JP5139846B2 - Silver fine powder and silver ink excellent in affinity with ketone - Google Patents

Silver fine powder and silver ink excellent in affinity with ketone Download PDF

Info

Publication number
JP5139846B2
JP5139846B2 JP2008061429A JP2008061429A JP5139846B2 JP 5139846 B2 JP5139846 B2 JP 5139846B2 JP 2008061429 A JP2008061429 A JP 2008061429A JP 2008061429 A JP2008061429 A JP 2008061429A JP 5139846 B2 JP5139846 B2 JP 5139846B2
Authority
JP
Japan
Prior art keywords
silver
particle diameter
amine
tem
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008061429A
Other languages
Japanese (ja)
Other versions
JP2009215619A (en
Inventor
王高 佐藤
信也 佐々木
太郎 中野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008061429A priority Critical patent/JP5139846B2/en
Publication of JP2009215619A publication Critical patent/JP2009215619A/en
Application granted granted Critical
Publication of JP5139846B2 publication Critical patent/JP5139846B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、有機物質に被覆された銀ナノ粒子からなる銀微粉であって、特にケトンのうち沸点が比較的高い物質との親和性に優れた銀微粉に関する。また、その銀微粉が沸点が比較的高いケトン溶媒に分散した銀インクに関する。なお、本明細書においては、粒子径が40nm以下の粒子を「ナノ粒子」と呼び、ナノ粒子で構成される粉体を「微粉」と呼んでいる。   The present invention relates to a silver fine powder composed of silver nanoparticles coated with an organic substance, and particularly to a silver fine powder excellent in affinity with a substance having a relatively high boiling point among ketones. The present invention also relates to a silver ink in which the silver fine powder is dispersed in a ketone solvent having a relatively high boiling point. In the present specification, particles having a particle diameter of 40 nm or less are referred to as “nanoparticles”, and a powder composed of nanoparticles is referred to as “fine powder”.

銀ナノ粒子は活性が高く、低温でも焼結が進むため、耐熱性の低い素材に対するパターニング材料として着目されて久しい。特に昨今ではナノテクノロジーの進歩により、シングルナノクラスの粒子の製造も比較的簡便に実施できるようになってきた。   Silver nanoparticles have been attracting attention as a patterning material for materials with low heat resistance because of their high activity and sintering at low temperatures. In recent years, in particular, due to advances in nanotechnology, it has become possible to manufacture single nanoclass particles relatively easily.

特許文献1には酸化銀を出発材料として、アミン化合物を用いて銀ナノ粒子を大量に合成する方法が開示されている。また、特許文献2にはアミンと銀化合物原料を混合し、溶融させることにより銀ナノ粒子を合成する方法が開示されている。非特許文献1には銀ナノ粒子を用いたペーストを作成することが記載されている。特許文献4には液中での分散性が極めて良好な銀ナノ粒子を製造する技術が開示されている。一方、特許文献3には有機保護材Aで保護した金属ナノ粒子が存在する非極性溶媒に、金属粒子との親和性の良いメルカプト基等の官能基を持つ有機保護材Bが溶解した極性溶媒を加えて、撹拌混合することにより、金属ナノ粒子の保護材をAからBに交換する手法が開示されている。   Patent Document 1 discloses a method for synthesizing a large amount of silver nanoparticles using an amine compound using silver oxide as a starting material. Patent Document 2 discloses a method of synthesizing silver nanoparticles by mixing and melting an amine and a silver compound raw material. Non-Patent Document 1 describes making a paste using silver nanoparticles. Patent Document 4 discloses a technique for producing silver nanoparticles having extremely good dispersibility in a liquid. On the other hand, Patent Document 3 discloses a polar solvent in which an organic protective material B having a functional group such as a mercapto group having a good affinity for metal particles is dissolved in a nonpolar solvent in which metal nanoparticles protected by the organic protective material A are present. Is added, and a method of exchanging the protective material for metal nanoparticles from A to B by stirring and mixing is disclosed.

特開2006−219693号公報JP 2006-219893 A 国際公開第04/012884号パンフレットInternational Publication No. 04/012884 Pamphlet 特開2006−89786号公報JP 2006-89786 A 特開2007−39718号公報JP 2007-39718 A 中許昌美ほか、「銀ナノ粒子の導電ペーストへの応用」、化学工業、化学工業社、2005年10月号、p.749−754Nakami Masami et al., “Application of Silver Nanoparticles to Conductive Pastes”, Chemical Industry, Chemical Industry, October 2005, p.749-754

銀ナノ粒子の表面は有機保護材により被覆されているのが通常である。この保護材は銀粒子合成反応時に粒子同士を隔離する役割を有する。したがって、ある程度分子量の大きいものを選択することが有利である。分子量が小さいと粒子間距離が狭くなり、湿式の合成反応では反応中に焼結が進んでしまう場合がある。そうなると粒子が粗大化し銀微粉の製造が困難になる。   The surface of the silver nanoparticles is usually covered with an organic protective material. This protective material has a role of separating the particles from each other during the silver particle synthesis reaction. Therefore, it is advantageous to select one having a molecular weight that is somewhat large. If the molecular weight is small, the distance between particles becomes narrow, and in a wet synthesis reaction, sintering may progress during the reaction. If it becomes so, a particle will become coarse and manufacture of a silver fine powder will become difficult.

一方、銀粒子をインクとして利用する場合には、用途に応じて適切な有機媒体を選択することが望ましい。例えばケトン系の有機物質は銀ペーストの溶剤として使用されており、銀の導電塗膜に用いる溶剤として既に実績がある。このため、導電ペースト用の添加剤として、ケトン溶剤に溶解や分散がしやすいなど、適合性の高い多くのペースト粘度調整材やチキソ性調整用添加剤やそれらを利用した粘度やチキソ性の調整手法がすでに開発されて、知見が蓄積されている。ペーストを望みの特性に調整しようとする場合、これらの添加剤や調整手法が利用できるという、利点がある。   On the other hand, when using silver particles as ink, it is desirable to select an appropriate organic medium according to the application. For example, ketone-based organic substances are used as a solvent for silver paste, and have already been used as a solvent for silver conductive coatings. For this reason, many paste viscosity modifiers and thixotropic additives that are highly compatible, such as easy to dissolve and disperse in ketone solvents, as additives for conductive paste, and adjustment of viscosity and thixotropy using them Methods have already been developed and knowledge has been accumulated. When trying to adjust the paste to the desired properties, there is an advantage that these additives and adjustment techniques can be used.

しかしながら、ケトン系の有機物質と親和性が良好な銀微粉はこれまでに知られていない。銀微粉は、粒子表面を覆う保護材(界面活性剤)の種類によって適用可能な分散媒体の種類が大きく制限される。従来、製造上の制約などから、保護材の種類に対する選択の自由度は非常に小さく、用途に応じて適切な保護材を選択することは極めて困難な状況にある。   However, no silver fine powder having a good affinity for ketone organic substances has been known so far. As for silver fine powder, the kind of applicable dispersion medium is largely limited by the kind of protective material (surfactant) covering the particle surface. Conventionally, the degree of freedom in selecting the type of protective material is very small due to manufacturing restrictions and the like, and it is extremely difficult to select an appropriate protective material according to the application.

本発明はこのような現状に鑑み、特に、ケトン系の有機化合物のなかでも、比較的沸点が高く、銀ナノ粒子を用いた導電膜形成のために有利であると考えられる、イソホロン(C914O)、アセトフェノン(C88O)、2−メチルシクロヘキサノン(C712O)などに対して親和性(すなわち分散性)が良好な銀ナノ粒子を提供しようというものである。 The present invention has been made in view of such a situation, in particular, among the organic compounds of ketone type, a relatively high boiling point, it is considered to be advantageous for the conductive film formed using silver nanoparticles, isophorone (C 9 It is intended to provide silver nanoparticles having good affinity (that is, dispersibility) for H 14 O), acetophenone (C 8 H 8 O), 2-methylcyclohexanone (C 7 H 12 O), and the like.

