JP5141009B2 - Mold for width reduction of hot slabs - Google Patents

Mold for width reduction of hot slabs Download PDF

Info

Publication number
JP5141009B2
JP5141009B2 JP2006346463A JP2006346463A JP5141009B2 JP 5141009 B2 JP5141009 B2 JP 5141009B2 JP 2006346463 A JP2006346463 A JP 2006346463A JP 2006346463 A JP2006346463 A JP 2006346463A JP 5141009 B2 JP5141009 B2 JP 5141009B2
Authority
JP
Japan
Prior art keywords
slab
mold
hot slab
inclined portion
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006346463A
Other languages
Japanese (ja)
Other versions
JP2008155243A (en
Inventor
勝 三宅
克浩 竹林
由忠 喜多
啓泰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006346463A priority Critical patent/JP5141009B2/en
Publication of JP2008155243A publication Critical patent/JP2008155243A/en
Application granted granted Critical
Publication of JP5141009B2 publication Critical patent/JP5141009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、板幅プレス装置による熱間スラブの幅圧下において、圧下時のスリップを防止して安定的に幅圧下を可能とする、熱間スラブの幅圧下用金型に関する。   The present invention relates to a mold for reducing the width of a hot slab that can stably reduce the width of the hot slab while the width of the hot slab is reduced by a plate width press device.

熱間スラブの幅変更手段として、連続鋳造プロセスにて製造されたスラブを温度が低下しないうちに、あるいは一旦温度が低下した後に加熱炉に投入して所定の温度まで加熱した状態にて、該熱間スラブの板幅方向に相対峙して設置された1対の金型にて熱間スラブを板幅方向に間歇的に圧下する板幅プレス装置が用いられている。本板幅プレス装置による幅圧下では、通常、900〜2000mm程度の幅の熱間スラブに対して最大300〜350mm程度の幅圧下が行われており、連続鋳造にて同一幅に鋳造されたスラブより異なる幅の鋼板製品の製造を可能としている。これにより、連続鋳造プロセスでの幅変更回数の低減、熱間圧延プロセスでのスケジュールフリー圧延の拡大、コイル単重の増大など、鋼板製造プロセスの生産性向上や合理化に大きく寄与しており、そのメリットは板幅プレス装置による幅圧下能力が大きいほど拡大する。   As a means for changing the width of the hot slab, the temperature of the slab manufactured by the continuous casting process is not lowered, or after the temperature is once lowered, the slab is heated to a predetermined temperature in a heating furnace. 2. Description of the Related Art A plate width press apparatus that uses a pair of dies installed so as to face each other in the plate width direction of the hot slab to intermittently reduce the hot slab in the plate width direction is used. In the width reduction by this board width press apparatus, the width reduction of about 300-350mm at the maximum is normally performed with respect to the hot slab of the width of about 900-2000mm, and the slab cast to the same width by continuous casting. This makes it possible to manufacture steel plate products with different widths. This has greatly contributed to the productivity improvement and rationalization of the steel sheet manufacturing process, such as reducing the number of width changes in the continuous casting process, expanding schedule-free rolling in the hot rolling process, and increasing the coil weight. The merit increases as the width reduction capability of the plate width press device increases.

一般に、板幅プレス装置による幅圧下荷重Fは、(2)式にて近似的に求めることができる。

Figure 0005141009
In general, the width reduction load F by the plate width pressing device can be approximately obtained by the equation (2).
Figure 0005141009

kは材料の変形抵抗、Qp は圧下力関数、hはスラブ厚、L0 はスラブと金型の接触長さである。幅圧下量を増大すると、接触長さL0 が増大するため、従来の幅プレス方法では幅圧下荷重や幅圧下トルク等の幅プレス負荷の増大が避けられず、圧下モーターやフライホイール等の動力系や動力を伝達する駆動系、そしてハウジング等の装置剛性を強化する必要がある。上記(2)式より、幅圧下荷重増大の問題を解決するためには、例えば送りピッチP(プレス1パス毎のスラブの搬送距離)を短くする(通常は350〜400mm程度)、あるいは金型傾斜角度を大きくして接触長さL0 を短くすることが有効である。また、幅圧下量を増大すると、スラブの座屈やスリップなどのトラブルをも助長することから、従来の幅圧下用金型および幅プレス方法では熱間スラブの幅圧下量をあまり大きくできないという問題点があった。図10は、従来使用されている平行部と1つの傾斜部からなる従来の幅圧下用金型(以後、平金型とよぶ)による幅圧下時の、金型とスラブの接触開始状態における力の釣り合いを示す図であり、当該圧下パスでは、金型傾斜部と前パスにて金型傾斜部にて圧下されたスラブ傾斜面から接触を開始することになる。この時、長手方向のスリップが発生しないための条件は、金型の傾斜角をα、金型とスラブ間の摩擦係数をμ、接触開始時の接触力をF0 とすると、下記(3)式、(3)’式で表される。

Figure 0005141009
k is the deformation resistance of the material, Q p is the rolling force function, h is the slab thickness, and L 0 is the contact length between the slab and the mold. Increasing the width reduction amount increases the contact length L 0, so the conventional width press method cannot avoid increasing the width press load such as the width reduction load and the width reduction torque, and the power of the reduction motor, flywheel, etc. It is necessary to reinforce the rigidity of devices such as systems, drive systems that transmit power, and housings. From the above formula (2), in order to solve the problem of increasing the width reduction load, for example, the feed pitch P (slab transport distance for each pass of the press) is shortened (usually about 350 to 400 mm), or the die It is effective to shorten the contact length L 0 by increasing the tilt angle. In addition, increasing the width reduction amount also promotes troubles such as buckling and slipping of the slab, so the conventional width reduction mold and width pressing method cannot increase the width reduction amount of the hot slab so much. There was a point. FIG. 10 shows the force in the contact start state between the mold and the slab when the width is reduced by a conventional width reduction mold (hereinafter referred to as a flat mold) having a parallel portion and one inclined portion. In the reduction pass, the contact starts from the mold inclined portion and the slab inclined surface that is reduced by the mold inclined portion in the front pass. At this time, the conditions for preventing the occurrence of slip in the longitudinal direction are as follows. When the inclination angle of the mold is α, the friction coefficient between the mold and the slab is μ, and the contact force at the start of contact is F 0 , the following (3) It is represented by the formula (3) ′.
Figure 0005141009

通常、板幅プレス装置による幅圧下では、傾斜部の角度が12°程度であり、(2)’の関係を満たすためには摩擦係数は0.21以上でなければならない。また、長手方向のみならず、板厚方向のスリップによるスラブのねじれを防止するため、金型圧下面を粗面化して摩擦係数を0.3以上に調整する技術が提案されている(例えば特許文献1参照)。   Normally, under the width reduction by the plate width press apparatus, the angle of the inclined portion is about 12 °, and the friction coefficient must be 0.21 or more in order to satisfy the relationship (2) ′. Further, in order to prevent the slab from being twisted not only in the longitudinal direction but also in the thickness direction, a technique has been proposed in which the friction surface of the mold is roughened to adjust the friction coefficient to 0.3 or more (for example, a patent). Reference 1).

この他、送りピッチや金型の傾斜角の設定により大幅圧下時のスリップを防止する方法も提案されている(例えば特許文献2参照)。特許文献2では、下記(4)式を満たすように送りピッチ、あるいは金型の傾斜角αを設定することを特徴としている。

Figure 0005141009
In addition to this, a method for preventing slipping during significant reduction by setting the feed pitch and the inclination angle of the mold has also been proposed (for example, see Patent Document 2). Patent Document 2 is characterized in that the feed pitch or the inclination angle α of the mold is set so as to satisfy the following expression (4).
Figure 0005141009

ΔWは片側の金型による幅圧下量(mm)である。通常、板幅プレス装置による幅圧下では、傾斜部の角度が12°程度であり、例えば幅圧下量を300mmとすると、上記(4)式による設定では送りピッチPは706mm以上となり、本条件では金型平行部がスラブ側面の未圧下部と接触を開始するため、幅圧下開始時にスリップが発生することはない。また、特許文献2では、金型傾斜部に第2の平行部を形成し、当該パスでは、前パスにてこの第2の平行部にて圧下された部分と金型下面の平行部が接触を開始するように金型形状と送りピッチを設定することにより、幅圧下時のスリップを防止する方法が開示されている。 ΔW is a width reduction amount (mm) by a mold on one side. Normally, when the width is reduced by the plate width press apparatus, the angle of the inclined portion is about 12 °. For example, when the width reduction amount is 300 mm, the feed pitch P is 706 mm or more in the setting according to the above equation (4). Since the mold parallel part starts to contact the unpressed lower part on the side surface of the slab, no slip occurs at the start of width reduction. Moreover, in patent document 2, the 2nd parallel part is formed in a metal mold | die inclination part, and the part pressed down in this 2nd parallel part by the front pass and the parallel part of a metal mold | die lower surface contact in the said path | pass. A method is disclosed in which slippage at the time of width reduction is prevented by setting a mold shape and a feed pitch so as to start.

