向から見た図である。図1において、触媒CVD装置10は、搬入室11と、第一成膜室12と、第二成膜室13と、搬出室14とを、順にゲートバルブGVを介して連結させたインライン式の成膜装置である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view of a catalytic CVD apparatus 10 as a film forming apparatus viewed from the vertical direction. In FIG. 1, a catalytic CVD apparatus 10 is an in-line type in which a carry-in chamber 11, a first film formation chamber 12, a second film formation chamber 13, and a carry-out chamber 14 are sequentially connected via a gate valve GV. A film forming apparatus.

搬入室11は、排気ラインPに連結された真空槽であり、外部からの基板Sを受けて触媒CVD装置10へ搬入する。搬入室11の内部には、基板Sを支持するための一対の搬入ステージ11Sが配設されている。一対の搬入ステージ11Sは、それぞれ搬入室11に搬入された一対の基板Sを相対向するように列立させ、該一対の基板Sを第一成膜室12へ搬送にする。本実施形態では、基板Sの搬送方向を+X方向とし、基板Sの法線方向を+Y方向とし、鉛直方向上方を+Z方向と言う。   The carry-in chamber 11 is a vacuum chamber connected to the exhaust line P, receives the substrate S from the outside, and carries it into the catalytic CVD apparatus 10. Inside the loading chamber 11, a pair of loading stages 11 </ b> S for supporting the substrate S is disposed. The pair of carry-in stages 11 </ b> S line up the pair of substrates S carried into the carry-in chamber 11 so as to face each other, and transfer the pair of substrates S to the first film forming chamber 12. In the present embodiment, the transport direction of the substrate S is referred to as + X direction, the normal direction of the substrate S is referred to as + Y direction, and the upper vertical direction is referred to as + Z direction.

第一成膜室12は、ゲートバルブGVを介して搬入室11に連結される真空槽であり、ゲートバルブGVが開くときに搬入室11と連通する。第一成膜室12は、排気ラインPに連結されて10Pa以下の低圧へ減圧され、分子流の領域で成膜プロセスを実施する。第一成膜室12の内部には、基板Sを支持するための一対の第一ステージ12Sが配設されている。一対の第一ステージ12Sは、それぞれ搬入室11からの基板Sを継続的に列立させて所定温度に昇温させるとともに、該一対の基板Sを第二成膜室13へ搬送にする。各排気ラインPは、それぞれ列立された一対の基板Sの間の空間を、各基板Sの裏面側から基板Sの主面に対して等方的に排気する。   The first film formation chamber 12 is a vacuum chamber connected to the carry-in chamber 11 via the gate valve GV, and communicates with the carry-in chamber 11 when the gate valve GV is opened. The first film formation chamber 12 is connected to the exhaust line P and is decompressed to a low pressure of 10 Pa or less, and performs the film formation process in the region of the molecular flow. Inside the first film forming chamber 12, a pair of first stages 12S for supporting the substrate S is disposed. The pair of first stages 12 </ b> S continuously line up the substrates S from the carry-in chamber 11 to raise the temperature to a predetermined temperature, and transfer the pair of substrates S to the second film forming chamber 13. Each exhaust line P exhausts isotropically the space between the pair of substrates S arranged in a row from the back side of each substrate S to the main surface of the substrate S.

第二成膜室13は、ゲートバルブGVを介して第一成膜室12に連結される真空槽であり、ゲートバルブGVが開くときに第二成膜室13と連通する。第二成膜室13は、排気ラインPに連結されて10Pa以下の低圧へ減圧され、分子流の領域で成膜プロセスを実施する。第二成膜室13の内部には、基板Sを支持するための一対の第二ステージ13Sが配設されている。一対の第二ステージ13Sは、それぞれ第一成膜室12からの基板Sを継続的に列立させて所定温度に昇温させるとともに、該一対の基板Sを搬出室14へ搬送にする。各排気ラインPは、それぞれ列立された一対の基板Sの間の空間を、各基板Sの裏面側から基板Sの主面に対して等方的に排気する。   The second film forming chamber 13 is a vacuum tank connected to the first film forming chamber 12 via the gate valve GV, and communicates with the second film forming chamber 13 when the gate valve GV is opened. The second film forming chamber 13 is connected to the exhaust line P and is decompressed to a low pressure of 10 Pa or less, and performs the film forming process in the region of the molecular flow. Inside the second film forming chamber 13, a pair of second stages 13 </ b> S for supporting the substrate S are disposed. The pair of second stages 13 </ b> S continuously line up the substrates S from the first film formation chamber 12 to raise the temperature to a predetermined temperature, and transfer the pair of substrates S to the carry-out chamber 14. Each exhaust line P exhausts isotropically the space between the pair of substrates S arranged in a row from the back side of each substrate S to the main surface of the substrate S.

搬出室14は、排気ラインPに連結された真空槽であり、第二成膜室13からの基板Sを外部へ搬出する。搬出室14の内部には、基板Sを支持するための一対の搬出ステージ14Sが配設されている。一対の搬出ステージ14Sは、それぞれ搬出室14に搬入された一対の基板Sの主面を水平方向へ倒し、該一対の基板Sを外部へ搬出する。   The carry-out chamber 14 is a vacuum chamber connected to the exhaust line P, and carries the substrate S from the second film formation chamber 13 to the outside. A pair of unloading stages 14 </ b> S for supporting the substrate S is disposed inside the unloading chamber 14. The pair of unloading stages 14 </ b> S tilt the main surfaces of the pair of substrates S loaded into the unloading chamber 14 in the horizontal direction, and unload the pair of substrates S to the outside.

第一成膜室12の内部であって、一対の第一ステージ12Sの間には、鉛直方向に延びる複数の触媒線15が、基板Sの搬送方向、すなわち+X方向に沿って配列されている。また、第二成膜室13の内部であって、一対の第二ステージ13Sの間にも、同じく、鉛直方向に延びる複数の触媒線15が、+X方向に沿って配列されている。   Inside the first film formation chamber 12, between the pair of first stages 12S, a plurality of catalyst wires 15 extending in the vertical direction are arranged along the transport direction of the substrate S, that is, the + X direction. . Similarly, a plurality of catalyst wires 15 extending in the vertical direction are arranged along the + X direction inside the second film forming chamber 13 and between the pair of second stages 13S.

各触媒線15は、それぞれタングステン、タンタル、モリブデン等からなる線材であっ
て、列立された一対の基板Sの間に吊下げられている。各触媒線15は、それぞれ図示しない電源に接続され、所定温度に加熱されることによって、成膜ガスを活性化させる。各触媒線15は、活性化された成膜ガスを等方的に拡散させる。本実施形態では、列立された一対の基板Sの間の間隙であって、各触媒線15を含む空間を、反応空間と言う。
Each catalyst wire 15 is a wire made of tungsten, tantalum, molybdenum, or the like, and is suspended between a pair of substrates S arranged in a line. Each catalyst line 15 is connected to a power source (not shown) and heated to a predetermined temperature to activate the film forming gas. Each catalyst line 15 diffuses the activated film forming gas isotropically. In the present embodiment, a space between the pair of substrates S arranged in a row and including the catalyst wires 15 is referred to as a reaction space.

第一成膜室12及び第二成膜室13における反応空間であって、触媒線15と各基板Sとの間には、それぞれガス供給部20が配設されている。図2(a)はガス供給部20の位置を示す平面図であり、図2(b)は図1のA−A断面図である。また、図3はガス供給部を示す斜視図であり、図4はガス供給部20の要部を示す端面図である。   A gas supply unit 20 is disposed between the catalyst wire 15 and each substrate S, which is a reaction space in the first film formation chamber 12 and the second film formation chamber 13. 2A is a plan view showing the position of the gas supply unit 20, and FIG. 2B is a cross-sectional view taken along line AA in FIG. 3 is a perspective view showing a gas supply unit, and FIG. 4 is an end view showing a main part of the gas supply unit 20. As shown in FIG.

図2(a)において、複数のガス供給部20は、それぞれ基板Sの外周を囲うように、基板Sの各辺と対応する位置に配設されている。各ガス供給部20は、それぞれ基板Sの一辺に沿って延びる配管21と、配管21の基板Sの側に取着されて基板Sの一辺に沿って延びる防着部材22とを有する。   In FIG. 2A, the plurality of gas supply units 20 are disposed at positions corresponding to the sides of the substrate S so as to surround the outer periphery of the substrate S, respectively. Each gas supply unit 20 includes a pipe 21 that extends along one side of the substrate S, and an adhesion preventing member 22 that is attached to the substrate S side of the pipe 21 and extends along one side of the substrate S.

各配管21は、例えば長手方向が1.5mで形成される配管であって、それぞれ触媒CVD装置10が設置される施設のガスラインに接続され、該ガスラインからの成膜ガスを配管の内部へ導入する。なお、成膜処理としてシリコン膜を成膜する場合には、成膜ガスにシラン(SiH)と水素(H)を用いることができ、シリコン窒化膜を形成する場合には、シランとアンモニア(NH)を用いることができる。また、シリコン酸化窒化膜を形成する場合には、成膜ガスにシランと亜酸化窒素(NO)を用いることができる。 Each pipe 21 is a pipe formed with a longitudinal direction of 1.5 m, for example, and is connected to a gas line of a facility where the catalytic CVD apparatus 10 is installed, and the film forming gas from the gas line is supplied to the inside of the pipe. To introduce. Note that when a silicon film is formed as a film formation process, silane (SiH 4 ) and hydrogen (H 2 ) can be used as a film formation gas. When a silicon nitride film is formed, silane and ammonia are used. (NH 3 ) can be used. In the case of forming a silicon oxynitride film, silane and nitrous oxide (N 2 O) can be used as a deposition gas.

図2(b)において、各配管21には、それぞれ反応空間へ向けて延びる複数の孔(以下単に、導出孔Nと言う。)が、基板Sの一辺に沿って等間隔に配列されている。各導出孔Nは、例えば、1mmの孔径からなる円形孔であって、配管21の長手方向に沿って10mmのピッチで配列されている。各導出孔Nは、それぞれ配管21の内部へ導入した成膜ガスを、配管21の長手方向に沿って分散させて外部へ導出する。   In FIG. 2B, a plurality of holes (hereinafter simply referred to as lead-out holes N) extending toward the reaction space are arranged at equal intervals along one side of the substrate S in each pipe 21. . Each lead-out hole N is a circular hole having a diameter of 1 mm, for example, and is arranged at a pitch of 10 mm along the longitudinal direction of the pipe 21. Each lead-out hole N guides the film forming gas introduced into the pipe 21 to the outside by dispersing it along the longitudinal direction of the pipe 21.

各防着部材22には、それぞれ各導出孔Nと対応する位置に、各導出孔Nから反応空間へ向けて延びる貫通孔(以下単に、噴射孔N1と言う。)が形成されている。各噴射孔N1は、それぞれ基板Sの面方向(XZ平面)に沿って形成され、配管21から導出された成膜ガスを反応空間へ向けて開口から噴射する。本実施形態においては、導出孔Nと、該導出孔Nと対応する噴射孔N1とによって、供給ノズルが構成される。   Each adhesion preventing member 22 is formed with a through hole (hereinafter simply referred to as an injection hole N1) extending from each lead-out hole N toward the reaction space at a position corresponding to each lead-out hole N. Each injection hole N1 is formed along the surface direction (XZ plane) of the substrate S, and the film formation gas led out from the pipe 21 is injected from the opening toward the reaction space. In the present embodiment, the supply nozzle is configured by the lead-out hole N and the injection hole N1 corresponding to the lead-out hole N.

図3において、防着部材22には、基板Sの面方向(XZ平面)に沿って延びる一対の遮蔽片22aが、それぞれ噴射孔N1の配列方向、すなわち、防着部材22の長手方向の略全幅にわたり形成されている。一対の遮蔽片22aは、それぞれ反応空間から各噴射孔N1へ向かって飛散する成膜種の中で、触媒線15から各噴射孔N1へ向けて飛散する成膜種と、基板Sから各噴射孔N1へ向けて飛散する成膜種とを、各噴射孔N1に対して遮蔽する。   In FIG. 3, a pair of shielding pieces 22 a extending along the surface direction (XZ plane) of the substrate S are provided on the adhesion preventing member 22, respectively, in the arrangement direction of the injection holes N <b> 1, that is, in the longitudinal direction of the adhesion preventing member 22. It is formed over the entire width. The pair of shielding pieces 22a are each formed from the reaction space toward the respective injection holes N1 and formed from the catalyst wire 15 toward the respective injection holes N1, and from the substrate S to each injection. The film-forming seeds that scatter toward the hole N1 are shielded against each injection hole N1.

図4において、一対の遮蔽片22aは、それぞれ遮蔽片22aの厚さ(図3の+Z方向の厚さ:遮蔽厚さH)が厚くなる分だけ、各噴射孔N1に対し、成膜種の入射角θrを縮小することから、各噴射孔N1への成膜種の堆積を抑制できる。また、一対の遮蔽片22aは、それぞれ各噴射孔N1から噴射される成膜ガスの飛行方向を反応空間へ強制的に向けることから、成膜ガスの利用効率を向上できる。この一対の遮蔽片22aの遮蔽厚さHは、それぞれ基板Sに成膜する薄膜の膜厚均一性に基づいて設定されている。   In FIG. 4, the pair of shielding pieces 22 a has a film-forming species corresponding to each injection hole N <b> 1 by the thickness of the shielding piece 22 a (thickness in the + Z direction in FIG. 3: shielding thickness H). Since the incident angle θr is reduced, deposition of film forming species in each injection hole N1 can be suppressed. Further, since the pair of shielding pieces 22a forcibly directs the flight direction of the film forming gas injected from each of the injection holes N1 to the reaction space, the use efficiency of the film forming gas can be improved. The shielding thickness H of the pair of shielding pieces 22a is set based on the film thickness uniformity of the thin film formed on the substrate S, respectively.

すなわち、第一成膜室12及び第二成膜室13においては、それぞれ分子流の圧力領域
で成膜処理を実行することから、反応空間における成膜ガス濃度が均一である場合、触媒線15上の点から飛散する成膜種は、略等方的に飛散する。一対の遮蔽片22aは、触媒線15と基板Sとの間に位置することから、遮蔽厚さHが厚くなる場合には、基板Sの主面の外縁に対し、触媒線15からの成膜種の入射を遮蔽してしまう。そこで、本実施形態においては、一対の遮蔽片22aの遮蔽厚さHが、基板Sの法線方向(+Y方向)から見て、少なくとも基板Sと重畳しない厚さに設定されている。これによれば、基板Sの外縁において成膜種が十分に入射することから、基板Sに成膜する薄膜の膜厚均一性が確保できる。
That is, in the first film forming chamber 12 and the second film forming chamber 13, since the film forming process is executed in the pressure region of the molecular flow, when the film forming gas concentration in the reaction space is uniform, the catalyst line 15 The film-forming species that scatter from the upper point scatter substantially isotropically. Since the pair of shielding pieces 22a are located between the catalyst wire 15 and the substrate S, when the shielding thickness H is increased, the film is formed from the catalyst wire 15 on the outer edge of the main surface of the substrate S. Shields seed incidence. Therefore, in the present embodiment, the shielding thickness H of the pair of shielding pieces 22a is set to a thickness that does not overlap at least the substrate S when viewed from the normal direction (+ Y direction) of the substrate S. According to this, since the film forming species sufficiently enters at the outer edge of the substrate S, it is possible to ensure the film thickness uniformity of the thin film formed on the substrate S.

上記第一実施形態によれば、以下の効果を得ることができる。
(1)上記第一実施形態において、ガス供給部20は、一対の基板Sの間の間隙の外側、すなわち反応空間の外側に配設されて基板Sの面方向に沿って延びる噴射孔N1と、噴射孔N1の開口を囲う遮蔽片22aとを有する。したがって、触媒CVD装置10は、一対の基板Sの間隙から開口へ向けて飛散する成膜種が遮蔽片22aへ衝突することから、開口における成膜残渣の堆積量を低減できる。この結果、触媒CVD装置10は、触媒線15を利用した成膜処理において、成膜ガスの供給状態を安定させられる。
According to the first embodiment, the following effects can be obtained.
(1) In the first embodiment, the gas supply unit 20 is disposed outside the gap between the pair of substrates S, that is, outside the reaction space, and extends along the surface direction of the substrate S. And a shielding piece 22a surrounding the opening of the injection hole N1. Therefore, the catalytic CVD apparatus 10 can reduce the deposition amount of the film forming residue in the opening because the film forming species scattered from the gap between the pair of substrates S toward the opening collide with the shielding piece 22a. As a result, the catalytic CVD apparatus 10 can stabilize the supply state of the film forming gas in the film forming process using the catalyst wire 15.

(2)上記第一実施形態において、噴射孔N1は、反応空間の外側から反応空間へ向けて配設され、遮蔽片22aは、噴射孔N1の開口から反応空間へ向けて、基板Sの面方向に沿って延びる形状を成す。したがって、触媒CVD装置10は、噴射孔N1からの成膜ガスが基板Sの面方向に沿って流動することから、成膜ガスと触媒線15との接触を効果的に実現させることができ、成膜ガスを有効に利用できる。   (2) In the first embodiment, the injection hole N1 is disposed from the outside of the reaction space toward the reaction space, and the shielding piece 22a faces the surface of the substrate S from the opening of the injection hole N1 toward the reaction space. A shape extending along the direction. Therefore, since the film forming gas from the injection hole N1 flows along the surface direction of the substrate S, the catalytic CVD apparatus 10 can effectively realize the contact between the film forming gas and the catalyst wire 15. The film forming gas can be used effectively.

(3)上記第一実施形態において、遮蔽片22aは反応空間の外側に配設される。したがって、触媒CVD装置10は、遮蔽片22aが反応空間へ進入しないことから、触媒線15からの成膜種を、より円滑に基板Sへ飛散させられる。この結果、触媒CVD装置10は、薄膜の膜厚均一性を損なうこと無く、成膜ガスの供給状態を安定させられる。   (3) In the first embodiment, the shielding piece 22a is disposed outside the reaction space. Therefore, in the catalytic CVD apparatus 10, since the shielding piece 22a does not enter the reaction space, the film formation species from the catalyst wire 15 can be more smoothly scattered onto the substrate S. As a result, the catalytic CVD apparatus 10 can stabilize the supply state of the film forming gas without impairing the film thickness uniformity of the thin film.

(4)上記第一実施形態において、排気ラインPは反応空間の圧力を10Pa以下にする。したがって、触媒CVD装置10は、分子流の圧力領域で成膜処理を実施することから、遮蔽片22aに起因した成膜ガスの流動変動に関し、成膜種の濃度分布への影響、すなわち薄膜の膜厚分布への影響を抑制できる。この結果、触媒CVD装置10は、遮蔽片22aの形状やサイズの設計に関し、自由度を向上できる。   (4) In said 1st embodiment, the exhaust line P makes the pressure of reaction space 10 Pa or less. Therefore, since the catalytic CVD apparatus 10 performs the film forming process in the pressure region of the molecular flow, the influence on the concentration distribution of the film forming species with respect to the flow fluctuation of the film forming gas caused by the shielding piece 22a, that is, the thin film The influence on the film thickness distribution can be suppressed. As a result, the catalytic CVD apparatus 10 can improve the degree of freedom regarding the design of the shape and size of the shielding piece 22a.

(第二実施形態)
以下、本発明を具体化した第二実施形態を図面に従って説明する。第二実施形態は、第一実施形態の防着部材22を変更したものである。そのため、以下においては、その変更点について詳しく説明する。図5は、第二実施形態の防着部材22を示す斜視図である。
(Second embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. In the second embodiment, the adhesion preventing member 22 of the first embodiment is changed. Therefore, in the following, the changes will be described in detail. FIG. 5 is a perspective view showing the adhesion preventing member 22 of the second embodiment.

図5において、防着部材22には、各導出孔Nと対応する位置に、各導出孔Nから反応空間へ向けて延びる複数の噴射孔N1が形成され、各噴射孔N1の反応空間の側(図5の+Z方向)には、それぞれ複数の第一遮蔽片22bが形成されている。各第一遮蔽片22bは、それぞれ防着部材22の長手方向から見て断面逆L字状を成し、各噴射孔N1の反射空間の側を覆うように形成されている。防着部材22には、基板Sの面方向(XZ平面)に沿って延びる第二遮蔽片22cが、噴射孔N1の配列方向、すなわち、防着部材22の長手方向の略全幅にわたり形成されている。   In FIG. 5, a plurality of injection holes N1 extending from each lead-out hole N toward the reaction space are formed in the adhesion preventing member 22 at positions corresponding to the respective lead-out holes N, and the reaction space side of each injection hole N1 is formed. A plurality of first shielding pieces 22b are formed in each (+ Z direction in FIG. 5). Each first shielding piece 22b has an inverted L-shaped cross section when viewed from the longitudinal direction of the deposition preventing member 22, and is formed so as to cover the reflection space side of each injection hole N1. A second shielding piece 22c extending along the surface direction (XZ plane) of the substrate S is formed on the deposition preventing member 22 over substantially the entire width in the arrangement direction of the injection holes N1, that is, the longitudinal direction of the deposition preventing member 22. Yes.

各第一遮蔽片22bと一つの第二遮蔽片22cは、それぞれ協働することによって、反応空間から各噴射孔N1へ向かって飛散する成膜種の中で、YZ平面に沿って飛散する成膜種を、各噴射孔N1に対して遮蔽する。各第一遮蔽片22bの厚さは、それぞれ第一実
施形態における遮蔽厚さHによって形成され、基板Sの主面の外縁においても、成膜種を十分に入射させられるように設定されている。
Each of the first shielding pieces 22b and one second shielding piece 22c cooperate to each other, and among the film-forming species that scatter from the reaction space toward the respective injection holes N1, the components that scatter along the YZ plane. The film type is shielded against each injection hole N1. The thickness of each first shielding piece 22b is formed by the shielding thickness H in the first embodiment, and is set so that the film-forming species can be sufficiently incident also on the outer edge of the main surface of the substrate S. .

なお、分子流の圧力領域で成膜処理を実行することから、反応空間における成膜ガスの分布は、各噴射孔N1の反応空間の側が第一遮蔽片22bと第二遮蔽片22cとで覆われることに関わらず、その均一性を得られる。   Since the film forming process is performed in the molecular flow pressure region, the distribution of the film forming gas in the reaction space is such that the reaction space side of each injection hole N1 is covered with the first shielding piece 22b and the second shielding piece 22c. The uniformity can be obtained regardless of whether

上記第二実施形態によれば、以下の効果を得ることができる。
(5)上記第二実施形態において、噴射孔N1は、反応空間の外側から反応空間へ向けて配設され、第一遮蔽片22bは、噴射孔N1の開口から見て、該開口の反応空間の側に配設される。したがって、触媒CVD装置10は、第一遮蔽片22bが噴射孔N1の反応空間の側を囲うことから、噴射孔N1の開口における成膜残渣の堆積量を、さらに低減できる。この結果、触媒CVD装置は、触媒線15を利用した成膜処理において、成膜ガスの供給状態を、さらに安定させられる。
According to the second embodiment, the following effects can be obtained.
(5) In the second embodiment, the injection hole N1 is disposed from the outside of the reaction space toward the reaction space, and the first shielding piece 22b is viewed from the opening of the injection hole N1, and the reaction space of the opening. It is arranged on the side. Therefore, since the first shielding piece 22b surrounds the reaction space side of the injection hole N1, the catalytic CVD apparatus 10 can further reduce the deposition amount of the film formation residue at the opening of the injection hole N1. As a result, the catalytic CVD apparatus can further stabilize the supply state of the film forming gas in the film forming process using the catalyst wire 15.

(第三実施形態)
以下、本発明を具体化した第三実施形態を図面に従って説明する。第三実施形態は、第一実施形態のガス供給部20を変更したものである。そのため、以下においては、その変更点について詳しく説明する。図6は、第三実施形態のガス供給部20の要部を示す端面図である。
(Third embodiment)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings. The third embodiment is a modification of the gas supply unit 20 of the first embodiment. Therefore, in the following, the changes will be described in detail. FIG. 6 is an end view showing a main part of the gas supply unit 20 of the third embodiment.

図6において、配管21には、それぞれ反応空間の外側へ向かって延びる複数の供給ノズルとしての導出孔Nが、基板Sの一辺に沿って等間隔に配列されている。各導出孔Nは、第一実施形態あるいは第二実施形態と同じく、例えば、1mmの孔径からなる円形孔であって、配管21の長手方向に沿って10mmのピッチで配列されている。各導出孔Nは、それぞれ配管21の内部へ導入した成膜ガスを、配管21の長手方向に沿って分散させ、反応空間の外側(図6の下側)へ向けて導出する。   In FIG. 6, the piping 21 has a plurality of supply holes N as supply nozzles extending toward the outside of the reaction space, arranged at equal intervals along one side of the substrate S. Each lead-out hole N is a circular hole having a hole diameter of 1 mm, for example, as in the first embodiment or the second embodiment, and is arranged at a pitch of 10 mm along the longitudinal direction of the pipe 21. Each lead-out hole N distributes the film forming gas introduced into the pipe 21 along the longitudinal direction of the pipe 21 and guides it toward the outside of the reaction space (the lower side in FIG. 6).

遮蔽板としての防着部材22は、それぞれ反応空間の側を開放した箱体状に形成され、その内部に配管21を収容している。各防着部材22は、それぞれ配管21から反応空間の外側へ導出された成膜ガスを受けて、反応空間へ向けて供給させる。各防着部材22は、それぞれ反応空間から各導出孔Nへ向かって飛散する成膜種の全てを、各導出孔Nに対して遮蔽する。なお、各防着部材22は、第一実施形態及び第二実施形態と同じく、基板Sの法線方向(+Y方向)から見て、少なくとも基板Sと重畳しないサイズに形成されている。   The adhesion preventing member 22 as a shielding plate is formed in a box shape with the reaction space side opened, and the piping 21 is accommodated therein. Each adhesion preventing member 22 receives the film forming gas led out of the reaction space from the pipe 21 and supplies it to the reaction space. Each of the deposition preventing members 22 shields all of the film forming species scattered from the reaction space toward each of the outlet holes N against each of the outlet holes N. In addition, each adhesion prevention member 22 is formed in the size which does not overlap at least the board | substrate S seeing from the normal line direction (+ Y direction) of the board | substrate S similarly to 1st embodiment and 2nd embodiment.

なお、分子流の圧力領域で成膜処理を実行することから、反応空間における成膜ガスの分布は、各導出孔Nの導出方向が防着部材22で覆われることに関わらず、その均一性を得られる。   In addition, since the film forming process is executed in the pressure region of the molecular flow, the distribution of the film forming gas in the reaction space is uniform regardless of whether the lead-out direction of each lead-out hole N is covered with the deposition preventing member 22. Can be obtained.

上記第三実施形態によれば、以下の効果を得ることができる。
(6)上記第三実施形態において、導出孔Nは、反応空間の外側へ向けて配設され、防着部材22は、導出孔Nの開口から見て、反応空間の反対側に配設される。したがって、触媒CVD装置10は、導出孔Nの開口が反応空間の外側に向くことから、導出孔Nの開口における成膜残渣の堆積量を、確実に低減できる。また、導出孔Nの外側に向けて供給される成膜ガスは防着部材22に衝突し、その後、反応空間へ供給されることから、触媒CVD装置10は、成膜ガスの利用効率を損なうことが無い。 尚、上記実施形態は、以下の態様で実施してもよい。
According to the third embodiment, the following effects can be obtained.
(6) In the third embodiment, the outlet hole N is disposed toward the outside of the reaction space, and the adhesion preventing member 22 is disposed on the opposite side of the reaction space when viewed from the opening of the outlet hole N. The Therefore, since the opening of the outlet hole N faces the outside of the reaction space, the catalytic CVD apparatus 10 can reliably reduce the deposition amount of the film forming residue at the opening of the outlet hole N. Further, since the film forming gas supplied toward the outside of the outlet hole N collides with the deposition preventing member 22 and is then supplied to the reaction space, the catalytic CVD apparatus 10 impairs the use efficiency of the film forming gas. There is nothing. In addition, you may implement the said embodiment in the following aspects.

・上記実施形態の遮蔽片22a及び第二遮蔽片22cは、それぞれ各噴射孔N1に共通
する構成であるが、これに限らず、噴射孔N1ごとに形成される構成であっても良い。また、第一遮蔽片22bは、噴射孔N1ごとに形成される構成であるが、これに限らず、各噴射孔N1に共通する構成であっても良い。
-Although the shielding piece 22a and the 2nd shielding piece 22c of the said embodiment are respectively the structures common to each injection hole N1, not only this but the structure formed for every injection hole N1 may be sufficient. Moreover, although the 1st shielding piece 22b is the structure formed for every injection hole N1, not only this but the structure common to each injection hole N1 may be sufficient.

・上記実施形態の触媒CVD装置10は、光電変換装置を製造するための成膜装置であっても良い。   -The catalytic CVD apparatus 10 of the said embodiment may be the film-forming apparatus for manufacturing a photoelectric conversion apparatus.

触媒CVD装置を模式的に示す図。The figure which shows a catalytic CVD apparatus typically. (a)、(b)は、それぞれ成膜室の内部を示す平面図、端面図。(A), (b) is the top view and end view which respectively show the inside of the film-forming chamber. 第一実施形態のガス供給部を示す斜視図。The perspective view which shows the gas supply part of 1st embodiment. 第一実施形態のガス供給部を示す要部端面図。The principal part end view which shows the gas supply part of 1st embodiment. 第二実施形態のガス供給部を示す斜視図。The perspective view which shows the gas supply part of 2nd embodiment. 第三実施形態のガス供給部を示す要部端面図。The principal part end view which shows the gas supply part of 3rd embodiment.

符号の説明Explanation of symbols

P…減圧手段としての排気ライン、S…基板、10…成膜装置としての触媒CVD装置、12…第一成膜室、12S…ステージを構成する第一ステージ、13…第二成膜室、13…ステージを構成する第二ステージ、15…触媒線、20…ガス供給部、21…配管、22…防着部材、22a…遮蔽板としての遮蔽片、22b…遮蔽板としての第一遮蔽片、22c…遮蔽板としての第二遮蔽片、N…導出孔、N1…噴射孔。   P ... exhaust line as decompression means, S ... substrate, 10 ... catalytic CVD apparatus as film forming device, 12 ... first film forming chamber, 12S ... first stage constituting stage, 13 ... second film forming chamber, DESCRIPTION OF SYMBOLS 13 ... 2nd stage which comprises a stage, 15 ... Catalyst wire, 20 ... Gas supply part, 21 ... Piping, 22 ... Adhesion member, 22a ... Shielding piece as a shielding board, 22b ... First shielding piece as a shielding board 22c: second shielding pieces as shielding plates, N: outlet holes, N1: injection holes.

Claims (6)

基板に薄膜を成膜する成膜装置であって、
一対の基板を立てた状態で保持して各基板を対向させるステージと、
前記各基板の間隙に配設された複数の触媒線と、
前記間隙へ成膜ガスを供給するガス供給部とを有し、
前記ガス供給部は、
前記間隙の外側に配設されて前記基板の面方向に沿って延びる供給ノズルと、
前記供給ノズルの開口を囲う遮蔽板とを有することを特徴とする成膜装置。
A film forming apparatus for forming a thin film on a substrate,
A stage that holds a pair of substrates in an upright state and faces each substrate;
A plurality of catalyst wires disposed in the gap between the substrates;
A gas supply unit for supplying a film forming gas to the gap,
The gas supply unit
A supply nozzle disposed outside the gap and extending along a surface direction of the substrate;
And a shielding plate surrounding the opening of the supply nozzle.
請求項1に記載の成膜装置であって、
前記供給ノズルは、前記間隙の外側から前記間隙へ向けて配設され、
前記遮蔽板は、前記開口から前記間隙へ向けて、前記面方向に沿って延びることを特徴とする成膜装置。
The film forming apparatus according to claim 1,
The supply nozzle is disposed from the outside of the gap toward the gap;
The film forming apparatus, wherein the shielding plate extends along the surface direction from the opening toward the gap.
請求項1又は2に記載の成膜装置であって、
前記供給ノズルは、前記間隙の外側から前記間隙へ向けて配設され、
前記遮蔽板は、前記開口から見て前記間隙の側に配設されることを特徴とする成膜装置。
The film forming apparatus according to claim 1 or 2,
The supply nozzle is disposed from the outside of the gap toward the gap;
The film forming apparatus, wherein the shielding plate is disposed on the gap side when viewed from the opening.
請求項1に記載の成膜装置であって、
前記供給ノズルは、前記間隙の外側へ向けて配設され、
前記遮蔽板は、前記開口から見て前記間隙の反対側に配設されることを特徴とする成膜装置。
The film forming apparatus according to claim 1,
The supply nozzle is disposed toward the outside of the gap;
The film forming apparatus, wherein the shielding plate is disposed on the opposite side of the gap as viewed from the opening.
請求項1〜4のいずれか一つに記載の成膜装置であって、
前記遮蔽板は前記間隙の外側に配設されることを特徴とする成膜装置。
It is the film-forming apparatus as described in any one of Claims 1-4,
The film forming apparatus, wherein the shielding plate is disposed outside the gap.
請求項1〜5のいずれか一つに記載の成膜装置であって、
前記間隙の圧力を10Pa以下にする減圧手段を有することを特徴とする成膜装置。
It is the film-forming apparatus as described in any one of Claims 1-5,
A film forming apparatus having a pressure reducing means for reducing the pressure of the gap to 10 Pa or less.
JP2007304398A 2007-11-26 2007-11-26 Deposition equipment Active JP5144231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007304398A JP5144231B2 (en) 2007-11-26 2007-11-26 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007304398A JP5144231B2 (en) 2007-11-26 2007-11-26 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2009127100A JP2009127100A (en) 2009-06-11
JP5144231B2 true JP5144231B2 (en) 2013-02-13

Family

ID=40818333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007304398A Active JP5144231B2 (en) 2007-11-26 2007-11-26 Deposition equipment

Country Status (1)

Country Link
JP (1) JP5144231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209675A (en) * 2010-07-22 2013-10-10 Ulvac Japan Ltd Film forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969596B2 (en) * 1989-10-06 1999-11-02 アネルバ株式会社 CVD equipment
JP2000303182A (en) * 1999-04-16 2000-10-31 Anelva Corp Chemical vapor deposition device
JP4197111B2 (en) * 2002-08-27 2008-12-17 株式会社アルバック Vertical catalytic chemical vapor deposition apparatus and film forming method using the apparatus
JP2005048273A (en) * 2003-07-31 2005-02-24 Tokyo Electron Ltd Cvd apparatus
JP4320574B2 (en) * 2003-08-21 2009-08-26 株式会社Sumco Epitaxial growth equipment
JP2005294559A (en) * 2004-03-31 2005-10-20 Japan Advanced Institute Of Science & Technology Hokuriku Radical generating method and radical generator, thin film deposition equipment

Also Published As

Publication number Publication date
JP2009127100A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP6240607B2 (en) Gas delivery and distribution for homogeneous processes in a linear large area plasma reactor.
US8002895B2 (en) Heat processing apparatus for semiconductor process
US10006146B2 (en) Cluster apparatus for treating substrate
US20090017637A1 (en) Method and apparatus for batch processing in a vertical reactor
JP4859472B2 (en) Plasma process equipment
US20090277386A1 (en) Catalytic chemical vapor deposition apparatus
KR20080105617A (en) Chemical vapor deposition apparatus and plasma enhanced chemical vapor deposition apparatus
CN109314055A (en) Atomic layer growth device and atomic layer growth method
CN109312459A (en) Atomic layer growth device and atomic layer growth method
JP5144231B2 (en) Deposition equipment
JP4601701B2 (en) Vapor phase growth apparatus and gas supply method
JP4850762B2 (en) Deposition method
KR101349266B1 (en) Plasma processing apparatus and method of forming micro crystal silicon layer
KR101431087B1 (en) apparatus for Selctive Epitaxial Growth and Cluster Apparatus
JP2008205279A (en) Method and device for depositing silicon-based thin film
KR101661097B1 (en) The apparatus for depositing a atomic layer
KR101103292B1 (en) The reactor for chemical vapor deposition include multiple nozzle
KR20140128848A (en) Semiconductor Apparatus of Furnace Type
TWI817542B (en) Semiconductor manufacturing equipment
KR101936078B1 (en) Chemical Vapor Deposition Apparatus
JP2024003741A (en) Substrate processing apparatus
JP6209064B2 (en) Thin film forming equipment
KR101625211B1 (en) Thin film deposition apparatus
KR101130037B1 (en) Boat
KR20070091845A (en) Apparatus for fabricating semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5144231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250