上記目的を達成するために、本発明では、アミンを表面に有する銀粒子の当該アミンを脱着させるとともに1,4−ジヒドロキシ−2−ナフトエ酸(C1184)を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子で構成される、少なくともアセトフェノンとの親和性に優れた銀微粉が提供される。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
In order to achieve the above object, in the present invention, the amine of silver particles having an amine on the surface is desorbed and 1,4-dihydroxy-2-naphthoic acid (C 11 H 8 O 4 ) is adsorbed on the surface. An X-ray crystal particle diameter Dx of 1 to 40 nm and a CV value represented by the following (a): 40% or less of silver particles, which are excellent in at least affinity with acetophenone, are provided.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).

また、アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸(C765)を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ前記(a)で表されるCV値:40%以下の銀粒子で構成される、少なくともイソホロン、アセトフェノンおよび2−メチルシクロヘキサノンとの親和性に優れた銀微粉が提供される。 Further, X-ray crystal particle diameter Dx: 1 to 40 nm obtained by desorbing the amine of silver particles having amine on the surface and adsorbing gallic acid (C 7 H 6 O 5 ) on the surface and represented by (a) above. CV value: Silver fine powder composed of silver particles of 40% or less and excellent in affinity with at least isophorone, acetophenone and 2-methylcyclohexanone is provided.

1,4−ジヒドロキシ−2−ナフトエ酸、没食子酸はいずれもカルボキシル基(親水性)を有しており、カルボキシル基の部分でAg粒子表面に吸着すると考えられる。   1,4-dihydroxy-2-naphthoic acid and gallic acid both have a carboxyl group (hydrophilicity), and are considered to be adsorbed on the surface of the Ag particles at the carboxyl group portion.

また本発明では、下記(1)〜(3)の銀インクが提供される。
(1)アミンを表面に有する銀粒子の当該アミンを脱着させるとともに1,4−ジヒドロキシ−2−ナフトエ酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(TEM観察により測定される平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)かつ前記(a)で表されるCV値:40%以下の銀粒子、およびアミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)かつ前記(a)で表されるCV値:40%以下の銀粒子の1種または2種が、アセトフェノン中に分散している銀インク。
(2)アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)かつ前記(a)で表されるCV値:40%以下の銀粒子が、イソホロン中に分散している銀インク。
(3)アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)かつ前記(a)で表されるCV値:40%以下の銀粒子が、2−メチルシクロヘキサノン中に分散している銀インク。
In the present invention, the following silver inks (1) to (3) are provided.
(1) X-ray crystal particle diameter Dx formed by desorbing the amine of silver particles having amine on the surface and adsorbing 1,4-dihydroxy-2-naphthoic acid on the surface: 1 to 40 nm, preferably 1 to 15 nm ( looking at the average particle diameter D TEM, as measured by TEM observation, D TEM: 3 to 40 nm preferably 4 to 15 nm) and the CV value represented by (a): 40% or less of silver particles, and an amine surface X-ray crystal grain diameter becomes to adsorb gallic acid on the surface together with the desorbing the amine of the silver particles having the Dx: from 1 to 40 nm and preferably viewed in 1-15 nm (average particle diameter D TEM, D TEM: 3~ 40 nm, preferably 4 to 15 nm) CV value represented by the above (a): Silver ink in which one or two kinds of silver particles having 40% or less are dispersed in acetophenone.
(2) X-ray crystal particle diameter Dx formed by desorbing the amine of silver particles having amine on the surface and adsorbing gallic acid on the surface: 1 to 40 nm, preferably 1 to 15 nm (average particle diameter D TEM , D TEM : 3 to 40 nm, preferably 4 to 15 nm) and silver ink having a CV value represented by (a) of 40% or less dispersed in isophorone.
(3) X-ray crystal grain diameter becomes to adsorb gallic acid on the surface together with the desorbing the amine of the silver particles having an amine on the surface Dx: from 1 to 40 nm and preferably viewed in 1-15 nm (average particle diameter D TEM , D TEM : 3 to 40 nm, preferably 4 to 15 nm) and silver ink having a CV value represented by (a) of 40% or less dispersed in 2-methylcyclohexanone.

本明細書においてインクとは、液状インクの他、ペースト状のものも含む。これら(1)〜(3)の銀インクにおいて、銀濃度は例えば10〜90質量%に調整されていることが好ましい。特に本発明では、極めて分散性の良好な液状の銀インクとして、銀濃度が20〜60質量%の範囲にあり、当該銀インクを撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インクが提供される。「分散状態」とは、液面近くに透明な上澄み部分が形成されず、液全体が銀粒子の存在により濁っている状態をいう。 In the present specification, the ink includes a paste in addition to the liquid ink. In these silver inks (1) to (3), the silver concentration is preferably adjusted to, for example, 10 to 90% by mass. In particular, in the present invention, as a liquid silver ink having extremely good dispersibility, the silver concentration is in the range of 20 to 60% by mass, and when the silver ink is allowed to stand after stirring, the dispersed state is maintained for at least 168 hours. Ink is provided. “Dispersed state” refers to a state in which a transparent supernatant portion is not formed near the liquid surface, and the entire liquid is cloudy due to the presence of silver particles.

本発明によれば、銀ペースト等の溶剤として実績のあるケトンのなかでも比較的沸点が高い有機化合物に対して非常に親和性の高い銀微粉が具体的に明らかにされた。また、そのようなケトン溶媒に高濃度で銀ナノ粒子が分散しており、その分散性も非常に良好である銀インクが提供された。このような銀インクはこれまで存在しなかったことから研究対象になっていなかったが、今後、その有用性が明らかにされていくものと考えられ、種々の用途への適用が期待される。   According to the present invention, silver fine powder having a very high affinity for an organic compound having a relatively high boiling point has been clarified specifically among ketones having a proven record as a solvent such as a silver paste. Further, a silver ink is provided in which silver nanoparticles are dispersed at a high concentration in such a ketone solvent, and the dispersibility is very good. Such silver ink has not been a subject of research because it has not existed so far, but its usefulness is considered to be clarified in the future, and application to various uses is expected.

従来、銀ナノ粒子の製造においては、製造上の制約から、保護材(界面活性剤)の種類を自由に選択することはできなかった。ところが、後述する方法に従えば、保護材の種類に対する選択の自由度をかなり拡大させることが可能になり、これまで存在しなかった種々の銀ナノ粒子を得ることができた。そして、カルボキシル基を有する有機化合物を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(TEM観察により測定される平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)の銀粒子が、イソホロン、アセトフェノン、2−メチルシクロヘキサノンといったケトンの液状媒体中に分散している新規な銀インクが実現された。 Conventionally, in the production of silver nanoparticles, the type of protective material (surfactant) could not be freely selected due to production limitations. However, according to the method described later, the degree of freedom of selection with respect to the type of protective material can be considerably increased, and various silver nanoparticles that have not existed so far can be obtained. Then, the organic compound becomes adsorbed onto the surface of the X-ray crystal particle diameter having a carboxyl group Dx: from 1 to 40 nm and preferably viewed in an average particle diameter D TEM, as measured by the 1-15 nm (TEM observation, D TEM: 3 A novel silver ink was realized in which silver particles (-40 nm, preferably 4-15 nm) were dispersed in a ketone liquid medium such as isophorone, acetophenone, 2-methylcyclohexanone.

アセトフェノンに対する銀ナノ粒子の分散性を顕著に向上させる保護材物質(界面活性剤)として、1,4−ジヒドロキシ−2−ナフトエ酸や没食子酸が適しており、また、イソホロン、2−メチルシクロヘキサノンに対しては没食子酸が適していることが明らかになった。これらの有機化合物はカルボキシル基を有しており、銀粒子の表面に吸着されやすい性質を持っている。   1,4-Dihydroxy-2-naphthoic acid and gallic acid are suitable as a protective material (surfactant) that remarkably improves the dispersibility of silver nanoparticles in acetophenone, and is suitable for isophorone and 2-methylcyclohexanone. In contrast, gallic acid was found to be suitable. These organic compounds have a carboxyl group and have the property of being easily adsorbed on the surface of silver particles.

このような銀ナノ粒子は、例えば「銀粒子合成工程」および「保護材置換工程」を経て得ることができる。以下、その代表的な方法を例示する。   Such silver nanoparticles can be obtained through, for example, a “silver particle synthesis step” and a “protective material replacement step”. Hereinafter, the typical method is illustrated.

《銀粒子合成工程》
特許文献4に開示されるような湿式工程により、粒径の揃った銀ナノ粒子を合成することができる。この合成法は、アルコール中またはポリオール中で、アルコールまたはポリオールを還元剤として、銀化合物を還元処理することにより銀粒子を析出させるものである。ところが、発明者らのその後の研究によれば、より大量生産に適した合成法が見出され、本出願人は特願2007−264598に開示した。これは、銀化合物を1級アミンと2−オクタノールの混合液中に溶解させ、これを120〜180℃に保持することにより2−オクタノールの還元力を利用して銀粒子を析出させるものである。ここでは、この新たな合成法を簡単に例示する。
《Silver particle synthesis process》
Silver nanoparticles having a uniform particle diameter can be synthesized by a wet process as disclosed in Patent Document 4. In this synthesis method, silver particles are precipitated by reducing the silver compound in alcohol or polyol using alcohol or polyol as a reducing agent. However, according to the inventors' subsequent studies, a synthesis method suitable for mass production was found, and the present applicant disclosed in Japanese Patent Application No. 2007-264598. In this method, silver particles are precipitated using a reducing power of 2-octanol by dissolving a silver compound in a mixed solution of a primary amine and 2-octanol and maintaining the temperature at 120 to 180 ° C. . Here, this new synthesis method is illustrated briefly.

銀イオン供給源として銀化合物(例えば硝酸銀)、析出した銀粒子の保護材として1級アミンA(不飽和結合を持つ分子量200〜400のもの、例えばオレイルアミン)、および溶媒成分であるともに還元剤でもある2−オクタノールを用意する。 Silver compound as the silver ion source (e.g. silver nitrate), (one having a molecular weight of 200 to 400 having an unsaturated bond, for example, oleylamine) a primary amine A as a protective material for precipitated silver particles, and when is a solvent component together reducing agent Prepare 2-octanol, which is also.

所定量の1級アミンA、2−オクタノールおよび銀化合物を混合して、アミンAと2−オクタノールとの混合溶媒中に銀化合物が溶解している溶液を作成する。還元反応開始時の液組成は、通常、下記(i)〜(iii)を満たす範囲で好適な条件を見出すことができる。
(i)アミンA/銀のモル比:1〜10、
(ii)2−オクタノール/銀のモル比:0.5〜15、
(iii)2−オクタノール/アミンAのモル比:0.3〜2
A predetermined amount of primary amine A, 2-octanol and a silver compound are mixed to prepare a solution in which a silver compound is dissolved in a mixed solvent of amine A and 2-octanol. The liquid composition at the start of the reduction reaction can usually find suitable conditions in a range satisfying the following (i) to (iii).
(I) Amine A / silver molar ratio: 1 to 10,
(Ii) 2-octanol / silver molar ratio: 0.5-15;
(Iii) 2-octanol / amine A molar ratio: 0.3-2

液の昇温を開始して120〜180℃の温度範囲で保持する。120℃を下回る温度では還元反応の進行が進みにくいので高い還元率を安定して得ることが難しくなる。ただし、沸点を大きく超えないようにすることが肝要である。2−オクタノールの沸点は約178℃であり、180℃程度までは許容できる。125〜178℃の範囲とすることがより好ましい。大気圧下で実施することができ、反応容器の気相部を窒素ガス等の不活性ガスでパージしながら還流状態とすることが好ましい。撹拌は、あまり強く行わなくても銀ナノ粒子を析出させることができるが、反応容器のサイズが大きくなると、ある程度の撹拌は必要となる。2−オクタノールの場合、他のアルコール(例えばイソブタノール)を使用する場合に比べ、粒径の揃った銀粒子を合成する上で、撹拌強度の自由度が拡がる。なお、2−オクタノールは初めから必要な全量を混合しておいてもよいし、昇温途中または昇温後に混合してもよい。還元反応開始後に2−オクタノールを適宜添加(追加投入)しても構わない。上記温度範囲での保持時間を0.5時間以上確保することが望ましいが、上記(i)〜(iii)を満たす液組成の場合だと1時間程度で反応はほとんど終了に近づくものと考えられ、それ以上保持時間を長くしても還元率に大きな変化は見られない。通常、3時間以下の保持時間を設定すれば十分である。還元反応が進行して銀粒子が析出すると、アミンAで被覆された銀ナノ粒子が存在するスラリーが得られる。   The temperature of the liquid is started and maintained in a temperature range of 120 to 180 ° C. At temperatures below 120 ° C., the progress of the reduction reaction is difficult to proceed, so it is difficult to stably obtain a high reduction rate. However, it is important not to greatly exceed the boiling point. The boiling point of 2-octanol is about 178 ° C., and it is acceptable up to about 180 ° C. It is more preferable to set it as the range of 125-178 degreeC. The reaction can be performed under atmospheric pressure, and it is preferable to bring the reaction vessel into a reflux state while purging the gas phase portion with an inert gas such as nitrogen gas. Although silver nanoparticles can be precipitated even if stirring is not carried out very strongly, a certain amount of stirring is required as the size of the reaction vessel increases. In the case of 2-octanol, the degree of freedom of stirring strength is broadened when synthesizing silver particles having a uniform particle diameter as compared with the case of using another alcohol (for example, isobutanol). Note that 2-octanol may be mixed in the necessary amount from the beginning, or may be mixed during or after the temperature increase. You may add (additional addition) 2-octanol suitably after a reduction reaction start. It is desirable to secure a holding time of 0.5 hours or more in the above temperature range, but in the case of a liquid composition satisfying the above (i) to (iii), the reaction is considered to be almost completed in about 1 hour. Even if the holding time is further increased, no significant change is observed in the reduction rate. Usually, it is sufficient to set a holding time of 3 hours or less. When silver particles are precipitated by the progress of the reduction reaction, a slurry in which silver nanoparticles coated with amine A are present is obtained.

次いで、上記のスラリーから、デカンテーションや遠心分離によって固形分を回収する。回収された固形分は、1級アミンAを成分とする保護材に被覆された銀ナノ粒子を主体とするものである。   Next, the solid content is recovered from the slurry by decantation or centrifugation. The recovered solid content is mainly composed of silver nanoparticles coated with a protective material containing primary amine A as a component.

上記の固形分には不純物が付着しているので、メタノールやイソプロパノールを用いた洗浄に供することが好ましい。   Since impurities are adhering to the above-mentioned solid content, it is preferable to use for washing with methanol or isopropanol.

以上のようにして、1級アミンAに被覆されたX線結晶粒子径Dx:1〜40nm好ましくは1〜15nmの銀粒子を構成することができる。透過型電子顕微鏡(TEM)を用いた粒子の観察により求まる平均粒子径DTEMは3〜40nm好ましくは4〜15nm程度の範囲である。 As described above, X-ray crystal particle diameter Dx coated with primary amine A: 1 to 40 nm, preferably 1 to 15 nm, can be formed. The average particle diameter D TEM determined by observation of particles using a transmission electron microscope (TEM) is in the range of 3 to 40 nm, preferably about 4 to 15 nm.

《保護材置換工程》
次に銀粒子に付着している保護材をアミンAから目的物質である有機化合物B(ここでは、1,4−ヒドロキシ−2−ナフトエ酸、没食子酸の1種以上)に付け替える操作を行う。本発明の銀粒子の製造方法はこの工程を採用するところに特徴がある。
有機化合物Bとしてカルボキシル基を有するものを適用する。カルボキシル基は銀に吸着しやすい性質を有する。上記のアミンAは不飽和結合を有する分子量200〜400のアミンであり、銀に対する吸着力はカルボキシル基を持つ物質に比べ弱いと考えられる。したがって、アミンAに被覆された銀粒子の表面近傍に十分な量の有機化合物Bの分子が存在していると、銀表面からアミンAが脱着するとともに有機化合物Bが吸着しやすい状況となり、比較的容易に置換が進行する。
《Protective material replacement process》
Next, an operation of changing the protective material adhering to the silver particles from amine A to organic compound B which is the target substance (here, one or more of 1,4-hydroxy-2-naphthoic acid and gallic acid) is performed. The method for producing silver particles of the present invention is characterized in that this step is employed.
An organic compound B having a carboxyl group is applied. The carboxyl group has a property of being easily adsorbed on silver. The above amine A is an amine having an unsaturated bond and a molecular weight of 200 to 400, and it is considered that the adsorbing power for silver is weaker than that of a substance having a carboxyl group. Therefore, if a sufficient amount of organic compound B molecules are present in the vicinity of the surface of the silver particles coated with amine A, the situation is such that amine A is desorbed from the silver surface and organic compound B is easily adsorbed. The replacement proceeds easily.

ただし、この置換は溶媒中で進行する。この置換工程で使用する溶媒を、ここでは溶媒Cと呼ぶ。溶媒Cとしては有機化合物Bが完全に溶解するものを採用する必要がある。具体的にはイソプロパノール、メタノール、エタノール、デカリン等の溶媒のうち、溶解性のよいものを選択すればよい。イソプロパノールに良く溶解する有機化合物Bの場合は、安全性やコスト面でイソプロパノールを選択することが有利となる場合が多い。有機化合物Bが溶解している上記のような溶媒Cの中に、アミンAに被覆された銀ナノ粒子を存在させ、30℃以上かつ溶媒Cの沸点以下の温度域で撹拌する。30℃より低温では置換が進行しにくい。溶媒Cにイソプロパノールを使用する場合だと、35〜80℃の範囲で行うことが好ましい。アミンAに被覆された粒子は一般に溶媒Cに対する分散性が悪く、液中で沈降しやすいので撹拌しなければならないが、あまり強く撹拌する必要はなく、粒子が液中に浮遊した状態を維持できる程度でよい。   However, this substitution proceeds in a solvent. The solvent used in this substitution step is referred to herein as solvent C. As the solvent C, it is necessary to employ a solvent in which the organic compound B is completely dissolved. Specifically, a solvent having good solubility may be selected from solvents such as isopropanol, methanol, ethanol and decalin. In the case of the organic compound B that dissolves well in isopropanol, it is often advantageous to select isopropanol in terms of safety and cost. In the solvent C as described above in which the organic compound B is dissolved, silver nanoparticles coated with the amine A are present and stirred in a temperature range of 30 ° C. or more and the boiling point of the solvent C or less. Substitution is difficult to proceed at a temperature lower than 30 ° C. When isopropanol is used as the solvent C, it is preferably carried out in the range of 35 to 80 ° C. Particles coated with amine A are generally poorly dispersible in solvent C and tend to settle in the liquid, so they must be stirred, but it is not necessary to stir so strongly, and the particles can remain suspended in the liquid. The degree is sufficient.

アミンAとカルボキシル基をもつ有機化合物Bの置き換え反応は、数分程度の比較的短時間で起きていると考えられるが、工業的に安定した品質のものを供給するという観点から、1時間以上の置き換え反応時間を確保することが望ましい。ただし、24時間を超えても更なる置き換え反応はあまり進行しないので、24時間以内で置き換え反応を終了させるのが実用的である。置換に要する反応時間は1〜7時間の範囲で設定することが好ましい。   The replacement reaction of amine A and organic compound B having a carboxyl group is considered to occur in a relatively short time of about several minutes, but from the viewpoint of supplying an industrially stable quality, it takes 1 hour or more. It is desirable to secure a replacement reaction time for. However, since the further replacement reaction does not proceed much even after 24 hours, it is practical to terminate the replacement reaction within 24 hours. The reaction time required for the substitution is preferably set in the range of 1 to 7 hours.

具体的には、予め有機化合物Bを溶媒Cに完全に溶解させた液を作成し、この液と、固形分として回収されたアミンAが付着している銀ナノ粒子とを1つの容器に収容し、撹拌混合すればよい。有機化合物Bが常温で液体である場合、本明細書でいう「有機化合物Bが溶解している溶媒C」とは、有機化合物Bが溶媒Cの中で分離することなく両者が均一に混ざり合っている状態を意味する。粒子中の金属Agに対する有機化合物Bの当量B/Agは、0.1〜10当量とすることが好ましい。ここで、銀1モルに対して、有機化合物B1モルが1当量に相当する。溶媒Cの液量は銀ナノ粒子が液中を浮遊するに足る量が確保される範囲で設定すればよい。   Specifically, a liquid in which organic compound B is completely dissolved in solvent C is prepared in advance, and this liquid and silver nanoparticles to which amine A recovered as a solid content is attached are contained in one container. And stirring and mixing. When the organic compound B is liquid at normal temperature, the “solvent C in which the organic compound B is dissolved” as used in this specification means that the organic compound B is uniformly mixed without separation in the solvent C. Means the state. The equivalent B / Ag of the organic compound B to the metal Ag in the particles is preferably 0.1 to 10 equivalents. Here, 1 mol of the organic compound B corresponds to 1 equivalent with respect to 1 mol of silver. The amount of the solvent C may be set within a range in which an amount sufficient for the silver nanoparticles to float in the solution is ensured.

このようにして有機化合物Bを表面に吸着させてなる銀粒子を形成させたのち、固液分離を行い、例えば「分離回収された固形分に洗浄液(例えばメタノールやイソプロパノール)を添加して超音波分散を加えた後、液を遠心分離して固形分を回収する」という操作を数回繰り返すことにより、付着している不純物を洗浄除去することが好ましい。洗浄後の粒子は、X線結晶粒子径Dxが1〜40nm好ましくは1〜15nm、TEM観察により測定される平均粒子径DTEMは3〜40nm好ましくは4〜15nmといった銀ナノ粒子であり、表面には有機化合物Bを吸着させてなる界面活性剤を有している。洗浄後の固形分を、イソホロン、アセトフェノン、2−メチルシクロヘキサノンといった目的とする溶媒中に分散させることにより銀インクを得ることができる。 After silver particles formed by adsorbing organic compound B on the surface in this way are formed, solid-liquid separation is performed. For example, “cleaning liquid (for example, methanol or isopropanol) is added to the separated solid component and ultrasonic waves are added. After adding the dispersion, it is preferable to wash and remove the adhering impurities by repeating the operation of “centrifuge the liquid to recover the solid content” several times. The particles after washing are silver nanoparticles having an X-ray crystal particle diameter Dx of 1 to 40 nm, preferably 1 to 15 nm, and an average particle diameter D TEM measured by TEM observation of 3 to 40 nm, preferably 4 to 15 nm. Has a surfactant formed by adsorbing the organic compound B. A silver ink can be obtained by dispersing the solid content after washing in a target solvent such as isophorone, acetophenone, or 2-methylcyclohexanone.

有機化合物B(保護材)が異なる2種以上の銀粒子を、それらがともに親和性に優れる溶媒中に混合して銀インクを作成することもできる。インク中の銀濃度は10質量%以上であることが望ましく、20質量%以上であることがより好ましく、30質量%以上が一層好ましい。銀濃度の上限については、良好な分散性が維持できる限り特に制限する必要はないが、概ね70質量%以下の範囲とすればよい。特に、分散性が極めて良好な銀インクとしては、例えば50質量%以下の範囲にて高歩留りの生産が可能であることがわかった。   Two or more kinds of silver particles having different organic compounds B (protective materials) can be mixed in a solvent in which both are excellent in affinity to produce a silver ink. The silver concentration in the ink is desirably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. The upper limit of the silver concentration is not particularly limited as long as good dispersibility can be maintained, but may be in the range of approximately 70% by mass or less. In particular, it has been found that a silver ink having extremely good dispersibility can be produced at a high yield, for example, in the range of 50% by mass or less.

《実施例1》
界面活性剤(金属Ag粒子表面の保護材)として、置換前の1級アミンAにはオレイルアミン、置換後の有機化合物Bには1,4−ジヒドロキシ−2−ナフトエ酸を使用し、下記工程により1,4−ジヒドロキシ−2−ナフトエ酸を吸着させてなる銀粒子を作成した。そして、この銀粒子をアセトフェノンに分散させた極めて分散性の良い銀インクの作成を試みた。
Example 1
As a surfactant (a protective material for the surface of the metal Ag particles), oleylamine is used for the primary amine A before substitution, and 1,4-dihydroxy-2-naphthoic acid is used for the organic compound B after substitution. Silver particles were prepared by adsorbing 1,4-dihydroxy-2-naphthoic acid. Then, an attempt was made to create a silver ink having extremely good dispersibility in which the silver particles were dispersed in acetophenone.

〔銀粒子合成工程〕
オレイルアミン(和光純薬株式会社製試薬)6009.2g、2−オクタノール(東京化成工業株式会社製試薬)2270.3g、硝酸銀結晶(関東化学株式会社製特級試薬)1495.6gを用意した。
2−オクタノールと、オレイルアミンと、硝酸銀結晶を混合して、硝酸銀が完全に溶解した液を作成した。配合は以下のとおりである。
・オレイルアミン/銀のモル比=2.5
・アルコール/銀のモル比=2.0
・アルコール/オレイルアミンのモル比=2.0/2.5=0.8
[Silver particle synthesis process]
6009.2 g of oleylamine (reagent manufactured by Wako Pure Chemical Industries, Ltd.), 2270.3 g of 2-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), and 1495.6 g of silver nitrate crystal (special grade reagent manufactured by Kanto Chemical Co., Ltd.) were prepared.
2-Octanol, oleylamine, and silver nitrate crystals were mixed to prepare a solution in which silver nitrate was completely dissolved. The formulation is as follows.
・ Mole ratio of oleylamine / silver = 2.5
-Alcohol / silver molar ratio = 2.0
Alcohol / oleylamine molar ratio = 2.0 / 2.5 = 0.8

上記配合の液10Lを準備し、還流器の付いた容器に移してオイルバスに載せ、プロペラにより100rpmで撹拌しながら120℃まで昇温速度1.0℃/min、次いで140℃まで昇温速度0.5℃/minで昇温した。その後、上記撹拌状態を維持しながら、140℃に1時間保持した。その際、容器の気相部に窒素ガスを500mL/minの流量で供給してパージしている。その後、加熱を止め、冷却した。   Prepare 10 L of the above mixture, transfer to a container equipped with a reflux condenser, place on an oil bath, heat up to 120 ° C. while stirring at 100 rpm with a propeller, 1.0 ° C./min, then heat up to 140 ° C. The temperature was raised at 0.5 ° C./min. Then, it maintained at 140 degreeC for 1 hour, maintaining the said stirring state. At that time, nitrogen gas is supplied to the gas phase portion of the container at a flow rate of 500 mL / min for purging. Thereafter, heating was stopped and cooling was performed.

反応後のスラリーを3日間静置した後、上澄みを除去した。その際、還元された銀が全スラリーに対して20質量%となるように上澄みの除去量を調整した。上澄み除去後のスラリー500gにイソプロパノール1700gを混合しプロペラにより400rpmで1時間撹拌し、その後、遠心分離により銀粒子を含む固形分を回収した。このようにして洗浄された固形分中にはアミンA(オレイルアミン)に被覆された銀粒子が存在している。
なお、洗浄前の上記スラリー500g中には金属Ag:約1モルが存在することが別途測定により判っている。
After the reaction, the slurry was allowed to stand for 3 days, and then the supernatant was removed. At that time, the removal amount of the supernatant was adjusted so that the reduced silver was 20% by mass with respect to the total slurry. 1700 g of isopropanol was mixed with 500 g of the slurry after removing the supernatant, and the mixture was stirred with a propeller at 400 rpm for 1 hour, and then the solid content including silver particles was recovered by centrifugation. Silver particles coated with amine A (oleylamine) are present in the solid content thus washed.
In addition, it is known by measurement separately that about 1 mol of metal Ag is present in 500 g of the slurry before washing.

別途、これと同一の条件で作成した洗浄後の固形分について、少量の固形分サンプルを採取して、下記の要領でX線結晶粒子径Dxを求めた。その結果、置換前の銀微粉のDxは約7nmであることが確認された。また、下記の要領で平均粒子径DTEMを求めた。その結果、置換前の銀微粉のDTEMは約8nmであることが確認された。
また、上記と同一の条件で作成した洗浄後の固形分から、オレイルアミンに被覆された置換前の銀微粉を回収し、昇温速度は10℃/minでTG−DTA測定を行った。そのDTA曲線の測定例を図1に示す。図1において、200〜300℃の間にある大きな山および300〜330℃の間にあるピークはアミンAであるオレイルアミンに起因するものであると考えられる。
Separately, a small amount of solid content sample was collected from the washed solid content prepared under the same conditions as above, and the X-ray crystal particle diameter Dx was determined in the following manner. As a result, it was confirmed that Dx of the silver fine powder before substitution was about 7 nm. Moreover, the average particle diameter DTEM was calculated | required in the following way. As a result, it was confirmed D TEM of the silver fine powder before substitution is about 8 nm.
Moreover, the silver fine powder before substitution coated with oleylamine was recovered from the solid content after washing prepared under the same conditions as described above, and TG-DTA measurement was performed at a heating rate of 10 ° C./min. A measurement example of the DTA curve is shown in FIG. In FIG. 1, the large peak between 200 and 300 ° C. and the peak between 300 and 330 ° C. are considered to be attributed to oleylamine, which is amine A.

<X線結晶粒子径Dxの測定>
銀粒子の固形分サンプルをガラス製セルに塗り、X線回折装置にセットし、Ag(111)面の回折ピークを用いて、下記(1)式に示すScherrerの式によりX線結晶粒径DXを求めた。X線にはCu−Kαを用いた。
Dx=K・λ/(β・cosθ) ……(1)
ただし、KはScherrer定数で、0.94を採用した。λはCu−Kα線のX線波長、βは上記回折ピークの半価幅、θは回折線のブラッグ角である。
<Measurement of X-ray crystal particle diameter Dx>
A solid sample of silver particles is applied to a glass cell, set in an X-ray diffractometer, and the diffraction peak of the Ag (111) plane is used to calculate the X-ray crystal grain size D according to Scherrer's formula shown in the following formula (1). X was determined. Cu-Kα was used for X-rays.
Dx = K · λ / (β · cos θ) (1)
However, K is a Scherrer constant and 0.94 is adopted. λ is the X-ray wavelength of the Cu—Kα ray, β is the half width of the diffraction peak, and θ is the Bragg angle of the diffraction line.

<平均粒子径DTEMの測定>
銀粒子分散液を透過型電子顕微鏡(TEM)により観察し、重なっていない独立した300個の銀粒子の粒子径を計測して、平均粒子径を算出した。
<Measurement of average particle diameter D TEM >
The silver particle dispersion was observed with a transmission electron microscope (TEM), and the particle diameters of 300 independent silver particles that did not overlap were measured to calculate the average particle diameter.

〔保護材置換工程〕
有機化合物Bとして1,4−ジヒドロキシ−2−ナフトエ酸(東京化成工業株式会社製試薬、分子量204.18)、極性溶媒Cとしてイソプロパノール(和光純薬株式会社製特級試薬、分子量60.1)を用意した。
1,4−ヒドロキシ−2−ナフトエ酸56.8gと、イソプロパノール400gを混合して、液温を40℃に保ち、イソプロパノール中に1,4−ジヒドロキシ−2−ナフトエ酸を完全に溶解させた。この液456.8g中へ、アミンA(オレイルアミン)に被覆された銀粒子が存在している前記洗浄後の固形分(Agを約1モル(約100g)含有)を添加し、プロペラにて400rpmで撹拌した。この撹拌状態を維持しながら40℃で5時間保持した。この場合、Agに対する有機化合物Bの量は0.3当量となるように有機化合物Bの仕込量を調整してある。
[Protective material replacement process]
1,4-dihydroxy-2-naphthoic acid (reagent manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 204.18) as the organic compound B, and isopropanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 60.1) as the polar solvent C. Prepared.
1,4-Hydroxy-2-naphthoic acid 56.8 g and isopropanol 400 g were mixed, the liquid temperature was kept at 40 ° C., and 1,4-dihydroxy-2-naphthoic acid was completely dissolved in isopropanol. To the liquid 456.8 g, the solid content after washing in which silver particles coated with amine A (oleylamine) are present (containing about 1 mol of Ag (about 100 g)) is added, and a propeller is used at 400 rpm. Stir with. While maintaining this stirring state, it was kept at 40 ° C. for 5 hours. In this case, the charge amount of the organic compound B is adjusted so that the amount of the organic compound B with respect to Ag is 0.3 equivalent.

得られたスラリーを3000rpm×5minの遠心分離により固液分離した。その後、「固形分にメタノールを889.7g(銀に対して約30当量)添加して400rpmにて30分間洗浄し、遠心分離にて固形分を回収する」という操作を2回行い、保護材を1,4−ジヒドロキシ−2−ナフトエ酸に置換した銀微粉サンプルを得た。
このサンプルについて、前記の方法にてTG−DTA測定を行った。そのDTA曲線の測定例を図2に示す。図1(置換前)と図2(置換後)の対比から、保護材は、アミンA(オレイルアミン)のほぼ全量が脱着し、有機化合物B(1,4−ジヒドロキシ−2−ナフトエ酸)に置き換わったものと考えられる。図4に1,4−ジヒドロキシ−2−ナフトエ酸を吸着させてなる銀粒子のTEM写真の一例を示す。
The obtained slurry was subjected to solid-liquid separation by centrifugation at 3000 rpm × 5 min. Thereafter, the operation of “889.7 g of methanol to the solid content (about 30 equivalents with respect to silver) and washing at 400 rpm for 30 minutes and collecting the solid content by centrifugation” was performed twice, and the protective material A silver fine powder sample in which 1,4-dihydroxy-2-naphthoic acid was substituted was obtained.
This sample was subjected to TG-DTA measurement by the method described above. A measurement example of the DTA curve is shown in FIG. From the comparison between FIG. 1 (before substitution) and FIG. 2 (after substitution), almost all of the amine A (oleylamine) was desorbed and replaced with the organic compound B (1,4-dihydroxy-2-naphthoic acid). It is thought that. FIG. 4 shows an example of a TEM photograph of silver particles formed by adsorbing 1,4-dihydroxy-2-naphthoic acid.

このサンプルについて上記の方法でX線結晶粒子径Dxおよび平均粒子径DTEMを測定したところ、Dxは7.56nm、DTEMは8.43nmであった。
TEMの算出に使用した個々の粒子の粒子径は、最小値Dminが6.59nm、最大値Dmaxが13.41nmであった。粒子径の標準偏差をσDとするとき、「σD/DTEM×100」の値をCV値と呼ぶ。この銀微粉のCV値は14.1%であった。CV値が小さいほど銀粒子の粒径は均一化されていると言える。銀インクの用途ではCV値が40%以下であることが望ましく、15%以下のものは非常に粒子径が揃っており、種々の微細配線用途に極めて好適である。
This for samples was measured X-ray crystal particle diameter Dx and the average particle diameter D TEM in the manner described above, Dx is 7.56nm, D TEM was 8.43Nm.
D particle diameter of each particle used in computing TEM, the minimum value D min is 6.59Nm, the maximum value D max was 13.41Nm. When the standard deviation of the particle diameter is σ D , the value of “σ D / D TEM × 100” is called CV value. The silver fine powder had a CV value of 14.1%. It can be said that the smaller the CV value, the more uniform the particle size of the silver particles. In the use of silver ink, it is desirable that the CV value is 40% or less, and those having a CV value of 15% or less have extremely uniform particle diameters and are extremely suitable for various fine wiring applications.

〔銀インク作成工程〕
上記のようにして得られた銀微粉サンプル(メタノール洗浄後、未乾燥のもの)には、金属銀、保護材、および洗浄に使用したメタノールが含まれている。この銀微粉中の正味の銀含有量を以下の方法で求めた。
[Silver ink production process]
The silver fine powder sample obtained as described above (after being washed with methanol and not dried) contains metallic silver, a protective material, and methanol used for washing. The net silver content in the silver fine powder was determined by the following method.

<銀微粉中の銀含有量>
[1]銀微粉サンプルから分取した試料の質量W0(g)を測定する。
[2]メタノールを除去するために、試料を真空乾燥機を用いて室温で30分処理する。
[3]その後、試料をマッフル炉(ヤマト科学株式会社製;FO100型)により10℃/分の昇温速度で700℃まで加熱することにより保護材を揮発させ、揮発後の試料の質量W1(g)を測定する。
[4]銀微粉サンプル中の銀含有量(質量%)=W1/W0×100により算出される。
<Silver content in fine silver powder>
[1] The mass W 0 (g) of the sample taken from the silver fine powder sample is measured.
[2] In order to remove methanol, the sample is treated for 30 minutes at room temperature using a vacuum dryer.
[3] Then, the protective material is volatilized by heating the sample to 700 ° C. at a heating rate of 10 ° C./min in a muffle furnace (manufactured by Yamato Scientific Co., Ltd .; FO100 type), and the mass W 1 of the sample after volatilization (G) is measured.
[4] silver content in the silver fine powder sample (wt%) is calculated by = W 1 / W 0 × 100 .

上記の銀微粉サンプル中の金属銀含有量(質量%)に基づいて、金属銀の質量が10.0gとなる量の銀微粉サンプルを秤量し、これをアセトフェノン(和光純薬工業製特級試薬)と混合して、金属銀+保護材+アセトフェノンの合計量に占める金属銀の含有量が50質量%となる銀粒子+アセトフェノン混合物を作成した。この混合物を超音波洗浄機(シャープ株式会社製;UT606)を用いて40℃以下で60分間処理し、銀粒子をアセトフェノン中に分散させた。次いで真空混練脱泡機(EME製;Vmini300型)により、真空引き1分、混練2分の工程を重量減少が認められなくなるまで繰り返し、液中の残存メタノールを除去した。これにより銀濃度50質量%の銀分散液(銀インク元液)が得られた。   Based on the metallic silver content (mass%) in the above-mentioned silver fine powder sample, a silver fine powder sample in which the mass of metallic silver is 10.0 g is weighed, and this is acetophenone (special grade reagent manufactured by Wako Pure Chemical Industries). And a silver particle + acetophenone mixture in which the content of metallic silver in the total amount of metallic silver + protective material + acetophenone was 50% by mass was prepared. This mixture was treated at 40 ° C. or lower for 60 minutes using an ultrasonic cleaner (manufactured by Sharp Corporation; UT606) to disperse silver particles in acetophenone. Subsequently, the process of evacuation for 1 minute and kneading for 2 minutes was repeated with a vacuum kneading defoaming machine (manufactured by EME; Vmini300 type) until no weight loss was observed, and the residual methanol in the liquid was removed. As a result, a silver dispersion (silver ink base solution) having a silver concentration of 50% by mass was obtained.

銀インク元液中には沈降しやすい銀粒子も存在しているので、優れた分散性を呈する銀インクを得るためには、そのような粒子を除去する必要がある。そこで、銀インク元液を遠心分離機(日立工機株式会社製;himacCF7D2型)により25℃の条件下で3000rpmにて30分間の遠心分離に供した。その後、上澄みを回収することにより、分散性に優れた粒子のみが分散した銀インクを得た。この銀インク中の銀濃度およびインク化効率を以下のようにして求めた。   Since silver particles that are likely to settle are also present in the silver ink base liquid, it is necessary to remove such particles in order to obtain a silver ink exhibiting excellent dispersibility. Therefore, the silver ink original solution was subjected to centrifugation at 3000 rpm for 30 minutes under a condition of 25 ° C. using a centrifuge (manufactured by Hitachi Koki Co., Ltd .; himacCF7D2 type). Thereafter, the supernatant was recovered to obtain a silver ink in which only particles having excellent dispersibility were dispersed. The silver concentration and ink formation efficiency in the silver ink were determined as follows.

<銀インク中の銀濃度>
[1]銀インクから分取した分散液試料の質量W2(g)を測定する。
[2]その分散液試料をマッフル炉(ヤマト科学株式会社製;FO100型)により10℃/分の昇温速度で700℃まで加熱することにより保護材を揮発させ、揮発後の試料の質量W3(g)を測定する。
[3]銀インク中の銀濃度(質量%)=W3/W2×100により算出される。
本例では、銀インク中の銀濃度は36.62質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。
<Silver concentration in silver ink>
[1] The mass W 2 (g) of the dispersion sample taken from the silver ink is measured.
[2] The dispersion liquid sample is heated to 700 ° C. by a muffle furnace (manufactured by Yamato Scientific Co., Ltd .; FO100 type) at a heating rate of 10 ° C./min to volatilize the protective material, and the mass W of the sample after volatilization 3 Measure (g).
[3] Silver concentration (mass%) in silver ink = W 3 / W 2 × 100
In this example, the silver concentration in the silver ink was 36.62% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles.

<インク化効率>
以下の式により求める。
インク化効率(%)=[銀インク中の銀濃度(質量%)]/[銀インク元液中の銀濃度(質量%)]×100=[銀インク中の銀濃度(質量%)]/50(質量%)×100
インク化効率は、極めて分散性に優れた銀粒子のみを回収する際の銀の歩留りに相当するものであり、高いほど望ましい。
本例では、インク化効率は73.2%と高く、これは工業化が十分可能な水準である。
<Ink conversion efficiency>
Obtained by the following formula.
Ink conversion efficiency (%) = [Silver concentration in silver ink (% by mass)] / [Silver concentration in silver ink original solution (% by mass)] × 100 = [Silver concentration in silver ink (% by mass)] / 50 (mass%) x 100
The ink conversion efficiency corresponds to the yield of silver when only silver particles having extremely excellent dispersibility are recovered, and the higher the better.
In this example, the ink conversion efficiency is as high as 73.2%, which is a level that can be industrialized sufficiently.

〔静置試験〕
次に、得られた銀インクの分散維持性を確認するため、上記銀インクを入れたガラス容器を軽く撹拌した後、前記の超音波洗浄機にて10分間の超音波分散処理を施して均一に分散させた状態とし、常温で168時間静置させた後に、液の濁りや沈降凝集の発生の有無を目視確認した。その結果、液面近くに透明な上澄み部分が形成されず、液全体が銀粒子の存在により濁っており、分散状態が維持されていることが確認された。また、容器の底には堆積している銀粒子は確認されなかった。
[Standing test]
Next, in order to confirm the dispersion maintainability of the obtained silver ink, after lightly stirring the glass container containing the silver ink, it was uniformly subjected to ultrasonic dispersion treatment for 10 minutes with the ultrasonic cleaner. And allowed to stand at room temperature for 168 hours, and then visually confirmed for the occurrence of turbidity of liquid and precipitation aggregation. As a result, it was confirmed that a transparent supernatant portion was not formed near the liquid surface, the entire liquid was cloudy due to the presence of silver particles, and the dispersed state was maintained. Further, no silver particles deposited on the bottom of the container were confirmed.

《実施例2》
有機化合物Bを没食子酸(東京化成工業株式会社製試薬、分子量170.1)に変えたことを除き、実施例1と同様の実験を行った。すなわち本例では、没食子酸を吸着させてなる銀粒子を作成して、この銀粒子をアセトフェノンに分散させた極めて分散性の良い銀インクの作成を試みた。
Example 2
An experiment similar to Example 1 was performed, except that organic compound B was changed to gallic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 170.1). That is, in this example, silver particles formed by adsorbing gallic acid were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in acetophenone.

具体的には、保護材置換工程において、没食子酸78.83gと、イソプロパノール400gを混合して、液温を40℃に保ち、イソプロパノール中に没食子酸を完全に溶解させた。この液478.83g中へ、アミンA(オレイルアミン)に被覆された銀粒子が存在している前記洗浄後の固形分(Agを約1モル(約100g)含有)を添加し、プロペラにて400rpmで撹拌した。この撹拌状態を維持しながら40℃で5時間保持した。この場合、Agに対する有機化合物Bの量は0.5当量となるように有機化合物Bの仕込量を調整してある。   Specifically, in the protective material replacement step, 78.83 g of gallic acid and 400 g of isopropanol were mixed, the liquid temperature was kept at 40 ° C., and gallic acid was completely dissolved in isopropanol. Into this liquid 478.83 g was added the solid content after washing in which silver particles coated with amine A (oleylamine) were present (containing about 1 mol of Ag (about 100 g)), and 400 rpm with a propeller. Stir with. While maintaining this stirring state, it was kept at 40 ° C. for 5 hours. In this case, the charge amount of the organic compound B is adjusted so that the amount of the organic compound B with respect to Ag is 0.5 equivalent.

得られたサンプルについてのDTA曲線の測定例を図3に示す。図1(置換前)と図3(置換後)の対比から、保護材は、アミンA(オレイルアミン)のほぼ全量が脱着し、有機化合物B(没食子酸)に置き換わったものと考えられる。図5に没食子酸を吸着させてなる銀粒子のTEM写真の一例を示す。   A measurement example of the DTA curve for the obtained sample is shown in FIG. From the comparison of FIG. 1 (before substitution) and FIG. 3 (after substitution), it is considered that the protective material was almost completely desorbed of amine A (oleylamine) and replaced with organic compound B (gallic acid). FIG. 5 shows an example of a TEM photograph of silver particles formed by adsorbing gallic acid.

このサンプルについてのDxは6.56nm、DTEMは8.53nmであった。DTEMの算出に使用した個々の粒子の粒子径は、最小値Dminが3.97nm、最大値Dmaxが13.71nmであり、この銀微粉のCV値は19.7%であった。 Dx for this sample was 6.56 nm and D TEM was 8.53 nm. Particle diameter of each particle used in computing D TEM, the minimum value D min is 3.97Nm, the maximum value D max is 13.71Nm, CV value of the silver micropowder was 19.7%.

アセトフェノンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は37.30質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は74.6%と高く、これは工業化が十分可能な水準である。168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。   A silver ink containing acetophenone as a solvent was prepared in the same manner as in Example 1. As a result, the silver concentration in the silver ink was 37.30% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. Ink conversion efficiency is as high as 74.6%, which is a level that can be industrialized sufficiently. As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

《実施例3》
銀インクの溶媒をイソホロンに変えたことを除き、実施例2と同様の実験を行った。すなわち本例では、没食子酸を吸着させてなる銀粒子を作成して、この銀粒子をイソホロンに分散させた極めて分散性の良い銀インクの作成を試みた。
Example 3
An experiment similar to that of Example 2 was performed except that the solvent of the silver ink was changed to isophorone. That is, in this example, silver particles formed by adsorbing gallic acid were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in isophorone.

没食子酸を吸着させてなる銀粒子を実施例2と同様の手法で作成し、これを用いてイソホロンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は36.56質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は73.1%と高く、これは工業化が十分可能な水準である。168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。   Silver particles formed by adsorbing gallic acid were prepared in the same manner as in Example 2, and silver ink using isophorone as a solvent was prepared in the same manner as in Example 1. As a result, silver in silver ink was obtained. The concentration was 36.56% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. Ink conversion efficiency is as high as 73.1%, which is a level that can be industrialized sufficiently. As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

《実施例4》
銀インクの溶媒を2−メチルシクロヘキサノンに変えたことを除き、実施例2と同様の実験を行った。すなわち本例では、没食子酸を吸着させてなる銀粒子を作成して、この銀粒子を2−メチルシクロヘキサノンに分散させた極めて分散性の良い銀インクの作成を試みた。
Example 4
An experiment similar to that of Example 2 was performed except that the solvent of the silver ink was changed to 2-methylcyclohexanone. That is, in this example, silver particles formed by adsorbing gallic acid were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in 2-methylcyclohexanone.

没食子酸を吸着させてなる銀粒子を実施例2と同様の手法で作成し、これを用いて2−メチルシクロヘキサノンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は44.36質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は88.7%と高く、これは工業化が十分可能な水準である。168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。   Silver particles formed by adsorbing gallic acid were prepared in the same manner as in Example 2, and a silver ink using 2-methylcyclohexanone as a solvent was prepared in the same manner as in Example 1. As a result, silver ink was obtained. The silver concentration therein was 44.36% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. The ink conversion efficiency is as high as 88.7%, which is a level that can be industrialized sufficiently. As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

オレイルアミンに被覆された保護材置換前の銀粒子についてのDTA曲線。DTA curve for silver particles before replacement of protective material coated with oleylamine. 1,4−ジヒドロキシ−2−ナフトエ酸を吸着させてなる銀粒子についてのDTA曲線。The DTA curve about the silver particle made to adsorb | suck 1, 4- dihydroxy- 2-naphthoic acid. 没食子酸を吸着させてなる銀粒子についてのDTA曲線。The DTA curve about the silver particle which makes gallic acid adsorb | suck. 1,4−ジヒドロキシ−2−ナフトエ酸を吸着させてなる銀粒子のTEM写真。A TEM photograph of silver particles formed by adsorbing 1,4-dihydroxy-2-naphthoic acid. 没食子酸を吸着させてなる銀粒子のTEM写真。TEM photograph of silver particles formed by adsorbing gallic acid.

Claims (8)

アミンを表面に有する銀粒子の当該アミンを脱着させるとともに1,4−ジヒドロキシ−2−ナフトエ酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子で構成される、少なくともアセトフェノンとの親和性に優れた銀微粉。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
X-ray crystal particle diameter Dx: 1 to 40 nm obtained by desorbing the amine of silver particles having amine on the surface and adsorbing 1,4-dihydroxy-2-naphthoic acid on the surface and represented by the following (a) CV value: Silver fine powder composed of silver particles of 40% or less and excellent in at least affinity with acetophenone.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子で構成される、少なくともイソホロン、アセトフェノンおよび2−メチルシクロヘキサノンとの親和性に優れた銀微粉。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
Silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface : CV value represented by (a): 40% or less Silver fine powder excellent in affinity with at least isophorone, acetophenone and 2-methylcyclohexanone, which is composed of particles.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに1,4−ジヒドロキシ−2−ナフトエ酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子、およびアミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子の1種または2種が、アセトフェノン中に分散している銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
X-ray crystal particle diameter Dx: 1 to 40 nm obtained by desorbing the amine of silver particles having amine on the surface and adsorbing 1,4-dihydroxy-2-naphthoic acid on the surface and represented by the following (a) CV value: Silver particles having 40% or less and silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface: 1 to 40 nm and the following (a) CV value represented: Silver ink in which one or two silver particles having a particle size of 40% or less are dispersed in acetophenone.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子が、イソホロン中に分散している銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
Silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface : CV value represented by (a): 40% or less Silver ink in which particles are dispersed in isophorone.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子が、2−メチルシクロヘキサノン中に分散している銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
Silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface : CV value represented by (a): 40% or less Silver ink in which particles are dispersed in 2-methylcyclohexanone.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに1,4−ジヒドロキシ−2−ナフトエ酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子、およびアミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子の1種または2種が、20〜60質量%の銀濃度でアセトフェノン中に分散している液状インクであって、前記液状インクを撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
X-ray crystal particle diameter Dx: 1 to 40 nm obtained by desorbing the amine of silver particles having amine on the surface and adsorbing 1,4-dihydroxy-2-naphthoic acid on the surface and represented by the following (a) CV value: Silver particles having 40% or less and silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface: 1 to 40 nm and the following (a) CV value represented: A liquid ink in which one or two kinds of silver particles of 40% or less are dispersed in acetophenone at a silver concentration of 20 to 60% by mass, and the liquid ink is allowed to stand after stirring. A silver ink that is maintained in a dispersed state for at least 168 hours.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子が、20〜60質量%の銀濃度でイソホロン中に分散している液状インクであって、前記液状インクを撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
Silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface : CV value represented by (a): 40% or less A liquid ink in which particles are dispersed in isophorone at a silver concentration of 20 to 60% by mass, and the dispersed state is maintained for at least 168 hours when the liquid ink is allowed to stand after stirring.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
アミンを表面に有する銀粒子の当該アミンを脱着させるとともに没食子酸を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmかつ下記(a)で表されるCV値:40%以下の銀粒子が、20〜60質量%の銀濃度で2−メチルシクロヘキサノン中に分散している液状インクであって、前記液状インクを撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インク。
(a)TEM観察により測定される銀粒子の粒子径において、粒子径の標準偏差をσ D 、平均粒子径をD TEM とするとき、「σ D /D TEM ×100」の値をCV値(%)とする。
Silver particles having amine on the surface X-ray crystal particle diameter Dx formed by desorbing the amine and adsorbing gallic acid on the surface : CV value represented by (a): 40% or less A liquid ink in which particles are dispersed in 2-methylcyclohexanone at a silver concentration of 20 to 60% by mass, and the dispersed state is maintained for at least 168 hours when the liquid ink is allowed to stand after stirring.
(A) In the particle diameter of silver particles measured by TEM observation, when the standard deviation of particle diameter is σ D and the average particle diameter is D TEM , the value of “σ D / D TEM × 100” is the CV value ( %).
JP2008061429A 2008-03-11 2008-03-11 Silver fine powder and silver ink excellent in affinity with ketone Expired - Fee Related JP5139846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008061429A JP5139846B2 (en) 2008-03-11 2008-03-11 Silver fine powder and silver ink excellent in affinity with ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008061429A JP5139846B2 (en) 2008-03-11 2008-03-11 Silver fine powder and silver ink excellent in affinity with ketone

Publications (2)

Publication Number Publication Date
JP2009215619A JP2009215619A (en) 2009-09-24
JP5139846B2 true JP5139846B2 (en) 2013-02-06

Family

ID=41187760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008061429A Expired - Fee Related JP5139846B2 (en) 2008-03-11 2008-03-11 Silver fine powder and silver ink excellent in affinity with ketone

Country Status (1)

Country Link
JP (1) JP5139846B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759271B2 (en) * 2005-01-12 2011-08-31 バンドー化学株式会社 Composite particle dispersion and method for producing composite particle dispersion
KR100690360B1 (en) * 2005-05-23 2007-03-09 삼성전기주식회사 Conductive ink, method for producing thereof and condoctive substrate
JP2007200775A (en) * 2006-01-27 2007-08-09 Bando Chem Ind Ltd Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
JP4983150B2 (en) * 2006-04-28 2012-07-25 東洋インキScホールディングス株式会社 Method for producing conductive coating

Also Published As

Publication number Publication date
JP2009215619A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5371247B2 (en) Silver paint and production method thereof
JP5139848B2 (en) Silver nanoparticles coated with a derivative of gallic acid
JP5252843B2 (en) Silver ink and its manufacturing method
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
EP3150306B1 (en) Coated copper particles and method for manufacturing same
JP2013151753A (en) Silver micropowder excellent in affinity for polar medium, and silver ink
JP5377483B2 (en) Composition containing fine metal particles and method for producing the same
JP2009138243A (en) Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
WO2009087919A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
JP5486886B2 (en) Copper-nickel nanoparticles and method for producing the same
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JP5162383B2 (en) Method for producing silver-coated copper fines
JP5213592B2 (en) Copper fine powder, dispersion thereof and method for producing copper fine powder
JP5274000B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP4897624B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP2009215502A (en) Silver ink containing alicyclic and aromatic hydrocarbon as solvent
JP2009102716A (en) Method for producing silver nanoparticle
JP2009215503A (en) Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent
JP5139846B2 (en) Silver fine powder and silver ink excellent in affinity with ketone
JP2009091634A (en) Method for producing silver fine powder
CN113597350B (en) Silver palladium alloy powder and application thereof
JP2009068053A (en) Method for manufacturing silver particle, and silver particle dispersion liquid
JP2024012999A (en) Copper particle and method for producing copper particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5139846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees