JP5142623B2 - Two-dimensional optical scanning device - Google Patents

Two-dimensional optical scanning device Download PDF

Info

Publication number
JP5142623B2
JP5142623B2 JP2007209014A JP2007209014A JP5142623B2 JP 5142623 B2 JP5142623 B2 JP 5142623B2 JP 2007209014 A JP2007209014 A JP 2007209014A JP 2007209014 A JP2007209014 A JP 2007209014A JP 5142623 B2 JP5142623 B2 JP 5142623B2
Authority
JP
Japan
Prior art keywords
axis
ring member
swing
plane
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007209014A
Other languages
Japanese (ja)
Other versions
JP2009042607A (en
Inventor
隆太 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2007209014A priority Critical patent/JP5142623B2/en
Publication of JP2009042607A publication Critical patent/JP2009042607A/en
Application granted granted Critical
Publication of JP5142623B2 publication Critical patent/JP5142623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

本発明は、光の2次元走査が可能な2次元走査装置に関する。 The present invention, two-dimensional scanning of the light about the two-dimensional optical scanning apparatus capable.

画像の読取り、書込み等を行うためのレーザ光の2次元走査方式として、レーザ光を螺旋状に走査するトルネードスキャンが知られている。このようなトルネードスキャンを行う方法として、例えば、レーザ光を反射するミラー面を有する揺動部材を、該ミラー面の法線が螺旋を描くように揺動させる方法を挙げることができる。ミラー面の法線が螺旋を描くように揺動部材を揺動させる構造として、ジンバル構造を挙げることができる。   As a two-dimensional scanning method of laser light for reading and writing images, a tornado scan that scans a laser beam in a spiral shape is known. As a method of performing such a tornado scan, for example, a method of swinging a swing member having a mirror surface that reflects laser light so that the normal line of the mirror surface draws a spiral can be cited. A gimbal structure can be given as a structure for swinging the swing member so that the normal line of the mirror surface draws a spiral.

このジンバル構造は、図12に示すように、ミラー面101aを有する揺動部材101と、該揺動部材101の外側に配置された第1枠体102と、該第1枠体102の外側に配置された第2枠体103と、揺動部材101と第1枠体102とを連結する第1軸部材104と、第1枠体102と第2枠体103とを連結する第2軸部材105とを備える。第1軸部材104は、第1枠体102に対して揺動部材101をその軸心回り(第1軸周り)に揺動可能に支持している。第2軸部材105は、その軸心が第1軸部材104の軸心と直交し、第2枠体103に対して第1枠体102をその軸心回り(第2軸周り)に揺動可能に支持している。   As shown in FIG. 12, the gimbal structure includes a swinging member 101 having a mirror surface 101a, a first frame body 102 disposed outside the swinging member 101, and an outer side of the first frame body 102. The arranged second frame body 103, the first shaft member 104 that connects the swing member 101 and the first frame body 102, and the second shaft member that connects the first frame body 102 and the second frame body 103. 105. The first shaft member 104 supports the swing member 101 with respect to the first frame 102 so as to be swingable about its axis (around the first axis). The axis of the second shaft member 105 is orthogonal to the axis of the first shaft member 104, and the first frame 102 swings around the axis (around the second axis) with respect to the second frame 103. I support it as possible.

このようなジンバル構造においては、第1軸周りの揺動と第2軸周りの揺動とを同一周波数で、且つ、位相を90°異ならせて行うと共に、第1軸周りの揺動と第2軸周りの揺動との振幅を時間と共に増大又は減少させることで、ミラー面101aの法線が螺旋を描くように揺動部材101が揺動する。   In such a gimbal structure, the oscillation around the first axis and the oscillation around the second axis are performed at the same frequency and with a phase difference of 90 °. By increasing or decreasing the amplitude of the swing around the two axes with time, the swing member 101 swings so that the normal line of the mirror surface 101a draws a spiral.

上記のジンバル構造は、第1軸周りの揺動と第2軸周りの揺動とが互いに独立して行うことが可能な構成とされている。従って、上記のジンバル構造においては、第1軸周りの揺動の周波数と第2軸周りの揺動の周波数とがずれる恐れがある。また、同様の理由により、上記のジンバル構造においては、第1軸周りの揺動の位相と第2軸周りの揺動の位相との差が、90°からずれる恐れがある。このため、上記ジンバル構造においては、ミラー面101aの法線が螺旋を描くように揺動部材101が揺動しなくなる恐れがある。   The gimbal structure described above is configured such that the swing around the first axis and the swing around the second axis can be performed independently of each other. Therefore, in the above-described gimbal structure, there is a possibility that the frequency of oscillation around the first axis and the frequency of oscillation around the second axis are shifted. For the same reason, in the gimbal structure, the difference between the phase of oscillation around the first axis and the phase of oscillation around the second axis may deviate from 90 °. Therefore, in the gimbal structure, the swing member 101 may not swing so that the normal line of the mirror surface 101a draws a spiral.

本発明は、第1軸周りの揺動と第2軸周りの揺動が同一周波数で、且つ、互いに90°異なる位相で行われる2次元走査装置を提供する。 The present invention provides a two-dimensional optical scanning device in which the oscillation around the first axis and the oscillation around the second axis are performed at the same frequency and with a phase different by 90 ° from each other.

前記課題を解決するべく、本発明は、特許請求の範囲の請求項1に記載の如く、表面にミラー加工が施された、又は、表面に発光素子が載置された揺動部材と、前記揺動部材と中心が一致するように、前記揺動部材の外側に配置されたリング部材と、前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、且つ、前記揺動部材の中心を通る第1軸に沿って配置された一対の第1接続部材と、前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第1軸と直交する第2軸に沿って配置された一対の第2接続部材とを備え、前記第1接続部材及び前記第2接続部材は、前記リング部材との接続部分を揺動中心として、前記リング部材を含む平面に対して略直交方向に揺動可能とされ、更に、前記リング部材を伸縮させて前記第1接続部材及び前記第2接続部材を揺動させることにより、前記揺動部材を揺動させる駆動手段を備え、前記駆動手段は、前記第1軸方向及び前記第2軸方向に伸縮する第1平面内cos2θモードの振動を前記リング部材に発生させることにより、前記リング部材を前記第1軸方向に伸張させると共に、前記第2軸方向に収縮させるときには、前記揺動部材を前記第1軸周りに揺動させ、前記リング部材を前記第1軸方向に収縮させると共に、前記第2軸方向に伸張させるときには、前記揺動部材を前記第2軸周りに揺動させることを特徴とする2次元走査装置を提供する。 In order to solve the above-described problems, the present invention provides a swing member having a mirror process on the surface or a light-emitting element mounted on the surface, as defined in claim 1, A ring member disposed outside the swing member so that the center of the swing member coincides with the swing member, the swing member and the ring member are connected, and is present in a plane including the ring member; and A pair of first connection members disposed along a first axis passing through the center of the swing member, the swing member and the ring member are connected, and exist in a plane including the ring member; A pair of second connecting members disposed along a second axis that passes through the center of the swinging member and is orthogonal to the first axis, and the first connecting member and the second connecting member are: A plane including the ring member with the connecting portion with the ring member as a swing center Driving means for swinging the swinging member by swinging the first connecting member and the second connecting member by expanding and contracting the ring member. And the driving means expands the ring member in the first axial direction by generating vibration in the first in-plane cos 2θ mode that expands and contracts in the first axial direction and the second axial direction. At the same time, when contracting in the second axial direction, the swinging member is swung around the first axis, and the ring member is contracted in the first axial direction and is expanded in the second axial direction. In some cases, a two-dimensional optical scanning device is provided in which the swing member is swung around the second axis.

前記揺動部材の法線が螺旋を描くように前記揺動部材を揺動させるための具体的構成として、特許請求の範囲の請求項2に記載の如く、前記駆動手段は前記第1平面内cos2θモードの振動における前記リング部材の前記第1軸方向と前記第2軸方向の伸縮量を時間と共に増大又は減少させる構成を挙げることができる。 As a specific configuration for swinging the swing member as the normal line of the swinging member is spiraling, as described in claim 2 of the appended claims, the driving means, the first plane A configuration in which the expansion amount of the ring member in the first axis direction and the second axis direction in the vibration of the inner cos 2θ mode is increased or decreased with time can be given.

好ましくは、特許請求の範囲の請求項3に記載の如く、前記第1接続部材の接続部分は、前記第2軸方向に凸状に屈曲し、前記第2接続部材の接続部分は、前記第1軸方向に凸状に屈曲した構成を挙げることができる。   Preferably, as described in claim 3 of the claims, the connection portion of the first connection member is bent in a convex shape in the second axial direction, and the connection portion of the second connection member is the first connection member. A configuration that is bent in a uniaxial direction can be given.

好ましくは、特許請求の範囲の請求項4に記載の如く、前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第1軸と45°の角度を成す第3軸に沿って配置された一対の第3接続部材と、前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第3軸と直交する第4軸に沿って配置された一対の第4接続部材とを更に備え、前記第3接続部材と、前記第4接続部材とは、前記リング部材との接続部分を揺動中心として、前記リング部材を含む平面に対して略直交方向に揺動可能とされ、前記駆動手段は、前記第1平面内cos2θモードの振動と、前記第1平面内cos2θモードの振動に対して最大伸縮方向が45°、前記リング部材の伸縮の位相が90°異なる第2平面内cos2θモードの振動とを前記リング部材に同時に発生させると共に、前記第1平面内cos2θモードの振動における前記リング部材の前記第1軸方向と前記第2軸方向の伸縮量、及び、前記第2平面内cos2θモードの振動における前記リング部材の前記第3軸方向と前記第4軸方向の伸縮量を時間と共に増大又は減少させる構成とされる。 Preferably, as described in claim 4 of the claim, the swing member and the ring member are connected, exist in a plane including the ring member, pass through the center of the swing member, and A pair of third connection members arranged along a third axis that forms an angle of 45 ° with the first axis, the swing member and the ring member, and in a plane including the ring member A pair of fourth connection members that are disposed along a fourth axis that is present and passes through the center of the rocking member and that is orthogonal to the third axis; and the third connection member, The four connecting members are capable of swinging in a direction substantially orthogonal to a plane including the ring member, with the connecting portion with the ring member as a swing center, and the driving means is in the first in-plane cos 2θ mode And vibration in the first in-plane cos 2θ mode A vibration in the second in-plane cos 2θ mode, in which the shrinking direction is 45 ° and the expansion / contraction phase of the ring member is different by 90 °, is simultaneously generated in the ring member, and The amount of expansion / contraction in the first axis direction and the second axis direction, and the amount of expansion / contraction in the third axial direction and the fourth axis direction of the ring member in the vibration in the cos 2θ mode in the second plane increase with time, or It is configured to reduce.

好ましくは、特許請求の範囲の請求項5に記載の如く、前記第3接続部材の接続部分は、前記第4軸方向に凸状に屈曲し、前記第4接続部材の接続部分は、前記第3軸方向に凸状に屈曲した構成を挙げることができる。   Preferably, as described in claim 5, the connection portion of the third connection member is bent in a convex shape in the fourth axis direction, and the connection portion of the fourth connection member is the first connection portion. A configuration bent in a convex shape in three axial directions can be given.

本発明は、加工誤差が生じることにより、第1軸周りの固有振動数と第2軸周りの固有振動数とに差異が生じることが防止された2次元走査装置を提供することができる。 The present invention can provide a two-dimensional optical scanning device in which a difference between the natural frequency around the first axis and the natural frequency around the second axis is prevented from occurring due to processing errors.

図1は、本実施形態に係る2次元走査装置(以下、2次元走査装置という)1の概略平面図である。図1に示すように、2次元走査装置1は、揺動部材2と、リング部材3と、第1〜4接続部材4A〜4Dと、駆動手段5とを備える。更に、2次元走査装置1は、サポート部材6と、筐体7と、レーザ(図示しない)とを備える。尚、ここで挙げた2次元走査装置1を構成する部材のうち、筐体7、レーザ及び後述する駆動手段5に具備される第1〜4交流電源を除いた部材は、シリコンで形成されている。シリコンで形成されたこれらの部材は、エッチングや成膜などの公知のMEMS(Micro Electro Mechanical System)技術を用いて、1枚のシリコン基板を加工して作製されたものである。 FIG. 1 is a schematic plan view of a two-dimensional optical scanning device (hereinafter referred to as a two-dimensional scanning device) 1 according to the present embodiment. As shown in FIG. 1, the two-dimensional scanning device 1 includes a swing member 2, a ring member 3, first to fourth connection members 4 </ b> A to 4 </ b> D, and a driving unit 5. Further, the two-dimensional scanning device 1 includes a support member 6, a housing 7, and a laser (not shown). Of the members constituting the two-dimensional scanning device 1 mentioned here, the members except for the casing 7, the laser, and the first to fourth AC power supplies provided in the driving means 5 described later are made of silicon. Yes. These members formed of silicon are manufactured by processing a single silicon substrate using a known MEMS (Micro Electro Mechanical System) technique such as etching or film formation.

揺動部材2は、図1に示すように、平面視円形の円板状である。揺動部材2の表面には、レーザからのレーザ光を効率良く反射させるために、アルミ蒸着などのミラー加工が施されている。   As shown in FIG. 1, the swing member 2 has a circular disk shape in a plan view. The surface of the oscillating member 2 is subjected to mirror processing such as aluminum vapor deposition in order to efficiently reflect the laser beam from the laser.

リング部材3は、揺動部材2と中心が一致するように、揺動部材2の外側に配置されている。かかるリング部材3は、サポート部材6によって支持されている。サポート部材6は、一端部がリング部材3から径外方向に延出され、他端部がリング部材3の外側に配置された筐体7に接続されている。   The ring member 3 is disposed outside the swing member 2 so that the center of the ring member 3 coincides with the center of the swing member 2. The ring member 3 is supported by a support member 6. One end of the support member 6 extends from the ring member 3 in the radially outward direction, and the other end is connected to a housing 7 disposed outside the ring member 3.

リング部材3のサポート部材6が接続される部位は、第1〜4軸A〜D上でない部位とされている。第1軸Aは、リング部材3を含む平面内に存在し、且つ、揺動部材2の中心を通る軸である。第2軸Bは、リング部材3を含む平面内に存在し、揺動部材2の中心を通り、且つ、第1軸Aと直交する軸である。第3軸Cは、リング部材3を含む平面内に存在し、揺動部材2の中心を通り、且つ、第1軸Aと45°の角度を成す軸である。第4軸Dは、リング部材3を含む平面内に存在し、揺動部材2の中心を通り、且つ、第3軸Cと直交する軸である。このように、リング部材3は、第1〜4軸A〜D上でない部位において、サポート部材6と接続されているので、後述する駆動手段5が備える第1〜4固定電極を第1〜4軸A〜D上の位置に配置することができる。   The part to which the support member 6 of the ring member 3 is connected is a part that is not on the first to fourth axes AD. The first axis A is an axis that exists in a plane including the ring member 3 and passes through the center of the swing member 2. The second axis B is an axis that exists in a plane including the ring member 3, passes through the center of the swing member 2, and is orthogonal to the first axis A. The third axis C is an axis that exists in a plane including the ring member 3, passes through the center of the swing member 2, and forms an angle of 45 ° with the first axis A. The fourth axis D is an axis that exists in the plane including the ring member 3, passes through the center of the swing member 2, and is orthogonal to the third axis C. Thus, since the ring member 3 is connected to the support member 6 at a portion that is not on the first to fourth axes A to D, the first to fourth fixed electrodes included in the driving means 5 described later are first to fourth. It can arrange | position in the position on axis | shaft AD.

第1〜接続部材4A〜4Dは、揺動部材2とリング部材3とを接続する部材である。第1接続部材4Aは、揺動部材2の第1軸A方向の両側において、第1軸Aに沿って配置されている。第2接続部材4Bは、揺動部材2の第2軸B方向の両側において、第2軸Bに沿って配置されている。第3接続部材4Cは、揺動部材2の第3軸C方向の両側において、第3軸Cに沿って配置されている。第4接続部材4Dは、揺動部材2の第4軸D方向の両側において、第4軸Dに沿って配置されている。   The first to connecting members 4 </ b> A to 4 </ b> D are members that connect the swing member 2 and the ring member 3. The first connection member 4 </ b> A is disposed along the first axis A on both sides of the swing member 2 in the first axis A direction. The second connection member 4B is disposed along the second axis B on both sides of the swing member 2 in the second axis B direction. The third connection member 4 </ b> C is disposed along the third axis C on both sides of the swing member 2 in the third axis C direction. The fourth connection member 4D is disposed along the fourth axis D on both sides of the swing member 2 in the fourth axis D direction.

図2は、第1接続部材4Aの構成図である。図2(a)は、第1接続部材4Aの平面図を示す。図2(a)に示すように、第1接続部材4Aのリング部材3との接続部分41Aは、リング部材3側が二又に別れ、二又に分かれたそれぞれの部分は、第2軸B方向に凸状に屈曲している。本実施形態においては、このように第2軸B方向に凸状に屈曲することで、接続部分41Aが長く形成されている。図2(b)は、第1接続部材4Aがリング部材3を含む平面Pに対して略直交方向(図2(b)の矢印R方向)に揺動したときのZ―Z断面図を示す。接続部分41Aを長く形成すると、図2(b)に示すように、第1接続部材4Aが揺動する際に生じる、接続部分41Aに発生するねじりのねじり率を低く抑えることができる。ねじり率を低く抑えることで、接続部分41Aにおけるねじりを容易に生じさせることができ、接続部分41Aを揺動中心として第1接続部材4Aを揺動させ易くすることができる。   FIG. 2 is a configuration diagram of the first connecting member 4A. Fig.2 (a) shows the top view of 4 A of 1st connection members. As shown in FIG. 2 (a), the connection part 41A of the first connection member 4A with the ring member 3 is divided into two parts on the ring member 3 side, and each part divided into two parts is in the second axis B direction. Is bent in a convex shape. In the present embodiment, the connecting portion 41A is formed long by bending in a convex manner in the second axis B direction in this way. FIG. 2B shows a ZZ cross-sectional view when the first connecting member 4A swings in a direction substantially orthogonal to the plane P including the ring member 3 (the direction of the arrow R in FIG. 2B). . When the connection portion 41A is formed long, as shown in FIG. 2B, the torsion rate of the twist generated in the connection portion 41A that occurs when the first connection member 4A swings can be suppressed to a low level. By suppressing the torsion rate to a low level, the connection portion 41A can be easily twisted, and the first connection member 4A can be easily swung around the connection portion 41A as a swing center.

また、図2(a)に示すように、第1接続部材4Aの揺動部材2との接続部分42Aは、リング部材3との接続部分41Aと同一の構成とされている。従って、第1接続部材4Aは、接続部分42Aを揺動中心として揺動し易い構成とされている。   Further, as shown in FIG. 2A, the connecting portion 42 </ b> A of the first connecting member 4 </ b> A with the swinging member 2 has the same configuration as the connecting portion 41 </ b> A with the ring member 3. Accordingly, the first connecting member 4A is configured to easily swing around the connecting portion 42A as a swing center.

このように、第1接続部材4Aが接続部分41A又は接続部分42Aを揺動中心として、平面Pに対して略直交方向に揺動すると、図2(c)に示すように、平面Pにおける揺動部材2とリング部材3との距離が縮まる。よって、第1接続部材4Aは、リング部材3が第1軸A方向に収縮可能なように、揺動部材2とリング部材3とを接続している。   As described above, when the first connecting member 4A swings in the direction substantially orthogonal to the plane P with the connection portion 41A or the connection portion 42A as the swing center, as shown in FIG. The distance between the moving member 2 and the ring member 3 is reduced. Therefore, the first connecting member 4A connects the swing member 2 and the ring member 3 so that the ring member 3 can contract in the first axis A direction.

また、図3は、第1接続部材4Aの平面図である。図3(a)は、接続部分41A、42Aが伸張していない状態の平面図を示す。図3(b)は、接続部分41A、42Aが伸張した状態の平面図を示す。図3(a)及び図3(b)に示すように、接続部分41Aは、凸状に屈曲した部分が第1軸A方向に伸縮するように変形することで、第1軸A方向に伸張することができる。また、接続部分41Aと同様に、接続部分41Aと同一構成の接続部分42Aも第1軸A方向に伸張することができる。よって、図3(b)に示すように、第1接続部4Aは、リング部材3が第1軸A方向に伸張可能なように、揺動部材2とリング部材3とを接続している。   FIG. 3 is a plan view of the first connecting member 4A. Fig.3 (a) shows the top view of the state which the connection parts 41A and 42A have not expanded. FIG. 3B is a plan view showing a state in which the connection portions 41A and 42A are extended. As shown in FIGS. 3A and 3B, the connecting portion 41A extends in the first axis A direction by deforming so that the convexly bent portion expands and contracts in the first axis A direction. can do. Similarly to the connection portion 41A, the connection portion 42A having the same configuration as the connection portion 41A can also extend in the first axis A direction. Therefore, as shown in FIG. 3B, the first connecting portion 4A connects the swing member 2 and the ring member 3 so that the ring member 3 can expand in the first axis A direction.

尚、第2〜4接続部材4B〜4Dは、以上において説明した第1接続部材4Aと同様の構成とされている。   The second to fourth connecting members 4B to 4D have the same configuration as the first connecting member 4A described above.

駆動手段5は、第1平面内cos2θモードの振動と第2平面内cos2θモードの振動とをリング部材3に同時に発生させて、揺動部材2を揺動させる。図4(a)は、リング部材3に発生する第1平面内cos2θモードの振動を示す平面図である。図4(b)は、リング部材3に発生する第2平面内cos2θモードの振動を示す平面図である。   The driving unit 5 causes the ring member 3 to simultaneously generate the vibration in the first in-plane cos 2θ mode and the vibration in the second in-plane cos 2θ mode, thereby swinging the swing member 2. FIG. 4A is a plan view showing vibration in the first in-plane cos 2θ mode generated in the ring member 3. FIG. 4B is a plan view showing the vibration in the second in-plane cos 2θ mode generated in the ring member 3.

図4(a)及び図4(b)における実線は第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動の何れの振動もしていない状態のリング部材3を示し、破線は各振動状態のリング部材3を示す。本実施形態での第1平面内cos2θモードの振動においては、図4(a)に示すように、第1軸A方向と第2軸B方向とが最大伸縮方向である。一方、本実施形態での第2平面内cos2θモードの振動においては、図4(b)に示すように、第3軸C方向と第4軸D方向とが最大伸縮方向である。即ち、第1平面内cos2θモードと第2平面内cos2θモードとの最大伸張方向は、45°異なる。   4A and 4B, the solid line indicates the ring member 3 in a state where neither the first in-plane cos 2θ mode vibration nor the second in-plane cos 2θ mode vibration is generated, and the broken line indicates each vibration. The ring member 3 in a state is shown. In the first in-plane cos 2θ mode vibration in the present embodiment, as shown in FIG. 4A, the first axis A direction and the second axis B direction are the maximum expansion and contraction directions. On the other hand, in the vibration in the second in-plane cos 2θ mode in the present embodiment, the third axis C direction and the fourth axis D direction are the maximum expansion and contraction directions, as shown in FIG. That is, the maximum extension directions of the first in-plane cos 2θ mode and the second in-plane cos 2θ mode are different by 45 °.

また、第2平面内cos2θモードの振動におけるリング部材3の伸縮の位相は、第1平面内cos2θモードの振動におけるリング部材3の伸縮の位相に対して90°遅れている。具体的には、第3軸C方向の伸縮の位相は、第1軸A方向の伸縮の位相に対して90°遅れ、第4軸D方向の伸縮の位相は、第2軸B方向の伸縮の位相に対して90°遅れている。   Further, the expansion / contraction phase of the ring member 3 in the vibration in the second in-plane cos 2θ mode is delayed by 90 ° with respect to the expansion / contraction phase of the ring member 3 in the vibration in the first in-plane cos 2θ mode. Specifically, the expansion / contraction phase in the third axis C direction is 90 ° behind the expansion / contraction phase in the first axis A direction, and the expansion / contraction phase in the fourth axis D direction is expansion / contraction in the second axis B direction. 90 degrees behind the phase.

次に、駆動手段5の具体的構成を説明する。かかる具体的構成においては、駆動手段5は、第1〜4可動電極と、第1〜4固定電極と、第1〜4交流電源とを具備する。   Next, a specific configuration of the driving unit 5 will be described. In such a specific configuration, the driving means 5 includes first to fourth movable electrodes, first to fourth fixed electrodes, and first to fourth AC power sources.

図1に示すように、第1可動電極511は、リング部材3の第1軸A上の2つの部位に設けられている。かかる第1可動電極511は、リング部材3の径外方向に延出された複数の突状部分で構成された櫛歯状に形成されている。第2可動電極514は、リング部材3の第2軸B上の2つの部位に、第3可動電極521は、リング部材3の第3軸C上の2つの部位に、第4可動電極524は、リング部材3の第4軸D上の2つの部位に設けられている。第2可動電極514と、第3可動電極521と、第4可動電極524とは、第1可動電極511と同一の構成とされている。   As shown in FIG. 1, the first movable electrode 511 is provided at two sites on the first axis A of the ring member 3. The first movable electrode 511 is formed in a comb-like shape composed of a plurality of protruding portions extending in the radially outward direction of the ring member 3. The second movable electrode 514 is at two sites on the second axis B of the ring member 3, the third movable electrode 521 is at two sites on the third axis C of the ring member 3, and the fourth movable electrode 524 is at The ring member 3 is provided at two sites on the fourth axis D. The second movable electrode 514, the third movable electrode 521, and the fourth movable electrode 524 have the same configuration as the first movable electrode 511.

第1固定電極512は、第1可動電極511に対して第1軸A方向に所定の間隔を置いて、リング部材3の外側に配置されている。第1固定電極512は、複数の突状部分で構成された櫛歯状に形成されている。第1固定電極512の突状部分は、第1可動電極511の突状部分と噛み合うように、リング部材3の径内方向に延びている。このように突状部分同士が噛み合うことにより、第1可動電極511と第1固定電極512との対向面積が大きくなり、第1可動電極511と第1固定電極512との間に、大きな静電力を生じさせ易い。第2固定電極515は、第2可動電極514に対して第2軸B方向に所定の間隔を置いて、リング部材3の外側に配置されている。第3固定電極522は、第3可動電極521に対して第3軸C方向に所定の間隔を置いて、リング部材3の外側に配置されている。第4固定電極525は、第4可動電極524に対して第4軸D方向に所定の間隔を置いて、リング部材3の外側に配置されている。第2固定電極515と、第3固定電極522と、第4固定電極525とは、第1固定電極512と同一の構成とされている。尚、第1固定電極512と、第2固定電極515と、第3固定電極522と、第4固定電極525とは、図示しない部材によって、筐体7に固定されている。   The first fixed electrode 512 is disposed outside the ring member 3 at a predetermined interval in the first axis A direction with respect to the first movable electrode 511. The first fixed electrode 512 is formed in a comb-like shape composed of a plurality of protruding portions. The protruding portion of the first fixed electrode 512 extends in the radial direction of the ring member 3 so as to mesh with the protruding portion of the first movable electrode 511. By engaging the protruding portions in this way, the facing area between the first movable electrode 511 and the first fixed electrode 512 is increased, and a large electrostatic force is generated between the first movable electrode 511 and the first fixed electrode 512. It is easy to produce. The second fixed electrode 515 is disposed outside the ring member 3 at a predetermined interval in the second axis B direction with respect to the second movable electrode 514. The third fixed electrode 522 is disposed outside the ring member 3 at a predetermined interval in the third axis C direction with respect to the third movable electrode 521. The fourth fixed electrode 525 is disposed outside the ring member 3 at a predetermined interval in the fourth axis D direction with respect to the fourth movable electrode 524. The second fixed electrode 515, the third fixed electrode 522, and the fourth fixed electrode 525 have the same configuration as the first fixed electrode 512. The first fixed electrode 512, the second fixed electrode 515, the third fixed electrode 522, and the fourth fixed electrode 525 are fixed to the housing 7 by members not shown.

第1交流電源513は、サポート部材6と第1固定電極512とに電気的に接続されており、第1可動電極511と第1固定電極512との間に第1交流電圧(図7参照)を印加可能とされている。上述のように、リング部材3と、サポート部材6と、第1〜4可動電極511、514、521、524とは、シリコン材から形成されているので、これらの部材は互いに電気的に接続されている。よって、サポート部材6と第1固定電極512とに電気的に接続された第1交流電源513は、第1可動電極511と第1固定電極512との間に第1交流電圧を印加することができる。   The first AC power supply 513 is electrically connected to the support member 6 and the first fixed electrode 512, and a first AC voltage (see FIG. 7) between the first movable electrode 511 and the first fixed electrode 512. Can be applied. As described above, since the ring member 3, the support member 6, and the first to fourth movable electrodes 511, 514, 521, and 524 are formed of silicon material, these members are electrically connected to each other. ing. Therefore, the first AC power supply 513 electrically connected to the support member 6 and the first fixed electrode 512 can apply the first AC voltage between the first movable electrode 511 and the first fixed electrode 512. it can.

第2交流電源516は、サポート部材6と第2固定電極515とに電気的に接続されており、サポート部材6と第2可動電極514とが電気的に接続されているので、第2可動電極514と第2固定電極515との間に第2交流電圧(図7参照)を印加可能とされている。この第2交流電圧の位相は、第1交流電圧に対して位相が180°遅れている。第3交流電源523は、サポート部材6と第3固定電極522とに電気的に接続されており、サポート部材6と第3可動電極521とが電気的に接続されているので、第3可動電極521と第3固定電極522との間に第3交流電圧(図7参照)を印加可能とされている。この第3交流電圧の位相は、第1交流電圧に対して位相が90°遅れている。第4交流電源526は、サポート部材6と第4固定電極525とに電気的に接続されており、サポート部材6と第4可動電極524とが電気的に接続されているので、第4可動電極524と第4固定電極525との間に第4交流電圧(図7参照)を印加可能とされている。この第4交流電圧の位相は、第3交流電圧に対して位相が180°(第1交流電圧に対して270°)遅れている。   Since the second AC power supply 516 is electrically connected to the support member 6 and the second fixed electrode 515, and the support member 6 and the second movable electrode 514 are electrically connected, the second movable electrode A second AC voltage (see FIG. 7) can be applied between 514 and the second fixed electrode 515. The phase of the second AC voltage is delayed by 180 ° with respect to the first AC voltage. The third AC power source 523 is electrically connected to the support member 6 and the third fixed electrode 522, and since the support member 6 and the third movable electrode 521 are electrically connected, the third movable electrode A third AC voltage (see FIG. 7) can be applied between 521 and the third fixed electrode 522. The phase of the third AC voltage is delayed by 90 ° with respect to the first AC voltage. The fourth AC power source 526 is electrically connected to the support member 6 and the fourth fixed electrode 525, and since the support member 6 and the fourth movable electrode 524 are electrically connected, the fourth movable electrode A fourth AC voltage (see FIG. 7) can be applied between 524 and the fourth fixed electrode 525. The phase of the fourth AC voltage is delayed by 180 ° (270 ° with respect to the first AC voltage) with respect to the third AC voltage.

以上の構成の駆動手段5において、第1可動電極511と第1固定電極512との間に第1交流電圧が印加されると、第1可動電極511と第1固定電極512との間に第1軸A方向の静電力A’(図1参照)が作用する。この静電力A’が作用することにより、リング部材3は、第1軸A方向に伸縮する。同様に、第2可動電極514と第2固定電極515との間に第2交流電圧が印加されると、第2可動電極514と第2固定電極515との間に、第2軸B方向の静電力B’が作用し、リング部材3が第2軸B方向に伸縮する。第2交流電圧の位相は、第1交流電圧の位相に対して180°遅れているため、静電力B’は、静電力A’に対して、180°遅れた位相で大きさが変化する。よって、リング部材3の第1軸A方向の伸縮と第2軸B方向の伸縮との位相は、180°異なる。従って、駆動手段5は、図4(a)に示すような、第1平面内cos2θモードの振動をリング部材3に発生させることができる。   In the driving means 5 configured as described above, when the first AC voltage is applied between the first movable electrode 511 and the first fixed electrode 512, the first movable electrode 511 and the first fixed electrode 512 are The electrostatic force A ′ (see FIG. 1) in the direction of the single axis A acts. When the electrostatic force A ′ acts, the ring member 3 expands and contracts in the first axis A direction. Similarly, when the second AC voltage is applied between the second movable electrode 514 and the second fixed electrode 515, the second axis B direction is between the second movable electrode 514 and the second fixed electrode 515. The electrostatic force B ′ acts and the ring member 3 expands and contracts in the second axis B direction. Since the phase of the second AC voltage is delayed by 180 ° with respect to the phase of the first AC voltage, the electrostatic force B ′ changes in magnitude with a phase delayed by 180 ° with respect to the electrostatic force A ′. Therefore, the phase of the expansion and contraction in the first axis A direction and the expansion and contraction in the second axis B direction of the ring member 3 is different by 180 °. Accordingly, the driving unit 5 can cause the ring member 3 to generate the vibration in the first in-plane cos 2θ mode as shown in FIG.

一方、第3可動電極521と第3固定電極522との間に第3交流電圧が印加されると、第3可動電極521と第3固定電極522との間に第3軸C方向の静電力C’が作用し、リング部材3が第3軸C方向に伸縮する。同様に、第4可動電極524と第4固定電極525との間に第4交流電圧が印加されると、第4可動電極524と第4固定電極525との間に、第4軸D方向の静電力D’が作用し、リング部材3が第4軸D方向に伸縮する。第4交流電圧の位相は、第3交流電圧の位相に対して180°遅れているため、静電力D’は、静電力C’に対して、180°遅れた位相で大きさが変化する。よって、リング部材3の第3軸C方向の伸縮と第4軸D方向の伸縮との位相は、180°異なる。従って、駆動手段5は、図4(b)に示すような、第2平面内cos2θモードの振動をリング部材3に発生させることができる。   On the other hand, when a third AC voltage is applied between the third movable electrode 521 and the third fixed electrode 522, the electrostatic force in the third axis C direction between the third movable electrode 521 and the third fixed electrode 522. C ′ acts and the ring member 3 expands and contracts in the direction of the third axis C. Similarly, when the fourth AC voltage is applied between the fourth movable electrode 524 and the fourth fixed electrode 525, the fourth axis D direction is interposed between the fourth movable electrode 524 and the fourth fixed electrode 525. The electrostatic force D ′ acts and the ring member 3 expands and contracts in the fourth axis D direction. Since the phase of the fourth AC voltage is delayed by 180 ° with respect to the phase of the third AC voltage, the electrostatic force D ′ changes in magnitude with a phase delayed by 180 ° with respect to the electrostatic force C ′. Therefore, the phase of the expansion and contraction in the third axis C direction and the expansion and contraction in the fourth axis D direction of the ring member 3 differs by 180 °. Accordingly, the driving unit 5 can cause the ring member 3 to generate the vibration in the second in-plane cos 2θ mode as shown in FIG.

また、図7に示すように、第3交流電圧の位相は第1交流電圧の位相に対して90°遅れ、第4交流電圧の位相は第2交流電圧の位相に対して90°遅れている。そのため、静電力C’は、静電力A’に対して90°遅れた位相で大きさが変動し、静電力D’は、静電力B’に対して90°遅れた位相で大きさが変動する。よって、駆動手段5が発生させる第2平面内cos2θモードの振動によるリング部材3の伸縮の位相は、第1平面内cos2θモードの振動によるリング部材3の伸縮の位相に対して90°遅れている。   Further, as shown in FIG. 7, the phase of the third AC voltage is delayed by 90 ° with respect to the phase of the first AC voltage, and the phase of the fourth AC voltage is delayed by 90 ° with respect to the phase of the second AC voltage. . Therefore, the electrostatic force C ′ varies in magnitude with a phase delayed by 90 ° with respect to the electrostatic force A ′, and the electrostatic force D ′ varies in magnitude with a phase delayed by 90 ° with respect to the electrostatic force B ′. To do. Therefore, the expansion / contraction phase of the ring member 3 due to the vibration in the second in-plane cos 2θ mode generated by the driving unit 5 is delayed by 90 ° with respect to the expansion / contraction phase of the ring member 3 due to the vibration in the first in-plane cos 2θ mode. .

図5及び図6は、以上に説明した第1平面内cos2θモードの振動と、第2平面内cos2θモードの振動とを同時にリング部材3に発生させたときの、揺動部材2、リング部材3及び第1〜4接続部材4A〜4Dの状態の変化を示す。揺動部材2、リング部材3及び第1〜4接続部材4A〜4Dの状態は、図5(a)→図5(b)→図5(c)→図5(d)→図6(a)→図6(b)→図6(c)→図6(d)の順で変化している。図5(a)〜(d)、図6(a)〜(d)の各図間においては、リング部材3の第1軸A方向、第2軸B方向、第3軸C方向及び第4軸D方向(以下、「各軸方向」という)の伸縮の位相が90°ずつ進んでいる。図5及び図6の平面図は、揺動部材2、リング部材3及び第1〜4接続部材4A〜4Dの平面視における概略構成を示す。図5(a)、図5(c)、図6(a)、及び図6(c)のV―V断面図は第1軸Aに沿った断面を、W―W断面図は第2軸Bに沿った断面を示す。また、図5(b)、図5(d)、図6(b)、及び図6(d)のX―X断面図は第3軸Cに沿った断面を、Y―Y断面図は第4軸Dに沿った断面を示す。   5 and 6 show the swing member 2 and the ring member 3 when the vibration in the first in-plane cos 2θ mode and the vibration in the second in-plane cos 2θ mode described above are simultaneously generated in the ring member 3. And the change of the state of the 1st-4th connection members 4A-4D is shown. The states of the swing member 2, the ring member 3, and the first to fourth connection members 4A to 4D are as follows: FIG. 5 (a) → FIG. 5 (b) → FIG. 5 (c) → FIG. 5 (d) → FIG. ) → FIG. 6 (b) → FIG. 6 (c) → FIG. 6 (d). Between each figure of Drawing 5 (a)-(d) and Drawing 6 (a)-(d), the 1st axis A direction of ring member 3, the 2nd axis B direction, the 3rd axis C direction, and the 4th The phase of expansion and contraction in the axis D direction (hereinafter referred to as “each axis direction”) is advanced by 90 °. The plan views of FIGS. 5 and 6 show schematic configurations of the swing member 2, the ring member 3, and the first to fourth connection members 4A to 4D in plan view. 5A, FIG. 5C, FIG. 6A, and FIG. 6C, the VV cross-sectional view is a cross section along the first axis A, and the WW cross-sectional view is a second axis. A cross-section along B is shown. 5 (b), 5 (d), 6 (b), and 6 (d), the XX cross-sectional view is a cross section along the third axis C, and the YY cross-sectional view is the A cross section along four axes D is shown.

図5(a)に示す状態では、リング部材3は第1軸A方向に伸張し、第2軸B方向に収縮している。図5(b)に示す状態では、リング部材3は第3軸C方向に伸張し、第4軸B方向に収縮している。図5(c)に示す状態では、リング部材3は、第1軸A方向に収縮し、第2軸B方向に伸張している。図5(d)に示す状態では、リング部材3は第3軸C方向に収縮し、第4軸B方向に伸張している。図6(a)に示す状態では、リング部材3の状態が図5(a)に示す状態と同一である。図6(b)に示す状態では、リング部材3の状態が図5(b)に示す状態と同一である。図6(c)に示す状態では、リング部材3の状態が図5(c)に示す状態と同一である。図6(d)に示す状態では、リング部材3の状態が図5(d)に示す状態と同一である。   In the state shown in FIG. 5A, the ring member 3 extends in the first axis A direction and contracts in the second axis B direction. In the state shown in FIG. 5B, the ring member 3 extends in the third axis C direction and contracts in the fourth axis B direction. In the state shown in FIG. 5C, the ring member 3 contracts in the first axis A direction and extends in the second axis B direction. In the state shown in FIG. 5D, the ring member 3 contracts in the third axis C direction and extends in the fourth axis B direction. In the state shown in FIG. 6A, the state of the ring member 3 is the same as the state shown in FIG. In the state shown in FIG. 6B, the state of the ring member 3 is the same as the state shown in FIG. In the state shown in FIG. 6C, the state of the ring member 3 is the same as the state shown in FIG. In the state shown in FIG. 6D, the state of the ring member 3 is the same as the state shown in FIG.

図5及び図6に示すように、揺動部材2は、リング部材3の伸張方向と平行な軸周りの一方向に揺動する。リング部材3の伸張方向と平行な軸周りの一方向に揺動することを図5(a)を用いて説明する。図5(a)のW―W断面図に示すように、リング部材3の収縮方向である第2軸B方向においては、リング部材3が収縮することにより、揺動部材2とリング部材3との距離が近くなり、一対の第2接続部材4Bは、図2(c)を用いて説明したように、接続部分41B及び接続部分42Bを揺動中心として平面Pに対して略直交方向に揺動する。この揺動により、接続部分42Bが平面Pから直交方向に離間することで、揺動部材2は、第1軸Aを揺動中心として、リング部材3の伸張方向と平行な第1軸A周りの一方向A1に揺動する。   As shown in FIGS. 5 and 6, the swing member 2 swings in one direction around an axis parallel to the extending direction of the ring member 3. The swinging in one direction around the axis parallel to the extending direction of the ring member 3 will be described with reference to FIG. As shown in the WW cross-sectional view of FIG. 5A, the ring member 3 contracts in the second axis B direction, which is the contraction direction of the ring member 3, so that the swing member 2 and the ring member 3 And the pair of second connection members 4B swing in a substantially orthogonal direction with respect to the plane P with the connection portion 41B and the connection portion 42B as the swing center, as described with reference to FIG. Move. By this swinging, the connecting portion 42B is separated from the plane P in the orthogonal direction, so that the swinging member 2 has the first axis A around the first axis A parallel to the extending direction of the ring member 3 with the first axis A as the swing center. Swings in one direction A1.

一方、揺動部材2は、リング部材3の収縮方向と平行な軸周りには揺動しない。第1〜4接続部材4A〜4Dのうち、リング部材3の伸張方向と平行な向きに配置された第1〜4接続部材4A〜4Dにおいては、接続部分41A〜41D、及び、接続部分42A〜42Dがリング部材3の伸張に追従して、伸張する。そのため、例えば図5(a)のV―V断面図に示すように、リング部材3の伸張方向と平行な向きに配置された第1接続部材4Aは揺動しない。第1接続部材4Aは揺動しないため、揺動部材2は、リング部材3の収縮方向と平行な第2軸周りには揺動しない。   On the other hand, the swing member 2 does not swing around an axis parallel to the contraction direction of the ring member 3. Among the first to fourth connection members 4A to 4D, in the first to fourth connection members 4A to 4D arranged in a direction parallel to the extending direction of the ring member 3, the connection portions 41A to 41D and the connection portions 42A to 42A are used. 42D follows the expansion of the ring member 3 and expands. Therefore, for example, as shown in the VV sectional view of FIG. 5A, the first connecting member 4A arranged in a direction parallel to the extending direction of the ring member 3 does not swing. Since the first connecting member 4 </ b> A does not swing, the swing member 2 does not swing around the second axis parallel to the contraction direction of the ring member 3.

よって、図5(a)の状態においては、揺動部材2は、第1軸A周りの一方向A1に揺動する。同様に、図5(b)の状態においては、揺動部材2は、第3軸C周りの一方向C1に揺動し、図5(c)の状態においては、揺動部材2は、第2軸B周りの一方向B1に揺動し、図5(d)の状態においては、揺動部材2は、第4軸D周りの一方向D1に揺動し、図6(a)の状態においては、揺動部材2は、第1軸A周りの他方向A2に揺動し、図6(b)の状態においては、揺動部材2は、第3軸C周りの他方向C2に揺動し、図6(c)の状態においては、揺動部材2は、第2軸B周りの他方向B2に揺動し、図6(d)の状態においては、揺動部材2は、第4軸D周りの他方向D2に揺動する。以上のように、第1軸A周りの揺動の位相に対して第3軸C周りの揺動の位相は45°遅れ、第2軸B周りの揺動の位相は90°遅れ、第4軸D周りの揺動の位相は135°遅れている。また、第1軸A周り、第2軸B周り、第3軸C周り、及び、第4軸D周り(以下、「各軸周り」という)の揺動は同一周波数で行われる。この結果、揺動部材2の法線Nは、図5(a)〜(d)及び図6(a)〜(d)の平面図に示すように、円弧を描くように向きを変更する。   Therefore, in the state of FIG. 5A, the swing member 2 swings in one direction A1 around the first axis A. Similarly, in the state shown in FIG. 5B, the swing member 2 swings in one direction C1 around the third axis C, and in the state shown in FIG. In the state shown in FIG. 5D, the swing member 2 swings in one direction D1 around the fourth axis D in the state shown in FIG. 6A. In FIG. 6, the swing member 2 swings in the other direction A2 around the first axis A, and in the state of FIG. 6B, the swing member 2 swings in the other direction C2 around the third axis C. In the state shown in FIG. 6C, the swing member 2 swings in the other direction B2 around the second axis B. In the state shown in FIG. It swings in the other direction D2 around the four axes D. As described above, the phase of oscillation around the third axis C is delayed by 45 ° with respect to the phase of oscillation around the first axis A, and the phase of oscillation around the second axis B is delayed by 90 °. The phase of oscillation around the axis D is delayed by 135 °. Further, the oscillation around the first axis A, the second axis B, the third axis C, and the fourth axis D (hereinafter referred to as “around each axis”) is performed at the same frequency. As a result, the normal line N of the oscillating member 2 changes its direction so as to draw an arc as shown in the plan views of FIGS. 5 (a) to 5 (d) and FIGS. 6 (a) to 6 (d).

尚、第3交流電圧と第4交流電圧との位相を入れ替えれば、揺動部材2の法線Nの向きを反対方向に変更することができる。よって、第1平面内cos2θモードの振動と第2平面内cos2θモードの振動とが同時にリング部材3に発生することで、2次元走査装置1は、揺動部材2の法線Nの向きの変更方向を制御することができる。   Note that if the phases of the third AC voltage and the fourth AC voltage are switched, the direction of the normal line N of the swing member 2 can be changed to the opposite direction. Therefore, the vibration in the first in-plane cos 2θ mode and the vibration in the second in-plane cos 2θ mode are simultaneously generated in the ring member 3, so that the two-dimensional scanning device 1 changes the direction of the normal line N of the swing member 2. The direction can be controlled.

また、駆動手段5は、揺動部材2の各軸周りの揺動を共振現象を利用して行う。揺動部材2は、平面視円形であるため、揺動部材2の各軸方向の構成は同一であり、各軸周りの固有振動数は同一である。各軸周りの固有振動数が同一であるため、各軸周りの揺動に共振現象を利用しても、各軸周りの揺動を同一周波数で行うことができ、揺動部材2の法線Nが円弧を描くように、揺動部材2を揺動させることができる。尚、各軸周りの固有振動数が同一となる揺動部材2の形状は、平面視円形だけでなく、例えば、平面視正8n角形(n:は正の整数)がある。   Further, the driving means 5 performs the swinging around each axis of the swinging member 2 by utilizing a resonance phenomenon. Since the oscillating member 2 is circular in plan view, the oscillating member 2 has the same configuration in each axial direction, and the natural frequency around each axis is the same. Since the natural frequency around each axis is the same, even if a resonance phenomenon is used for oscillation around each axis, oscillation around each axis can be performed at the same frequency. The swing member 2 can be swung so that N draws an arc. Note that the shape of the swinging member 2 having the same natural frequency around each axis is not only a circular shape in a plan view but also a regular 8n square shape (n: is a positive integer) in a plan view.

また、駆動手段5は、共振現象を利用するために、第1〜4交流電圧の周波数を揺動部材2の各軸周りの固有振動数の2倍としている。このように、第1〜4交流電圧の周波数を揺動部材2の各軸周りの固有振動数の2倍とするのは、図5(a)〜(d)及び図6(a)〜(d)に示すように、各軸周りの揺動は、リング部材3が各軸方向に2回伸縮することによって1回行われるためである。即ち、各軸周りの揺動は、リング部材3の伸縮の周波数の2倍の周波数で行われるためである。このように、共振現象を利用して、揺動部材2の各軸周りの揺動を行うことで、揺動部材2の各軸周りの揺動を、小さな駆動力で行うことができる。   Further, in order to use the resonance phenomenon, the driving means 5 sets the frequency of the first to fourth AC voltages to twice the natural frequency around each axis of the oscillating member 2. As described above, the frequency of the first to fourth AC voltages is set to twice the natural frequency around each axis of the oscillating member 2 as shown in FIGS. 5 (a) to 5 (d) and FIGS. As shown in d), the swinging around each axis is performed once by the ring member 3 expanding and contracting twice in each axial direction. That is, the rocking around each axis is performed at a frequency twice the expansion / contraction frequency of the ring member 3. Thus, by swinging around each axis of the swing member 2 using the resonance phenomenon, swinging around each axis of the swing member 2 can be performed with a small driving force.

更に、駆動手段5は、第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動におけるリング部材3の伸縮量を時間と共に増大又は減少させることによって、揺動部材2の法線Nが、螺旋を描くように揺動部材2を揺動させる。リング部材3の収縮量が大きくなればなるほど、揺動部材2とリング部材3との距離が近くなる。よって、リング部材3の収縮量が大きくなればなるほど、第1〜4接続部材4A〜4Dの振幅(第1〜4接続部材4A〜4Dと平面Pとが成す角度)が大きくなる。第1〜4接続部材4A〜4Dの揺動の振幅が大きくなればなるほど、図2(c)に示す接続部分42Aが平面Pに対して直交方向に離間するので、揺動部材2の揺動の振幅が大きくなる。よって、第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動におけるリング部材3の伸縮量の大きさを調整することで、揺動部材2の法線Nが描く円弧の径を調整することができる。従って、リング部材3の伸縮量の大きさを時間と共に増大または減少させることによって、揺動部材2の法線Nが螺旋を描くように方向を変更することができる。   Further, the drive means 5 increases or decreases the amount of expansion / contraction of the ring member 3 with time in the first in-plane cos 2θ mode vibration and the second in-plane cos 2θ mode vibration, so that the normal line N of the swing member 2 is increased. Then, the swing member 2 is swung so as to draw a spiral. The greater the amount of contraction of the ring member 3, the closer the distance between the rocking member 2 and the ring member 3. Therefore, as the contraction amount of the ring member 3 increases, the amplitude of the first to fourth connecting members 4A to 4D (the angle formed by the first to fourth connecting members 4A to 4D and the plane P) increases. As the swing amplitude of the first to fourth connecting members 4A to 4D increases, the connecting portion 42A shown in FIG. The amplitude of becomes larger. Therefore, the diameter of the arc drawn by the normal line N of the swinging member 2 is adjusted by adjusting the amount of expansion and contraction of the ring member 3 in the first in-plane cos 2θ mode vibration and the second in-plane cos 2θ mode vibration. can do. Therefore, by increasing or decreasing the amount of expansion / contraction of the ring member 3 with time, the direction can be changed so that the normal line N of the swing member 2 draws a spiral.

尚、リング部材3の伸縮量の増大又は減少を行う方法としては、例えば、第1〜4交流電圧の実効値を時間と共に増大又は減少させることで、静電力A’〜D’の大きさを時間と共に増大又は減少させる方法を挙げることができる。   In addition, as a method of increasing or decreasing the expansion / contraction amount of the ring member 3, for example, the magnitude of the electrostatic forces A ′ to D ′ is increased by increasing or decreasing the effective value of the first to fourth AC voltages with time. Mention may be made of increasing or decreasing over time.

このように、2次元走査装置1は、揺動部材2の法線Nが螺旋を描くように方向を変更できるため、レーザからのレーザ光を揺動部材2に反射させることで、トルネードスキャンをすることができる。   Thus, since the two-dimensional scanning device 1 can change the direction so that the normal line N of the swing member 2 draws a spiral, the laser beam from the laser is reflected on the swing member 2 so that the tornado scan is performed. can do.

以上に説明したように、揺動部材2の第1軸A周りの揺動は、リング部材3の第2軸B方向の伸縮に連動し、揺動部材2の第2軸B周りの揺動は、リング部材3の第1軸A方向の伸縮に連動する。第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動が発生するリング部材3においては、第1軸A方向の伸縮と第2軸B方向の伸縮とは同一の周波数で、且つ、互いに180°異なる位相で行われる。よって、揺動部材2の第1軸A周りの揺動と揺動部材2の第2軸B周りの揺動とは、同一周波数で、且つ、互いに90°異なる位相で行われる。従って、2次元走査装置1においては、揺動部材2の第1軸A周りの揺動と第2軸B周りの揺動とは、同一周波数で、且つ、互いに90°異なる位相で行われる。   As described above, the swing of the swing member 2 around the first axis A is interlocked with the expansion and contraction of the ring member 3 in the second axis B direction, and the swing of the swing member 2 around the second axis B. Is interlocked with the expansion and contraction of the ring member 3 in the first axis A direction. In the ring member 3 in which the vibration in the first in-plane cos 2θ mode and the vibration in the second in-plane cos 2θ mode are generated, the expansion and contraction in the first axis A direction and the expansion and contraction in the second axis B direction have the same frequency, and The phase is 180 degrees different from each other. Therefore, the swinging of the swinging member 2 around the first axis A and the swinging of the swinging member 2 around the second axis B are performed at the same frequency and with phases different from each other by 90 °. Therefore, in the two-dimensional scanning device 1, the swinging of the swinging member 2 around the first axis A and the swinging around the second axis B are performed at the same frequency and at phases different from each other by 90 °.

よって、2次元走査装置1は、第1軸A周りの揺動の周波数と第2軸B周りの揺動の周波数がずれることや、第1軸A周りの揺動の位相と第2軸B周りの揺動の位相との差が90°からずれることによって、法線Nが螺旋を描くように揺動部材2が揺動しなくなる恐れがない。同様の理由により、2次元走査装置1は、第3軸C周りの揺動の周波数と第4軸D周りの揺動の周波数とがずれることや、第3軸C周りの揺動の位相と第4軸D周りの揺動の位相の差が90°からずれることによって、法線Nが螺旋を描くように揺動部材2が揺動しなくなる恐れがない。   Therefore, in the two-dimensional scanning device 1, the oscillation frequency around the first axis A is shifted from the oscillation frequency around the second axis B, and the oscillation phase around the first axis A and the second axis B When the difference from the surrounding rocking phase is shifted from 90 °, there is no possibility that the rocking member 2 does not rock so that the normal N draws a spiral. For the same reason, the two-dimensional scanning device 1 causes the oscillation frequency around the third axis C to be different from the oscillation frequency around the fourth axis D, and the oscillation phase around the third axis C. When the phase difference of the swing around the fourth axis D is shifted from 90 °, there is no possibility that the swing member 2 does not swing so that the normal N draws a spiral.

また、本実施形態のように揺動部材2が平面視円形であれば、シリコン基板を加工して揺動部材2等を作製する際の加工誤差によって、揺動部材2等が全体的に大きくなったり、小さくなったりしても、揺動部材2の各軸方向の構成は同一であり、揺動部材2の各軸周りの固有振動数は同一のままである。よって、平面視円形の揺動部材2を備える2次元走査装置1は、このような加工誤差が生じても、共振現象を利用して、揺動部材2の法線Nが螺旋を描くように、揺動部材2を揺動させることができる。また、上記のような加工誤差が生じても、揺動部材2の各軸周りの固有振動数が同一である揺動部材2の形状は、平面視円形だけでなく、例えば、平面視正8n角形(n:は正の整数)がある。   If the swing member 2 is circular in plan view as in the present embodiment, the swing member 2 and the like are large as a whole due to processing errors when the swing member 2 and the like are manufactured by processing the silicon substrate. Even if it becomes smaller or smaller, the configuration in the axial direction of the swinging member 2 is the same, and the natural frequency around each axis of the swinging member 2 remains the same. Therefore, the two-dimensional scanning device 1 including the swing member 2 having a circular shape in plan view uses the resonance phenomenon so that the normal line N of the swing member 2 draws a spiral even if such a processing error occurs. The swing member 2 can be swung. Moreover, even if the above processing errors occur, the shape of the swing member 2 having the same natural frequency around each axis of the swing member 2 is not limited to a circular shape in plan view, but is, for example, 8n in plan view. There is a square (n: is a positive integer).

尚、本実施形態においては、2次元走査装置1は、上述のように、揺動部材2の法線Nの向きの変更方向を制御するために、第1平面内cos2θモードの振動と、第2平面内cos2θモードの振動とを同時に発生させることが可能な構成とされているが、本発明にかかる2次元走査装置は、第1平面内cos2θモードの振動のみを発生させる構成であってもよい。第1平面内cos2θモードの振動のみを発生させる構成の場合、揺動部材2の状態は、図5(a)→図5(c)→図6(a)→図6(c)の順で変化することも、図5(a)→図6(c)→図6(a)→図5(c)の順で変化することも可能である。
いずれの順番で変化するかは、例えば、実際に揺動部材2が揺動しているときの、揺動部材2の重量バランス等によって定まる。
In the present embodiment, as described above, the two-dimensional scanning apparatus 1 controls the first in-plane cos 2θ mode vibration and the first in order to control the change direction of the direction of the normal line N of the swing member 2. Although the two-plane cos 2θ mode vibration can be generated at the same time, the two-dimensional scanning device according to the present invention can generate only the first in-plane cos 2θ mode vibration. Good. In the case of a configuration in which only vibration in the first in-plane cos 2θ mode is generated, the state of the swing member 2 is in the order of FIG. 5A → FIG. 5C → FIG. 6A → FIG. It is also possible to change in the order of FIG. 5 (a) → FIG. 6 (c) → FIG. 6 (a) → FIG. 5 (c).
The order of change depends on, for example, the weight balance of the swing member 2 when the swing member 2 is actually swinging.

このように、第1平面内cos2θモードの振動のみを発生させる構成の場合は、第1軸A周り、及び、第2軸B周りの揺動が同一周波数で行われ、第1軸A周りの揺動の位相に対して第2軸B周りの揺動の位相が90°遅れれば、揺動部材2の法線Nが円弧又は螺旋を描くように、揺動部材2を揺動させることができる。よって、第1平面内cos2θモードの振動のみを発生させる構成の場合において、共振現象を利用して、揺動部材2の法線Nが円弧を描くように揺動部材2を揺動させる場合は、揺動部材2の形状は、第1軸A周りと第2軸B周りとの固有振動数が同一となる形状とされる。第1軸A周りと第2軸B周りとの固有振動数が同一となる形状としては、例えば、平面視円形、平面視正4n角形(n:は正の整数)がある。   As described above, in the configuration in which only the vibration in the first in-plane cos 2θ mode is generated, the oscillations around the first axis A and the second axis B are performed at the same frequency. If the phase of oscillation about the second axis B is delayed by 90 ° with respect to the phase of oscillation, the oscillation member 2 can be oscillated so that the normal line N of the oscillating member 2 draws an arc or a spiral. it can. Therefore, in the case of the configuration in which only the vibration in the first in-plane cos 2θ mode is generated, the swing member 2 is swung so that the normal line N of the swing member 2 draws an arc using the resonance phenomenon. The shape of the swing member 2 is such that the natural frequencies around the first axis A and around the second axis B are the same. Examples of the shape in which the natural frequencies around the first axis A and the second axis B are the same include a circular shape in plan view and a 4n square shape in plan view (n: is a positive integer).

また、第1平面内cos2θモードの振動のみを発生させる構成の場合、揺動部材2の第1軸A方向と第2軸B方向との構成が同一となる場合、揺動部材2等が全体的に大きくなったり、小さくなったりする加工誤差が生じても、揺動部材2の第1軸A周りの固有振動数と第2軸B周りの固有振動数とは同一のままである。よって、第1平面内cos2θモードの振動のみを発生させる構成の場合、揺動部材2の第1軸A方向と第2軸B方向との構成が同一となる形状のときは、上記のような加工誤差が生じても、共振現象を利用して、第1軸A周りと第2軸B周りの揺動を同一の周波数で行うことができる。尚、揺動部材2の第1軸A方向と第2軸B方向との構成が同一となる揺動部材2の具体的な形状としては、例えば、平面視円形、平面視正4n角形(n:正の整数)がある。   Further, in the case of a configuration that generates only the vibration in the first in-plane cos 2θ mode, when the configuration of the first axis A direction and the second axis B direction of the swing member 2 is the same, the swing member 2 and the like as a whole Even if a processing error that increases or decreases in size occurs, the natural frequency around the first axis A and the natural frequency around the second axis B of the swing member 2 remain the same. Therefore, in the case of the configuration in which only the vibration in the first in-plane cos 2θ mode is generated, when the configuration of the swing member 2 in the first axis A direction and the second axis B direction is the same, Even if a machining error occurs, the oscillation around the first axis A and the second axis B can be performed at the same frequency by utilizing the resonance phenomenon. In addition, as a concrete shape of the rocking | swiveling member 2 from which the structure of the 1st axis | shaft A direction and the 2nd axis | shaft B direction of the rocking | swiveling member 2 becomes the same, for example, a planar view circular shape, a planar view regular 4n square (n : Positive integer).

このように第1平面内cos2θモードの振動のみを発生させる構成の場合、2次元走査装置は、第2平面内cos2θモードの振動を発生させるための部材を備えなくてもよい。本実施形態の場合においては、第2平面内cos2θモードの振動を発生させるための部材には、第3接続部材4C、第4接続部材4D、第3可動電極521、第3駆動電極522、第3交流電源523、及び、第4可動電極524、第4駆動電極525、第4交流電源526が該当する。   Thus, in the case of a configuration that generates only the vibration in the first in-plane cos 2θ mode, the two-dimensional scanning device may not include a member for generating the vibration in the second in-plane cos 2θ mode. In the case of the present embodiment, the members for generating the vibration in the second in-plane cos 2θ mode include the third connecting member 4C, the fourth connecting member 4D, the third movable electrode 521, the third drive electrode 522, the second 3 AC power supply 523, 4th movable electrode 524, 4th drive electrode 525, and 4th AC power supply 526 correspond.

本実施形態における2次元走査装置1は、レーザからのレーザ光を揺動部材2で反射して、2次元走査をする構成とされている。本発明に係る2次元走査装置における2次元走査の方式は、これに限らず、例えば、揺動部材2の表面に発光素子を載置して、当該発光素子から発せられるレーザ光等の光で2次元走査を行う方式であってもよい。   The two-dimensional scanning apparatus 1 in the present embodiment is configured to perform two-dimensional scanning by reflecting laser light from a laser beam with a swing member 2. The two-dimensional scanning method in the two-dimensional scanning device according to the present invention is not limited to this, and for example, a light emitting element is placed on the surface of the swing member 2 and light such as laser light emitted from the light emitting element is used. A method of performing two-dimensional scanning may be used.

以下において、駆動手段5の変形例を説明する。   Below, the modification of the drive means 5 is demonstrated.

<変形例1>
本変形例に係る駆動手段5は、第1〜4電線と、第1〜4磁界発生手段と、第1〜4交流電源とを具備する。
<Modification 1>
The driving means 5 according to this modification includes first to fourth electric wires, first to fourth magnetic field generating means, and first to fourth AC power sources.

図8は、本変形例に係る駆動手段5を備えた2次元走査装置1の説明図である。図8(a)は、リング部材3の第1軸A上の部位近傍の2次元走査装置1の平面図を示す。図8(a)に示すように、第1電線53は、リング部材3の第1軸A上の2つの部位(図8(a)では、一方側の部位のみ示している)に略第2軸B方向に沿って配置されている。図示していないが、第2電線は、リング部材3の第2軸B上の2つの部位に略第1軸A方向に沿って配置され、第3電線は、リング部材3の第3軸C上の2つの部位に略第4軸D方向に沿って配置され、第4電線は、リング部材3の第4軸D上の2つの部位に略第3軸C方向に沿って配置されている。   FIG. 8 is an explanatory diagram of the two-dimensional scanning apparatus 1 including the driving unit 5 according to this modification. FIG. 8A shows a plan view of the two-dimensional scanning device 1 in the vicinity of a portion on the first axis A of the ring member 3. As shown in FIG. 8A, the first electric wire 53 is approximately second in two parts on the first axis A of the ring member 3 (in FIG. 8A, only one part is shown). It arrange | positions along the axis | shaft B direction. Although not shown, the second electric wire is disposed along two directions on the second axis B of the ring member 3 along the direction of the first axis A, and the third electric wire is connected to the third axis C of the ring member 3. The upper two parts are arranged along the substantially fourth axis D direction, and the fourth electric wire is arranged at the two parts on the fourth axis D of the ring member 3 along the substantially third axis C direction. .

第1磁界発生手段54は、第1電線53が配置されたリング部材3の電線配置部にリング部材3の厚み方向の磁界を発生させる。図8(b)は、第1磁界発生手段54の具体的構成を示す図である。図8(b)に示すように、第1磁界発生手段54は、電線配置部に対してリング部材3の厚み方向一方側と他方側とに位置する永久541を有する。かかる磁石541は、リング部材3の電線配置部における磁力を高めるためのヨーク542に支持されている。図示していないが、第2磁界発生手段は、第2電線が配置されたリング部材3の電線配置部にリング部材3の厚み方向の磁界を発生させ、第3磁界発生手段は、第3電線が配置されたリング部材3の電線配置部にリング部材3の厚み方向の磁界を発生させ、第4磁界発生手段は、第4電線が配置されたリング部材3の電線配置部にリング部材3の厚み方向の磁界を発生させる。第2〜4磁界発生手段は、第1磁界発生手段と同一の構成である。   The first magnetic field generating means 54 generates a magnetic field in the thickness direction of the ring member 3 at the wire arrangement portion of the ring member 3 where the first electric wires 53 are arranged. FIG. 8B is a diagram showing a specific configuration of the first magnetic field generating means 54. As shown in FIG. 8B, the first magnetic field generating means 54 has a permanent 541 located on one side and the other side in the thickness direction of the ring member 3 with respect to the electric wire arrangement part. The magnet 541 is supported by a yoke 542 for increasing the magnetic force in the wire arrangement portion of the ring member 3. Although not shown, the second magnetic field generating means generates a magnetic field in the thickness direction of the ring member 3 at the electric wire arrangement portion of the ring member 3 on which the second electric wire is arranged, and the third magnetic field generating means A magnetic field in the thickness direction of the ring member 3 is generated in the electric wire arrangement portion of the ring member 3 in which the ring member 3 is arranged, and the fourth magnetic field generating means is configured so that the electric wire arrangement portion of the ring member 3 in which the fourth electric wire is arranged. Generate a magnetic field in the thickness direction. The second to fourth magnetic field generating means has the same configuration as the first magnetic field generating means.

図8(a)に示すように、第1交流電源513は、第1電線53に第1交流電圧を印加可能とされている。図示していないが、第2交流電源は、第2電線に第2交流電圧を印加可能とされ、第3交流電源は、第3電線に第3交流電圧を印加可能とされ、第4交流電源は、第4電線に第4交流電圧を印加可能とされている。   As shown in FIG. 8A, the first AC power supply 513 can apply a first AC voltage to the first electric wire 53. Although not shown, the second AC power source can apply the second AC voltage to the second electric wire, the third AC power source can apply the third AC voltage to the third electric wire, and the fourth AC power source. Is capable of applying a fourth AC voltage to the fourth electric wire.

図8(a)に示すように、以上の構成において、第1電線53に第1交流電圧が印加され、第1電線53に電流が流れると、第1軸A方向の力A’’がリング部材3の第1電線53が配置された電線配置部に発生する。このように、第1軸A方向の力A’’が発生することで、リング部材3は第1軸A方向に伸縮する。同様に、第2〜4電線に第2〜4交流電圧を印加することで、第2〜4軸B〜D方向の力がリング部材3の各電線配置部に発生し、第2〜4軸B〜D方向の力が発生することで、リング部材3が第2〜4軸B〜D方向に伸縮する。   As shown in FIG. 8A, in the above configuration, when a first AC voltage is applied to the first electric wire 53 and a current flows through the first electric wire 53, the force A '' in the first axis A direction is a ring. It generate | occur | produces in the electric wire arrangement | positioning part by which the 1st electric wire 53 of the member 3 is arrange | positioned. Thus, the ring member 3 expands and contracts in the first axis A direction by generating the force A ″ in the first axis A direction. Similarly, by applying the 2nd to 4th AC voltage to the 2nd to 4th electric wires, forces in the 2nd to 4th axis B to D directions are generated in the respective electric wire arrangement portions of the ring member 3, and the 2nd to 4th axes. The ring member 3 expands and contracts in the second to fourth axis B to D directions by generating the forces in the B to D directions.

よって、本変形例に係る駆動手段5は、第1cos2θモードの振動と、第2cos2θモードの振動とをリング部材3に発生させることができ、揺動部材2の法線Nが円弧を描くように、揺動部材2を揺動させることができる。また、上記の実施形態と同様に、本変形例に係る駆動手段5は、第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動におけるリング部材3の伸縮量を時間と共に増大又は減少させることによって、揺動部材2の法線Nが、螺旋を描くように揺動部材2を揺動させる。リング部材3の伸縮量の増大又は減少を行う方法としては、例えば、第1〜4交流電圧の実効値を時間と共に増大又は減少させることで、電線配置部に発生する第1〜4軸A〜D方向の力を時間と共に増大又は減少させる方法を挙げることができる。   Therefore, the driving unit 5 according to the present modification can generate the vibration in the first cos 2θ mode and the vibration in the second cos 2θ mode in the ring member 3 so that the normal line N of the swing member 2 draws an arc. The swing member 2 can be swung. Similarly to the above-described embodiment, the driving unit 5 according to this modification increases or decreases the amount of expansion / contraction of the ring member 3 with time in the first in-plane cos 2θ mode vibration and the second in-plane cos 2θ mode vibration. By doing so, the swing member 2 is swung so that the normal N of the swing member 2 draws a spiral. As a method of increasing or decreasing the amount of expansion / contraction of the ring member 3, for example, the first to fourth axes A to A generated in the electric wire arrangement part by increasing or decreasing the effective value of the first to fourth AC voltages with time. Mention may be made of increasing or decreasing the force in the D direction with time.

<変形例2>
図9は、本変形例に係る駆動手段5を備えた2次元走査装置1のリング部材3近傍の平面図である。図9に示すように、本変形例に係る駆動手段5は、第1〜4圧電素子55A〜55Dと、第1〜4交流電源513、516、523、526とを具備する。
<Modification 2>
FIG. 9 is a plan view of the vicinity of the ring member 3 of the two-dimensional scanning apparatus 1 including the driving unit 5 according to this modification. As shown in FIG. 9, the driving unit 5 according to this modification includes first to fourth piezoelectric elements 55 </ b> A to 55 </ b> D and first to fourth AC power supplies 513, 516, 523, and 526.

第1圧電素子55Aは、リング部材3の第2軸B上の2つの部位に伸縮方向が第1軸A方向に向けられて配置されている。第2圧電素子55Bは、リング部材3の第1軸A上の2つの部位に伸縮方向が第2軸B方向に向けられて配置されている。第3圧電素子55Cは、リング部材3の第4軸D上の2つの部位に伸縮方向が第3軸C方向に向けられて配置されている。第4圧電素子55Dは、リング部材3の第3軸C上の2つの部位に伸縮方向が第4軸D方向に向けられて配置されている。このような第1〜4圧電素子55A〜55Dが配置されたリング部材3は、第1〜4圧電素子55A〜55Dのうち、伸縮した圧電素子の伸縮方向に収縮する。第1〜4圧電素子55A〜55Dの伸縮量は、印加される電圧が大きくなればなるほど大きくなる。   The first piezoelectric element 55 </ b> A is disposed at two portions on the second axis B of the ring member 3 such that the expansion / contraction direction is directed to the first axis A direction. The second piezoelectric element 55B is disposed at two portions on the first axis A of the ring member 3 such that the expansion / contraction direction is directed to the second axis B direction. The third piezoelectric element 55 </ b> C is disposed at two portions on the fourth axis D of the ring member 3 such that the expansion / contraction direction is directed to the third axis C direction. The fourth piezoelectric element 55D is disposed at two portions on the third axis C of the ring member 3 such that the expansion / contraction direction is directed to the fourth axis D direction. The ring member 3 in which the first to fourth piezoelectric elements 55A to 55D are arranged contracts in the expansion / contraction direction of the expanded / contracted piezoelectric element among the first to fourth piezoelectric elements 55A to 55D. The amount of expansion / contraction of the first to fourth piezoelectric elements 55A to 55D increases as the applied voltage increases.

第1交流電源513は、第1圧電素子55Aに第1交流電圧を印加可能とされている。第2交流電源516は、第2圧電素子55Bに第2交流電圧を印加可能とされている。第3交流電源523は、第3圧電素子55Cに第3交流電圧を印加可能とされている。第4交流電源526は、第4圧電素子55Dに第4交流電圧を印加可能とされている。   The first AC power supply 513 can apply a first AC voltage to the first piezoelectric element 55A. The second AC power supply 516 can apply a second AC voltage to the second piezoelectric element 55B. The third AC power source 523 can apply a third AC voltage to the third piezoelectric element 55C. The fourth AC power source 526 can apply a fourth AC voltage to the fourth piezoelectric element 55D.

このように、第2圧電素子55Bには、第1圧電素子55Aに印加される第1交流電圧に対して位相が180°遅れた第2交流電圧が印加されるので、第1圧電素子55Aの伸縮の位相に対して第2圧電素子55Bの伸縮の位相は180°遅れる。よって、リング部材3の第1軸A方向の伸縮と第2軸B方向の伸縮との位相は、180°異なる。従って、第1圧電素子55Aと第2圧電素子55Bとの伸縮により、第1平面内cos2θモードの振動がリング部材3に発生する。   As described above, the second piezoelectric element 55B is applied with the second AC voltage whose phase is delayed by 180 ° with respect to the first AC voltage applied to the first piezoelectric element 55A. The expansion / contraction phase of the second piezoelectric element 55B is delayed by 180 ° with respect to the expansion / contraction phase. Therefore, the phase of the expansion and contraction in the first axis A direction and the expansion and contraction in the second axis B direction of the ring member 3 is different by 180 °. Therefore, vibration in the first in-plane cos 2θ mode is generated in the ring member 3 by expansion and contraction of the first piezoelectric element 55A and the second piezoelectric element 55B.

また、第4圧電素子55Cには、第3圧電素子55Cに印加される第3交流電圧に対して位相が180°遅れた第4交流電圧が印加されるので、第3圧電素子55Cの伸縮の位相に対して第4圧電素子55Dの伸縮の位相は180°遅れる。よって、リング部材3の第3軸C方向の伸縮と第4軸D方向の伸縮との位相は、180°異なる。従って、第3圧電素子55Cと第4圧電素子55Dとの伸縮により、第2平面内cos2θモードの振動がリング部材3に発生する。   The fourth piezoelectric element 55C is applied with the fourth AC voltage whose phase is delayed by 180 ° with respect to the third AC voltage applied to the third piezoelectric element 55C. The phase of expansion / contraction of the fourth piezoelectric element 55D is delayed by 180 ° with respect to the phase. Therefore, the phase of the expansion and contraction in the third axis C direction and the expansion and contraction in the fourth axis D direction of the ring member 3 differs by 180 °. Therefore, vibration in the second in-plane cos 2θ mode is generated in the ring member 3 due to expansion and contraction of the third piezoelectric element 55C and the fourth piezoelectric element 55D.

更に、第3交流電圧の位相は第1交流電圧の位相に対して90°遅れている。そのため、リング部材3の第3軸C方向の伸縮は第1軸A方向の伸縮に対して位相が90°遅れている。また、第4交流電圧の位相は第2交流電圧の位相に対して90°遅れている。そのため、リング部材3の第4軸D方向の伸縮は第2軸B方向の伸縮に対して位相が90°遅れている。よって、第2平面内cos2θモードの振動によるリング部材3の伸縮の位相は、第1平面内cos2θモードの振動によるリング部材3の伸縮の位相に対して90°遅れている。   Further, the phase of the third AC voltage is delayed by 90 ° with respect to the phase of the first AC voltage. Therefore, the expansion and contraction of the ring member 3 in the third axis C direction is delayed in phase by 90 ° with respect to the expansion and contraction in the first axis A direction. Further, the phase of the fourth AC voltage is delayed by 90 ° with respect to the phase of the second AC voltage. Therefore, the expansion and contraction of the ring member 3 in the fourth axis D direction is delayed in phase by 90 ° with respect to the expansion and contraction in the second axis B direction. Therefore, the expansion / contraction phase of the ring member 3 due to the vibration in the second in-plane cos 2θ mode is delayed by 90 ° with respect to the expansion / contraction phase of the ring member 3 due to the vibration in the first in-plane cos 2θ mode.

従って、本変形例に係る駆動手段5は、第1平面内cos2θモードの振動と第2平面内cos2θモードの振動とをリング部材3に発生させることで、揺動部材2の法線Nが円弧を描くように、揺動部材2を揺動させることができる。また、上記の実施形態と同様に、本変形例に係る駆動手段5は、第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動におけるリング部材3の伸縮量を時間と共に増大又は減少させることによって、揺動部材2の法線Nが、螺旋を描くように揺動部材2を揺動させる。リング部材3の伸縮量の増大又は減少を行う方法としては、例えば、第1〜4交流電圧の実効値を時間と共に増大又は減少させることで、第1〜4圧電素子55A〜Dの伸縮量を時間と共に増大又は減少させる方法を挙げることができる。   Therefore, the driving means 5 according to the present modification causes the ring member 3 to generate vibration in the first in-plane cos 2θ mode and vibration in the second in-plane cos 2θ mode, so that the normal line N of the swing member 2 is an arc. As shown, the swing member 2 can be swung. Similarly to the above-described embodiment, the driving unit 5 according to this modification increases or decreases the amount of expansion / contraction of the ring member 3 with time in the first in-plane cos 2θ mode vibration and the second in-plane cos 2θ mode vibration. By doing so, the swing member 2 is swung so that the normal N of the swing member 2 draws a spiral. As a method of increasing or decreasing the amount of expansion / contraction of the ring member 3, for example, the amount of expansion / contraction of the first to fourth piezoelectric elements 55A to 55D is increased by increasing or decreasing the effective value of the first to fourth AC voltages with time. Mention may be made of increasing or decreasing over time.

<変形例3>
図10は、本変形例に係る駆動手段5を備えた2次元走査装置1の平面図である。図10に示すように、本変形例に係る駆動手段5は、サポート部材6に配置された圧電素子56と第1〜4交流電源513、516、523、526とを備える。図10(a)に示すように、圧電素子56は、サポート部材6のうち、リング部材3から径外方向に延出された部分に配置されている。圧電素子56は、サポート部材6のリング部材3の周方向の一端部と、他端部とに配置されている。
<Modification 3>
FIG. 10 is a plan view of the two-dimensional scanning apparatus 1 including the driving unit 5 according to this modification. As shown in FIG. 10, the drive unit 5 according to this modification includes a piezoelectric element 56 disposed on the support member 6 and first to fourth AC power supplies 513, 516, 523, and 526. As shown in FIG. 10A, the piezoelectric element 56 is disposed in a portion of the support member 6 that extends in the radially outward direction from the ring member 3. The piezoelectric elements 56 are disposed at one end portion and the other end portion of the support member 6 in the circumferential direction of the ring member 3.

従って、図10(a)の1点鎖線で示すように、サポート部材6に配置された圧電素子6のうち、第1軸A側の端部に配置された圧電素子56にのみ電圧を印加すると、サポート部材6が湾曲し、当該サポート部材6と接続されたリング部材3の部分31が、第1軸A方向に移動する。一方、図10(a)の2点鎖線で示すように、サポート部材6に配置された圧電素子6のうち、第2軸B側の端部に配置された圧電素子56にのみ電圧を印加すると、サポート部材6が湾曲し、サポート部材6と接続されたリング部材3の部分が、第2軸B方向に移動する。   Accordingly, as shown by the one-dot chain line in FIG. 10A, when a voltage is applied only to the piezoelectric element 56 arranged at the end on the first axis A side among the piezoelectric elements 6 arranged on the support member 6. The support member 6 is curved, and the portion 31 of the ring member 3 connected to the support member 6 moves in the first axis A direction. On the other hand, when a voltage is applied only to the piezoelectric element 56 disposed at the end on the second axis B side among the piezoelectric elements 6 disposed on the support member 6 as indicated by a two-dot chain line in FIG. The support member 6 is curved, and the portion of the ring member 3 connected to the support member 6 moves in the second axis B direction.

このため、図10(b)に示すように、各サポート部材6に配置された圧電素子のうち、第1軸A側の端部に配置された圧電素子56に電圧が印加されると、リング部材3は、第1軸A方向に伸張し、第2軸B方向に収縮する。一方、図示していないが、各サポート部材6に配置された圧電素子のうち、第2軸B側の端部に配置された圧電素子56に電圧が印加されると、リング部材3は、第1軸A方向に収縮し、第2軸B方向に伸張する。   For this reason, as shown in FIG. 10 (b), when a voltage is applied to the piezoelectric element 56 arranged at the end on the first axis A side among the piezoelectric elements arranged on each support member 6, the ring The member 3 expands in the first axis A direction and contracts in the second axis B direction. On the other hand, although not shown, when a voltage is applied to the piezoelectric element 56 disposed at the end on the second axis B side among the piezoelectric elements disposed on the support members 6, the ring member 3 It contracts in the direction of the first axis A and expands in the direction of the second axis B.

以上のように配置された圧電素子56のうち、第1軸A側の端部に配置された圧電素子56は、第1交流電源513と電気的に接続されている。また、第2軸B側の端部に配置された圧電素子56は、第2交流電源516と電気的に接続されている。   Among the piezoelectric elements 56 arranged as described above, the piezoelectric element 56 arranged at the end on the first axis A side is electrically connected to the first AC power supply 513. The piezoelectric element 56 disposed at the end on the second axis B side is electrically connected to the second AC power source 516.

このように、第2軸B側の端部に配置された圧電素子56には、第1軸A側の端部に配置された圧電素子56に印加される第1交流電圧に対して位相が180°遅れた第2交流電圧が印加される。このため、第1軸A側の端部に配置された圧電素子56の収縮の位相に対して第2軸B側の端部に配置された第2圧電素子56の収縮の位相は180°遅れる。よって、リング部材3の第1軸A方向の伸縮と第2軸B方向の伸縮との位相は、180°異なる。従って、圧電素子56の伸縮によって、第1平面内cos2θモードの振動がリング部材3に発生する。   Thus, the phase of the piezoelectric element 56 disposed at the end on the second axis B side is in phase with respect to the first AC voltage applied to the piezoelectric element 56 disposed at the end on the first axis A side. A second AC voltage delayed by 180 ° is applied. For this reason, the phase of contraction of the second piezoelectric element 56 disposed at the end on the second axis B side is delayed by 180 ° with respect to the phase of contraction of the piezoelectric element 56 disposed at the end on the first axis A side. . Therefore, the phase of the expansion and contraction in the first axis A direction and the expansion and contraction in the second axis B direction of the ring member 3 is different by 180 °. Accordingly, vibration in the first in-plane cos 2θ mode is generated in the ring member 3 due to expansion and contraction of the piezoelectric element 56.

また、第1交流電源513又は第2交流電源516に電気的に接続された圧電素子56は、更に、第3交流電源523又は第4交流電源526と電気的に接続されている。具体的には、サポート部材6の第3軸C側の端部に配置された圧電素子56は、第3交流電源523と電気的に接続されている。また、サポート部材6の第4軸D側の端部に配置された圧電素子56は、第4交流電源526と電気的に接続されている。   The piezoelectric element 56 electrically connected to the first AC power source 513 or the second AC power source 516 is further electrically connected to the third AC power source 523 or the fourth AC power source 526. Specifically, the piezoelectric element 56 disposed at the end of the support member 6 on the third axis C side is electrically connected to the third AC power source 523. The piezoelectric element 56 disposed at the end of the support member 6 on the fourth axis D side is electrically connected to the fourth AC power source 526.

このように、第4軸D側の端部に配置された圧電素子56には、第3軸C側の端部に配置された圧電素子56に印加される第3交流電圧に対して位相が180°遅れた第4交流電圧が印加される。このため、第3軸C側の端部に配置された圧電素子56の伸縮の位相に対して第4軸D側の端部に配置された第4圧電素子56の伸縮の位相は180°遅れる。よって、リング部材3の第3軸C方向の伸縮と第4軸D方向の伸縮との位相は、180°異なる。従って、圧電素子56の伸縮によって、第2平面内cos2θモードの振動がリング部材3に発生する。   Thus, the phase of the piezoelectric element 56 disposed at the end on the fourth axis D side is in phase with the third AC voltage applied to the piezoelectric element 56 disposed at the end on the third axis C side. A fourth AC voltage delayed by 180 ° is applied. Therefore, the expansion / contraction phase of the fourth piezoelectric element 56 disposed at the end on the fourth axis D side is delayed by 180 ° with respect to the expansion / contraction phase of the piezoelectric element 56 disposed at the end on the third axis C side. . Therefore, the phase of the expansion and contraction in the third axis C direction and the expansion and contraction in the fourth axis D direction of the ring member 3 differs by 180 °. Therefore, vibration in the second in-plane cos 2θ mode is generated in the ring member 3 due to expansion and contraction of the piezoelectric element 56.

更に、第3交流電圧の位相は第1交流電圧の位相に対して90°遅れ、第4交流電圧の位相は第2交流電圧の位相に対して90°遅れている。そのため、変形例2で説明したように、本変形例における第2平面内cos2θモードの振動によるリング部材3の伸縮の位相は、第1平面内cos2θモードの振動によるリング部材3の伸縮の位相に対して90°遅れている。   Further, the phase of the third AC voltage is delayed by 90 ° with respect to the phase of the first AC voltage, and the phase of the fourth AC voltage is delayed by 90 ° with respect to the phase of the second AC voltage. Therefore, as described in the second modification, the expansion / contraction phase of the ring member 3 due to the vibration in the second in-plane cos 2θ mode in this modification is the expansion / contraction phase of the ring member 3 due to the vibration in the first in-plane cos 2θ mode. It is 90 degrees behind.

従って、本変形例に係る駆動手段5は、第1平面内cos2θモードの振動と第2平面内cos2θモードの振動とをリング部材3に発生させることで、揺動部材2の法線Nが円弧を描くように、揺動部材2を揺動させることができる。また、上記の実施形態と同様に、本変形例に係る駆動手段5は、第1平面内cos2θモードの振動及び第2平面内cos2θモードの振動におけるリング部材3の伸縮量を時間と共に増大又は減少させることによって、揺動部材2の法線Nが、螺旋を描くように揺動部材2を揺動させる。リング部材3の伸縮量の増大又は減少を行う方法としては、例えば、第1〜4交流電圧の実効値を時間と共に増大又は減少させることで、サポート部材6の湾曲量を時間と共に増大又は減少させる方法を挙げることができる。   Therefore, the driving means 5 according to the present modification causes the ring member 3 to generate vibration in the first in-plane cos 2θ mode and vibration in the second in-plane cos 2θ mode, so that the normal line N of the swing member 2 is an arc. As shown, the swing member 2 can be swung. Similarly to the above-described embodiment, the driving unit 5 according to this modification increases or decreases the amount of expansion / contraction of the ring member 3 with time in the first in-plane cos 2θ mode vibration and the second in-plane cos 2θ mode vibration. By doing so, the swing member 2 is swung so that the normal N of the swing member 2 draws a spiral. As a method for increasing or decreasing the amount of expansion / contraction of the ring member 3, for example, by increasing or decreasing the effective value of the first to fourth AC voltages with time, the bending amount of the support member 6 is increased or decreased with time. A method can be mentioned.

<変形例4>
図11は、本変形例に係る駆動手段5が備えられた2次元走査装置1の構成図である。図11(a)は、本変形例に係る駆動手段5が備えられた2次元走査装置1のリング部材3近傍の概略平面図である。図11(b)は、図11(a)のT―T断面図である。
<Modification 4>
FIG. 11 is a configuration diagram of the two-dimensional scanning apparatus 1 provided with the driving unit 5 according to this modification. FIG. 11A is a schematic plan view of the vicinity of the ring member 3 of the two-dimensional scanning apparatus 1 provided with the driving unit 5 according to this modification. FIG.11 (b) is TT sectional drawing of Fig.11 (a).

図11に示すように駆動手段5は、永久磁石57と、第1〜8コイル58A〜58Hと、第1〜8交流電源513、516、523、526、533、536、543、546とを備える。図11(b)に示すように、永久磁石57は、揺動部材2の一方の面に取り付けられている。第1〜8コイル58A〜58Hは、リング部材3が含まれる平面Pの永久磁石57が取り付けられた側に、平面Pに対して所定の距離を置いて配置されている。図11(a)に示すように、第1〜8コイル58A〜58Hは、平面視において、揺動部材2の中心を囲むように、揺動部材2の中心に対して45°間隔で配置されている。具体的には、第1コイル58Aは、揺動部材2の中心に対して第1軸A方向一方側の第1軸Aと重なった位置に配置されている。第1コイル58Aに対して、第2コイル58Bは、揺動部材2を中心にして左回りに45°の位置に、第3コイル58Cは、揺動部材2を中心にして左回りに90°の位置に、第4コイル58Dは、揺動部材2を中心にして左回りに135°の位置に、第5コイル58Eは、揺動部材2を中心にして左回りに180°の位置に、第6コイル58Fは、揺動部材2を中心にして左回りに225°の位置に、第7コイル58Gは、揺動部材2を中心にして左回りに270°の位置に、第8コイル58Hは、揺動部材2を中心にして左回りに315°の位置に、配置されている。   As shown in FIG. 11, the drive means 5 includes a permanent magnet 57, first to eighth coils 58 </ b> A to 58 </ b> H, and first to eighth AC power supplies 513, 516, 523, 526, 533, 536, 543, 546. . As shown in FIG. 11B, the permanent magnet 57 is attached to one surface of the swing member 2. The first to eighth coils 58 </ b> A to 58 </ b> H are arranged at a predetermined distance from the plane P on the side where the permanent magnet 57 of the plane P including the ring member 3 is attached. As shown in FIG. 11A, the first to eighth coils 58A to 58H are arranged at 45 ° intervals with respect to the center of the swinging member 2 so as to surround the center of the swinging member 2 in plan view. ing. Specifically, the first coil 58 </ b> A is disposed at a position overlapping the first axis A on one side in the first axis A direction with respect to the center of the swing member 2. With respect to the first coil 58A, the second coil 58B is positioned 45 ° counterclockwise around the swing member 2, and the third coil 58C is 90 ° counterclockwise around the swing member 2. The fourth coil 58D is at a position of 135 ° counterclockwise around the swing member 2, and the fifth coil 58E is at a position of 180 ° counterclockwise around the swing member 2. The sixth coil 58F is located at a position 225 ° counterclockwise around the swing member 2, and the seventh coil 58G is located at a position 270 ° counterclockwise around the swing member 2. Is arranged at a position of 315 ° counterclockwise around the swing member 2.

第1コイル58Aは、第1交流電源513に電気的に接続され、第2コイル58Bは、第5交流電源533に電気的に接続され、第3コイル58Cは、第3交流電源523に電気的に接続され、第4コイル58Dは、第6交流電源536に電気的に接続され、第5コイル58Eは、第2交流電源516に電気的に接続され、第6コイル58Fは、第7交流電源543に電気的に接続され、第7コイル58Gは、第4交流電源526に電気的に接続され、第8コイル58Hは、第8交流電源546に電気的に接続されている。第5交流電源523は、第1交流電圧に対して位相が45°遅れた第5交流電圧(図7参照)を印加可能とされ、第6交流電源536は、第1交流電圧に対して位相が135°遅れた第6交流電圧(図7参照)を印加可能とされ、第7交流電源543は、第1交流電圧に対して位相が225°遅れた第7交流電圧(図7参照)を印加可能とされ、第8交流電源546は、第1交流電圧に対して位相が315°遅れた第8交流電圧(図7参照)を印加可能とされている。   The first coil 58A is electrically connected to the first AC power source 513, the second coil 58B is electrically connected to the fifth AC power source 533, and the third coil 58C is electrically connected to the third AC power source 523. The fourth coil 58D is electrically connected to the sixth AC power source 536, the fifth coil 58E is electrically connected to the second AC power source 516, and the sixth coil 58F is connected to the seventh AC power source. The seventh coil 58G is electrically connected to the fourth AC power source 526, and the eighth coil 58H is electrically connected to the eighth AC power source 546. The fifth AC power source 523 can apply a fifth AC voltage (see FIG. 7) whose phase is delayed by 45 ° with respect to the first AC voltage, and the sixth AC power source 536 has a phase with respect to the first AC voltage. The sixth AC voltage (see FIG. 7) delayed by 135 ° can be applied, and the seventh AC power supply 543 applies the seventh AC voltage (see FIG. 7) with a phase delayed by 225 ° relative to the first AC voltage. The eighth AC power supply 546 can apply an eighth AC voltage (see FIG. 7) whose phase is delayed by 315 ° with respect to the first AC voltage.

図11(b)に示すように、第1〜8コイル58A〜58Hに電圧が印加されると、第1〜8コイル58A〜58Gと永久磁石57との間に磁界が発生し、引力又は斥力の磁力が発生する。   As shown in FIG. 11B, when a voltage is applied to the first to eighth coils 58A to 58H, a magnetic field is generated between the first to eighth coils 58A to 58G and the permanent magnet 57, and attractive force or repulsive force is generated. The magnetic force is generated.

揺動部材2の中心を挟んで反対側に配置された2つのコイルには、位相が180°異なる交流電圧が印加されている。そのため、図11(b)に示すように、揺動部材2の中心を挟んで一方側に配置された第3コイル58Cと永久磁石57との間では引力が発生し、揺動部材2の中心を挟んで他方側に配置された第7コイル58Gと磁永久石57との間では斥力が発生する。よって、図11(b)の点線で示すように、揺動部材2は、引力が発生する側がコイルに接近、斥力が発生する側はコイルから離間する。このような接近及び離間によって、揺動部材2は揺動する。   An alternating voltage having a phase difference of 180 ° is applied to the two coils arranged on the opposite sides across the center of the swing member 2. Therefore, as shown in FIG. 11 (b), an attractive force is generated between the third coil 58 </ b> C and the permanent magnet 57 disposed on one side across the center of the swing member 2, and the center of the swing member 2. A repulsive force is generated between the seventh coil 58 </ b> G and the magnet permanent stone 57 arranged on the other side of the magnet. Therefore, as shown by a dotted line in FIG. 11B, the swing member 2 is close to the coil on the side where the attractive force is generated, and is separated from the coil on the side where the repulsive force is generated. By such approach and separation, the swing member 2 swings.

第1〜8コイル58A〜58Hにおいては、隣接するコイル間において、コイルに印加される交流電圧は、45°ずつ異なっている。よって、揺動部材2のコイルと接近及び離間する部位が周方向にずれることで、揺動部材2は、法線Nが円弧を描くように揺動する。   In the first to eighth coils 58 </ b> A to 58 </ b> H, the AC voltage applied to the coils differs by 45 ° between adjacent coils. Accordingly, when the portion of the swing member 2 that approaches and separates from the coil is displaced in the circumferential direction, the swing member 2 swings so that the normal line N draws an arc.

また、上記の実施形態と同様に、本変形例に係る駆動手段5は、揺動部材2の揺動の振幅を時間と共に増大又は減少させることによって、揺動部材2の法線Nが、螺旋を描くように揺動部材2を揺動させる。動部材2の揺動の振幅を時間と共に増大又は減少させる方法としては、例えば、第1〜8交流電圧の実効値を時間と共に増大又は減少させることで、第1〜8コイル58A〜Gと永久磁石57との間に発生する引力又は斥力を時間と共に増大又は減少させる方法を挙げることができる。   Similarly to the above-described embodiment, the driving means 5 according to this modification increases or decreases the swing amplitude of the swing member 2 over time, so that the normal line N of the swing member 2 is spiral. The swing member 2 is swung so as to draw As a method of increasing or decreasing the swing amplitude of the moving member 2 with time, for example, the effective value of the first to eighth AC voltages is increased or decreased with time, so that the first to eighth coils 58A to 58G are made permanent. A method for increasing or decreasing the attractive force or repulsive force generated between the magnet 57 and the magnet 57 can be given.

図1は、実施形態に係る2次元走査装置の概略平面図である。FIG. 1 is a schematic plan view of a two-dimensional scanning device according to an embodiment. 図2は、第1接続部材の構成図である。図2(a)は、揺動していない状態の第1接続部材の平面図を示す。図2(b)は、第1接続部材がリング部材を含む平面に対して略直交方向に揺動したときのZ―Z断面図を示す。図2(c)は、揺動している状態の第1接続部材の平面図を示す。FIG. 2 is a configuration diagram of the first connecting member. Fig.2 (a) shows the top view of the 1st connection member in the state which is not rock | fluctuated. FIG. 2B shows a ZZ cross-sectional view when the first connecting member swings in a direction substantially orthogonal to the plane including the ring member. FIG. 2C shows a plan view of the first connecting member in a swinging state. 図3は、第1接続部材の平面図である。図3(a)は、接続部分が伸張していない状態の平面図を示す。図3(b)は、接続部分が伸張した状態の平面図を示す。FIG. 3 is a plan view of the first connecting member. Fig.3 (a) shows the top view of the state which has not expanded the connection part. FIG. 3B is a plan view showing a state where the connection portion is extended. 図4(a)は、リング部材3に発生する第1平面内cos2θモードの振動を示す平面図である。図4(b)は、リング部材3に発生する第2平面内cos2θモードの振動を示す平面図である。FIG. 4A is a plan view showing vibration in the first in-plane cos 2θ mode generated in the ring member 3. FIG. 4B is a plan view showing the vibration in the second in-plane cos 2θ mode generated in the ring member 3. 図5は、リング部材の伸縮状態と、揺動部材の揺動状態とを対応関係を示す図である。FIG. 5 is a diagram showing a correspondence relationship between the expansion and contraction state of the ring member and the swinging state of the swinging member. 図6は、リング部材の伸縮状態と、揺動部材の揺動状態とを対応関係を示す図である。FIG. 6 is a diagram showing a correspondence relationship between the expanded and contracted state of the ring member and the swinging state of the swinging member. 図7は、第1交流電圧の位相に対する、第2〜8交流電圧の各位相を示している。FIG. 7 shows each phase of the second to eighth AC voltages with respect to the phase of the first AC voltage. 図8は、変形例1に係る駆動手段を備えた2次元走査装置の説明図である。図8(a)は、リング部材の第1軸上の部位近傍の2次元走査装置の平面図を示す。図8(b)は、第1磁界発生手段の具体的構成を示す図である。FIG. 8 is an explanatory diagram of a two-dimensional scanning device including a driving unit according to the first modification. FIG. 8A shows a plan view of the two-dimensional scanning device in the vicinity of the part on the first axis of the ring member. FIG. 8B is a diagram showing a specific configuration of the first magnetic field generating means. 図9は、変形例2に係る駆動手段を備えた2次元走査装置のリング部材3近傍の平面図である。FIG. 9 is a plan view of the vicinity of the ring member 3 of the two-dimensional scanning device including the driving unit according to the second modification. 図10は、変形例3に係る駆動手段を備えた2次元走査装置の説明図である。図10(a)は、変形例3に係る駆動手段の圧電素子近傍の拡大平面図を示す。図10(b)は、各サポート部材に配置された圧電素子のうち、第1軸側の端部に配置された圧電素子に電圧が印加されたときのリング部材の状態を示す。FIG. 10 is an explanatory diagram of a two-dimensional scanning apparatus including a driving unit according to the third modification. FIG. 10A shows an enlarged plan view of the vicinity of the piezoelectric element of the driving means according to the third modification. FIG. 10B shows a state of the ring member when a voltage is applied to the piezoelectric element arranged at the end portion on the first axis side among the piezoelectric elements arranged on each support member. 図11は、変形例4に係る駆動手段が備えられた2次元走査装置の構成図である。図11(a)は、本変形例に係る駆動手段が備えられた2次元走査装置のリング部材近傍の概略平面図を示す。図11(b)は、図11(a)のT―T断面図を示す。FIG. 11 is a configuration diagram of a two-dimensional scanning device provided with driving means according to the fourth modification. FIG. 11A is a schematic plan view of the vicinity of the ring member of the two-dimensional scanning device provided with the driving unit according to this modification. FIG.11 (b) shows TT sectional drawing of Fig.11 (a). 図12は、ジンバル構造の説明図である。FIG. 12 is an explanatory diagram of the gimbal structure.

符号の説明Explanation of symbols

1…2次元走査装置、2…揺動部材、3…リング部材、4A〜4D…第1〜第4接続部材、5…駆動手段、6…サポート部材、7…筐体 DESCRIPTION OF SYMBOLS 1 ... Two-dimensional scanning apparatus, 2 ... Swing member, 3 ... Ring member, 4A-4D ... 1st-4th connection member, 5 ... Drive means, 6 ... Support member, 7 ... Housing

Claims (5)

表面にミラー加工が施された、又は、表面に発光素子が載置された揺動部材と、
前記揺動部材と中心が一致するように、前記揺動部材の外側に配置されたリング部材と、
前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、且つ、前記揺動部材の中心を通る第1軸に沿って配置された一対の第1接続部材と、
前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第1軸と直交する第2軸に沿って配置された一対の第2接続部材とを備え、
前記第1接続部材及び前記第2接続部材は、前記リング部材との接続部分を揺動中心として、前記リング部材を含む平面に対して略直交方向に揺動可能とされ、
更に、前記リング部材を伸縮させて前記第1接続部材及び前記第2接続部材を揺動させることにより、前記揺動部材を揺動させる駆動手段を備え、
前記駆動手段は、
前記第1軸方向及び前記第2軸方向に伸縮する第1平面内cos2θモードの振動を前記リング部材に発生させることにより、
前記リング部材を前記第1軸方向に伸張させると共に、前記第2軸方向に収縮させるときには、前記揺動部材を前記第1軸周りに揺動させ、
前記リング部材を前記第1軸方向に収縮させると共に、前記第2軸方向に伸張させるときには、前記揺動部材を前記第2軸周りに揺動させることを特徴とする2次元走査装置。
Oscillating member whose surface is mirrored or where a light emitting element is mounted on the surface ;
A ring member disposed outside the swing member so that the center thereof coincides with the swing member;
A pair of first connecting members connecting the rocking member and the ring member, existing in a plane including the ring member, and disposed along a first axis passing through the center of the rocking member; ,
The swing member is connected to the ring member, and is disposed along a second axis that exists in a plane including the ring member, passes through the center of the swing member, and is orthogonal to the first axis. A pair of second connection members,
The first connection member and the second connection member can swing in a direction substantially orthogonal to a plane including the ring member, with a connection portion with the ring member as a swing center.
And a drive means for swinging the swing member by swinging the first connection member and the second connection member by expanding and contracting the ring member,
The driving means includes
By causing the ring member to vibrate in the first in-plane cos 2θ mode that expands and contracts in the first axis direction and the second axis direction,
It causes stretching of the ring member in the first axial direction, sometimes to shrink in the second axial direction to swing the swing member in the first axis around
Wherein together to contract the ring member in the first axial direction, the sometimes is stretched in a second axial direction, two-dimensional optical scanning apparatus characterized by oscillating the oscillating member to said second axis around.
前記駆動手段は前記第1平面内cos2θモードの振動における前記リング部材の前記第1軸方向と前記第2軸方向の伸縮量を時間と共に増大又は減少させることを特徴とする請求項1に記載の2次元走査装置。 Said drive means, according to claim 1, characterized in that increase or decrease the amount of extension of the first axial and said second axial direction of the ring member in the vibration of the first plane cos2θ mode with time 2D optical scanning device. 前記第1接続部材の接続部分は、前記第2軸方向に凸状に屈曲し、前記第2接続部材の接続部分は、前記第1軸方向に凸状に屈曲したことを特徴とする請求項1又は2に記載の2次元走査装置。 The connection portion of the first connection member is bent in a convex shape in the second axial direction, and the connection portion of the second connection member is bent in a convex shape in the first axial direction. The two-dimensional optical scanning device according to 1 or 2. 前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第1軸と45°の角度を成す第3軸に沿って配置された一対の第3接続部材と、
前記揺動部材と前記リング部材とを接続し、前記リング部材を含む平面内に存在し、前記揺動部材の中心を通り、且つ、前記第3軸と直交する第4軸に沿って配置された一対の第4接続部材とを更に備え
前記第3接続部材と、前記第4接続部材とは、前記リング部材との接続部分を揺動中心として、前記リング部材を含む平面に対して略直交方向に揺動可能とされ、
前記駆動手段は、前記第1平面内cos2θモードの振動と、前記第1平面内cos2θモードの振動に対して最大伸縮方向が45°、前記リング部材の伸縮の位相が90°異なる第2平面内cos2θモードの振動とを前記リング部材に同時に発生させると共に、前記第1平面内cos2θモードの振動における前記リング部材の前記第1軸方向と前記第2軸方向の伸縮量、及び、前記第2平面内cos2θモードの振動における前記リング部材の前記第3軸方向と前記第4軸方向の伸縮量を時間と共に増大又は減少させることを特徴とする請求項1から3の何れかに記載の2次元走査装置。
A third axis that connects the swing member and the ring member, exists in a plane including the ring member, passes through the center of the swing member, and forms an angle of 45 ° with the first axis. A pair of third connecting members disposed along;
The swing member is connected to the ring member, and is disposed along a fourth axis that exists in a plane including the ring member, passes through the center of the swing member, and is orthogonal to the third axis. further comprising a pair of fourth connecting member,
The third connecting member and the fourth connecting member can swing in a substantially orthogonal direction with respect to a plane including the ring member, with a connecting portion with the ring member as a swing center.
In the second plane, the maximum expansion / contraction direction is 45 ° and the expansion / contraction phase of the ring member is 90 ° different from the vibration in the first in-plane cos 2θ mode and the vibration in the first in-plane cos 2θ mode. cos 2θ mode vibration is simultaneously generated in the ring member, and the expansion amount of the ring member in the first axial direction and the second axial direction in the first in-plane cos 2θ mode vibration, and the second plane 2-dimensional light according to any one of claims 1 to 3, characterized in that the amount of extension of the third axis direction as the fourth axis direction of the ring member in the vibration of the inner cos2θ mode is increased or decreased with time Scanning device.
前記第3接続部材の接続部分は、前記第4軸方向に凸状に屈曲し、前記第4接続部材の接続部分は、前記第3軸方向に凸状に屈曲したことを特徴とする請求項4に記載の2次元走査装置。 The connection portion of the third connection member is bent in a convex shape in the fourth axis direction, and the connection portion of the fourth connection member is bent in a convex shape in the third axis direction. 4. The two-dimensional optical scanning device according to 4.
JP2007209014A 2007-08-10 2007-08-10 Two-dimensional optical scanning device Active JP5142623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209014A JP5142623B2 (en) 2007-08-10 2007-08-10 Two-dimensional optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209014A JP5142623B2 (en) 2007-08-10 2007-08-10 Two-dimensional optical scanning device

Publications (2)

Publication Number Publication Date
JP2009042607A JP2009042607A (en) 2009-02-26
JP5142623B2 true JP5142623B2 (en) 2013-02-13

Family

ID=40443379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209014A Active JP5142623B2 (en) 2007-08-10 2007-08-10 Two-dimensional optical scanning device

Country Status (1)

Country Link
JP (1) JP5142623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5641176B2 (en) * 2009-06-19 2014-12-17 国立大学法人東北大学 Electromagnetic actuator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740444B2 (en) * 2001-07-11 2006-02-01 キヤノン株式会社 Optical deflector, optical equipment using the same, torsional oscillator
GB0122256D0 (en) * 2001-09-14 2001-11-07 Bae Systems Plc Vibratory gyroscopic rate sensor
JP2003295102A (en) * 2002-04-02 2003-10-15 Nippon Signal Co Ltd:The Oscillating two-dimensional scanner
WO2006006597A1 (en) * 2004-07-12 2006-01-19 Sumitomo Precision Products Angular speed sensor
JP2006296138A (en) * 2005-04-13 2006-10-26 Sony Corp Driver element
JP2007206480A (en) * 2006-02-03 2007-08-16 Toko Inc Optical scan element
US7958781B2 (en) * 2006-12-15 2011-06-14 Atlantic Inertial Systems Limited Vibrating structure gyroscope

Also Published As

Publication number Publication date
JP2009042607A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
US9395536B2 (en) Optical deflector including separated piezoelectric portions on piezoelectric actuators and its designing method
JP6349229B2 (en) Biaxial optical deflector and manufacturing method thereof
JP4984117B2 (en) Two-dimensional optical scanner, optical device using the same, and method for manufacturing two-dimensional optical scanner
JP2015087444A (en) Optical scanner, image display device, head-mounted display, and head-up display
JP2002307396A (en) Actuator
JP2009104102A (en) Micro-electrical mechanical system (mems) scanner having actuator separated from mirror
JP7436686B2 (en) Micromirror device and optical scanning device
JP2016001275A (en) Optical scanner
JP2015087442A (en) Optical scanner, image display device, head-mounted display, and head-up display
TW201605715A (en) Micro-optical electromechanical device and method for manufacturing it
JP6131057B2 (en) Optical scanning device
JP6812575B2 (en) Micromechanical parts with oscillators, manufacturing methods for micromechanical parts, and methods for inducing motion of displaceable parts around the axis of rotation
JP2008058752A (en) Light deflector and image forming apparatus using same
JP5554895B2 (en) Oscillator structure and oscillator device using the oscillator structure
JP5142623B2 (en) Two-dimensional optical scanning device
US9097894B2 (en) Optical deflector including four coupling bars between support body and frame
JP2015184592A (en) Optical deflector
WO2010050495A1 (en) Optical scanning apparatus
JP2006313216A (en) Oscillator device and optical deflector using the same
KR101916939B1 (en) A micro scanner, and fabrication method for the micro scanner
JP2011175177A (en) Optical scanning device
JP2005250077A (en) Optical deflector
JP2004237400A (en) Planar-type actuator
JP2017207631A (en) Light deflector
WO2009128473A1 (en) Mems actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5142623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250