しかし、前記した従来技術には、各々以下のような問題点を有していた。   However, each of the prior arts described above has the following problems.

まず、上記(2)式より類推される大幅圧下時の幅圧下荷重を低減させるための方策として、送りピッチPを短くしてスラブと金型との接触長さを低減させる方法では、スラブ先端から尾端までを幅圧下する時間が増大するため、生産性を低下させるとともにスラブの温度低下を引き起こし、熱間圧延での所望の仕上温度が確保できなくなる。また、金型傾斜角度を大きくすることによりスラブと金型との接触長さを低減させる方法では、上記(3)’式の関係より金型とスラブの接触開始時のスリップを助長し、安定的な幅圧下が困難となる問題点があった。   First, as a measure for reducing the width reduction load at the time of significant reduction estimated from the above formula (2), in the method of reducing the contact length between the slab and the mold by shortening the feed pitch P, the slab tip Since the time required for width reduction from the tip to the tail increases, productivity is lowered and the temperature of the slab is lowered, so that a desired finishing temperature in hot rolling cannot be secured. Moreover, in the method of reducing the contact length between the slab and the mold by increasing the mold inclination angle, the slip at the start of contact between the mold and the slab is promoted and stabilized by the relationship of the above formula (3) ′. There is a problem in that it is difficult to reduce the width of the paper.

特許文献1に開示されている金型圧下面を粗面化し、摩擦係数を高くして大幅圧下を可能とする方法では、金型を交換した直後はよくても、圧下にともなう金型圧下面性状の変化をコントロールすることが困難であり、絶えず摩擦係数を高い状態に保つためには頻繁に金型を交換しなければならず、生産性の低下や頻繁な金型圧下面の仕上加工により金型寿命が短くなるという問題点があった。   In the method of roughening the die pressing surface disclosed in Patent Document 1 and increasing the coefficient of friction to enable significant reduction, the die pressing surface that accompanies the pressing may be used immediately after the die is replaced. It is difficult to control the change in properties, and in order to keep the coefficient of friction constantly high, it is necessary to change the mold frequently. Due to a decrease in productivity and frequent finish processing of the mold pressure lower surface There was a problem that the mold life was shortened.

特許文献2に開示されている(4)式による送りピッチP、あるいは金型の傾斜角αを設定する方法では、大幅圧下時のスリップは防止できても種々の問題点を有している。まず、(4)式に基づき送りピッチを調整する場合、例えば金型傾斜角度αを12°、幅圧下量Wを300mmとすると、送りピッチPを706mm以上としなければならず、通常350〜400mmに設定されている送りピッチの2倍程度となってしまい、幅圧下荷重が大幅に増大することが避けられない。また、(4)式により金型傾斜角度αを調整する場合、例えば幅圧下量Wを300mm、送りピッチPを400mmとすると、金型傾斜角度αは20.6°以上とすることが必要となる。しかしながら、金型傾斜角度が大きくなると、幅圧下によってスラブ端部に形成されるドッグボーンが過大となり、その後の水平圧延による幅戻りが大きくなる。すなわち、下記(5)式で定義される幅圧下効率ηが悪化するため、所望の製品幅を得るために必要な幅圧下量を大きく設定する必要があり、これにより幅圧下荷重の増大を招くという問題点があった。

Figure 0005141009
The method of setting the feed pitch P or the mold inclination angle α disclosed in Patent Document 2 (4) has various problems even if slippage during drastic reduction can be prevented. First, when adjusting the feed pitch based on the formula (4), for example, if the mold inclination angle α is 12 ° and the width reduction amount W is 300 mm, the feed pitch P must be 706 mm or more, and is usually 350 to 400 mm. Therefore, it is inevitable that the width reduction load will increase significantly. When the mold inclination angle α is adjusted by the equation (4), for example, when the width reduction amount W is 300 mm and the feed pitch P is 400 mm, the mold inclination angle α needs to be 20.6 ° or more. Become. However, when the mold inclination angle increases, the dogbone formed at the end of the slab due to the width reduction becomes excessive, and the width return due to the subsequent horizontal rolling increases. That is, since the width reduction efficiency η defined by the following equation (5) deteriorates, it is necessary to set a large amount of width reduction necessary to obtain a desired product width, which causes an increase in width reduction load. There was a problem.
Figure 0005141009

0 はスラブ幅、W1 は板幅プレス装置による幅圧下後のスラブ幅、W2 はW1 の状態から幅圧下前のスラブ厚みまで1パス水平圧延を行った後のスラブ幅である。また、ドッグボーンが過大になると、その後の水平圧延パス数を増やさなければならず、生産性を低下させ、かつスラブ温度を低下させる要因となる。 W 0 is the slab width, W 1 is the slab width after the width reduction by the sheet width press, and W 2 is the slab width after one-pass horizontal rolling from the state of W 1 to the slab thickness before the width reduction. Further, when the dogbone becomes excessive, the number of subsequent horizontal rolling passes must be increased, resulting in a decrease in productivity and a decrease in slab temperature.

その他、特許文献2に開示されている金型傾斜部に第2の平行部を形成し、当該パスでは、前パスにてこの第2の平行部にて圧下された部分と金型平行部が接触を開始するように金型形状と送りピッチを設定する方法では、基本的な思想としてスリップの発生は回避できるものの、大きな幅圧下を実施する場合には、圧下ストローク量、金型の離反とスラブの送り開始のタイミングの関係等から、金型とスラブが衝突する場合が発生する問題点があり、この衝突を回避できる範囲内に幅圧下量を規制せざるを得なかった。   In addition, a second parallel part is formed in the mold inclined part disclosed in Patent Document 2, and in this pass, the part parallel to the second parallel part and the mold parallel part are reduced in the previous pass. In the method of setting the mold shape and the feed pitch so as to start contact, the occurrence of slip can be avoided as a basic idea, but when performing a large width reduction, the reduction stroke amount, mold separation and Due to the relationship between the slab feed start timing and the like, there is a problem that the mold and the slab collide, and the width reduction amount has to be regulated within a range in which this collision can be avoided.

図4は、特許文献2に示されている形状の金型による幅圧下時の形態例を示す図であり、金型は熱間スラブの進行方向出側の圧下面に熱間スラブ側面に平行な金型平行部(以後、金型下面平行部とよぶ)を有し、この金型下面平行部に連続して熱間スラブの進行方向入側方向に向かって角度α1 にて広がる中間傾斜部と、中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、該中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって角度α2 にて広がる入側傾斜部を有している。図4では、金型下面平行部と中間傾斜部との交点をA点、中間傾斜部と金型中間平行部との交点をB点、該金型中間平行部と入側傾斜部との交点をC点、入側傾斜部が圧下下死点にてスラブと接触する端点をDとしている。また、A′点〜D′点は圧下下死点にて各々A点〜D点と接触する点である。以後、図4に示す形状の金型を2段金型とよぶ。 FIG. 4 is a diagram showing an example of a form at the time of width reduction by the mold having the shape shown in Patent Document 2, and the mold is parallel to the side surface of the hot slab on the pressing surface of the hot slab in the traveling direction. An intermediate slope that has a parallel mold part (hereinafter referred to as a mold lower surface parallel part) and that extends continuously at an angle α 1 toward the inward direction of the hot slab in the direction parallel to the mold lower surface parallel part. An intermediate parallel portion substantially parallel to the side surface of the hot slab continuously to the intermediate inclined portion, and a hot slab traveling direction incoming direction of the intermediate parallel portion in a hot slab advancing direction inward direction It has an entrance-side inclined portion that widens at an angle α 2 . In FIG. 4, the intersection of the mold lower surface parallel part and the intermediate inclined part is point A, the intersection of the intermediate inclined part and the mold intermediate parallel part is B point, and the intersection of the mold intermediate parallel part and the entry side inclined part Is the point C, and the end point at which the inclining portion comes into contact with the slab at the rolling dead center is D. In addition, points A ′ to D ′ are points that come into contact with points A to D, respectively, at the bottom dead center. Hereinafter, the mold having the shape shown in FIG. 4 is referred to as a two-stage mold.

次に、図4の2段金型形状を決定する際の指針を説明する。本発明では、金型とスラブのスリップを防止することを目的としており、当該パスでは、金型下面平行部が前パスにて金型中間平行部にて圧下された部分と接触を開始することを基本としている。このためには、中間傾斜角度α1 、中間傾斜部での圧下量w1 と、送りピッチPは下記(6)式を満たす必要がある。

Figure 0005141009
Next, a guideline for determining the two-stage mold shape of FIG. 4 will be described. In the present invention, the object is to prevent the mold and slab from slipping, and in this pass, the mold lower surface parallel part starts contact with the part that was pressed down by the mold middle parallel part in the previous pass. Based on. For this purpose, the intermediate inclination angle α 1 , the reduction amount w 1 at the intermediate inclination portion, and the feed pitch P must satisfy the following expression (6).
Figure 0005141009

Lは、金型下面平行部と、前パスにて金型中間平行部にて圧下された部分との当該パスでの接触長さであり、以後、平行部接触長さとよぶ。 L is the contact length in the pass between the parallel part on the lower surface of the mold and the part pressed down by the intermediate parallel part of the mold in the previous pass, and is hereinafter referred to as the parallel part contact length.

また、板幅圧下時の幅圧下荷重は、下記(7)式で示される圧下下死点での金型とスラブの接触長さにほぼ比例する。

Figure 0005141009
Moreover, the width reduction load at the time of plate width reduction is substantially proportional to the contact length of a metal mold | die and a slab in the reduction dead center shown by following (7) Formula.
Figure 0005141009

2 は、第2の傾斜部にて圧下される圧下量であり、Δfは中間平行部長さLから平行部接触長さL0を差し引いた長さである。設備保護の観点から、幅圧下荷重を過度に増大させないことが重要であり、例えば上記(7)式によって計算される接触長さL0 が、従来の幅圧下実績にて最大幅圧下を行ったときの接触長さと同等になり、かつ(6)式の関係を満たすように金型形状を決定すればよい。この際、(6)式中の平行部の接触長さLは、スリップ防止の観点からは長くしておくことが有利であるが、機械装置の構造、仕様によって送りピッチPが決まっている場合には、中間傾斜部の傾斜角α1 を大きくする、あるいは中間傾斜部の圧下量w1 を小さくすることが必要となる。また、中間傾斜部w1 と入側傾斜部w2 の和が全幅圧下量の半分となるが、全ての幅圧下条件にて前パスにて金型中間平行部にて圧下された部分から圧下を開始するためには下記(8)式の関係を満たす必要がある。

Figure 0005141009
w 2 is a reduction amount to be reduced by the second inclined portion, and Δf is a length obtained by subtracting the parallel portion contact length L 0 from the intermediate parallel portion length L. From the viewpoint of equipment protection, it is important not to excessively increase the width reduction load. For example, the contact length L 0 calculated by the above formula (7) is the maximum width reduction in the conventional width reduction results. What is necessary is just to determine a metal mold | die shape so that it may become equivalent to the contact length at the time, and the relationship of (6) Formula may be satisfy | filled. At this time, it is advantageous to make the contact length L of the parallel part in the equation (6) long from the viewpoint of slip prevention, but when the feed pitch P is determined by the structure and specifications of the mechanical device. For this, it is necessary to increase the inclination angle α 1 of the intermediate inclined portion or to reduce the reduction amount w 1 of the intermediate inclined portion. In addition, the sum of the intermediate inclined part w 1 and the entry side inclined part w 2 is half of the total width reduction amount, but it is reduced from the part that was reduced by the mold intermediate parallel part in the previous pass under all width reduction conditions. In order to start, it is necessary to satisfy the relationship of the following formula (8).
Figure 0005141009

上記(8)式を満たさない場合、当該パスでは金型中間平行部とスラブ側面から接触を開始することになるが、この場合も金型とスラブは各々の平行部同士から接触を開始することからスリップの防止は可能である。例えば、全幅圧下量を350mmとすると、上記(8)式を満たすためにはw1 は87.5mm以上でなければならない。また、w1 は圧下ストロークSより小さくなければならず、この場合にはこれらの制約からw1 の範囲が決定される。また、同じく全幅圧下量を350mmとし、(8)式を満たさない場合、すなわちw1 が87.5mm以下、w2 が87.5mm以上の場合には、w2 は圧下ストロークSより小さくなければならず、この場合にはこれらの制約からw2 の範囲が決定される。 If the above equation (8) is not satisfied, the contact starts from the middle parallel part of the mold and the side surface of the slab in this pass, but in this case, the mold and the slab also start contact from each parallel part. Therefore, it is possible to prevent slippage. For example, if the total width reduction amount is 350 mm, w 1 must be 87.5 mm or more in order to satisfy the above equation (8). In addition, w 1 must be smaller than the reduction stroke S. In this case, the range of w 1 is determined from these restrictions. Similarly, when the total width reduction amount is 350 mm and equation (8) is not satisfied, that is, when w 1 is 87.5 mm or less and w 2 is 87.5 mm or more, w 2 must be smaller than the reduction stroke S. In this case, the range of w 2 is determined from these constraints.

次に、圧下パス間にて金型とスラブの衝突が発生する条件について説明する。圧下パス間では、金型は機械装置構造によって決まる圧下ストロークSの距離だけ離反し、スラブは進行方向に向かって所定の送りピッチPだけ搬送される。通常、幅圧下プレス装置の圧下サイクルは毎分50回前後であることから、圧下パス動作1周期t0は約1.2秒である。金型が圧下死点から離反を開始して上死点に達するまでの時間を圧下パス間時間と定義すると、圧下パス間の時間tpは1周期の半分の約0.6秒程度となる。図5は、金型離反と圧下パス間でのスラブの搬送のタイミング例を示す模式図であり、金型がスラブから離反を開始した後、僅かな時間遅れtdの後にスラブの搬送が開始され、次パスにて金型の圧下方向の動作が開始されるまでの間に送りピッチPの距離だけ送られる。なお、パス間でのスラブの搬送は、金型前後に設置したピンチロールや搬送ロールにより実施される。スラブ搬送開始遅れ時間tdは、通常、0.1〜0.2sec程度であるが、極限まで短くした場合を考えると、金型下平行部と金型の第1の傾斜部のなす角度α1 が、下記(9)式で計算される送りピッチPとストロークSからなるベクトル(以後ベクトルAとよぶ)と熱間スラブの進行方向がなす角度φ0 より大きい場合、圧下パス間にて金型とスラブが衝突する可能性が発生する。

Figure 0005141009
Next, conditions for causing a collision between the mold and the slab between the reduction passes will be described. Between the reduction passes, the mold is separated by a distance of the reduction stroke S determined by the mechanical device structure, and the slab is conveyed by a predetermined feed pitch P in the traveling direction. Normally, since the rolling cycle of the width rolling press device is around 50 times per minute, one cycle t0 of the rolling pass operation is about 1.2 seconds. If the time from when the mold starts separating from the rolling dead center until reaching the top dead center is defined as the time between the rolling passes, the time tp between the rolling passes is about 0.6 seconds, which is half of one cycle. FIG. 5 is a schematic diagram showing an example of the timing of slab conveyance between the mold separation and the reduction pass. After the mold starts to separate from the slab, the slab conveyance is started after a slight time delay td. In the next pass, the sheet is fed by the distance of the feed pitch P until the operation of the mold in the pressing direction is started. In addition, conveyance of the slab between passes is implemented by the pinch roll and conveyance roll installed before and behind the mold. The slab transfer start delay time td is normally about 0.1 to 0.2 sec. However, considering the case where the slab transfer start delay time td is shortened to the limit, the angle α 1 formed by the lower parallel part of the mold and the first inclined part of the mold. Is larger than the angle φ 0 formed by the vector of the feed pitch P and the stroke S calculated by the following equation (9) (hereinafter referred to as vector A) and the hot slab travel direction, the die is placed between the reduction passes. And slab may collide.
Figure 0005141009

図6は、金型下面平行部と金型の中間傾斜部のなす角度α1 が、ベクトルAと熱間スラブの進行方向がなす角度φ0 より大きい場合の圧下パス間での金型とスラブの位置を示した例であり、熱間スラブの進行方向出側の金型平行部と金型の第1の傾斜部の交点近辺とスラブとの衝突が発生している。また、図7は、金型中間平行部と入側傾斜部のなす角度α2 がベクトルAと熱間スラブの進行方向がなす角度φ0 より大きい場合を表した例であり、この場合には中間平行部と入側傾斜部の交点近辺とスラブの衝突が発生している。スラブ搬送開始遅れ時間tdをできる限り長くする、すなわち金型がある程度スラブから離反してからスラブの搬送を開始することにより、図6、図7に示したスラブと金型の衝突は回避可能であるが、20〜30トンの重量であるスラブを俊敏に搬送するためには大きな動力が必要であり、かつ駆動系への負荷も大きく増大することから、スラブ搬送開始遅れ時間tdをあまり長くすることができないのが実情である。
特開平5−15908号公報、特許請求の範囲、図面等 特開平9−253780号公報、特許請求の範囲、図面等
FIG. 6 shows the mold and slab between the rolling passes when the angle α 1 formed by the parallel part on the lower surface of the mold and the intermediate inclined part of the mold is larger than the angle φ 0 formed by the traveling direction of the vector A and the hot slab. In this example, the slab collides with the vicinity of the intersection of the mold parallel part on the exit side in the traveling direction of the hot slab and the first inclined part of the mold. FIG. 7 shows an example in which the angle α 2 formed by the mold intermediate parallel part and the entry side inclined part is larger than the angle φ 0 formed by the vector A and the traveling direction of the hot slab. A collision of the slab with the vicinity of the intersection of the intermediate parallel part and the entry side inclined part occurs. By making the slab conveyance start delay time td as long as possible, that is, by starting the conveyance of the slab after the mold is separated from the slab to some extent, the collision between the slab and the mold shown in FIGS. 6 and 7 can be avoided. However, in order to quickly transport a slab having a weight of 20 to 30 tons, a large amount of power is required and the load on the drive system is greatly increased, so the slab transport start delay time td is made too long. The fact is that you can't.
JP-A-5-15908, claims, drawings, etc. JP-A-9-253780, claims, drawings, etc.

本発明は上述した事情に鑑みてなされたもので、板幅プレス装置による熱間スラブの幅圧下において、圧下時のスリップを防止するとともにスラブと金型との衝突を回避して、安定的に幅圧下を可能とする熱間スラブの幅圧下用金型に関するものである。   The present invention has been made in view of the above-described circumstances, and in the width reduction of the hot slab by the plate width press device, it prevents slipping during the reduction and avoids the collision between the slab and the mold and stably. The present invention relates to a die for width reduction of a hot slab that enables width reduction.

上記課題を解決するため、本発明者らは圧下パス間における金型とスラブの衝突を回避するための方策について鋭意検討し、上記の二段金型において、中間傾斜部又は入側傾斜部を多段にすることを着想した。   In order to solve the above-mentioned problem, the present inventors diligently studied a measure for avoiding the collision between the mold and the slab between the rolling passes, and in the above-described two-stage mold, the intermediate inclined part or the entrance-side inclined part is provided. Inspired to be multistage.

本発明はこれらの知見に基づきなされたもので、以下のような特徴を有する。   The present invention has been made based on these findings and has the following characteristics.

第1の発明は、熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記中間傾斜部は、前記金型平行部に連続して熱間スラブの進行方向入側方向に向かって角度α1 にて広がる第2の傾斜部と、第2の傾斜部の熱間スラブの進行方向入側端に連続して角度φにて広がる第1の傾斜部とを有し、第1の傾斜部の角度φ<第2の傾斜部の角度α1であり、
第1の傾斜部の角度φは、下式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。

Figure 0005141009
但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.) 1st invention is the metal mold | die for width reduction which rolls down the hot slab installed relatively opposite to the board width direction of a hot slab intermittently to the board width direction, and the advancing direction exit side of a hot slab A parallel mold part parallel to the side surface of the hot slab, an intermediate inclined part extending continuously in the direction of entry of the hot slab toward the entrance side of the hot slab, and the intermediate inclined part An intermediate parallel part that is continuously substantially parallel to the side surface of the hot slab, and an inlet side slope that continuously extends to the incoming side end of the hot slab in the direction of hot slab advancement toward the incoming side of the hot slab. And
The intermediate inclined portion includes a second inclined portion that is continuous with the mold parallel portion and extends at an angle α1 toward the inward direction of the hot slab, and the hot slab of the second inclined portion advances. A first inclined portion that extends continuously at an angle φ at the direction-entrance end, and the angle φ of the first inclined portion <the angle α1 of the second inclined portion,
An angle φ of the first inclined portion is a value expressed by the following expression (1), a hot slab width reduction die.
Figure 0005141009
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)

第2の発明は、熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記中間傾斜部は、前記金型平行部に連続して熱間スラブの進行方向入側方向に向かって角度φにて広がる第1の傾斜部と、第1の傾斜部の熱間スラブの進行方向入側端に連続して角度α1 にて広がる第2の傾斜部とを有し、第1の傾斜部の角度φ<第2の傾斜部の角度α1であり、
第1の傾斜部の角度φは、上式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。
The second invention is a width reduction mold for intermittently reducing the hot slab installed in the plate width direction relative to the plate width direction of the hot slab. A parallel mold part parallel to the side surface of the hot slab, an intermediate inclined part extending continuously in the direction of entry of the hot slab toward the entrance side of the hot slab, and the intermediate inclined part An intermediate parallel part that is continuously substantially parallel to the side surface of the hot slab, and an inlet side slope that continuously extends to the incoming side end of the hot slab in the direction of hot slab advancement toward the incoming side of the hot slab. And
The intermediate inclined portion includes a first inclined portion that is continuous with the mold parallel portion and spreads at an angle φ toward the inward direction of the hot slab, and the hot slab of the first inclined portion advances. A second inclined portion that extends continuously at the angle α1 at the direction-entrance end, and the angle φ of the first inclined portion is less than the angle α1 of the second inclined portion,
An angle φ of the first inclined portion is a value represented by the above formula (1), a hot slab width reduction die.

第3の発明は、熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記入側傾斜部は、前記中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって角度φにて広がる第1の傾斜部と、第1の傾斜部の熱間スラブの進行方向入側端に連続して角度α2 にて広がる第3の傾斜部とを有し、第1の傾斜部の角度φ<第3の傾斜部の角度α2であり、
第1の傾斜部の角度φは、上式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。
3rd invention is the metal mold | die for width reduction which rolls down the hot slab installed relatively opposite to the board width direction of a hot slab intermittently to a board width direction, and the advancing direction exit side of a hot slab A parallel mold part parallel to the side surface of the hot slab, an intermediate inclined part extending continuously in the direction of entry of the hot slab toward the entrance side of the hot slab, and the intermediate inclined part An intermediate parallel part that is continuously substantially parallel to the side surface of the hot slab, and an inlet side slope that continuously extends to the incoming side end of the hot slab in the direction of hot slab advancement toward the incoming side of the hot slab. And
The inlet side inclined portion includes a first inclined portion that extends continuously at an angle φ toward an inlet side direction of the hot slab in the hot slab traveling direction at the inlet side end of the intermediate parallel portion; And a third inclined portion that extends continuously at an angle α2 at the end of the hot slab in the direction of travel of the hot slab, and the angle φ of the first inclined portion <the angle α2 of the third inclined portion Yes,
An angle φ of the first inclined portion is a value represented by the above formula (1), a hot slab width reduction die.

第4の発明は、第1〜第3の発明において、熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用2段金型である熱間スラブの幅圧下用2段金型である。
第5の発明は、請求項1〜4のいずれか1項に記載の熱間スラブの幅圧下用金型を用いた熱間スラブの幅圧下方法であって、上記式(1)を満たす条件下で熱間スラブを幅圧下する方法である。
4th invention is the 1st-3rd invention WHEREIN: The two-stage metal mold | die for width reduction which squeezes the hot slab installed in the plate width direction intermittently in the plate width direction of the hot slab This is a two-stage die for width reduction of a hot slab.
5th invention is the width reduction method of the hot slab using the mold for width reduction of the hot slab of any one of Claims 1-4, Comprising: The conditions which satisfy | fill said Formula (1) This is a method of reducing the width of the hot slab.

但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.)
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)

以上、本発明による熱間スラブの幅圧下用金型を用いることにより、板幅プレス装置による熱間スラブの幅圧下において、圧下時のスリップを防止するとともにスラブと金型との衝突を回避して安定的な幅圧下が可能となる。   As described above, by using the hot slab width reduction die according to the present invention, during the hot slab width reduction by the plate width press apparatus, slippage at the time of reduction is prevented and collision between the slab and the die is avoided. And stable width reduction is possible.

図1〜3は本発明による幅圧下用金型のそれぞれ異なる形状を示す実施形態である。   1 to 3 are embodiments showing different shapes of the width reduction mold according to the present invention.

図1は、上記二段金型を改良した第1の発明に係る幅圧下用金型に対応し、幅圧下用金型による熱間スラブの幅圧下をする際の上死点位置での状態を示す。上記二段金型に対する改良点は、中間傾斜部20に二つの異なる傾斜面を形成し、そのうち金型下面平行部10に連続する第1の傾斜部22の傾斜角度をφ、第1の傾斜部に連続する第2の傾斜部24、即ち中間平行部側の傾斜角度をα1としている点である。ここで、φ<α1,傾斜角度φの領域の高さはh1である。α1、α2、w1,w2,P等の数値の決め方は、図4の二段金型の場合と同様である。   FIG. 1 corresponds to the width reduction mold according to the first invention in which the above-described two-stage mold is improved, and shows a state at the top dead center when the width of the hot slab is reduced by the width reduction mold. Indicates. The improvement with respect to the two-stage mold is that two different inclined surfaces are formed in the intermediate inclined portion 20, and the inclination angle of the first inclined portion 22 continuous to the mold lower surface parallel portion 10 is φ, the first inclination. The inclination angle of the second inclined part 24 that is continuous with the part, that is, the intermediate parallel part side is α1. Here, the height of the region of φ <α1 and the inclination angle φ is h1. The method of determining numerical values such as α1, α2, w1, w2, and P is the same as in the case of the two-stage mold in FIG.

図2は、上記二段金型を改良した第1の発明に係る幅圧下用金型に対応し、幅圧下用金型による熱間スラブの幅圧下をする際の上死点位置での状態を示す。上記二段金型に対する改良点は、中間傾斜部20に二つの異なる傾斜面を形成し、そのうち、金型下面平行部10に連続する第2の傾斜部24の傾斜角度をα1、第2の傾斜部に連続する第1の傾斜部22、即ち中間平行部側の傾斜角度をφとしている点である。ここで、φ<α1,傾斜角度φの領域の高さはh1である。α1、α2、w1,w2,P等の数値の決め方は、図4の場合と同様である。 FIG. 2 corresponds to the width reduction mold according to the first invention in which the above-described two-stage mold is improved, and shows the state at the top dead center when the width of the hot slab is reduced by the width reduction mold. Indicates. The improvement with respect to the two-stage mold is that two different inclined surfaces are formed in the intermediate inclined portion 20, and the inclination angle of the second inclined portion 24 continuing to the mold lower surface parallel portion 10 is α1, the second The first inclined portion 22 that is continuous with the inclined portion, that is, the inclination angle on the intermediate parallel portion side is φ. Here, φ <α1, the height of the region of the inclination angle phi is Ru h1 der. The method of determining numerical values such as α1, α2, w1, w2, and P is the same as in the case of FIG.

以下、図1,図2の幅圧下用金型について、補足説明図を用いて個別にその形態を説明する。   In the following, the form of the width reduction mold of FIGS. 1 and 2 will be described individually with reference to supplementary explanatory diagrams.

図8は、図6に示したように熱間スラブの進行方向出側の金型平行部と金型の中間傾斜部の交点A近辺とスラブB′近辺との衝突が発生する条件にて、図5に示した金型離反と圧下パス間でのスラブの搬送のタイミングに沿って金型とスラブを動かした場合における、金型とスラブの相対位置を示す図である。なお、w1 、w2 はおのおの中間傾斜部、入側傾斜部での圧下量であり、L1 、L2 はおのおの中間傾斜部、入側傾斜部とスラブとの接触長さである。金型は、スラブ搬送開始遅れ時間tdの間にSdだけ離反しており、その状態からスラブ搬送を開始して送りピッチPまで搬送した場合、金型A点はスラブに対して相対的に点線で示した軌跡を移動する。この場合、スラブB′点近傍にハッチングで示した領域が金型と衝突する領域となる。 FIG. 8 shows a condition in which a collision occurs between the intersection A of the mold parallel part on the exit side of the hot slab and the intermediate inclined part of the mold and the vicinity of the slab B ′ as shown in FIG. It is a figure which shows the relative position of a metal mold | die and a slab in the case of moving a metal mold | die and a slab along the timing of the mold separation shown in FIG. 5, and the conveyance of the slab between the reduction paths. Incidentally, w 1, w 2 are each intermediate inclined portion, a rolling reduction in the entry-side inclined portion, L 1, L 2 are each intermediate inclined portion, a contact length between the inlet side inclined section and the slab. The mold is separated by Sd during the slab conveyance start delay time td. When the slab conveyance is started from this state and conveyed to the feed pitch P, the mold A point is a dotted line relative to the slab. Move the locus indicated by. In this case, the hatched area in the vicinity of the slab B ′ point is the area that collides with the mold.

第1の発明では、この衝突を回避するために、図1に示すごとく金型の形状を変更している。   In the first invention, in order to avoid this collision, the shape of the mold is changed as shown in FIG.

第1の傾斜部の角度φは、図8中の破線の傾きとすればよく、前記(1)式にて算出できる。   The angle φ of the first inclined portion may be the inclination of the broken line in FIG. 8 and can be calculated by the above equation (1).

また、図8にて金型とスラブの衝突が発生する条件は下記(10)式にて表される。

Figure 0005141009
In FIG. 8, the conditions for the collision between the mold and the slab are expressed by the following equation (10).
Figure 0005141009

なお、(10)式の左辺の値は、図8中の衝突域の高さh1′に相当する。また、角度φを有する第1の傾斜部の長さは、衝突防止の回避の観点からは(10)式を満たさない範囲にて長くすることが好ましいが、実際の操業でのスラブの送りピッチ精度を勘案して決定すればよい。 The value on the left side of equation (10) corresponds to the height h 1 ′ of the collision area in FIG. Further, from the viewpoint of avoiding collision prevention, the length of the first inclined portion having the angle φ is preferably increased within a range not satisfying the expression (10), but the slab feed pitch in the actual operation. It may be determined in consideration of accuracy.

図2は、第2の発明に対応する幅圧下用金型である。図2の実施形態においても、第1の傾斜部の角度φを(1)式にて決定すればよく、第2の傾斜部の長さは(10)式を満たさない範囲にて実際の操業でのスラブの送りピッチ精度を勘案して決定すればよい。   FIG. 2 shows a width reduction mold corresponding to the second invention. In the embodiment of FIG. 2 as well, the angle φ of the first inclined portion may be determined by the equation (1), and the length of the second inclined portion is an actual operation within a range not satisfying the equation (10). It may be determined in consideration of the accuracy of the slab feed pitch.

次に、図3の幅圧下用金型は、第3の発明に対応し、二段金型に対する改良点は、入側傾斜部40に二つの異なる傾斜面を形成し、そのうち、中間平行部30に連続する第1の傾斜部42の傾斜角度をφ、それに続く第3の傾斜部44の傾斜角度をα2としている点である。ここで、φ<α2,傾斜角度φの領域の高さはh2である。ここで、φ<α1,傾斜角度φの領域の高さはh1である。α1、α2、w1,w2,P等の数値の決め方は、図4の場合と同様である。   Next, the mold for width reduction of FIG. 3 corresponds to the third aspect of the invention, and an improvement over the two-stage mold is that two different inclined surfaces are formed on the entry side inclined portion 40, of which the intermediate parallel portion The inclination angle of the first inclined portion 42 continuing to 30 is φ, and the subsequent inclined angle of the third inclined portion 44 is α2. Here, the height of the region of φ <α2 and the inclination angle φ is h2. Here, the height of the region of φ <α1 and the inclination angle φ is h1. The method of determining numerical values such as α1, α2, w1, w2, and P is the same as in FIG.

図9は、図7に示したように熱間スラブの進行方向出側の金型平行部と金型の第2の傾斜部の交点C近辺とスラブD′近辺との衝突が発生する条件にて、図5に示した金型離反と圧下パス間でのスラブの搬送のタイミングに沿って金型とスラブを動かした時の金型とスラブの相対位置を示す図である。なお、w1 、w2 はおのおの中間傾斜部、入側傾斜部での圧下量であり、L1 、L2 はおのおの中間傾斜部、入側傾斜部とスラブとの接触長さである。金型は、スラブ搬送開始遅れ時間tdの間にSdだけ離反しており、その状態からスラブ搬送を開始して送りピッチPまで搬送した場合、金型C点はスラブに呈して想定的に点線で示した軌跡を移動する。この場合、スラブD′点近傍にハッチングで示した領域が金型と衝突する領域となる。この衝突を回避するためには、図3に示すごとく、金型の形状を変更することにより可能となる。 FIG. 9 shows a condition in which the collision between the intersection C between the mold parallel part on the exit side of the hot slab and the second inclined part of the mold and the slab D ′ occurs as shown in FIG. FIG. 6 is a diagram showing a relative position between the mold and the slab when the mold and the slab are moved along the timing of the mold separation and the conveyance of the slab between the reduction paths shown in FIG. 5. Incidentally, w 1, w 2 are each intermediate inclined portion, a rolling reduction in the entry-side inclined portion, L 1, L 2 are each intermediate inclined portion, a contact length between the inlet side inclined section and the slab. The mold is separated by Sd during the slab conveyance start delay time td, and when the slab conveyance is started from that state and conveyed to the feed pitch P, the mold C point is presented to the slab and is assumed to be a dotted line. Move the locus indicated by. In this case, the hatched area in the vicinity of the slab D ′ point is the area that collides with the mold. In order to avoid this collision, it is possible to change the shape of the mold as shown in FIG.

図3の実施形態では、角度φを(1)式にて決定すればよく図9にて金型とスラブの衝突が発生する条件は下記(11)式にて表される。

Figure 0005141009
In the embodiment of FIG. 3, the angle φ may be determined by the equation (1). In FIG. 9, the condition for causing the collision between the mold and the slab is expressed by the following equation (11).
Figure 0005141009

なお、(11)式の左辺の値は、図9中の衝突域の高さh2′に相当する。入側傾斜部の長さは、(11)式を満たさない範囲にて実際の操業でのスラブの送りピッチ精度を勘案して決定すればよい。 Note that the value on the left side of the equation (11) corresponds to the height h 2 ′ of the collision area in FIG. The length of the entrance side inclined portion may be determined in consideration of the feed pitch accuracy of the slab in the actual operation within a range not satisfying the expression (11).

また、幅圧下条件によっては(10)式と(11)式が同時に満たされず、2ヶ所にて金型とスラブの衝突が発生する場合もおこりうることから、そのような場合には、第1〜第3発明に示す金型形状を複合して組み合わせた形状とすることも可能である。すなわち、中間傾斜部20が角度φの第1傾斜部22と角度α1の第2傾斜部24とを有し、かつ、入側傾斜部40が角度φの第1傾斜部42と角度α2の第3傾斜部44とを有している金型形状、或いは中間傾斜部20が角度α1の第2傾斜部24と角度φの第1傾斜部22とを有し、かつ、入側傾斜部40が角度φの第1傾斜部42と角度α2の第3傾斜部44とを有している金型形状とすることが可能である。   Further, depending on the width reduction condition, the equations (10) and (11) may not be satisfied at the same time, and a collision between the mold and the slab may occur at two locations. It is also possible to combine the mold shapes shown in the third invention and combine them. That is, the intermediate inclined portion 20 has a first inclined portion 22 having an angle φ and a second inclined portion 24 having an angle α1, and the entry-side inclined portion 40 has a first inclined portion 42 having an angle φ and a second inclined portion having an angle α2. A mold shape having three inclined portions 44, or an intermediate inclined portion 20 has a second inclined portion 24 having an angle α1 and a first inclined portion 22 having an angle φ, and an entrance inclined portion 40 is It is possible to form a mold having a first inclined portion 42 having an angle φ and a third inclined portion 44 having an angle α2.

以下、本発明の実施例を述べる。板幅プレス装置を用い、厚み235mm、幅1500mm、加熱温度1200℃の普通鋼スラブに、幅圧下サイクル毎分50回にて(イ)〜(ヘ)の条件にて板幅圧下を実施した。なお、(ハ)〜(ヘ)における本発明による幅圧下用金型を使用した実施例では、送りピッチPを400mmに固定し、(ロ)の条件を基準としてスラブと金型の接触長さを決定し、その他(6)〜(8)式の関係から金型形状を決定した。   Examples of the present invention will be described below. Using a sheet width press apparatus, sheet width reduction was performed on a normal steel slab having a thickness of 235 mm, a width of 1500 mm, and a heating temperature of 1200 ° C. under the conditions of (a) to (f) at a width reduction cycle of 50 times per minute. In the examples using the width reduction mold according to the present invention in (c) to (f), the feed pitch P is fixed to 400 mm, and the contact length between the slab and the mold on the basis of the condition (b). And the mold shape was determined from the relationship of the other formulas (6) to (8).

(イ)例1は、図4に示した金型形状にて、全幅圧下量=300mm、送りピッチP=400mmの条件にて幅圧下を実施した場合を示し、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =90mm、w2 =60mmとしている。 (A) Example 1 shows the case where the width reduction was performed under the conditions of the total width reduction amount = 300 mm and the feed pitch P = 400 mm in the mold shape shown in FIG. 4, and the equations (6) to (8) In order to satisfy the relationship, α 1 = 15 °, α 2 = 15 °, w 1 = 90 mm, and w 2 = 60 mm.

(ロ)例2は、図4に示した金型形状にて、全幅圧下量=350mm(例1の全幅圧下量300mmを350mmに増加)、送りピッチP=400mmの条件にて幅圧下を実施した場合を示し、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =90mm、w2 =85mmとしている。 (B) Example 2 is a mold shape shown in FIG. 4 and the width reduction amount is 350 mm (the width reduction amount of 300 mm in Example 1 is increased to 350 mm), and the width reduction is performed under the condition of feed pitch P = 400 mm. In this case, α 1 = 15 °, α 2 = 15 °, w 1 = 90 mm, and w 2 = 85 mm so as to satisfy the relationships of equations (6) to (8).

(ハ)例3は、図1に示した金型形状にて、全幅圧下量=350mm、送りピッチP=400mmの条件(例2と同じ条件)にて幅圧下を実施した場合を示し、接触長さが例2における金型とスラブの接触長さL0(=1223mm)と同じでかつ、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =90mm、w2 =85mmとしている。また、φ=11.8°で、第1の傾斜部の高さh1 =5mmとしている。 (C) Example 3 shows a case where width reduction was performed under the conditions (same conditions as in Example 2) of the total width reduction amount = 350 mm and the feed pitch P = 400 mm in the mold shape shown in FIG. Α 1 = 15 °, α 2 = 15 so that the length is the same as the contact length L 0 (= 1223 mm) between the mold and the slab in Example 2 and satisfies the relationship of the expressions (6) to (8). °, w 1 = 90 mm, w 2 = 85 mm. Further, φ = 11.8 ° and the height h 1 of the first inclined portion is 5 mm.

(ニ)例4は、図2に示した金型形状にて、全幅圧下量=350mm、送りピッチP=400mmの条件(例2と同じ条件)にて幅圧下を実施した場合を示し、接触長さが例2における金型とスラブの接触長さL0(=1223mm)と同じでかつ、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =90mm、w2 =85mmとしている。また、φ=11.8°で第2の傾斜部の高さh1 =5mmとしている。 (D) Example 4 shows a case where width reduction is performed under the conditions (the same conditions as in Example 2) of the total width reduction amount = 350 mm and the feed pitch P = 400 mm in the mold shape shown in FIG. Α 1 = 15 °, α 2 = 15 so that the length is the same as the contact length L 0 (= 1223 mm) between the mold and the slab in Example 2 and satisfies the relationship of the expressions (6) to (8). °, w 1 = 90 mm, w 2 = 85 mm. Further, φ = 11.8 ° and the height of the second inclined portion h 1 = 5 mm.

(ホ)例5は、図3に示した金型形状にて、全幅圧下量=350mm、送りピッチP=400mmの条件(例2と同じ条件)にて幅圧下を実施した場合を示し、例2における金型とスラブの接触長さL0(=1223mm)と接触長さが同じでかつ、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =85mm、w2 =90mmとした。また、φ=11.8°で、h2 =5mmとした。 (E) Example 5 shows a case where width reduction is performed under the conditions (the same conditions as in Example 2) of the total width reduction amount = 350 mm and the feed pitch P = 400 mm in the mold shape shown in FIG. Α 1 = 15 ° and α 2 = 15 so that the contact length L 0 (= 1223 mm) of the mold and the slab in 2 and the contact length are the same and satisfy the relationship of the expressions (6) to (8). °, w 1 = 85 mm, w 2 = 90 mm. Further, φ = 11.8 ° and h 2 = 5 mm.

(ヘ)例6は、図1に示した金型形状と図3に示した金型形状を組み合わせた金型形状にて、全幅圧下量=350mm、送りピッチP=400mmの条件(例2と同じ条件)にて幅圧下を実施した場合を示し、例2における金型とスラブの接触長さL0(=1223mm)と接触長さが同じでかつ、(6)〜(8)式の関係を満たすように、α1 =15°、α2 =15°、w1 =w2 =87.5mmとした。また、φ=11.8°で、h1 =h2 =5mmとした。なお、図1に示した金型形状と図3に示した金型形状を組み合わせた金型形状とは、中間傾斜部20が角度φの第1傾斜部22と角度α1の第2傾斜部24とを有し、かつ、入側傾斜部40が角度φの第1傾斜部42と角度α2の第3傾斜部44とを有している金型形状である。 (F) Example 6 is a mold shape in which the mold shape shown in FIG. 1 and the mold shape shown in FIG. 3 are combined, and the conditions (full width reduction amount = 350 mm, feed pitch P = 400 mm) The same condition) shows the case of width reduction, the contact length L 0 (= 1223 mm) of the mold and the slab in Example 2 is the same as the contact length, and the relationship of equations (6) to (8) In order to satisfy, α 1 = 15 °, α 2 = 15 °, and w 1 = w 2 = 87.5 mm. Further, φ = 11.8 ° and h 1 = h 2 = 5 mm. The mold shape shown in FIG. 1 and the mold shape obtained by combining the mold shapes shown in FIG. 3 are a first inclined portion 22 having an intermediate inclined portion 20 having an angle φ and a second inclined portion 24 having an angle α1. And the entry side inclined portion 40 has a first inclined portion 42 having an angle φ and a third inclined portion 44 having an angle α2.

表1に、上記(イ)〜(ヘ)の条件での幅圧下において、圧下パス間での金型とスラブの衝突の有無について示す。例1と例2は、同じ金型形状ではあるが、この従来の金型形状では幅圧下量が増加すると(例1→例2)、金型とスラブの衝突が発生した。これに対し、例3〜例6は、それぞれ第1の発明〜第3の発明に基づく傾斜部を有する金型形状であり、かつその高さh1 とh2 を適切に設定してあるので、圧下パス間にて金型とスラブの衝突が発生した(ロ)の条件(全幅圧下量、送りピッチ)であっても圧下パス間での金型とスラブの衝突は発生していない。

Figure 0005141009
Table 1 shows the presence / absence of collision between the die and the slab between the reduction passes under the width reduction under the above conditions (a) to (f). Although Example 1 and Example 2 have the same mold shape, when the width reduction amount increased in this conventional mold shape (Example 1 → Example 2), a collision between the mold and the slab occurred. On the other hand, Examples 3 to 6 are mold shapes having inclined portions based on the first to third inventions, respectively, and the heights h 1 and h 2 are appropriately set. Even under the condition (b) where the collision between the die and the slab occurred between the rolling passes (full width reduction amount, feed pitch), the die and the slab did not collide between the rolling passes.
Figure 0005141009

本発明の請求項1による金型形状を示す図。The figure which shows the metal mold | die shape by Claim 1 of this invention. 本発明の請求項2による金型形状を示す図。The figure which shows the metal mold | die shape by Claim 2 of this invention. 本発明の請求項3による金型形状を示す図。The figure which shows the metal mold | die shape by Claim 3 of this invention. 特許文献2の2段金型形状を示す図。The figure which shows the two-stage metal mold | die shape of patent document 2. FIG. 圧下パス間における、金型の離反動作、スラブの搬送動作を示す図。The figure which shows the separation | separation operation | movement of a metal mold | die and the conveyance operation | movement of a slab between reduction paths. 従来の2段金型による幅圧下にて、圧下パス間にて中間傾斜部がスラブと衝突している図。The figure which the intermediate | middle inclination part collides with a slab between the reduction passes by the width reduction by the conventional two-stage metal mold | die. 従来の2段金型による幅圧下にて、圧下パス間にて入側傾斜部がスラブと衝突している図。The figure which the entrance side inclination part collides with a slab between the reduction paths in the width reduction by the conventional two-stage metal mold | die. 従来の2段金型による幅圧下にて、圧下パス間にて中間傾斜部がスラブと衝突する場合の金型とスラブの相対的な位置を示す図。The figure which shows the relative position of a metal mold | die and a slab in case the intermediate | middle inclination part collides with a slab between the reduction paths in the width reduction by the conventional two-stage metal mold | die. 従来の2段金型による幅圧下にて、圧下パス間にて入側傾斜部がスラブと衝突する場合の金型とスラブの相対的な位置を示す図。The figure which shows the relative position of a metal mold | die and a slab in case the entrance side inclination part collides with a slab between width reduction paths by the width reduction by the conventional two-stage metal mold | die. 従来の平金型での圧下下死点における状況を示す図。The figure which shows the condition in the rolling dead center in the conventional flat metal mold | die.

符号の説明Explanation of symbols

10・・・金型下面平行部
20・・・中間傾斜部
22、42・・・第1の傾斜部(傾斜角度φ)
24・・・第2の傾斜部(傾斜角度α1)
30・・・中間平行部
40・・・入側傾斜部
44・・・第の傾斜部(傾斜角度α2)
DESCRIPTION OF SYMBOLS 10 ... Mold lower surface parallel part 20 ... Middle inclination part 22, 42 ... 1st inclination part (inclination angle (phi))
24 ... 2nd inclination part (inclination angle α1)
30 ... Intermediate parallel part 40 ... Entry side inclined part 44 ... Third inclined part (inclination angle α2)

Claims (5)

熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記中間傾斜部は、前記金型平行部に連続して熱間スラブの進行方向入側方向に向かって角度α1 にて広がる第2の傾斜部と、第2の傾斜部の熱間スラブの進行方向入側端に連続して角度φにて広がる第1の傾斜部とを有し、第1の傾斜部の角度φ<第2の傾斜部の角度α1であり、
第1の傾斜部の角度φは、下式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。
Figure 0005141009
但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.)
This is a die for width reduction that intermittently reduces the hot slab installed in the plate width direction relative to the plate width direction of the hot slab. A mold parallel part parallel to the side surface of the intermediate slab, an intermediate inclined part that extends continuously in the direction of entry of the hot slab in the direction parallel to the mold parallel part, and a hot slab continuous to the intermediate inclined part An intermediate parallel part that is substantially parallel to the side surface of the intermediate slab, and an inlet side inclined part that extends continuously in the hot slab traveling direction input side end of the intermediate parallel part toward the incoming direction of the hot slab traveling direction,
The intermediate inclined portion includes a second inclined portion that is continuous with the mold parallel portion and extends at an angle α1 toward the inward direction of the hot slab, and the hot slab of the second inclined portion advances. A first inclined portion that extends continuously at an angle φ at the direction-entrance end, and the angle φ of the first inclined portion <the angle α1 of the second inclined portion,
An angle φ of the first inclined portion is a value expressed by the following expression (1), a hot slab width reduction die.
Figure 0005141009
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)
熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記中間傾斜部は、前記金型平行部に連続して熱間スラブの進行方向入側方向に向かって角度φにて広がる第1の傾斜部と、第1の傾斜部の熱間スラブの進行方向入側端に連続して角度α1 にて広がる第2の傾斜部とを有し、第1の傾斜部の角度φ<第2の傾斜部の角度α1であり、
第1の傾斜部の角度φは、下式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。
Figure 0005141009
但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.)
This is a die for width reduction that intermittently reduces the hot slab installed in the plate width direction relative to the plate width direction of the hot slab. A mold parallel part parallel to the side surface of the intermediate slab, an intermediate inclined part that extends continuously in the direction of entry of the hot slab in the direction parallel to the mold parallel part, and a hot slab continuous to the intermediate inclined part An intermediate parallel part that is substantially parallel to the side surface of the intermediate slab, and an inlet side inclined part that extends continuously in the hot slab traveling direction input side end of the intermediate parallel part toward the incoming direction of the hot slab traveling direction,
The intermediate inclined portion includes a first inclined portion that is continuous with the mold parallel portion and spreads at an angle φ toward the inward direction of the hot slab, and the hot slab of the first inclined portion advances. A second inclined portion that extends continuously at the angle α1 at the direction-entrance end, and the angle φ of the first inclined portion is less than the angle α1 of the second inclined portion,
An angle φ of the first inclined portion is a value expressed by the following expression (1), a hot slab width reduction die.
Figure 0005141009
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)
熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用金型であり、熱間スラブの進行方向出側の圧下面に、熱間スラブ側面に平行な金型平行部と、この金型平行部に連続して熱間スラブの進行方向入側方向に向かって広がる中間傾斜部と、この中間傾斜部に連続して熱間スラブの側面に略平行な中間平行部と、この中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって広がる入側傾斜部とを有し、
前記入側傾斜部は、前記中間平行部の熱間スラブ進行方向入側端に連続して熱間スラブの進行方向入側方向に向かって角度φにて広がる第1の傾斜部と、第1の傾斜部の熱間スラブの進行方向入側端に連続して角度α2 にて広がる第3の傾斜部とを有し、第1の傾斜部の角度φ<第3の傾斜部の角度α2であり、
第1の傾斜部の角度φは、下式(1)で表わされる値であることを特徴とする熱間スラブの幅圧下用金型。
Figure 0005141009
但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.)
This is a die for width reduction that intermittently reduces the hot slab installed in the plate width direction relative to the plate width direction of the hot slab. A mold parallel part parallel to the side surface of the intermediate slab, an intermediate inclined part that extends continuously in the direction of entry of the hot slab in the direction parallel to the mold parallel part, and a hot slab continuous to the intermediate inclined part An intermediate parallel part that is substantially parallel to the side surface of the intermediate slab, and an inlet side inclined part that extends continuously in the hot slab traveling direction input side end of the intermediate parallel part toward the incoming direction of the hot slab traveling direction,
The inlet side inclined portion includes a first inclined portion that extends continuously at an angle φ toward an inlet side direction of the hot slab in the hot slab traveling direction at the inlet side end of the intermediate parallel portion; And a third inclined portion that extends continuously at an angle α2 at the end of the hot slab in the direction of travel of the hot slab, and the angle φ of the first inclined portion <the angle α2 of the third inclined portion Yes,
An angle φ of the first inclined portion is a value expressed by the following expression (1), a hot slab width reduction die.
Figure 0005141009
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)
熱間スラブの板幅方向に相対峙して設置された熱間スラブを板幅方向に間歇的に圧下する幅圧下用2段金型である、請求項1〜3のいずれか1項に記載の熱間スラブの幅圧下用金型。 The two-stage mold for width reduction which is a two-stage die for width reduction that intermittently reduces the hot slab installed in the plate width direction relative to the plate width direction of the hot slab. Dies for width reduction of hot slabs. 請求項1〜4のいずれか1項に記載の熱間スラブの幅圧下用金型を用いた熱間スラブの幅圧下方法であって、下記式(1)を満たす条件下で熱間スラブを幅圧下する方法。
Figure 0005141009
但し、
S:圧下ストローク(mm)
P:送りピッチ(mm)
td:スラブ搬送開始遅れ時間(sec.)
tp:金型が圧下死点から離反を開始して上死点に達するまでの時間;圧下パス間時間(sec.)
A hot slab width reduction method using the hot slab width reduction mold according to any one of claims 1 to 4, wherein the hot slab is subjected to the following condition (1). How to reduce the width.
Figure 0005141009
However,
S: Reduction stroke (mm)
P: Feed pitch (mm)
td: Slab transfer start delay time (sec.)
tp: time until the mold starts to come off from the rolling dead center and reaches the top dead center; time between rolling passes (sec.)
JP2006346463A 2006-12-22 2006-12-22 Mold for width reduction of hot slabs Expired - Fee Related JP5141009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006346463A JP5141009B2 (en) 2006-12-22 2006-12-22 Mold for width reduction of hot slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006346463A JP5141009B2 (en) 2006-12-22 2006-12-22 Mold for width reduction of hot slabs

Publications (2)

Publication Number Publication Date
JP2008155243A JP2008155243A (en) 2008-07-10
JP5141009B2 true JP5141009B2 (en) 2013-02-13

Family

ID=39656735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006346463A Expired - Fee Related JP5141009B2 (en) 2006-12-22 2006-12-22 Mold for width reduction of hot slabs

Country Status (1)

Country Link
JP (1) JP5141009B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336902A (en) * 1986-07-31 1988-02-17 Sumitomo Metal Ind Ltd Cross rolling down method for hot slab
JP2687611B2 (en) * 1989-08-24 1997-12-08 石川島播磨重工業株式会社 Width reduction pressing method and press die
JPH03174902A (en) * 1989-09-06 1991-07-30 Sumitomo Metal Ind Ltd Method and device for width-sizing hot slab
JPH084810B2 (en) * 1991-07-09 1996-01-24 住友金属工業株式会社 Slab width reduction method, mold and width reduction press machine
ATE200234T1 (en) * 1995-07-19 2001-04-15 Sms Demag Ag BUZZING TOOL OF A PAIR OF BUZZING TOOLS FOR THE DEFORMATION OF CONTINUOUS CAST SLABES IN A SLAB BUDDING PRESS
JPH08224605A (en) * 1995-11-27 1996-09-03 Kawasaki Steel Corp Width drawing down press device for hot slab and width drawing down press method using the same
JP3229542B2 (en) * 1996-03-25 2001-11-19 川崎製鉄株式会社 Continuous width pressing method for hot slab

Also Published As

Publication number Publication date
JP2008155243A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP2009202185A (en) Rolling method using reversible rolling mill, and manufacturing method for hot-rolled steel strip
KR102192629B1 (en) Method for producing metal plate with protruding ridge, metal plate with protruding ridge, and structural component
JP2016078057A (en) Slab camber suppression method, camber suppression device, and slab guiding device
JP5141009B2 (en) Mold for width reduction of hot slabs
JP5962283B2 (en) Hot slab shape adjustment method
JP4784334B2 (en) Width pressing method using die for hot slab width reduction and die used in the method
JP2008238235A (en) Width press method in hot rolling, and method of manufacturing hot-rolled metal plate by using the same
JP6365626B2 (en) Slab shape adjustment method
JP5141282B2 (en) Width reduction mold for hot slab and width reduction method
JP6627730B2 (en) Hot slab width reduction device, hot slab width reduction method, and hot rolled steel sheet manufacturing method
JP2009006361A (en) Hot-rolling method
JP2018130765A (en) Rolling method for billet, and rolling facility
JP5024099B2 (en) Width reduction mold for hot slab and width reduction method
JP5377155B2 (en) Rolling method of steel strip
JP5042690B2 (en) Slab width reduction equipment
JPH0655202A (en) Method for rolling warm rolled strip
JP2008254034A (en) Method of edging metal slab
JP2570306B2 (en) Slab width sizing method by press
JP2004058129A (en) Method for preventing surface flaw on cast slab, and its cast slab
JP6172110B2 (en) Hot rolled steel sheet rolling method
JPH04147701A (en) Cross sizing method for hot slab
JPH1094801A (en) Method for pressing width of hot slab
JP6915595B2 (en) How to reduce the width of the slab
JP6005581B2 (en) Press mold
JP2010064123A (en) Method for shaping slab by sizing press

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees