JP5142889B2 - Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module - Google Patents

Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module Download PDF

Info

Publication number
JP5142889B2
JP5142889B2 JP2008217918A JP2008217918A JP5142889B2 JP 5142889 B2 JP5142889 B2 JP 5142889B2 JP 2008217918 A JP2008217918 A JP 2008217918A JP 2008217918 A JP2008217918 A JP 2008217918A JP 5142889 B2 JP5142889 B2 JP 5142889B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
sialon
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008217918A
Other languages
Japanese (ja)
Other versions
JP2010052969A (en
Inventor
慎也 横峯
誠一郎 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008217918A priority Critical patent/JP5142889B2/en
Publication of JP2010052969A publication Critical patent/JP2010052969A/en
Application granted granted Critical
Publication of JP5142889B2 publication Critical patent/JP5142889B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュールに関し、特に、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子内に、Al存在量が多いAl多領域部が形成された窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュールに関するものである。 The present invention relates to a silicon nitride sintered body, a method for manufacturing the same, a circuit board, and a power semiconductor module. In particular, there is a large amount of Al in at least one kind of crystal particles of β-Si 3 N 4 and β-sialon. The present invention relates to a silicon nitride sintered body in which an Al multi-region portion is formed, a manufacturing method thereof, a circuit board, and a power semiconductor module.

従来、自動車用エンジン部材、耐熱構造部材、切削工具、その他産業用部材に、高強度、高靱性の窒化珪素質焼結体が用いられていた(例えば、特許文献1参照)。   Conventionally, high-strength, high-toughness silicon nitride-based sintered bodies have been used for automobile engine members, heat-resistant structural members, cutting tools, and other industrial members (see, for example, Patent Document 1).

この特許文献1には、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、焼結体に対して5〜60vol%が、内部に、この結晶粒子の他の部分よりもAl存在量が多いAl多領域部を有する結晶粒子から構成されていることが記載されている。 This Patent Document 1 discloses a silicon nitride sintered body composed of at least one kind of crystal particles and a grain boundary phase among β-Si 3 N 4 and β-sialon, It is described that 60 vol% is composed of crystal grains having an Al multi-region part in which Al abundance is higher than the other parts of the crystal grains.

そして、この窒化珪素質焼結体では、結晶粒子内にβサイアロン核を有するため、結晶粒子内に内部応力を発生させ、さらに、βサイアロン核を有する結晶粒子は粒成長するため、アスペクト比が大きくなり、焼結体の強度と靱性を向上できることが記載されている。
特開平2−263764号公報
Since this silicon nitride sintered body has β sialon nuclei in crystal grains, an internal stress is generated in the crystal grains, and crystal grains having β sialon nuclei grow, so that the aspect ratio is It is described that the strength and toughness of the sintered body can be improved by increasing the size.
JP-A-2-263764

近年においては、窒化珪素質焼結体は多種多様の用途に用いられており、用途によっては、高熱伝導性が要求されているものもある。例えば、大電力で動作する半導体を実装する、いわゆるパワー半導体モジュールに使用する絶縁回路基板に窒化珪素質焼結体を用いることが知られているが、このような絶縁回路基板では、パワー半導体から発する熱を拡散して放熱する必要がある。   In recent years, silicon nitride-based sintered bodies have been used for a wide variety of applications, and depending on the application, high thermal conductivity is required. For example, it is known to use a silicon nitride-based sintered body for an insulating circuit board used for a so-called power semiconductor module for mounting a semiconductor that operates at high power. It is necessary to dissipate the heat generated by diffusing.

例えば、絶縁回路基板では、上記したように放熱性(高熱伝導率)、薄型化、高強度高靱性化が要求されているが、上記特許文献1に開示された窒化珪素質焼結体を回路基板として用いた場合には、高強度高靱性化が図られ、薄型化を達成することができるが、回路基板の熱伝導率が低く、パワー半導体から発する熱を十分に放熱することができないという問題があった。   For example, in an insulated circuit board, as described above, heat dissipation (high thermal conductivity), thinning, and high strength and toughness are required, but the silicon nitride sintered body disclosed in Patent Document 1 is used as a circuit. When used as a substrate, high strength and toughness can be achieved and thinning can be achieved, but the thermal conductivity of the circuit board is low, and the heat generated from the power semiconductor cannot be sufficiently dissipated. There was a problem.

すなわち、特許文献1の窒化珪素質焼結体では、結晶粒子内にβサイアロン核を有するため、結晶粒子内に内部応力を発生させ、さらに、β−サイアロン核を有する結晶粒子は粒成長し、アスペクト比が大きくなるため、焼結体の強度と靱性を向上できるものの、特許文献1では、BET比表面積が10あるいは5m/gの微粒のβ−サイアロン粉末を、原料全量に対して5〜20質量%添加しており、これにより、焼成時に多くのβ−サイアロンが完全に溶融または表面が溶融してβ−サイアロン核が小さくなり、結晶粒子内に大量のAlが分散、固溶し、窒化珪素質焼結体の熱伝導率が低くなり、放熱性が低下するという問題があった。 That is, in the silicon nitride-based sintered body of Patent Document 1, since β sialon nuclei are present in crystal grains, internal stress is generated in the crystal grains, and crystal grains having β-sialon nuclei grow, Although the aspect ratio is increased, the strength and toughness of the sintered body can be improved. However, in Patent Document 1, a fine β-sialon powder having a BET specific surface area of 10 or 5 m 2 / g is 5 to 5 times the total amount of raw materials. 20% by mass is added, so that a large amount of β-sialon is completely melted or the surface is melted at the time of firing to make β-sialon nuclei smaller, and a large amount of Al is dispersed and dissolved in crystal grains. There has been a problem that the thermal conductivity of the silicon nitride-based sintered body is lowered and heat dissipation is reduced.

本発明は、高強度化および高靱性化を図ることができるとともに、放熱性を向上することができる窒化珪素質焼結体およびその製法ならびに回路基板、パワー半導体モジュールを提供することを目的とする。   An object of the present invention is to provide a silicon nitride-based sintered body that can be increased in strength and toughness, and that can improve heat dissipation, a manufacturing method thereof, a circuit board, and a power semiconductor module. .

本発明の窒化珪素質焼結体は、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、前記結晶粒子内に、該結晶粒子の他の部分よりもAl存在量が多いAl多領域部を有するとともに、該Al多領域部が希土類元素を含有する被覆層で覆われており、前記Al多領域部および前記被覆層を有する前記結晶粒子が、焼結体の任意断面において面積比で8〜26%存在することを特徴とする。
The silicon nitride-based sintered body of the present invention is a silicon nitride-based sintered body comprising at least one kind of crystal grains of β-Si 3 N 4 and β-sialon and a grain boundary phase, In addition, the Al multi-region portion having a larger amount of Al than the other portion of the crystal particles, and the Al multi-region portion is covered with a coating layer containing a rare earth element , the Al multi-region portion and the It said crystal grains having a coating layer, characterized that you present 8-26% by area in any cross-section of the sintered body.

このような窒化珪素質焼結体では、結晶粒子内に、希土類元素を含有する被覆層で覆われたAl多領域部を有するため、この結晶粒子が、Al多領域部を有しない他の結晶粒子よりも大きく粒成長し、アスペクト比が大きくなり、また、Al多領域部を有するため、結晶粒子内部の圧縮応力が大きくなることにより、クラックの進展を抑制し、焼結体の強度と靱性を向上できる。さらに、希土類元素を含有する被覆層でAl多領域部が覆われているため、Al多領域部からのAlの結晶粒子内への分散、固溶量が少なく、窒化珪素質焼結体の熱伝導率を向上できる。   In such a silicon nitride-based sintered body, since the crystal grain has an Al multi-region portion covered with a coating layer containing a rare earth element, the crystal particle has another crystal having no Al multi-region portion. Grows larger than the grains, increases the aspect ratio, and has an Al multi-region, so that the compressive stress inside the crystal grains increases, which suppresses crack growth and increases the strength and toughness of the sintered body. Can be improved. Furthermore, since the Al multi-region part is covered with a coating layer containing rare earth elements, the amount of Al dispersed from the Al multi-region part into the crystal grains and the amount of solid solution are small, and the heat of the silicon nitride-based sintered body is low. Conductivity can be improved.

本発明の回路基板は、上記窒化珪素質焼結体に導体層を形成してなることを特徴とする。このような回路基板では、窒化珪素質焼結体の強度および靱性を向上できるため、回路基板を薄くすることができ、しかも窒化珪素質焼結体の熱伝導率を向上できるため、回路基板の放熱性を向上できる。これにより、例えば、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The circuit board of the present invention is characterized in that a conductor layer is formed on the silicon nitride sintered body. In such a circuit board, since the strength and toughness of the silicon nitride sintered body can be improved, the circuit board can be thinned, and the thermal conductivity of the silicon nitride sintered body can be improved. Heat dissipation can be improved. Thereby, for example, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明のパワー半導体モジュールは、パワー半導体を上記回路基板に実装してなるものである。このようなパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The power semiconductor module of the present invention is obtained by mounting a power semiconductor on the circuit board. In such a power semiconductor module, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明の窒化珪素質焼結体では、結晶粒子内に、希土類元素を含有する被覆層で覆われたAl多領域部を有するため、この結晶粒子が、Al多領域部を有しない他の結晶粒子よりも大きく粒成長し、アスペクト比が大きくなり、また、Al多領域部を有するため、結晶粒子内部の圧縮応力が大きくなることにより、クラックの進展を抑制し、焼結体の強度と靱性を向上できる。さらに、希土類元素を含有する被覆層でAl多領域部が覆われているため、Al多領域部からのAlの結晶粒子内への分散、固溶量が少なく、窒化珪素質焼結体の熱伝導率を向上できる。   In the silicon nitride based sintered body of the present invention, since the crystal grain has an Al multi-region portion covered with a coating layer containing a rare earth element, the crystal particle has another crystal having no Al multi-region portion. Grows larger than the grains, increases the aspect ratio, and has an Al multi-region, so that the compressive stress inside the crystal grains increases, which suppresses crack growth and increases the strength and toughness of the sintered body. Can be improved. Furthermore, since the Al multi-region part is covered with a coating layer containing rare earth elements, the amount of Al dispersed from the Al multi-region part into the crystal grains and the amount of solid solution are small, and the heat of the silicon nitride-based sintered body is low. Conductivity can be improved.

本発明の回路基板では、窒化珪素質焼結体の強度、靱性を向上できるため、回路基板を薄くすることができ、しかも窒化珪素質焼結体の熱伝導率を向上できるため、回路基板の放熱性を向上できる。   In the circuit board of the present invention, since the strength and toughness of the silicon nitride sintered body can be improved, the circuit board can be thinned and the thermal conductivity of the silicon nitride sintered body can be improved. Heat dissipation can be improved.

本発明のパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   In the power semiconductor module of the present invention, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

本発明の回路基板は、窒化珪素質焼結体からなる母基板に導体層(金属回路を含む)を形成してなるもので、少なくとも母基板の上面、または下面、さらには上下両面に導体層を設け、この導体層には、パワー半導体が搭載される。   The circuit board of the present invention is formed by forming a conductor layer (including a metal circuit) on a mother substrate made of a silicon nitride sintered body, and at least on the upper surface or the lower surface of the mother substrate, and further on both upper and lower surfaces. And a power semiconductor is mounted on the conductor layer.

そして、窒化珪素質焼結体からなる母基板は、図1、2に示すように、β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子1と粒界相3とからなる窒化珪素質焼結体であって、結晶粒子1内に、該結晶粒子1の他の部分4(以下単に、他の部分ともいう。)よりもAl存在量が多いAl多領域部5を有し、このAl多領域部5を覆う希土類元素を含有する被覆層6が存在し、前記Al多領域部および前記被覆層を有する前記結晶粒子が、焼結体の任意断面において面積比で8〜26%存在する。
The mother substrate made of the silicon nitride sintered body is composed of at least one crystal grain 1 and grain boundary phase 3 among β-Si 3 N 4 and β-sialon as shown in FIGS. A silicon nitride sintered body having an Al multi-region portion 5 having a larger amount of Al in the crystal particles 1 than in other portions 4 of the crystal particles 1 (hereinafter also simply referred to as other portions). Then, there is a coating layer 6 containing a rare earth element covering the Al multi-region portion 5, and the crystal particles having the Al multi-region portion and the coating layer have an area ratio of 8 to 8 in an arbitrary cross section of the sintered body. There are 26% .

Al多領域部5の平均径は2μm以上であり、かつAlを焼結体全量中0.053質量%以上含有することが、強度および靱性を向上させるという点から望ましく、特には0.185質量%以上含有することが望ましい。   The average diameter of the Al multi-region portion 5 is 2 μm or more, and containing Al in an amount of 0.053 mass% or more in the total amount of the sintered body is desirable from the viewpoint of improving strength and toughness, and particularly 0.185 mass. % Or more is desirable.

被覆層6は、希土類元素の他に、Alを含有する場合がある。この希土類元素、Alは、酸化物として存在していると考えられる。被覆層6中のAlは、Al多領域部5中のAlが拡散してきたものと考えられる。   The coating layer 6 may contain Al in addition to the rare earth element. This rare earth element, Al, is considered to exist as an oxide. It is considered that Al in the coating layer 6 has diffused Al in the Al multi-region portion 5.

被覆層6中に存在する希土類元素は、Y、Gd、Dy、Ho、ErおよびYbのうち少なくとも1種が望ましく、特には、窒化珪素粒子が粒成長しやすいという点から、Y、Er、Dyが望ましい。   The rare earth element present in the coating layer 6 is preferably at least one of Y, Gd, Dy, Ho, Er, and Yb. In particular, Y, Er, Dy are preferable because silicon nitride particles are easy to grow. Is desirable.

被覆層6中に存在する希土類元素は、後述する結晶粒子間の希土類元素(粒界相の一部を構成する)とは異なる元素であっても良いが、製造容易、希土類元素の種類を少なくし、コストを低減するという点から、被覆層6中に存在する希土類元素は、結晶粒子間の粒界相を構成する希土類元素と同じ種類の希土類元素を用いることが望ましい。   The rare earth element present in the coating layer 6 may be an element different from the rare earth element between crystal grains described later (which constitutes a part of the grain boundary phase), but it is easy to manufacture and the number of rare earth elements is small. From the viewpoint of reducing costs, it is desirable that the rare earth element present in the coating layer 6 is a rare earth element of the same type as the rare earth element constituting the grain boundary phase between crystal grains.

本発明では、β−SiにAlが分散して固溶したものをβ−サイアロンと呼ぶ。サイアロンは、一般式Si6−zAl8−zで表されるが、結晶粒子内に、の部分4よりもAl存在量が多いAl多領域部5を有することは、結晶粒子がβ−サイアロンの場合、Al多領域部の一般式中のZ値は、他の部分4のZ値に比べて2倍以上、つまり2倍以上Al含有量が多い領域を有することを指す。Al多領域部5は、図2では、一点鎖線で示したが、実際は、Alの含有量で規定されるもので、走査電子顕微鏡による反射電子像あるいは二次電子像と波長分散型マイクロアナライザー分析などの対比により、Al多領域部5であることを確認できる。
In the present invention, a solution in which Al is dispersed and dissolved in β-Si 3 N 4 is called β-sialon. The sialon is represented by the general formula Si 6-z Al z O z N 8-z , but the crystal grain 1 has the Al multi-region portion 5 having a larger Al abundance than the other portions 4, When the crystal particle 1 is β-sialon, the Z value in the general formula of the Al multi-region portion is at least twice as large as the Z value of the other portion 4, that is, has a region where the Al content is more than twice. Point to. The Al multi-region portion 5 is shown by a one-dot chain line in FIG. 2, but is actually defined by the Al content. The reflected electron image or secondary electron image obtained by a scanning electron microscope and wavelength dispersion type microanalyzer analysis. It can be confirmed that the Al multi-region portion 5 is obtained by comparing the above.

また、β−Siからなる結晶粒子1内に、該結晶粒子1の他の部分4よりもAl存在量が多いAl多領域部5を有するとは、Alが固溶していないβ−Siからなる結晶粒子1内に、Alが分散して固溶したβ−SiからなるAl多領域部5が存在することをいう。 Further, in the crystal particle 1 made of β-Si 3 N 4 , having the Al multi-region portion 5 having a larger amount of Al than the other portion 4 of the crystal particle 1 means that β is not dissolved in Al. This means that there are Al multi-region portions 5 made of β-Si 3 N 4 in which Al is dispersed and dissolved in crystal grains 1 made of —Si 3 N 4 .

このAl多領域部5の寸法は、添加するβ−サイアロン粉末の粒径と同等か、もしくは僅かに小さくなる。本発明では、結晶粒子1中にAl多領域部5を有し、他の部分4とAl多量域部5との間に希土類元素を含有する被覆層6が存在することにより、結晶粒子1内の内部応力が大きくなり、さらに結晶粒子1のアスペクト比が大きくなり、強度および靱性を向上できる。さらに、Al多量域部から結晶粒子1内に分散、固溶するAl量を低減し、熱伝導性を向上できる。
The size of the Al multi-region portion 5 is equal to or slightly smaller than the particle size of the added β-sialon powder. In the present invention, the crystal particle 1 has the Al multi-region portion 5, and the coating layer 6 containing a rare earth element exists between the other portion 4 and the Al-rich region portion 5. And the aspect ratio of the crystal grains 1 is increased, and the strength and toughness can be improved. Furthermore, the amount of Al dispersed and dissolved in the crystal particles 1 from the Al large area can be reduced, and the thermal conductivity can be improved.

Al多領域部5を有するβ−Siおよびβ−サイアロンの結晶粒子1は、アスペクト比が平均3〜8、結晶粒子1の短軸長さは平均3〜15μmとされている。 The β-Si 3 N 4 and β-sialon crystal particles 1 having the Al multi-region portion 5 have an aspect ratio of 3 to 8 on average and the minor axis length of the crystal particles 1 of 3 to 15 μm on average.

本発明では、Al多領域部5を有する結晶粒子1が、焼結体の任意断面において面積比で8〜26%存在する。これにより、焼結体の強度および靱性を高めることができるとともに、Al多領域部5を有する結晶粒子1を適度に存在させることができ、焼結体の放熱性を高くすることができる。
In the present invention, crystal grains 1 having the Al multi-region portion 5, that exist 8-26% by area in any cross-section of the sintered body. Thereby, while being able to raise the intensity | strength and toughness of a sintered compact, the crystal particle 1 which has Al multi-region part 5 can be made to exist moderately, and the heat dissipation of a sintered compact can be made high.

また、本発明の窒化珪素質焼結体には、原料中に含まれる、あるいは工程から混入するNa、K、Fe、Ca、Ba、MnおよびB等の不可避不純物を混入しており、これらの不可避不純物は、焼結体全量中に合量で0.5質量%以下であることが望ましい。これにより焼結体の熱拡散率の低下を抑制でき、結果として焼結体の熱伝導率を向上できる。
Further, the silicon nitride sintered body of the present invention is contained in the raw material, or you mixed from step N a, K, Fe, Ca , Ba, and mixed with inevitable impurities, such as Mn and B, These inevitable impurities are preferably 0.5% by mass or less in the total amount of the sintered body. Thereby, the fall of the thermal diffusivity of a sintered compact can be suppressed, and the thermal conductivity of a sintered compact can be improved as a result.

さらに、焼結体中には、希土類元素を酸化物換算で全量中1〜20質量%含有することが、焼結性を向上させるという点および靱性、熱伝導率向上の点から望ましい。窒化珪素は前述したように、難焼結性であるので、焼結助剤を添加することが望ましく、一般的に知られている希土類元素酸化物、例えば、Y、Gd、Dy、Ho、ErおよびYbのうち、少なくとも1種を、特にY、Er、Dyを1〜20質量%添加含有する。 Furthermore, it is desirable that the sintered body contains rare earth elements in an amount of 1 to 20% by mass in terms of oxides in terms of improving sinterability, toughness, and improving thermal conductivity. As described above, since silicon nitride is difficult to sinter, it is desirable to add a sintering aid, and generally known rare earth element oxides such as Y 2 O 3 , Gd 2 O 3 are used. , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3, and Yb 2 O 3 , at least one of them, particularly Y 2 O 3 , Er 2 O 3 , Dy 2 O 3 is added in an amount of 1 to 20% by mass. contains.

ここで、希土類元素の酸化物換算量を焼結体全量中1〜20質量%としたのは、1質量%未満では焼結助剤として機能が不十分であり、また、20質量%を超えると焼結体中に低熱伝導率のアモルファス相や低熱伝導率の結晶相が増加して焼結体の熱伝導率が低下する傾向にあるからである。希土類元素の酸化物換算量は、焼結性および熱拡散率向上という観点から、焼結体全量中2〜17質量%であることが望ましい。粒界相形成粉末(焼結助剤ということもある)としては、Er、SiOであることが望ましい。 Here, the oxide equivalent amount of the rare earth element is set to 1 to 20% by mass in the total amount of the sintered body. If the amount is less than 1% by mass, the function as the sintering aid is insufficient, and exceeds 20% by mass. This is because the amorphous phase having a low thermal conductivity and the crystalline phase having a low thermal conductivity increase in the sintered body and the thermal conductivity of the sintered body tends to decrease. The oxide equivalent amount of the rare earth element is desirably 2 to 17% by mass in the total amount of the sintered body from the viewpoint of improving the sinterability and the thermal diffusivity. The grain boundary phase forming powder (sometimes referred to as a sintering aid) is preferably Er 2 O 3 or SiO 2 .

β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子1は、焼結体全量中80〜91.5質量%含有することが望ましい。 Of β-Si 3 N 4 and β-sialon, at least one kind of crystal particles 1 is desirably contained in an amount of 80 to 91.5 mass% in the total amount of the sintered body.

本発明の回路基板の製法は、窒化珪素質焼結体からなる母基板に導体層を形成して作製される。母基板は、希土類元素酸化物粉末とβ−サイアロン粉末とを混合したのち、700〜900℃で仮焼し、得られた仮焼粉末と粒界相形成粉末とを窒化珪素粉末に添加混合し、これを所定形状に成形した後、1750〜1980℃で焼成することにより作製できる。   The circuit board manufacturing method of the present invention is manufactured by forming a conductor layer on a mother board made of a silicon nitride sintered body. The mother substrate is prepared by mixing rare earth element oxide powder and β-sialon powder, calcining at 700 to 900 ° C., and adding and mixing the obtained calcined powder and grain boundary phase forming powder to silicon nitride powder. After forming this into a predetermined shape, it can be produced by firing at 1750 to 1980 ° C.

粒界相形成粉末としては、希土類元素酸化物の他にSiO等を含有することができる。 As the grain boundary phase forming powder, SiO 2 or the like can be contained in addition to the rare earth element oxide.

希土類元素酸化物粉末とβ−サイアロン粉末とを混合し、700〜900℃で仮焼することにより、Alを含有するβ−サイアロン粉末の表面に、希土類元素酸化物粉末を多数付着させ、希土類元素酸化物粉末の層を形成することができる。   By mixing rare earth element oxide powder and β-sialon powder and calcining at 700 to 900 ° C., a large amount of rare earth element oxide powder is adhered to the surface of Al-containing β-sialon powder. A layer of oxide powder can be formed.

そして、希土類元素酸化物粉末の層で覆われたβ−サイアロン粉末を、粒界相形成粉末と窒化珪素粉末とともに添加混合し、焼成することにより、溶融した窒化珪素が、β−サイアロン粉末を核として析出し、被覆層6によりAlが殆ど結晶粒子1内全体に分散固溶することがなく、結晶粒子1内に、β−サイアロンが希土類元素を含有する被覆層6で覆われた組織を形成でき、このような結晶粒子1と粒界相3とからなる窒化珪素質焼結体を作製することができる。   Then, the β-sialon powder covered with the rare earth element oxide powder layer is added and mixed together with the grain boundary phase forming powder and the silicon nitride powder, followed by firing, whereby the molten silicon nitride nucleates the β-sialon powder. As a result, the coating layer 6 hardly disperses and dissolves Al in the entire crystal particle 1 and forms a structure in which the β-sialon is covered with the coating layer 6 containing a rare earth element. Thus, a silicon nitride sintered body composed of such crystal grains 1 and grain boundary phases 3 can be produced.

すなわち、窒化珪素粉末が溶解し、β−サイアロン粉末を核として析出する際に、希土類元素酸化物が溶解し、β−サイアロンの周囲を被覆するが、β−サイアロン粉末の表面は、希土類元素を含有する被覆層6で覆われているため、被覆層6によりβ−サイアロンのAlの分散が抑制され、Alの結晶粒子1への固溶が抑制される。通常は、β−サイアロンを核として窒化珪素が溶解析出するため、結晶粒子1中にはAlが少々固溶している。   That is, when the silicon nitride powder is dissolved and the β-sialon powder is precipitated as a nucleus, the rare earth element oxide is dissolved and covers the periphery of the β-sialon, but the surface of the β-sialon powder is coated with the rare earth element. Since it is covered with the coating layer 6 to be contained, the coating layer 6 suppresses the dispersion of Al of β-sialon and suppresses the solid solution of Al in the crystal particles 1. Usually, since silicon nitride is dissolved and precipitated with β-sialon as a nucleus, Al is slightly dissolved in the crystal particles 1.

窒化珪素粉末は、酸素を2.0質量%以下、不純物陽イオンとしてのNa、K、Fe、Ca、Ba、MnおよびBを合計で0.5質量%以下、α相型窒化珪素を90質量%以上含有し、平均粒径1μm以下の粉末を用いることが望ましい。
Silicon nitride powder, oxygen 2.0 mass% or less, N a as an impurity cations, K, Fe, Ca, Ba, 0.5 wt% or less in total of Mn and B, 90 and α-phase type silicon nitride It is desirable to use a powder containing at least mass% and having an average particle size of 1 μm or less.

β−サイアロン粉末としては、一般式Si6−zAl8−z(0<z≦4)で表されるものを使用できる。このβ−サイアロン粉末は、BET比表面積2m/g以下のものを使用することが、アスペクト比の大きい結晶粒子1を形成でき、強度、靱性を向上するという点から望ましい。特には、BET比表面積1m/g以下のものを使用することが望ましい。 As the β-sialon powder, a powder represented by the general formula Si 6-z Al z O z N 8-z (0 <z ≦ 4) can be used. It is desirable to use a β-sialon powder having a BET specific surface area of 2 m 2 / g or less because crystal grains 1 having a large aspect ratio can be formed and strength and toughness are improved. In particular, it is desirable to use a BET specific surface area of 1 m 2 / g or less.

また、β−サイアロン粉末は、原料全量中0.139質量%以上、特に0.416質量%以上添加混合することが望ましい。   Further, β-sialon powder is desirably added and mixed in an amount of 0.139% by mass or more, particularly 0.416% by mass or more, based on the total amount of raw materials.

β−サイアロン粉末を全固形分中0.139質量%以上、望ましくは0.416質量%以上添加混合するとは、窒化珪素粉末、被覆層6を構成する、希土類元素酸化物粉末、粒界相形成粉末およびβ−サイアロン粉末の合量(全固形分)中、0.139質量%以上、望ましくは0.416質量%以上がβ−サイアロン粉末であることを意味する。   Adding β-sialon powder in an amount of 0.139% by mass or more, preferably 0.416% by mass or more in the total solid content means that silicon nitride powder, the rare earth element oxide powder constituting the coating layer 6, and formation of grain boundary phase It means that 0.139% by mass or more, desirably 0.416% by mass or more of the total amount (total solid content) of the powder and β-sialon powder is β-sialon powder.

本発明の回路基板の母基板は、熱伝導率は99W・m/K以上、特には、115W・m/K以上のものが得られる。強度は、810MPa以上、特には895MPa以上のものが得られる。さらには、靱性については、7.5MPa・m1/2以上、特には7.9MPa・m1/2以上ものが得られる。 As the mother board of the circuit board of the present invention, a thermal conductivity of 99 W · m / K or more, particularly 115 W · m / K or more can be obtained. A strength of 810 MPa or more, particularly 895 MPa or more is obtained. Further, with respect to toughness, 7.5 MPa · m 1/2 or more, particularly 7.9 MPa · m 1/2 or more is obtained.

さらに、本発明の母基板では、熱伝導率が高く、高強度高靱性であるため、厚さを薄くすることにより、窒化アルミニウムに比べてもそん色のない高放熱性の母基板が得られ、一方、より強度を高くするため、0.5mm以上の厚みとした場合でも、熱伝導率が高いため、回路基板として用いることができる。   Furthermore, since the mother substrate of the present invention has high thermal conductivity and high strength and toughness, a thin substrate with a high heat dissipation property that is comparable to aluminum nitride can be obtained by reducing the thickness. On the other hand, in order to increase the strength, even when the thickness is 0.5 mm or more, the thermal conductivity is high, so that it can be used as a circuit board.

本発明のパワー半導体モジュールは、母基板の導体層にパワー半導体を接続し、パワー半導体を上記回路基板に実装して構成されている。このようなパワー半導体モジュールでは、パワー半導体から発する熱を十分に回路基板から拡散して放熱することができる。   The power semiconductor module of the present invention is configured by connecting a power semiconductor to a conductor layer of a mother board and mounting the power semiconductor on the circuit board. In such a power semiconductor module, the heat generated from the power semiconductor can be sufficiently diffused and dissipated from the circuit board.

出発原料として、窒化珪素α相を95質量%含み、酸素を1質量%含み、平均粒径0.5μmの窒化珪素粉末と、BET比表面積0.70〜10.2m/gのβ−サイアロン粉末(z=0.5〜4)と、希土類元素酸化物粉末として、平均粒径1.0μmのY粉末、平均粒径1μmのEr粉末、平均粒径1μmのYb粉末、平均粒径1μmのGd粉末、平均粒径1μmのHo粉末を、粒界相形成粉末の一部として平均粒径1.3μmのSiO粉末を用意した。尚、表1中の量は、全固形分中の割合を示す。 As starting materials, silicon nitride α phase containing 95% by mass of silicon nitride α phase, 1% by mass of oxygen, silicon nitride powder having an average particle size of 0.5 μm, and β-sialon having a BET specific surface area of 0.70 to 10.2 m 2 / g As powder (z = 0.5-4) and rare earth element oxide powder, Y 2 O 3 powder having an average particle diameter of 1.0 μm, Er 2 O 3 powder having an average particle diameter of 1 μm, and Yb 2 having an average particle diameter of 1 μm. An O 3 powder, a Gd 2 O 3 powder having an average particle diameter of 1 μm, and a Ho 2 O 3 powder having an average particle diameter of 1 μm were prepared as SiO 2 powder having an average particle diameter of 1.3 μm as part of the grain boundary phase forming powder. In addition, the quantity in Table 1 shows the ratio in the total solid content.

先ず、β−サイアロンと被覆層材料の希土類元素酸化物粉末とを表1に示す組成比率になるように秤量し、混合し、800℃で仮焼し、得られた仮焼粉体と、表1に示す組成比率になるような粒界相形成粉末とを、窒化珪素粉末に添加、混合した。溶媒としてイソプロピルアルコールを、メディアとして窒化珪素焼結体製のボールを加えて振動ミルにて72時間混合した。その後スラリーはイソプロピルアルコールを乾燥させて混合粉体とし、この混合粉末を0.5ton/cmの圧力で金型プレスした後、3ton/cmの圧力にて静水圧プレスを施して成形体を得た。 First, β-sialon and the rare earth element oxide powder of the coating layer material are weighed so as to have the composition ratio shown in Table 1, mixed, calcined at 800 ° C., and obtained calcined powder, A grain boundary phase forming powder having a composition ratio of 1 was added to and mixed with the silicon nitride powder. Isopropyl alcohol as a solvent and balls made of a silicon nitride sintered body as media were added and mixed for 72 hours in a vibration mill. Thereafter, the slurry is dried by isopropyl alcohol to form a mixed powder, and this mixed powder is die-pressed at a pressure of 0.5 ton / cm 2 , and then subjected to an isostatic pressure at a pressure of 3 ton / cm 2 to obtain a molded product. Obtained.

次いで、窒化珪素焼結体製の鉢の中に、窒化珪素粉末にSiO粉末を加えたとも材を充填し、上記成形体をこのとも材の中に埋め込んだ後、0.9MPaの圧力の窒素ガス雰囲気下で1950℃の温度にて焼成して試料となる焼結体を得た。 Next, in a pot made of a silicon nitride sintered body, silicon nitride powder and SiO 2 powder are added, and the material is filled. After the molded body is embedded in the material, the pressure is 0.9 MPa. A sintered body as a sample was obtained by firing at a temperature of 1950 ° C. in a nitrogen gas atmosphere.

尚、試料No.18は、β−サイアロンと希土類元素酸化物粉末とを予め仮焼することなく、窒化珪素粉末と粒界相形成粉末とβ−サイアロン粉末とを一度に添加し、上記と同様に、成形し、焼成した試料である。   Sample No. No. 18, without pre-calcining β-sialon and rare earth element oxide powder, silicon nitride powder, grain boundary phase forming powder and β-sialon powder were added at once, and molded in the same manner as described above. It is a calcined sample.

こうして得られた試料について、Al量を蛍光X線分析(検量線法)により求めた。焼結体の結晶粒子を収束イオンビーム(FIB)装置によってサブミクロン厚みで微細加工し、波長分散型X線マイクロアナライザー(EPMA)にてAl多領域部および被覆層を確認し、その有無について表2に記載した。   For the sample thus obtained, the Al content was determined by fluorescent X-ray analysis (calibration curve method). The sintered crystal grains are finely processed with a focused ion beam (FIB) apparatus to a submicron thickness, and the Al multi-region portion and the coating layer are confirmed with a wavelength dispersive X-ray microanalyzer (EPMA). 2.

また、焼結体の任意の5断面の走査電子顕微鏡分析反射電子像(組成差像)を用いて、Al多領域部を有する結晶粒子の面積比を画像解析装置により求め、これらを平均してAl多領域部を有する結晶粒子の面積比とし、表1に記載した。   In addition, using the scanning electron microscope analysis reflection electron image (composition difference image) of any five cross sections of the sintered body, the area ratio of the crystal particles having the Al multi-region portion is obtained by an image analyzer, and these are averaged. The area ratio of the crystal grains having the Al multi-region portion is shown in Table 1.

また、各試料について、熱拡散率と比熱をレーザーフラッシュ法(試料の両面にAu蒸着し、両面を黒化処理して25℃でルビーレーザーパルス光を均一に照射)にて測定し、測定した熱拡散率と比熱とアルキメデス法で求めた密度を掛け合わせて熱伝導率を算出した。また、破壊靱性はJIS規格R1607−1995により求め、三点曲げ強度はJI
S1601−1995により求めた。これらの結果を表に記載した。なお、試料No.1は比較例である。
In addition, for each sample, the thermal diffusivity and specific heat were measured and measured by a laser flash method (Au deposition was performed on both sides of the sample, both sides were blackened, and the ruby laser pulse light was uniformly irradiated at 25 ° C.). The thermal conductivity was calculated by multiplying the thermal diffusivity, the specific heat, and the density determined by the Archimedes method. The fracture toughness is determined according to JIS standard R1607-1995, and the three-point bending strength is JIS
It calculated | required by S1601-1995. These results are listed in the table. Sample No. 1 is a comparative example.

これらの表によれば、本発明の範囲内にある試料No.〜17は熱伝導率が99W/m・K以上、三点曲げ強度が810MPa以上、靱性が7.5MPa・m1/2以上の特性を有していることがわかる。一方、β−サイアロンと希土類元素酸化物粉末とを予め仮焼することなく、窒化珪素粉末と焼結助剤とβ−サイアロン粉末とを一度に添加した試料No.18は、希土類元素を含有する被覆層が存在せず、熱伝導率は84W/m・Kと低い値となった。
According to these tables, sample Nos. Within the scope of the present invention. It can be seen that Nos. 2 to 17 have the characteristics that the thermal conductivity is 99 W / m · K or more, the three-point bending strength is 810 MPa or more, and the toughness is 7.5 MPa · m 1/2 or more. On the other hand, without pre-calcining β-sialon and rare earth element oxide powder, sample No. 1 in which silicon nitride powder, sintering aid and β-sialon powder were added at once. No. 18 had no coating layer containing a rare earth element, and the thermal conductivity was as low as 84 W / m · K.

焼結体の走査電子顕微鏡分析反射電子像(組成差像)写真である。It is a scanning electron microscope analysis reflection electron image (composition difference image) photograph of a sintered compact. 焼結体の模式図である。It is a schematic diagram of a sintered compact.

符号の説明Explanation of symbols

1:結晶粒子
3:粒界相
4:結晶粒子のAl多領域部以外の他の部分(他の部分)
5:Al多領域部
6:被覆層
1: Crystal grain 3: Grain boundary phase 4: Other part of crystal grain other than Al region (other part)
5: Al multi-region part 6: Coating layer

Claims (3)

β−Siおよびβ−サイアロンのうち少なくとも1種の結晶粒子と粒界相とからなる窒化珪素質焼結体であって、前記結晶粒子内に、該結晶粒子の他の部分よりもAl存在量が多いAl多領域部を有するとともに、該Al多領域部が希土類元素を含有する被覆層で覆われており、前記Al多領域部および前記被覆層を有する前記結晶粒子が、焼結体の任意断面において面積比で8〜26%存在することを特徴とする窒化珪素質焼結体。 A silicon nitride-based sintered body comprising at least one kind of crystal particles of β-Si 3 N 4 and β-sialon and a grain boundary phase, and in the crystal particles, more than other portions of the crystal particles The Al multi-region portion having a large amount of Al, and the Al multi-region portion is covered with a coating layer containing a rare earth element, and the crystal particles having the Al multi-region portion and the coating layer are sintered. area ratio in the 8-26% presence to silicon nitride sintered body, characterized in Rukoto in any cross-section of the body. 請求項1に記載の窒化珪素質焼結体に導体層を形成してなることを特徴とする回路基板。 A circuit board comprising a conductive layer formed on the silicon nitride sintered body according to claim 1 . パワー半導体を請求項に記載の回路基板に実装してなることを特徴とするパワー半導体モジュール。 A power semiconductor module comprising a power semiconductor mounted on the circuit board according to claim 2 .
JP2008217918A 2008-08-27 2008-08-27 Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module Expired - Fee Related JP5142889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008217918A JP5142889B2 (en) 2008-08-27 2008-08-27 Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008217918A JP5142889B2 (en) 2008-08-27 2008-08-27 Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module

Publications (2)

Publication Number Publication Date
JP2010052969A JP2010052969A (en) 2010-03-11
JP5142889B2 true JP5142889B2 (en) 2013-02-13

Family

ID=42069282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008217918A Expired - Fee Related JP5142889B2 (en) 2008-08-27 2008-08-27 Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module

Country Status (1)

Country Link
JP (1) JP5142889B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101777A (en) * 1993-10-01 1995-04-18 Natl Inst For Res In Inorg Mater Silicon nitride sintered compact and its production
JPH07138072A (en) * 1993-11-16 1995-05-30 Isuzu Motors Ltd High tenacity ceramic material comprising particles of uneven diameters and its production
JPH09301772A (en) * 1996-05-10 1997-11-25 Noritake Co Ltd Low heat conductivity and high strength ceramic material and its production
JPH11100276A (en) * 1997-09-29 1999-04-13 Kyocera Corp Silicon nitride substrate for mounting electronic parts and its manufacture
JP3775335B2 (en) * 2002-04-23 2006-05-17 日立金属株式会社 Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP5031541B2 (en) * 2007-12-25 2012-09-19 京セラ株式会社 Silicon nitride sintered body, circuit board, and power semiconductor module

Also Published As

Publication number Publication date
JP2010052969A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
EP2377839B1 (en) Silicon nitride substrate manufacturing method
JP4997431B2 (en) Method for producing high thermal conductivity silicon nitride substrate
JP5836522B2 (en) Method for manufacturing silicon nitride substrate
WO2020059035A1 (en) Aluminum nitride sintered compact and method for producing same
JP5031541B2 (en) Silicon nitride sintered body, circuit board, and power semiconductor module
JP6284609B2 (en) Aluminum nitride sintered body
JP5142889B2 (en) Silicon nitride sintered body, manufacturing method thereof, circuit board, and power semiconductor module
JP2006096661A (en) Sintered silicon nitride compact and circuit board using it
JP6678623B2 (en) Aluminum nitride sintered body and method for producing the same
JP6720053B2 (en) Method for manufacturing silicon nitride sintered body
US5403792A (en) Low thermal conductivity ceramic and process for producing the same
JP6062912B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2004262756A (en) Silicon nitride powder, silicon nitride sintered compact, and circuit board for electronic component using the sintered compact
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP7035220B2 (en) Ceramic sintered body and substrate for semiconductor devices
JP3145519B2 (en) Aluminum nitride sintered body
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2003095747A (en) Sintered silicon nitride compact and circuit board obtained by using the same
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP5265859B2 (en) Aluminum nitride sintered body
JP2002293641A (en) Silicon nitride-based sintered compact
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees