JP5143581B2 - Electric motor stator and compressor using the same - Google Patents

Electric motor stator and compressor using the same Download PDF

Info

Publication number
JP5143581B2
JP5143581B2 JP2008020054A JP2008020054A JP5143581B2 JP 5143581 B2 JP5143581 B2 JP 5143581B2 JP 2008020054 A JP2008020054 A JP 2008020054A JP 2008020054 A JP2008020054 A JP 2008020054A JP 5143581 B2 JP5143581 B2 JP 5143581B2
Authority
JP
Japan
Prior art keywords
winding
insulator
stator
electric motor
storage groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008020054A
Other languages
Japanese (ja)
Other versions
JP2009183071A (en
Inventor
一之 山本
隆之 鬼橋
浩二 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008020054A priority Critical patent/JP5143581B2/en
Publication of JP2009183071A publication Critical patent/JP2009183071A/en
Application granted granted Critical
Publication of JP5143581B2 publication Critical patent/JP5143581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Description

この発明は、圧縮機等に用いられる電動機の固定子及びそれを用いた圧縮機に関するものである。   The present invention relates to a stator of an electric motor used for a compressor or the like and a compressor using the same.

電動機の効率を高めるために、各磁極に直接コイル線を巻回した集中巻きと呼ばれる巻線方式を採用した固定子が多くなっている。例えば、高効率機種のエアコンには、その圧縮機に組み込まれる電動機に集中巻き方式を採用した固定子を搭載する例が増えている。集中巻き方式は、コイル線の全長が短くなるため銅損失を減らすことができ、また、コイルの体積が小さくなるため電動機を小型化できる特徴がある。   In order to increase the efficiency of an electric motor, there are an increasing number of stators adopting a winding method called concentrated winding in which a coil wire is directly wound around each magnetic pole. For example, in high-efficiency models of air conditioners, there are an increasing number of examples in which a stator adopting a concentrated winding method is mounted on an electric motor incorporated in a compressor. The concentrated winding method has a feature that the copper loss can be reduced because the total length of the coil wire is shortened, and the electric motor can be miniaturized because the volume of the coil is reduced.

ところで、従来の分布巻きと呼ばれる巻線方式に対する、巻線端末の結線処理は、
(1)所定の電気回路を構成するようにコイルの巻線端末(引出線)や電源線をろう付け等の手段で接続する。
(2)接続部及び接続部付近のコイル線の露出部をチューブ等の絶縁部材で覆う。
(3)絶縁部材で覆われた部分をコイルエンドの相間に埋め込む。
(4)縛り糸によってコイルエンド全体を固定する。
といった主に手作業を主体とした方法が行われている。
巻線端末に対する結線処理方法は、固定子の生産性や絶縁品質に大きく影響を与えるため、集中巻き方式を採用した固定子に対しては、生産規模や必要な絶縁性能に応じて多くの方法が採用されている。
By the way, with respect to the conventional winding method called distributed winding, the wire end connection processing is
(1) The coil winding terminals (leader wires) and power supply wires are connected by means such as brazing so as to constitute a predetermined electric circuit.
(2) Cover the connecting portion and the exposed portion of the coil wire near the connecting portion with an insulating member such as a tube.
(3) The portion covered with the insulating member is embedded between the coil end phases.
(4) The whole coil end is fixed with a binding thread.
Such a method is mainly performed manually.
Since the wire end treatment method for the winding end greatly affects the productivity and insulation quality of the stator, there are many methods for the stator using the concentrated winding method depending on the production scale and required insulation performance. Is adopted.

例えば、特許文献1に開示された従来の固定子の結線処理方法は、各磁極と巻線とを絶縁する絶縁部材の外壁部に接続部材を圧入固定し、この接続部材の一端に巻線端末を挟み込み、挟み込みと同時に巻線の絶縁被膜を一部除去して電気的接続を行う。また、接続部材の他端にも電源線端部を同様に挟み込み、巻線端末、電源線の固定や、巻線端末と電源線の接続を、接続端子を用いて行う。この方法は部品点数が多くなる欠点があるが、自動化しやすい利点があり、大量生産に向いた手法であるといえる。   For example, in the conventional stator connection processing method disclosed in Patent Document 1, a connecting member is press-fitted and fixed to an outer wall portion of an insulating member that insulates each magnetic pole from the winding, and a winding terminal is connected to one end of the connecting member. And, at the same time as sandwiching, part of the insulation film of the winding is removed to make electrical connection. In addition, the other end of the connection member is similarly sandwiched between the end portions of the power supply line, and the winding terminal and the power supply line are fixed and the connection between the winding terminal and the power supply line is performed using the connection terminal. Although this method has the disadvantage of increasing the number of parts, it has the advantage of being easily automated and can be said to be a method suitable for mass production.

また、特許文献2に開示された従来の固定子の結線処理方法は、各磁極に取り付けた絶縁物の外周側に相数に合わせた溝を形成してその溝に巻線端末を収納するだけで、チューブ等の絶縁部材を必要とせずに相間の絶縁を確保し、巻線端末を固定している。この方法は部品点数が少ないため安価な方法であり、絶縁チューブを巻線端末に通す作業が不要となり、また、巻線端末を溝に収納する作業も簡単であり、作業性のよい結線処理方法である。   Further, the conventional stator connection processing method disclosed in Patent Document 2 simply forms a groove in accordance with the number of phases on the outer peripheral side of the insulator attached to each magnetic pole, and stores the winding terminal in the groove. Thus, insulation between the phases is secured without requiring an insulating member such as a tube, and the winding terminal is fixed. This method is inexpensive because the number of parts is small, and it is not necessary to pass the insulation tube through the winding terminal. Also, the wiring terminal processing method is easy to store the winding terminal in the groove and has good workability. It is.

また、特許文献3に開示された従来の固定子の結線処理方法は、引出線を他の磁極コイルの引出線で押さえ込み、絶縁用ボビンに設けた係り止め部に係り止め固定することで、巻線端末を固定している。このとき、電位差が発生する線間には絶縁チューブを通すことにより、絶縁品質を保っている。この方法は磁極毎、確実に巻線端末が固定できる結線処理方法である。   Further, in the conventional stator connection processing method disclosed in Patent Document 3, a lead wire is pressed by a lead wire of another magnetic pole coil, and is fixed to a lock portion provided on an insulating bobbin so as to be wound. The wire terminal is fixed. At this time, insulation quality is maintained by passing an insulation tube between lines where a potential difference occurs. This method is a connection processing method that can securely fix the winding terminal for each magnetic pole.

特開2001−197699号公報(第3−4頁、図1−図7)JP 2001-197699 A (page 3-4, FIG. 1 to FIG. 7) 特開2002−101596号公報(第3頁、図1,2)JP 2002-101596 A (3rd page, FIGS. 1 and 2) 特開2006−14385号公報(第5−6頁、図1−図4)JP 2006-14385 A (page 5-6, FIGS. 1 to 4)

集中巻き方式を採用した電動機の回転子には一般に永久磁石が組み込まれている。ネオジ磁石に代表される強力な磁力を発生する希土類の永久磁石は電動機の小型化、高効率化に大きく貢献してきた。永久磁石は、永久磁石から磁力を発生させるために、未着磁の永久磁石を回転子に取り付けた後、外部磁界を用いた着磁工程を実施する。圧縮機用電動機の場合、圧縮機に回転子を組み込む前に永久磁石を着磁しておくと、永久磁石と固定子との間の磁力によって、圧縮室の機構部と回転子との軸合わせの精度が悪化する問題がある。また、製造工程中に鉄粉などの異物が回転子に引き寄せられて圧縮機内に入り、運転中に圧縮室のすきまに進入し動作不良を起こす問題もある。そのため、回転子を圧縮機内に組込み、圧縮機のフレームを閉じた後の製造ライン後方の工程で、電動機の固定子の電源線間にパルス電圧を印加して、固定子の磁極に発生した磁界で永久磁石を着磁させる組込み着磁が行われる。   In general, a permanent magnet is incorporated in a rotor of an electric motor employing a concentrated winding method. Rare earth permanent magnets that generate a strong magnetic force represented by neodymium magnets have greatly contributed to miniaturization and high efficiency of electric motors. In order to generate a magnetic force from the permanent magnet, the permanent magnet is subjected to a magnetization process using an external magnetic field after an unmagnetized permanent magnet is attached to the rotor. In the case of an electric motor for a compressor, if a permanent magnet is magnetized before the rotor is installed in the compressor, the magnetic force between the permanent magnet and the stator aligns the axis of the compression chamber mechanism with the rotor. There is a problem that the accuracy of. In addition, there is a problem that foreign matters such as iron powder are attracted to the rotor during the manufacturing process and enter the compressor and enter the clearance of the compression chamber during operation, causing malfunction. Therefore, the magnetic field generated in the magnetic poles of the stator by applying a pulse voltage between the power lines of the stator of the motor in the process behind the production line after the rotor is installed in the compressor and the compressor frame is closed. Built-in magnetization is performed to magnetize the permanent magnet.

永久磁石が希土類の場合、着磁に必要な磁界は2T以上と大きく、回転子の電源線間に印加する電圧も巻線のターン数にもよるが数kV程度、巻線に流れる電流は数千Aになる。このパルス電流により、コイル線間に大きな力(ローレンツ力)が働く。この力は磁極に巻回されたコイルだけでなく、巻線端末にも作用する。組込み着磁を行う電動機の場合、固定子の巻線端末は、大きな着磁電流を流すことができ、また、着磁電流によるローレンツ力に耐えることができる強固な固定をする必要がある。   When the permanent magnet is a rare earth, the magnetic field required for magnetization is as large as 2T or more, the voltage applied between the rotor power lines is about several kV, depending on the number of turns of the winding, and the current flowing through the winding is several Thousand A. Due to this pulse current, a large force (Lorentz force) acts between the coil wires. This force acts not only on the coil wound around the magnetic pole but also on the winding terminal. In the case of an electric motor that performs built-in magnetization, the winding terminal of the stator needs to be firmly fixed so that a large magnetizing current can flow and the Lorentz force due to the magnetizing current can be withstood.

しかしながら、上記特許文献1に開示された結線処理方法の場合、大きな着磁電流を流すと、ローレンツ力による衝撃で接続端子に差し込んだ巻線端末や電源線が抜けたり、接続部に電流が集中して破壊する恐れがある。   However, in the case of the connection processing method disclosed in Patent Document 1 above, if a large magnetizing current is passed, the winding terminal and the power line inserted into the connection terminal due to the impact of the Lorentz force are disconnected or the current is concentrated in the connection part. There is a risk of destruction.

また、上記特許文献2に開示された結線処理の場合、絶縁物の外周側に設けた溝に収納した巻線端末が、ローレンツ力により外側に飛び出す場合がある。その結果、伸びた巻線端末が他の相の巻線端末や、鉄心、シェル部に接触し、絶縁性が悪化する問題がある。また、一般にこのような溝に巻線端末を収納する構造は、収納する巻線端末が長くなると、作業ばらつきによっては、緩んで溝から飛び出しやすい問題があった。   Moreover, in the case of the wiring process disclosed by the said patent document 2, the winding terminal accommodated in the groove | channel provided in the outer peripheral side of the insulator may jump out outside by Lorentz force. As a result, the extended winding terminal comes into contact with the winding terminal of another phase, the iron core, and the shell portion, and there is a problem that the insulating properties deteriorate. Further, in general, the structure in which the winding terminal is stored in such a groove has a problem that when the stored winding terminal becomes long, the winding terminal may be loosened and easily jump out of the groove depending on work variation.

また、上記特許文献3に開示された結線処理の場合、各引出線で各磁極に端末部を固定しているため、着磁電流による衝撃に対する耐力はあるが、コイル線が太い場合(例えばφ1.5以上)、引出線間をツイストさせて係り止め部に絡げることは非常に難しく、また、各磁極の作業となるため、多極の固定子の場合、作業時間が長くなる問題がある。また、絶縁のために絶縁チューブが必要なため、チューブ挿入の作業に時間がかかり、また、チューブ部品が必要となり部品コストが高くなる問題がある。   Further, in the case of the connection process disclosed in Patent Document 3 described above, since the terminal portion is fixed to each magnetic pole by each lead wire, there is a resistance to shock caused by the magnetizing current, but the coil wire is thick (for example, φ1 5 or more), it is very difficult to twist between the lead wires and entangle them with the locking part. Also, since each magnetic pole is operated, there is a problem that the work time becomes long in the case of a multi-pole stator. is there. Further, since an insulating tube is necessary for insulation, it takes time to insert the tube, and there is a problem that a tube part is necessary and the cost of the part is increased.

この発明は、このような問題点を解決するものであり、電動機固定子の結線処理の作業性を向上し、製品単価を安くし、組込み着磁の大電流にも耐えうる巻線端末の固定を可能にして、絶縁品質に優れた電動機の固定子を提供することを目的としている。   The present invention solves such problems, improves the workability of the connection process of the motor stator, reduces the product unit price, and fixes the winding terminal that can withstand the large current of built-in magnetization. The object of the present invention is to provide a stator for an electric motor having excellent insulation quality.

この発明に係る電動機の固定子は、円筒状の鉄心から径方向に突出した磁極を有し、上記磁極それぞれに、上記円筒状の鉄心の円筒軸方向から装着されたインシュレータを備え、上記インシュレータを介して上記磁極にコイルが巻回され、上記インシュレータの上記径方向の外方端における上記円筒軸と平行な外周面に周方向の収納溝が形成され、上記コイルの巻線端末が上記収納溝に引き回された電動機の固定子において、
上記インシュレータの外周面の周方向の略中央部に上記収納溝を形成せず、上記中央部の周方向両側に上記収納溝を形成し、該収納溝の底部を結ぶ面に隙間を形成して上記円筒軸方向に立設された突起構造物を備え、
上記巻線端末が上記隙間を通って上記収納溝に引き回されているものである。
A stator of an electric motor according to the present invention has a magnetic pole protruding in a radial direction from a cylindrical iron core, and each of the magnetic poles includes an insulator mounted from a cylindrical axial direction of the cylindrical iron core. A coil is wound around the magnetic pole, a circumferential storage groove is formed on an outer peripheral surface parallel to the cylindrical axis at the radially outer end of the insulator, and a winding end of the coil is connected to the storage groove In the stator of the motor routed by
The storage groove is not formed in the substantially central portion of the outer peripheral surface of the insulator in the circumferential direction, the storage groove is formed on both sides of the central portion in the circumferential direction, and a gap is formed on a surface connecting the bottom portions of the storage groove. Protruding structure standing in the cylindrical axis direction,
The winding terminal is routed through the gap into the storage groove.

この発明に係る圧縮機は、上記この発明に係る電動機の固定子を搭載したものである。   The compressor according to the present invention is mounted with the stator of the electric motor according to the present invention.

この発明に係る電動機の固定子及び圧縮機によれば、電動機固定子の結線処理の作業性を向上し、製品単価を安くし、組込み着磁の大電流にも耐えうる巻線端末の固定を可能にして絶縁品質に優れた電動機の固定子を提供することができる。   According to the stator and compressor of the electric motor according to the present invention, it is possible to improve the workability of the connection process of the electric motor stator, reduce the unit price of the product, and fix the winding terminal that can withstand a large current of built-in magnetization. It is possible to provide a stator for an electric motor that is possible and excellent in insulation quality.

実施の形態1.
図1は、この発明の電動機の固定子を適用する圧縮機用電動機を搭載した圧縮機の断面図である。電動機の固定子1は、圧縮機のフレーム3に焼きばめにより固定されている。固定子1の内部に回転子2が位置し、回転子2の内部には永久磁石が埋め込まれ、固定子1のコイルからの磁力と永久磁石の磁力との相互作用により回転子2が回転する。この回転子2の回転により圧縮室4で冷媒が圧縮され、冷媒は外部機器に送り出される。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a compressor equipped with a compressor motor to which the stator of the motor according to the present invention is applied. The stator 1 of the electric motor is fixed to the frame 3 of the compressor by shrink fitting. A rotor 2 is located inside the stator 1, a permanent magnet is embedded inside the rotor 2, and the rotor 2 is rotated by the interaction between the magnetic force from the coil of the stator 1 and the magnetic force of the permanent magnet. . The rotation of the rotor 2 compresses the refrigerant in the compression chamber 4 and sends the refrigerant to an external device.

この発明は、径方向に突出した3n(nは正の整数)個の磁極を有する円筒状の鉄心の磁極それぞれに装着したインシュレータを介して巻線が巻回された3相の集中巻方式等の電動機の固定子に関するものであるが、以下、9個の磁極の場合における集中巻方式を例として説明する。
図2は、この実施の形態1の電動機を軸方向から見た正面図である。固定子7は9個の磁極を持つ集中巻き構造であり、また、回転子8は円筒状の鉄心中に6個の磁石9が埋め込まれた6極のIPM(=Interior Permanent Magnet)構造である。回転子8の中央にシャフト穴10が設けられ、圧縮機内ではこのシャフト穴に圧入したシャフトが図1に示した圧縮室4に連結している。固定子7の各磁極には樹脂製のインシュレータ5が鉄心6の円筒軸方向の上下から装着され、インシュレータ5には、コイル線を整列させるための溝がコイル線の巻回部に設けてあり、また、コイルの巻線端末を収納したり固定したりするための突起や溝が設けられている。このインシュレータ5により鉄心6と絶縁を確保した状態で各磁極にコイル11が巻回されている。
The present invention includes a three-phase concentrated winding method in which a winding is wound through an insulator attached to each of magnetic poles of a cylindrical iron core having 3n (n is a positive integer) magnetic poles protruding in the radial direction, etc. In the following, a concentrated winding method in the case of nine magnetic poles will be described as an example.
FIG. 2 is a front view of the electric motor according to the first embodiment viewed from the axial direction. The stator 7 has a concentrated winding structure having nine magnetic poles, and the rotor 8 has a six-pole IPM (= Interior Permanent Magnet) structure in which six magnets 9 are embedded in a cylindrical iron core. . A shaft hole 10 is provided in the center of the rotor 8, and a shaft press-fitted into the shaft hole is connected to the compression chamber 4 shown in FIG. Resin insulators 5 are attached to the magnetic poles of the stator 7 from above and below in the cylindrical axial direction of the iron core 6, and grooves for aligning the coil wires are provided in the coil wire winding portions. In addition, there are provided protrusions and grooves for storing and fixing the winding end of the coil. A coil 11 is wound around each magnetic pole while ensuring insulation from the iron core 6 by the insulator 5.

図3は、各磁極に巻回されたコイルの回路構成図である。各相U(U1,U2,U3)、V(V1,V2,V3)、W(W1,W2,W3)それぞれのコイル巻き始め側の巻線端末12が集められ一つの電源線13に接続されている。また、巻き終わり側の巻線端末14は、1箇所に集めて接続され、中性点15を構成しており、この結線構造は3並列スター結線と呼ばれる。このような回路では、隣り合う磁極のコイル11間の電位差が小さくなるため、コイル11間の絶縁性が優位となる特長がある。また、中性点において、9つの巻線端末14を1箇所に接続するのではなく、図4に示すように、U相、V相、W相それぞれの巻き終わり側の巻線端末14を1つずつ接続し、中性点を3箇所構成した接続でも、同様の電動機特性を実現できる。   FIG. 3 is a circuit configuration diagram of a coil wound around each magnetic pole. The winding terminals 12 on the coil winding start side of each phase U (U1, U2, U3), V (V1, V2, V3), W (W1, W2, W3) are collected and connected to one power line 13. ing. Further, the winding terminal 14 on the winding end side is gathered and connected at one place to constitute a neutral point 15, and this connection structure is called a three-parallel star connection. Such a circuit has a feature that the insulation between the coils 11 is superior because the potential difference between the coils 11 of adjacent magnetic poles is small. Further, at the neutral point, the nine winding terminals 14 are not connected to one place, but as shown in FIG. 4, the winding terminals 14 on the winding end side of each of the U phase, V phase, and W phase are set to 1 The same electric motor characteristics can be realized by connecting three by one and connecting three neutral points.

図5は、従来の電動機のインシュレータの構造を示す平面図(a)、A−A断面図(b)及び側面図(c)である。また、図6は、図5に示したインシュレータを用いて、コイルの巻線端末を収納溝に固定させた状態を示す図である。各磁極には、円筒軸方向の同一側には、全て同じ形状のインシュレータ5が装着されている。このように、円筒軸方向の同一側のインシュレータ5を全て同じ形状とすることにより、複数の金型投資をする必要がなく、絶縁品質に優れた安価な電動機の固定子を提供することができる。なお、図6は、円筒状に配置されたインシュレータ5を直線状に展開して、インシュレータの背面部(収納溝がある部分)のみを表した図である。各コイルから出た巻き始め側の巻線端末12は、インシュレータ5の径方向の外方端にある外壁部16の一部に設けた引出し溝17からインシュレータ5の外周側に導出され、外壁部16の円筒軸と平行な外周面に形成した周方向の3つの収納溝18に沿って収納され、引き回される。U相、V相及びW相の巻線端末は各相毎に一箇所に集められ、インシュレータ5の収納溝18を一部切り欠いた巻線導出部19からインシュレータ外壁部の円筒軸方向の上部方向に導かれ、電源線に接続される。なお、巻き終わり側の巻線端末については、ここでは図示していない。   FIG. 5: is a top view (a) which shows the structure of the insulator of the conventional motor, AA sectional drawing (b), and a side view (c). Moreover, FIG. 6 is a figure which shows the state which fixed the coil | winding terminal of the coil to the accommodation groove | channel using the insulator shown in FIG. The same shape of the insulator 5 is attached to each magnetic pole on the same side in the cylindrical axis direction. Thus, by making all the insulators 5 on the same side in the cylindrical axis direction the same shape, there is no need to invest in a plurality of molds, and it is possible to provide an inexpensive electric motor stator excellent in insulation quality. . FIG. 6 is a view showing only the back surface portion (the portion having the storage groove) of the insulator by linearly developing the insulator 5 arranged in a cylindrical shape. The winding terminal 12 on the winding start side coming out of each coil is led out to the outer peripheral side of the insulator 5 from a drawing groove 17 provided in a part of the outer wall portion 16 at the radially outer end of the insulator 5, and the outer wall portion. It is stored along the three storage grooves 18 in the circumferential direction formed on the outer peripheral surface parallel to the 16 cylindrical shafts, and is drawn around. The U-phase, V-phase, and W-phase winding terminals are collected in one place for each phase, and the upper part of the insulator outer wall portion in the cylindrical axial direction from the winding lead-out portion 19 in which the housing groove 18 of the insulator 5 is partially cut away. Guided in the direction and connected to the power line. The winding end on the winding end side is not shown here.

図7は、固定子を用いて回転子の磁石を着磁している様子を説明するための正面図(a)及び結線図(b)である。この例は、U相の電源線からW相の電源線の方向(図7(b)の白抜き矢印方向)に電流を流すことで、図7(a)のハッチング矢印方向で示す磁界を発生させ、磁界を横切る位置にある磁石を着磁している。全ての磁石を着磁するためには、回転子を回転させて磁石を適当な位置に配置して再度固定子のコイルに電流を流すことを繰り返すことで行われる。着磁時にはコイル線に数KAの電流が流される。そのため、磁極に巻かれたコイルが発生する磁力により、外壁部外周の収納溝に引き回された巻線端末がローレンツ力を受け、収納溝から外側に大きく外れる部分(図6の太字X部分)が生じ、他の巻線端末や、鉄心、圧縮機のフレームなどに接触し、絶縁不良が生じる問題がある。   FIG. 7 is a front view (a) and a connection diagram (b) for explaining a state in which a rotor magnet is magnetized using a stator. In this example, a magnetic field indicated by the hatched arrow direction in FIG. 7A is generated by passing a current from the U-phase power line to the W-phase power line (indicated by the white arrow in FIG. 7B). And magnetizing the magnet at a position crossing the magnetic field. In order to magnetize all the magnets, the rotor is rotated, the magnets are arranged at appropriate positions, and a current is again passed through the stator coil. When magnetizing, a current of several KA flows through the coil wire. Therefore, a portion where the winding terminal drawn around the storage groove on the outer periphery of the outer wall portion receives the Lorentz force due to the magnetic force generated by the coil wound around the magnetic pole, and greatly disengages from the storage groove (the bold X portion in FIG. 6). This causes a problem of insulation failure due to contact with other winding terminals, iron cores, compressor frames, and the like.

図8は、この発明の電動機の固定子に用いられるインシュレータの実施の形態1を示す平面図(a)、B−B線断面図(b)及び側面図(c)である。この実施の形態1では、インシュレータ5の径方向の外方端にある外壁部16に近接した位置で外壁部16の周方向の略中央に3個の収納溝18を覆う以上の高さで、外壁部16の外周面に形成された収納溝18の巻線がおさまる溝の底部を結ぶ面に一定寸法の隙間21が形成されるように円筒軸方向に立設するように突起構造物20を設けた。図9は、図8に示したインシュレータを用いて巻線端末を収納溝に引き回した図で、円筒状に配列されたインシュレータを直線状に展開して、インシュレータの背面部(収納溝がある部分)のみを表した図である。図9について、図8を参照して説明する。各コイルから出た巻き始め側の巻線端末12は、インシュレータ5の外壁部16の一部に設けた引出し溝17からインシュレータ5の外壁部16の外周面に導出され、外壁部16の外周面に設けた周方向に形成された3つの収納溝18に沿って収納され、引き回される。巻線端末12は、インシュレータ5の外壁部16の外周面と突起構造物20との間の隙間21の少なくとも一部を通って引き回される。U相、V相及びW相の巻線端末12は各相毎に一箇所の磁極に集められ、集められた磁極のインシュレータ5の隙間21から巻線端末導出部19を通って、インシュレータ5の外壁部16の上部円筒軸方向に引き出され、電源線に接続される。例えば,図9の左端で上方に引き出されている3本の線Wは,磁極W3から引き出され最上段の収納溝18を通り磁極V3のインシュレータの突起構造物20を一巻きした1本と、W1,W2から引き出され最下段の収納溝18を通り途中磁極U2,U3のインシュレータ外壁部16の外周面と突起構造物20との隙間21を通り磁極V3のインシュレータの突起構造物20に巻き付けながら上方に引き回した2本で構成されている。他の3本の線U及びVも同様である。 FIG. 8: is the top view (a), BB sectional view (b), and side view (c) which show Embodiment 1 of the insulator used for the stator of the electric motor of this invention. In the first embodiment, the height is more than covering the three storage grooves 18 at the approximate center in the circumferential direction of the outer wall portion 16 at a position close to the outer wall portion 16 at the radially outer end of the insulator 5. The protruding structure 20 is erected so as to be erected in the cylindrical axis direction so that a gap 21 having a fixed dimension is formed on a surface connecting the bottoms of the grooves in which the windings of the storage grooves 18 formed on the outer peripheral surface of the outer wall portion 16 are received. Provided. FIG. 9 is a diagram in which the winding terminal is routed around the storage groove using the insulator shown in FIG. 8, and the insulator arranged in a cylindrical shape is linearly expanded, and the back surface portion of the insulator (the portion having the storage groove) ) Only. 9 will be described with reference to FIG. The winding terminal 12 on the winding start side coming out of each coil is led out to the outer peripheral surface of the outer wall portion 16 of the insulator 5 from a drawing groove 17 provided in a part of the outer wall portion 16 of the insulator 5, and the outer peripheral surface of the outer wall portion 16. It is accommodated along the three accommodating grooves 18 formed in the circumferential direction provided in and is routed. The winding terminal 12 is routed through at least a part of the gap 21 between the outer peripheral surface of the outer wall portion 16 of the insulator 5 and the protruding structure 20. The U-phase, V-phase, and W-phase winding terminals 12 are gathered in one magnetic pole for each phase, pass through the winding terminal lead-out portion 19 from the gap 21 of the collected magnetic pole insulator 5, and It is pulled out in the direction of the upper cylindrical axis of the outer wall portion 16 and connected to the power line. For example, three lines W drawn upward at the left end in FIG. 9 are drawn from the magnetic pole W3, passed through the uppermost storage groove 18, and wound around the protrusion structure 20 of the insulator of the magnetic pole V3. While being wound around the protrusion structure 20 of the insulator of the magnetic pole V3 through the gap 21 between the outer peripheral surface of the insulator outer wall 16 of the magnetic poles U2 and U3 and the protrusion structure 20 through the lowermost storage groove 18 drawn from W1 and W2. It is composed of two cables drawn upward. The same applies to the other three lines U and V.

このように、着磁により巻線端末12が力を受ける個所において、巻線端末12が外壁部16と突起構造物20との間の隙間21を通って収納溝18に引き回されるように配置した。また、収納溝18に引き回す巻線端末の長さが長くなる場合においても、巻線端末12が収納溝18に導出され後、インシュレータ5の外壁部16の上部方向に引き出されるまでの途中で巻線端末12が少なくとも一部の隙間21を通るように配置した。   In this way, at the location where the winding terminal 12 receives a force due to magnetization, the winding terminal 12 is routed to the storage groove 18 through the gap 21 between the outer wall portion 16 and the protruding structure 20. Arranged. Even when the length of the winding terminal routed around the storage groove 18 becomes long, the winding terminal 12 is led out to the storage groove 18 and then wound in the middle until it is pulled out in the upper direction of the outer wall portion 16 of the insulator 5. The line terminals 12 are arranged so as to pass through at least some of the gaps 21.

また、UVWUVW….と連続して配置された磁極から巻線端末12を引き出し、インシュレータの背面部で、UVWそれぞれの相毎に巻線端末12を集めてインシュレータの上部方向に引き出す場合、適当にインシュレータの背面部の収納溝18に配置していては相間の巻線端末12に交差する箇所ができるため、その交差する箇所において巻線端末12部にチューブ等を被せて隣り合う相間の絶縁を取る必要がある。そこで、3n(nは2以上の正の整数)個の磁極を備えた3相のコイル構造の場合に、インシュレータ5の外壁部16の上部方向に引き出される巻き始め側の巻線端末12の1本が、コイルが巻回された磁極の3(n−1)−1個、または、3(n―1)個だけ離れた磁極のインシュレータの収納溝18から巻線端末12の終端部が立ち上がり、インシュレータ5の上部円筒軸方向に導かれているようにして、各相の巻線端末12の1本を長く引き出すことより、この交差が生じることなく、インシュレータ上方に各相まとめて引き出せる巻線端末12の配置が可能になり、絶縁チューブを付けることなく、各相を離して絶縁を保つことができる。   Also, UVWUVW ... When the winding terminal 12 is pulled out from the magnetic pole arranged continuously and the winding terminal 12 is collected for each phase of the UVW at the back surface of the insulator and pulled out in the upper direction of the insulator, the back surface of the insulator is appropriately Since a portion intersecting the winding terminal 12 between the phases is formed in the storage groove 18, it is necessary to provide insulation between adjacent phases by covering the winding terminal 12 with a tube or the like at the intersecting portion. Therefore, in the case of a three-phase coil structure having 3n (n is a positive integer of 2 or more) magnetic poles, 1 of the winding terminal 12 on the winding start side drawn out in the upper direction of the outer wall portion 16 of the insulator 5. The end of the winding terminal 12 rises from the storage groove 18 of the magnetic pole insulator 3 (n-1) -1 or 3 (n-1) apart from the magnetic pole around which the coil is wound. Winding that can be pulled out together with each phase above the insulator without causing this crossing by pulling out one of the winding terminals 12 of each phase long so as to be guided in the direction of the upper cylindrical axis of the insulator 5 The terminal 12 can be arranged, and the insulation can be maintained by separating the phases without attaching an insulating tube.

この実施の形態1によれば、着磁により巻線端末12が力を受ける個所に突起構造物20を設け、巻線端末12が外壁部16の外周に形成した収納溝18の底部を結ぶ面の隙間21を通って、収納溝18に引き回されるので、組込み着磁の大電流にも耐えうる巻線端末12の固定を可能にして、絶縁品質に優れた電動機の固定子を提供することができる。 According to the first embodiment, the protruding structure 20 is provided at a place where the winding terminal 12 receives a force by magnetization, and the winding terminal 12 connects the bottom portion of the storage groove 18 formed on the outer periphery of the outer wall portion 16. The winding terminal 12 that can withstand a large current of built-in magnetization can be fixed, and an electric motor stator excellent in insulation quality is provided. be able to.

また、チューブなどの絶縁物を必要とせずに、巻線端末12を収納溝18に固定するだけで各相の巻線端末12間を絶縁できるので、電動機固定子の結線処理の作業性を向上し、安価な電動機の固定子を構成することができる。   In addition, since it is possible to insulate between the winding terminals 12 of each phase by simply fixing the winding terminals 12 to the storage grooves 18 without requiring an insulator such as a tube, the workability of the connection process of the motor stator is improved. In addition, an inexpensive motor stator can be configured.

実施の形態2.
図10は、この発明の電動機の固定子に用いられるインシュレータの実施の形態2を示す平面図(a)、C−C断面図及び側面図(c)である。図10に示したように、インシュレータ5の外壁部16の外側に隙間21を介して設けられた突起構造物20の円筒軸と平行な外周面に、収納溝18と同じ高さに溝22を設けた構造とした。図11(b)の外壁部16の紙面と平行な部分断面図に示すように、この構造では、突起構造部20の外側を引き回した巻き始め側の巻線端末12を溝22に収納することができ、図11(a)に示すように、巻線端末12を隙間21に通した場合と同様に、突起構造物20の外側を引き回した巻線端末12間の絶縁を保つことができる。
Embodiment 2. FIG.
FIG. 10: is the top view (a), CC sectional drawing, and side view (c) which show Embodiment 2 of the insulator used for the stator of the electric motor of this invention. As shown in FIG. 10, the groove 22 is formed at the same height as the storage groove 18 on the outer peripheral surface parallel to the cylindrical axis of the protruding structure 20 provided on the outside of the outer wall portion 16 of the insulator 5 via the gap 21. The structure was provided. As shown in the partial cross-sectional view parallel to the paper surface of the outer wall portion 16 in FIG. As shown in FIG. 11A, the insulation between the winding terminals 12 drawn around the outside of the protruding structure 20 can be maintained as in the case where the winding terminals 12 are passed through the gap 21.

実施の形態3.
図12は、この実施の形態3の巻線端末12の引き回し状態を示す平面図であり、外壁部16を紙面と平行な断面で示している。この実施の形態3では、図8で示したインシュレータ5に対して、巻線端末12が収納溝18に導出され、インシュレータ5の外壁部16の上部方向に引き出される途中で巻線端末12を突起構造物20に巻きつけて固定した形態を示す。
Embodiment 3 FIG.
FIG. 12 is a plan view showing a winding state of the winding terminal 12 of the third embodiment, and shows the outer wall portion 16 in a cross section parallel to the paper surface. In the third embodiment, with respect to the insulator 5 shown in FIG. 8, the winding terminal 12 is led out into the storage groove 18, and the winding terminal 12 protrudes in the middle of being pulled out in the upper direction of the outer wall portion 16 of the insulator 5. The form wound and fixed to the structure 20 is shown.

この実施の形態3によれば、巻線端末12がインシュレータ5の外壁部16の上部方向に引き出される途中で巻線端末12を突起構造物20に巻きつけて固定することにより、確実に組込み着磁の大電流にも耐えうるように巻線端末12をインシュレータ5へ固定することができ、絶縁品質に優れた電動機の固定子を提供することができる。   According to the third embodiment, the winding terminal 12 is wound around the protruding structure 20 and fixed while the winding terminal 12 is pulled out in the upper direction of the outer wall portion 16 of the insulator 5, so that the built-in terminal can be securely attached. The winding terminal 12 can be fixed to the insulator 5 so as to be able to withstand a large magnetic current, and an electric motor stator excellent in insulation quality can be provided.

実施の形態4.
図13は、この発明の電動機の固定子に用いられるインシュレータの実施の形態4を示す平面図(a)、D−D線断面図(b)及び側面図(c)である。この実施の形態4では、図10のインシュレータに対し、突起構造物20の高さを延長し、延長した部分に新たに溝23を設けた。そして、図14に示すように、巻線端末12を収納溝18から立ち上げてスパイラル状に突起構造物20に巻きつけた後、新たに設けた溝23を通ってインシュレータ5の上方に引き出す。
Embodiment 4 FIG.
FIG. 13: is the top view (a), DD sectional view (b), and side view (c) which show Embodiment 4 of the insulator used for the stator of the electric motor of this invention. In the fourth embodiment, the height of the protruding structure 20 is extended with respect to the insulator of FIG. 10, and a groove 23 is newly provided in the extended portion. Then, as shown in FIG. 14, the winding terminal 12 is raised from the storage groove 18, wound around the protruding structure 20 in a spiral shape, and then pulled out above the insulator 5 through the newly provided groove 23.

この実施の形態4によれば、巻線端末12の電源線と接続する終端部が確実に突起構造部20の溝23に固定され、終端部の位置が定まるために次の工程で巻線端末12の終端部を電源線に接続する作業が容易となる。   According to the fourth embodiment, since the terminal end connected to the power supply line of the winding terminal 12 is securely fixed to the groove 23 of the protruding structure 20 and the position of the terminal end is determined, the winding terminal is used in the next step. The operation | work which connects 12 termination | terminus parts to a power wire becomes easy.

実施の形態5.
図15は、この発明の電動機の固定子に用いられるインシュレータの実施の形態5を示す平面図(a)、E−E線断面図(b)及び側面図(c)である。この実施の形態5では、図1のインシュレータに対し、外壁部16上部の空間に突起構造物20とは別の突起構造部24を設けた。この突起構造部24には、図16に示すように、各コイルの巻き終り側の巻線端末14が巻きつけられ、隣り合う磁極3つのコイル、U1,V1,W1、U2,V2,W2及びU3,V3,W3の巻線端末14を一箇所にまとめてコネクタ25で接続する。この構成により、図4に示したコイルの結線構造が実現できる。
Embodiment 5 FIG.
FIG. 15: is the top view (a), EE sectional view (b), and side view (c) which show Embodiment 5 of the insulator used for the stator of the electric motor of this invention. In the fifth embodiment, a protruding structure portion 24 different from the protruding structure 20 is provided in the space above the outer wall portion 16 with respect to the insulator of FIG. As shown in FIG. 16, the winding terminal 14 on the winding end side of each coil is wound around the protruding structure portion 24, and three adjacent magnetic pole coils, U 1, V 1, W 1, U 2, V 2, W 2, and The winding terminals 14 of U3, V3, and W3 are combined at one place and connected by a connector 25. With this configuration, the coil connection structure shown in FIG. 4 can be realized.

この実施の形態5によれば、巻き始め線側の巻線端末12とは別に、中性点側の巻き終り側の巻線端末14を突起構造部24に絡げることで、巻線端末14の確実な固定ができるとともに、中性点側の巻線端末14と電源線側の巻線端末12とを別の位置に分離して固定するので、巻線端末14と巻線端末12との絶縁を保つことができる。   According to the fifth embodiment, separately from the winding terminal 12 on the winding start line side, the winding terminal 14 on the neutral point side on the winding end side is entangled with the protruding structure portion 24, so that the winding terminal is wound. 14 can be securely fixed, and the winding terminal 14 on the neutral point side and the winding terminal 12 on the power line side are separated and fixed at different positions, so that the winding terminal 14 and the winding terminal 12 Can keep the insulation.

この発明は、高効率機種のエアコン等の圧縮機に組み込まれる電動機の固定子として有効に利用することができる。   The present invention can be effectively used as a stator of an electric motor incorporated in a compressor such as a highly efficient air conditioner.

この発明の電動機の固定子を適用する圧縮機用電動機を含む圧縮機の断面図である。It is sectional drawing of the compressor containing the motor for compressors which applies the stator of the motor of this invention. 実施の形態1の電動機を軸方向から見た正面図である。It is the front view which looked at the electric motor of Embodiment 1 from the axial direction. 実施の形態1において、各磁極に巻回されたコイルの回路構成図である。3 is a circuit configuration diagram of a coil wound around each magnetic pole in Embodiment 1. FIG. 実施の形態1において、各磁極に巻回されたコイルの回路構成図である。3 is a circuit configuration diagram of a coil wound around each magnetic pole in Embodiment 1. FIG. 従来の電動機のインシュレータの構造を示す平面図(a)、A−A断面図(b)及び側面図(c)である。It is the top view (a) which shows the structure of the insulator of the conventional motor, AA sectional drawing (b), and a side view (c). 円周状のインシュレータの配置を直線状に展開して、従来のインシュレータの背面部(収納溝がある部分)のみを表した図である。It is the figure which expand | deployed the arrangement | positioning of the circumferential insulator linearly, and represented only the back surface part (part with a storage groove) of the conventional insulator. 固定子を用いて回転子の磁石を着磁している様子を説明するための正面図(a)及び結線図である。It is the front view (a) and connection diagram for demonstrating a mode that the magnet of the rotor is magnetized using the stator. 本発明の電動機の固定子に用いられるインシュレータの実施の形態1を示す平面図(a)、B−B線断面図(b)及び側面図(c)である。It is the top view (a), BB sectional view (b), and side view (c) which show Embodiment 1 of the insulator used for the stator of the motor of the present invention. 図8に示したインシュレータを用いて巻線端末を収納溝に引き回した図である。FIG. 9 is a diagram in which a winding terminal is routed around a storage groove using the insulator shown in FIG. 8. この発明の電動機の固定子に用いられるインシュレータの実施の形態2を示す平面図(a)、C−C断面図及び側面図(c)である。It is the top view (a), CC sectional drawing, and side view (c) which show Embodiment 2 of the insulator used for the stator of the electric motor of this invention. 実施の形態2のインシュレータを用いて巻線端末を収納溝に固定した部分断面図である。FIG. 6 is a partial cross-sectional view in which a winding terminal is fixed to a storage groove using the insulator according to the second embodiment. 実施の形態3の巻線端末の引き回し状態を示す平面図である。FIG. 10 is a plan view showing a routing state of a winding terminal according to a third embodiment. この発明の電動機の固定子に用いられるインシュレータの実施の形態4を示す平面図(a)、D−D線断面図(b)及び側面図(c)である。They are the top view (a), DD sectional view (b), and side view (c) which show Embodiment 4 of the insulator used for the stator of the electric motor of this invention. 実施の形態4のインシュレータを用いて巻線端末を収納溝に固定した側面図である。It is the side view which fixed the coil | winding terminal to the accommodation groove | channel using the insulator of Embodiment 4. この発明の電動機の固定子に用いられるインシュレータの実施の形態4を示す平面図(a)、E−E線断面図(b)及び側面図(c)である。It is the top view (a), EE sectional view (b), and side view (c) which show Embodiment 4 of the insulator used for the stator of the electric motor of this invention. 実施の形態5のインシュレータを用いて巻線端末を収納溝に固定した図である。It is the figure which fixed the coil | winding terminal to the accommodation groove | channel using the insulator of Embodiment 5. FIG.

符号の説明Explanation of symbols

1 固定子、2 回転子、3 フレーム、4 圧縮室、5 インシュレータ、
6 鉄心、7 固定子、8 回転子、9 磁石、10 シャフト穴、11 コイル、
12 巻き始め側の巻線端末、13 電源線、14 巻き終わり線側の巻線端末、
15 中性点、16 外壁部、17 引出し溝、18 収納溝、19 巻線端末導出部、
20 突起構造物、21 隙間、22,23 溝、24 突起構造部。
1 Stator, 2 Rotor, 3 Frame, 4 Compression chamber, 5 Insulator,
6 Iron core, 7 Stator, 8 Rotor, 9 Magnet, 10 Shaft hole, 11 Coil,
12 winding end side winding end, 13 power line, 14 winding end side winding end,
15 neutral point, 16 outer wall, 17 drawer groove, 18 storage groove, 19 winding terminal lead-out part,
20 protrusion structure, 21 gap, 22, 23 groove, 24 protrusion structure part.

Claims (8)

円筒状の鉄心から径方向に突出した磁極を有し、上記磁極それぞれに、上記円筒状の鉄心の円筒軸方向から装着されたインシュレータを備え、上記インシュレータを介して上記磁極にコイルが巻回され、上記インシュレータの上記径方向の外方端における上記円筒軸と平行な外周面に周方向の収納溝が形成され、上記コイルの巻線端末が上記収納溝に引き回された電動機の固定子において、
上記インシュレータの外周面の周方向の略中央部に上記収納溝を形成せず、上記中央部の周方向両側に上記収納溝を形成し、該収納溝の底部を結ぶ面に隙間を形成して上記円筒軸方向に立設された突起構造物を備え、
上記巻線端末が上記隙間を通って上記収納溝に引き回されていることを特徴とする電動機の固定子。
Each of the magnetic poles includes an insulator mounted from the cylindrical axial direction of the cylindrical iron core, and a coil is wound around the magnetic pole via the insulator. In a stator of an electric motor, a circumferential storage groove is formed on an outer peripheral surface parallel to the cylindrical shaft at the radially outer end of the insulator, and a winding terminal of the coil is drawn around the storage groove. ,
The storage groove is not formed in the substantially central portion of the outer peripheral surface of the insulator in the circumferential direction, the storage groove is formed on both sides of the central portion in the circumferential direction, and a gap is formed on a surface connecting the bottom portions of the storage groove. Protruding structure standing in the cylindrical axis direction,
The stator of an electric motor, wherein the winding terminal is routed through the gap into the housing groove.
上記突起構造物の上記円筒軸と平行な外周面に、溝が形成されていることを特徴とする請求項1に記載の電動機の固定子。 The stator of the electric motor according to claim 1, wherein a groove is formed on an outer peripheral surface of the protruding structure parallel to the cylindrical axis. 上記巻き始め側の巻線端末は上記収納溝へ導出された後、その少なくとも一部が、上記突起構造物に巻きついた後、再度、上記収納溝に引き回されていることを特徴とする請求項1に記載の電動機の固定子。 The winding terminal on the winding start side is led out to the storage groove, and then at least a part of the winding terminal is wound around the protruding structure and then drawn around the storage groove again. The stator of the electric motor according to claim 1. 上記突起構造物の先端部で、上記収納溝の形成部の位置より高い位置に、溝部が形成され、上記巻線端末の終端部が上記突起構造物にスパイラル状に巻き付くように上記収納溝から立ち上がり、上記溝部を通って上記インシュレータの上記円筒軸方向外部に引き出されていることを特徴とする請求項1に記載の電動機の固定子。 A groove is formed at a tip of the protruding structure at a position higher than a position of the storage groove, and the storage groove is formed such that a terminal end of the winding terminal is spirally wound around the protruding structure. The stator of the electric motor according to claim 1, wherein the stator of the motor is pulled up to the outside in the cylindrical axial direction of the insulator through the groove. 上記インシュレータの上記円筒軸と垂直な面に、上記突起構造物とは別の突起構造部が設けられ、上記巻線端末のうちのコイルの巻始め側の巻線端末が上記収納溝を通って上記インシュレータの上記円筒軸方向外部に引き出され、上記巻線端末のうちのコイルの巻き終わり側の巻線端末が上記突起構造部に絡げられて上記インシュレータの上記円筒軸方向外部に引き出されたことを特徴とする請求項1に記載の電動機の固定子。 A protrusion structure portion different from the protrusion structure is provided on a surface perpendicular to the cylindrical axis of the insulator, and a winding terminal on the winding start side of the coil of the winding terminals passes through the storage groove. The coil end of the insulator is pulled out in the cylindrical axial direction, and the winding terminal of the winding end of the winding terminal is entangled with the protruding structure and pulled out of the insulator in the cylindrical axial direction. The stator for an electric motor according to claim 1. 上記各磁極に取り付けられたインシュレータが全て同じ形状であることを特徴とする請求項1に記載の電動機の固定子。 The stator for an electric motor according to claim 1, wherein all the insulators attached to the magnetic poles have the same shape. 上記磁極が3n(nは2以上の正の整数)個あり、上記コイルが3相のコイルで構成され、上記3相それぞれにおいて、上記巻線端末の1本が、コイルが巻回された磁極の3(n−1)−1個、または、3(n―1)個だけ離れた磁極のインシュレータの上記収納溝から上記巻線端末の終端部が立ち上がり、上記インシュレータの上記円筒軸方向に導かれていることを特徴とする請求項1に記載の電動機の固定子。 There are 3n magnetic poles (n is a positive integer greater than or equal to 2), the coil is composed of a three-phase coil, and in each of the three phases, one of the winding terminals is a magnetic pole wound with a coil. 3 (n-1) -1 or 3 (n-1) magnetic pole insulators separated from the storage groove of the magnetic pole insulator, the terminal end of the winding end rises and is guided in the cylindrical axis direction of the insulator. The stator of the electric motor according to claim 1, wherein the stator is provided. 上記請求項1ないし請求項7のいずれか1項に記載の電動機の固定子を搭載したことを特徴とする圧縮機。 A compressor having the electric motor stator according to any one of claims 1 to 7 mounted thereon.
JP2008020054A 2008-01-31 2008-01-31 Electric motor stator and compressor using the same Expired - Fee Related JP5143581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020054A JP5143581B2 (en) 2008-01-31 2008-01-31 Electric motor stator and compressor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020054A JP5143581B2 (en) 2008-01-31 2008-01-31 Electric motor stator and compressor using the same

Publications (2)

Publication Number Publication Date
JP2009183071A JP2009183071A (en) 2009-08-13
JP5143581B2 true JP5143581B2 (en) 2013-02-13

Family

ID=41036593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020054A Expired - Fee Related JP5143581B2 (en) 2008-01-31 2008-01-31 Electric motor stator and compressor using the same

Country Status (1)

Country Link
JP (1) JP5143581B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114903A (en) * 2009-11-25 2011-06-09 Toshiba Industrial Products Manufacturing Corp Stator of rotary electric machine and rotary electric machine
US8400041B2 (en) * 2010-05-28 2013-03-19 Nidec Motor Corporation Segmented stator assemblies having end caps
JP5612923B2 (en) * 2010-06-30 2014-10-22 本田技研工業株式会社 Rotating electric machine
JP5813359B2 (en) * 2011-04-22 2015-11-17 本田技研工業株式会社 Rotating electric machine
JP5666975B2 (en) * 2011-04-22 2015-02-12 本田技研工業株式会社 Rotating electric machine and manufacturing method thereof
JP5749557B2 (en) 2011-04-28 2015-07-15 本田技研工業株式会社 Manufacturing method of rotating electrical machine
JP6118152B2 (en) * 2013-03-22 2017-04-19 株式会社ミツバ Stator, electric motor, and method for manufacturing stator
JP2015089162A (en) * 2013-10-28 2015-05-07 トヨタ自動車株式会社 Rotary electric machine stator
JP6311333B2 (en) * 2014-01-31 2018-04-18 日本電産株式会社 Electric motor
CN108141095A (en) * 2015-09-02 2018-06-08 日立汽车系统工程株式会社 Brushless motor
JP2018133886A (en) * 2017-02-14 2018-08-23 日本電産サンキョー株式会社 Motor and pump unit
US20200127523A1 (en) * 2017-06-26 2020-04-23 Hitachi Automotive Systems, Ltd. Rotary Electric Machine
CN114902534A (en) * 2020-01-08 2022-08-12 三菱电机株式会社 Stator for rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
CN115552769A (en) * 2020-05-26 2022-12-30 三菱电机株式会社 Stator for rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150774B2 (en) * 1999-07-12 2008-09-17 東芝キヤリア株式会社 Electric motor stator
JP4514171B2 (en) * 2000-07-14 2010-07-28 株式会社小田原エンジニアリング Stator manufacturing method and manufacturing apparatus
JP3923871B2 (en) * 2002-08-29 2007-06-06 三菱電機株式会社 Motor stator, mold motor, blower and air conditioner

Also Published As

Publication number Publication date
JP2009183071A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5143581B2 (en) Electric motor stator and compressor using the same
US10666108B2 (en) Stator, method for manufacturing stator, and motor
JP4404199B2 (en) Synchronous motor
CN103270676B (en) Stator and possess the electric rotating machine of this stator
CN101083407B (en) Poly-phase claw pole type motor
US20130257200A1 (en) In-Vehicle Motor and Electric Power Steering Device Including the Same
US20050258706A1 (en) Reduced coil segmented stator
US7928619B2 (en) Gap winding motor
CN101752928A (en) Electric machine stator component and electric machine
KR20020044534A (en) Electric motor
JP4271003B2 (en) Electric motor stator
JP4178558B2 (en) Rotating electric machine
JP2020025463A (en) Brushless motor
JP6337132B2 (en) Rotating electric machine stator and rotating electric machine equipped with the same
JP2003047188A (en) Stator for electric motor
US7102265B2 (en) Four-pole synchronous motor
JP2010035360A (en) Electric motor
JP4197570B2 (en) Electric motor stator
JP2008236978A (en) Claw-pole motor
JP4470168B2 (en) Hermetic electric compressor
US7352097B2 (en) Motor or generator and method of producing the same
JP2012157207A (en) Electric motor stator, compressor, and device
JP2009303286A (en) Electric motor
JP4245176B2 (en) Electric motor
JP2009240031A (en) Electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees