JP2009215502A - Silver ink containing alicyclic and aromatic hydrocarbon as solvent - Google Patents

Silver ink containing alicyclic and aromatic hydrocarbon as solvent Download PDF

Info

Publication number
JP2009215502A
JP2009215502A JP2008063048A JP2008063048A JP2009215502A JP 2009215502 A JP2009215502 A JP 2009215502A JP 2008063048 A JP2008063048 A JP 2008063048A JP 2008063048 A JP2008063048 A JP 2008063048A JP 2009215502 A JP2009215502 A JP 2009215502A
Authority
JP
Japan
Prior art keywords
silver
ink
gallate
particle diameter
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063048A
Other languages
Japanese (ja)
Inventor
Kimitaka Sato
王高 佐藤
Shinya Sasaki
信也 佐々木
Taro Nakanoya
太郎 中野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008063048A priority Critical patent/JP2009215502A/en
Publication of JP2009215502A publication Critical patent/JP2009215502A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide new silver ink in which silver nanoparticles are dispersed at relatively high concentration in a liquid medium of alicyclic and aromatic hydrocarbons such as diethylbenzene and decalin. <P>SOLUTION: The silver ink contains silver particles dispersed in a liquid medium of aromatic hydrocarbons at a silver concentration of 20 to 60 mass%, the silver particles adsorbing octyl gallate, dodecyl gallate or castor oil to the surfaces and having a crystal grain diameter Dx by X-ray analysis of 1 to 40 nm, preferably 1 to 15 nm; and when the liquid is left to stand after stirring, the liquid maintains the dispersion state at least for 168 hours. In particular, combinations of diethylbenzene/octyl gallate, diethylbenzene/dodecyl gallate, diethylbenzene/castor oil, decalin/octyl gallate and decalin/dodecyl gallate are preferable. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物質に被覆された銀ナノ粒子が芳香族炭化水素の溶媒中に分散した極めて分散性の高い銀インクに関する。なお、本明細書においては、粒子径が40nm以下の粒子を「ナノ粒子」と呼び、ナノ粒子で構成される粉体を「微粉」と呼んでいる。   The present invention relates to a silver ink with extremely high dispersibility in which silver nanoparticles coated with an organic substance are dispersed in an aromatic hydrocarbon solvent. In the present specification, particles having a particle diameter of 40 nm or less are referred to as “nanoparticles”, and a powder composed of nanoparticles is referred to as “fine powder”.

銀ナノ粒子は活性が高く、低温でも焼結が進むため、耐熱性の低い素材に対するパターニング材料として着目されて久しい。特に昨今ではナノテクノロジーの進歩により、シングルナノクラスの粒子の製造も比較的簡便に実施できるようになってきた。   Silver nanoparticles have been attracting attention as a patterning material for materials with low heat resistance because of their high activity and sintering at low temperatures. In recent years, in particular, due to advances in nanotechnology, it has become possible to manufacture single nanoclass particles relatively easily.

特許文献1には酸化銀を出発材料として、アミン化合物を用いて銀ナノ粒子を大量に合成する方法が開示されている。また、特許文献2にはアミンと銀化合物原料を混合し、溶融させることにより銀ナノ粒子を合成する方法が開示されている。非特許文献1には銀ナノ粒子を用いたペーストを作成することが記載されている。特許文献4には液中での分散性が極めて良好な銀ナノ粒子を製造する技術が開示されている。一方、特許文献3には有機保護材Aで保護した金属ナノ粒子が存在する非極性溶媒に、金属粒子との親和性の良いメルカプト基等の官能基を持つ有機保護材Bが溶解した極性溶媒を加えて、撹拌混合することにより、金属ナノ粒子の保護材をAからBに交換する手法が開示されている。   Patent Document 1 discloses a method for synthesizing a large amount of silver nanoparticles using an amine compound using silver oxide as a starting material. Patent Document 2 discloses a method of synthesizing silver nanoparticles by mixing and melting an amine and a silver compound raw material. Non-Patent Document 1 describes making a paste using silver nanoparticles. Patent Document 4 discloses a technique for producing silver nanoparticles having extremely good dispersibility in a liquid. On the other hand, Patent Document 3 discloses a polar solvent in which an organic protective material B having a functional group such as a mercapto group having a good affinity for metal particles is dissolved in a nonpolar solvent in which metal nanoparticles protected by the organic protective material A are present. Is added, and a method of exchanging the protective material for metal nanoparticles from A to B by stirring and mixing is disclosed.

特開2006−219693号公報JP 2006-219893 A 国際公開第04/012884号パンフレットInternational Publication No. 04/012884 Pamphlet 特開2006−89786号公報JP 2006-89786 A 特開2007−39718号公報JP 2007-39718 A 中許昌美ほか、「銀ナノ粒子の導電ペーストへの応用」、化学工業、化学工業社、2005年10月号、p.749−754Nakami Masami et al., “Application of Silver Nanoparticles to Conductive Pastes”, Chemical Industry, Chemical Industry, October 2005, p.749-754

銀ナノ粒子の表面は有機保護材により被覆されているのが通常である。この保護材は銀粒子合成反応時に粒子同士を隔離する役割を有する。したがって、ある程度分子量の大きいものを選択することが有利である。分子量が小さいと粒子間距離が狭くなり、湿式の合成反応では反応中に焼結が進んでしまう場合がある。そうなると粒子が粗大化し銀微粉の製造が困難になる。   The surface of the silver nanoparticles is usually covered with an organic protective material. This protective material has a role of separating the particles from each other during the silver particle synthesis reaction. Therefore, it is advantageous to select one having a molecular weight that is somewhat large. If the molecular weight is small, the distance between particles becomes narrow, and in a wet synthesis reaction, sintering may progress during the reaction. If it becomes so, a particle will become coarse and manufacture of a silver fine powder will become difficult.

一方、銀粒子をインクとして利用する場合には、用途に応じて適切な有機媒体を選択することが望ましい。例えば、導電性金属ペースト用の有機媒体としてはケトン系の有機溶媒が一般的に使用されている実績がある。ただし、このケトン系溶剤は基板が樹脂などの有機物の場合は樹脂自体を侵す能力が高く、基板の素材により基板を侵食する不具合が発生し、不適な場合がある。ケトン系溶剤を使用した場合に上記不具合が発生する基板でも、炭化水素系の有機溶媒を使うことにより、上記不具合の発生が防止できる場合が多い。ただし、炭化水素のうち、脂肪族炭化水素は、その構造により親水性を持たないため極めて親油性の高い有機溶媒であるのに対し、環状の炭化水素である脂環式炭化水素や芳香族炭化水素は環状構造であり、さらに芳香族炭化水素は二重結合を持つ。このような構造により親水性が付与されることが知られている。このため、環状の炭化水素である脂環式炭化水素や芳香族炭化水素は、脂肪族炭化水素と比較すると表面が親水性の基板への濡れ性が高い特徴を有しており、この点で有利である。環状の炭化水素である脂環式炭化水素や芳香族炭化水素は、銀ナノ粒子を用いた導電塗膜等の用途に用いる溶剤としても期待が大きい。   On the other hand, when using silver particles as ink, it is desirable to select an appropriate organic medium according to the application. For example, there is a track record that ketone organic solvents are generally used as the organic medium for the conductive metal paste. However, this ketone-based solvent has a high ability to attack the resin itself when the substrate is an organic substance such as a resin, which may be inappropriate due to a problem that the substrate is eroded by the material of the substrate. Even in the case where the above-mentioned problem occurs when a ketone-based solvent is used, the occurrence of the above-mentioned problem can often be prevented by using a hydrocarbon-based organic solvent. However, among hydrocarbons, aliphatic hydrocarbons are highly oleophilic organic solvents because they are not hydrophilic due to their structure, whereas alicyclic hydrocarbons and aromatic carbons that are cyclic hydrocarbons. Hydrogen has a cyclic structure, and aromatic hydrocarbons have a double bond. It is known that hydrophilicity is imparted by such a structure. For this reason, alicyclic hydrocarbons and aromatic hydrocarbons, which are cyclic hydrocarbons, are characterized by high wettability to substrates with hydrophilic surfaces compared to aliphatic hydrocarbons. It is advantageous. Cycloaliphatic hydrocarbons and aromatic hydrocarbons, which are cyclic hydrocarbons, are highly expected as solvents used in applications such as conductive coatings using silver nanoparticles.

しかしながら、環状の炭化水素である脂環式炭化水素・芳香族炭化水素と親和性が良好であり、カルボキシル基をもつ界面活性剤で保護された銀微粉はこれまでに知られていない。これまで、金属ナノ粒子の保護材にはアミン系の界面活性剤がよく用いられているが、これらは金属への配位力が弱いため、粒子から脱着しやすい。それに対しカルボキシル基は配位力が高く、分散安定性が高く、経時変化が起こりにくいという特徴をもつ。銀微粉は、粒子表面を覆う保護材(界面活性剤)の種類によって適用可能な分散媒体の種類が大きく制限される。従来、製造上の制約などから、保護材の種類に対する選択の自由度は非常に小さく、用途に応じて適切な保護材を選択することは極めて困難な状況にある。   However, silver fine powder having good affinity with alicyclic hydrocarbons and aromatic hydrocarbons that are cyclic hydrocarbons and protected with a surfactant having a carboxyl group has not been known so far. Until now, amine-based surfactants are often used as protective materials for metal nanoparticles, but they are easily desorbed from the particles because of their weak coordination power to metal. On the other hand, carboxyl groups are characterized by high coordinating power, high dispersion stability, and little change over time. As for silver fine powder, the kind of applicable dispersion medium is largely limited by the kind of protective material (surfactant) covering the particle surface. Conventionally, the degree of freedom in selecting the type of protective material is very small due to manufacturing restrictions and the like, and it is extremely difficult to select an appropriate protective material according to the application.

本発明はこのような現状に鑑み、銀ナノ粒子が、芳香族炭化水素であるジエチルベンゼン(C1014)、脂環式炭化水素であるデカリン(C1018)といった環状の炭化水素の溶媒に分散しており、その分散性が極めて良好である銀インクを提供しようというものである。 In view of such a current situation, the present invention is a solvent for cyclic hydrocarbons such as diethylbenzene (C 10 H 14 ) which is an aromatic hydrocarbon and decalin (C 10 H 18 ) which is an alicyclic hydrocarbon. In other words, the present invention aims to provide a silver ink having a very good dispersibility.

発明者らは、種々の環状の炭化水素の溶媒について、銀ナノ粒子の良好な分散性を付与することが可能であるかどうか、保護材(界面活性剤)の種類を詳細に検討してきた。その結果、環状の炭化水素溶媒/保護材の組み合わせの中で、特に、ジエチルベンゼン/没食子酸オクチル、ジエチルベンゼン/没食子酸ドデシル、ジエチルベンゼン/ひまし油、デカリン/没食子酸オクチル、デカリン/没食子酸ドデシルの組み合わせにおいて、極めて分散性の高い比較的高濃度の銀ナノインクが実現できることを見出した。   The inventors have examined in detail the type of protective material (surfactant) whether it is possible to impart good dispersibility of silver nanoparticles to various cyclic hydrocarbon solvents. As a result, among the cyclic hydrocarbon solvent / protectant combinations, particularly in the combinations of diethylbenzene / octyl gallate, diethylbenzene / dodecyl gallate, diethylbenzene / castor oil, decalin / octyl gallate, decalin / dodecyl gallate, It has been found that a comparatively high concentration silver nano-ink with extremely high dispersibility can be realized.

ここで、没食子酸オクチルおよび没食子酸ドデシルは、没食子酸のカルボキシル基のHをそれぞれ(CH27CH3および(CH211CH3で置き換えた構造の有機化合物である(図1〜図3参照)。ひまし油は、リシノール酸(C18343)のトリグリセリドを約90%含有し、その他の成分としてオレイン酸(C18342)、リノール酸(C18322)のグリセリドと少量の飽和脂肪酸のグリセリドを成分にもつ油脂である。 Here, octyl gallate and dodecyl gallate are organic compounds having a structure in which H of the carboxyl group of gallic acid is replaced with (CH 2 ) 7 CH 3 and (CH 2 ) 11 CH 3 , respectively (FIGS. 1 to 1). 3). Castor oil contains about 90% of triglyceride of ricinoleic acid (C 18 H 34 O 3 ), and glycerin of oleic acid (C 18 H 34 O 2 ) and linoleic acid (C 18 H 32 O 2 ) as other components It is an oil with a small amount of saturated fatty acid glyceride as a component.

本発明では、下記(1)(2)の銀インクが提供される。
(1)没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、およびひまし油を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種以上が、ジエチルベンゼン中に分散している銀インク。
(2)没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、および没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種以上が、デカリン中に分散している銀インク。
In the present invention, the following silver inks (1) and (2) are provided.
(1) X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1 to 40 nm silver particle, X-ray crystal particle diameter Dx formed by adsorbing dodecyl gallate on the surface: silver particle of 1 to 40 nm A silver ink in which one or more silver particles having an X-ray crystal particle diameter Dx of 1 to 40 nm formed by adsorbing castor oil on the surface are dispersed in diethylbenzene.
(2) X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1 to 40 nm silver particles, and X-ray crystal particle diameter Dx formed by adsorbing decyl gallate on the surface: 1 to 40 nm silver A silver ink in which one or more of the particles are dispersed in decalin.

本明細書においてインクとは、液状インクの他、ペースト状のものも含む。これら(1)(2)の銀インクにおいて、銀濃度は例えば10〜90質量%に調整されていることが好ましい。特に本発明では、極めて分散性の良好な液状の銀インクとして、銀濃度が20〜60質量%の範囲にあり、液を撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インクが提供される。「分散状態」とは、液面近くに透明な上澄み部分が形成されず、液全体が銀粒子の存在により濁っている状態をいう。   In the present specification, the ink includes a paste in addition to the liquid ink. In these silver inks (1) and (2), the silver concentration is preferably adjusted to, for example, 10 to 90% by mass. In particular, in the present invention, as a liquid silver ink having extremely good dispersibility, a silver ink having a silver concentration in the range of 20 to 60% by mass and maintaining a dispersed state for at least 168 hours when the liquid is left to stand after stirring. Provided. “Dispersed state” refers to a state in which a transparent supernatant portion is not formed near the liquid surface, and the entire liquid is cloudy due to the presence of silver particles.

本発明によれば、種々の分野で溶媒として使用されている環状の炭化水素である脂環式炭化水素・芳香族炭化水素に対して非常に親和性の高い銀微粉が具体的に明らかにされた。そして、銀ナノ粒子がジエチルベンゼン、デカリンといった環状の炭化水素の溶媒に分散しており、その分散性が極めて良好である銀インクが提供された。このような銀インクで実用的な高い銀濃度をもつインクはこれまで存在しなかったことから研究対象になっていなかったが、今後、その有用性が明らかにされていくものと考えられ、種々の用途への適用が期待される。   According to the present invention, silver fine powder having a very high affinity for alicyclic hydrocarbons and aromatic hydrocarbons, which are cyclic hydrocarbons used as solvents in various fields, is specifically clarified. It was. Silver nanoparticles were dispersed in a cyclic hydrocarbon solvent such as diethylbenzene and decalin, and a silver ink with extremely good dispersibility was provided. Although such a silver ink that has a practically high silver concentration has not been studied since it has not existed so far, its usefulness is expected to be clarified in the future. It is expected to be applied to other uses.

従来、銀ナノ粒子の製造においては、製造上の制約から、保護材(界面活性剤)の種類を自由に選択することはできなかった。ところが、後述する方法に従えば、保護材の種類に対する選択の自由度をかなり拡大させることが可能になり、これまで存在しなかった種々の銀ナノ粒子を得ることができた。そして、特定の有機化合物を表面に吸着させてなるX線結晶粒子径Dx:1〜40nm好ましくは1〜15nm(TEM観察により測定される平均粒子径DTEMで見ると、DTEM:3〜40nm好ましくは4〜15nm)の銀粒子が、ジエチルベンゼン、デカリンといった環状の炭化水素の液状媒体中に分散している新規な銀インクが実現された。 Conventionally, in the production of silver nanoparticles, the type of protective material (surfactant) could not be freely selected due to production limitations. However, according to the method described later, the degree of freedom of selection with respect to the type of protective material can be considerably increased, and various silver nanoparticles that have not existed so far can be obtained. And X-ray crystal particle diameter Dx formed by adsorbing a specific organic compound on the surface: 1 to 40 nm, preferably 1 to 15 nm (in terms of average particle diameter D TEM measured by TEM observation, D TEM : 3 to 40 nm A novel silver ink in which silver particles (preferably 4 to 15 nm) are dispersed in a cyclic hydrocarbon liquid medium such as diethylbenzene or decalin has been realized.

ジエチルベンゼンに対する銀ナノ粒子の分散性を顕著に向上させる保護材物質(界面活性剤)として、没食子酸オクチル、没食子酸ドデシル、ひまし油が適しており、また、デカリンに対しては没食子酸オクチル、没食子酸ドデシルが適していることが明らかになった。   Octyl gallate, dodecyl gallate and castor oil are suitable as protective materials (surfactants) that significantly improve the dispersibility of silver nanoparticles in diethylbenzene, and octyl gallate and gallic acid for decalin. It became clear that dodecyl was suitable.

このような銀ナノ粒子は、例えば「銀粒子合成工程」および「保護材置換工程」を経て得ることができる。以下、その代表的な方法を例示する。   Such silver nanoparticles can be obtained through, for example, a “silver particle synthesis step” and a “protective material replacement step”. Hereinafter, the typical method is illustrated.

《銀粒子合成工程》
特許文献4に開示されるような湿式工程により、粒径の揃った銀ナノ粒子を合成することができる。この合成法は、アルコール中またはポリオール中で、アルコールまたはポリオールを還元剤として、銀化合物を還元処理することにより銀粒子を析出させるものである。ところが、発明者らのその後の研究によれば、より大量生産に適した合成法が見出され、本出願人は特願2007−264598に開示した。これは、銀化合物を1級アミンと2−オクタノールの混合液中に溶解させ、これを120〜180℃に保持することにより2−オクタノールの還元力を利用して銀粒子を析出させるものである。ここでは、この新たな合成法を簡単に例示する。
《Silver particle synthesis process》
Silver nanoparticles having a uniform particle diameter can be synthesized by a wet process as disclosed in Patent Document 4. In this synthesis method, silver particles are precipitated by reducing the silver compound in alcohol or polyol using alcohol or polyol as a reducing agent. However, according to the inventors' subsequent studies, a synthesis method suitable for mass production was found, and the present applicant disclosed in Japanese Patent Application No. 2007-264598. In this method, silver particles are precipitated using a reducing power of 2-octanol by dissolving a silver compound in a mixed solution of a primary amine and 2-octanol and maintaining the temperature at 120 to 180 ° C. . Here, this new synthesis method is illustrated briefly.

銀イオン供給源として銀化合物(例えば硝酸銀)、析出した銀粒子の保護材として1級アミンA(不飽和結合を持つ分子量200〜400のもの、例えばオレイルアミン)、および溶媒成分であるともに還元剤でもある2−オクタノールを用意する。   A silver compound (for example, silver nitrate) as a silver ion source, a primary amine A (having a molecular weight of 200 to 400 having an unsaturated bond, for example, oleylamine) as a protective material for precipitated silver particles, and a solvent component as well as a reducing agent A certain 2-octanol is prepared.

所定量の1級アミンA、2−オクタノールおよび銀化合物を混合して、アミンAと2−オクタノールとの混合溶媒中に銀化合物が溶解している溶液を作成する。還元反応開始時の液組成は、通常、下記(i)〜(iii)を満たす範囲で好適な条件を見出すことができる。
(i)アミンA/銀のモル比:1〜10、
(ii)2−オクタノール/銀のモル比:0.5〜15、
(iii)2−オクタノール/アミンAのモル比:0.3〜2
A predetermined amount of primary amine A, 2-octanol and a silver compound are mixed to prepare a solution in which a silver compound is dissolved in a mixed solvent of amine A and 2-octanol. The liquid composition at the start of the reduction reaction can usually find suitable conditions in a range satisfying the following (i) to (iii).
(I) Amine A / silver molar ratio: 1 to 10,
(Ii) 2-octanol / silver molar ratio: 0.5-15;
(Iii) 2-octanol / amine A molar ratio: 0.3-2

液の昇温を開始して120〜180℃の温度範囲で保持する。120℃を下回る温度では還元反応の進行が進みにくいので高い還元率を安定して得ることが難しくなる。ただし、沸点を大きく超えないようにすることが肝要である。2−オクタノールの沸点は約178℃であり、180℃程度までは許容できる。125〜178℃の範囲とすることがより好ましい。大気圧下で実施することができ、反応容器の気相部を窒素ガス等の不活性ガスでパージしながら還流状態とすることが好ましい。撹拌は、あまり強く行わなくても銀ナノ粒子を析出させることができるが、反応容器のサイズが大きくなると、ある程度の撹拌は必要となる。2−オクタノールの場合、他のアルコール(例えばイソブタノール)を使用する場合に比べ、粒径の揃った銀粒子を合成する上で、撹拌強度の自由度が拡がる。なお、2−オクタノールは初めから必要な全量を混合しておいてもよいし、昇温途中または昇温後に混合してもよい。還元反応開始後に2−オクタノールを適宜添加(追加投入)しても構わない。上記温度範囲での保持時間を0.5時間以上確保することが望ましいが、上記(i)〜(iii)を満たす液組成の場合だと1時間程度で反応はほとんど終了に近づくものと考えられ、それ以上保持時間を長くしても還元率に大きな変化は見られない。通常、3時間以下の保持時間を設定すれば十分である。還元反応が進行して銀粒子が析出すると、アミンAで被覆された銀ナノ粒子が存在するスラリーが得られる。   The temperature of the liquid is started and maintained in a temperature range of 120 to 180 ° C. At temperatures below 120 ° C., the progress of the reduction reaction is difficult to proceed, so it is difficult to stably obtain a high reduction rate. However, it is important not to greatly exceed the boiling point. The boiling point of 2-octanol is about 178 ° C., and it is acceptable up to about 180 ° C. It is more preferable to set it as the range of 125-178 degreeC. The reaction can be performed under atmospheric pressure, and it is preferable to bring the reaction vessel into a reflux state while purging the gas phase portion with an inert gas such as nitrogen gas. Although silver nanoparticles can be precipitated even if stirring is not carried out very strongly, a certain amount of stirring is required as the size of the reaction vessel increases. In the case of 2-octanol, the degree of freedom of stirring strength is broadened when synthesizing silver particles having a uniform particle diameter as compared with the case of using another alcohol (for example, isobutanol). Note that 2-octanol may be mixed in the necessary amount from the beginning, or may be mixed during or after the temperature increase. You may add (additional addition) 2-octanol suitably after a reduction reaction start. It is desirable to secure a holding time of 0.5 hours or more in the above temperature range, but in the case of a liquid composition satisfying the above (i) to (iii), it is considered that the reaction is almost completed in about 1 hour. Even if the holding time is further increased, no significant change is observed in the reduction rate. Usually, it is sufficient to set a holding time of 3 hours or less. When silver particles are precipitated by the progress of the reduction reaction, a slurry in which silver nanoparticles coated with amine A are present is obtained.

次いで、上記のスラリーから、デカンテーションや遠心分離によって固形分を回収する。回収された固形分は、1級アミンAを成分とする保護材に被覆された銀ナノ粒子を主体とするものである。   Next, the solid content is recovered from the slurry by decantation or centrifugation. The recovered solid content is mainly composed of silver nanoparticles coated with a protective material containing primary amine A as a component.

上記の固形分には不純物が付着しているので、メタノールやイソプロパノールを用いた洗浄に供することが好ましい。   Since impurities are adhering to the above-mentioned solid content, it is preferable to use for washing with methanol or isopropanol.

以上のようにして、1級アミンAに被覆されたX線結晶粒子径Dx:1〜40nm好ましくは1〜15nmの銀粒子を構成することができる。透過型電子顕微鏡(TEM)を用いた粒子の観察により求まる平均粒子径DTEMは3〜40nm好ましくは4〜15nm程度の範囲である。 As described above, X-ray crystal particle diameter Dx coated with primary amine A: 1 to 40 nm, preferably 1 to 15 nm, can be formed. The average particle diameter D TEM determined by observation of particles using a transmission electron microscope (TEM) is in the range of 3 to 40 nm, preferably about 4 to 15 nm.

《保護材置換工程》
次に銀粒子に付着している保護材をアミンAから目的物質である有機化合物B(ここでは、没食子酸ヘキシル、没食子酸オクチル、没食子酸ドデシルまたはひまし油)に付け替える操作を行う。本発明の銀粒子の製造方法はこの工程を採用するところに特徴がある。
有機化合物Bとして銀に吸着しやすい性質を有するものを適用する。上記のアミンAは不飽和結合を有する分子量200〜400のアミンであり、銀に対する吸着力は、没食子酸オクチル、没食子酸ドデシル、ひまし油に比べ弱いと考えられる。したがって、アミンAに被覆された銀粒子の表面近傍に十分な量の有機化合物Bの分子が存在していると、銀表面からアミンAが脱着するとともに有機化合物Bが吸着しやすい状況となり、比較的容易に置換が進行する。
《Protective material replacement process》
Next, the protective material adhering to the silver particles is changed from the amine A to the target organic compound B (here, hexyl gallate, octyl gallate, dodecyl gallate or castor oil). The method for producing silver particles of the present invention is characterized in that this step is employed.
As the organic compound B, one having the property of being easily adsorbed on silver is applied. The above amine A is an amine having an unsaturated bond and a molecular weight of 200 to 400, and the adsorptive power to silver is considered to be weaker than octyl gallate, dodecyl gallate and castor oil. Therefore, if a sufficient amount of organic compound B molecules are present in the vicinity of the surface of the silver particles coated with amine A, the situation is such that amine A is desorbed from the silver surface and organic compound B is easily adsorbed. The replacement proceeds easily.

ただし、この置換は溶媒中で進行する。この置換工程で使用する溶媒を、ここでは溶媒Cと呼ぶ。溶媒Cとしては有機化合物Bが完全に溶解するものを採用する必要がある。具体的にはイソプロパノール、メタノール、エタノール、デカリン等の溶媒のうち、溶解性のよいものを選択すればよい。イソプロパノールに良く溶解する有機化合物Bの場合は、安全性やコスト面でイソプロパノールを選択することが有利となる場合が多い。有機化合物Bが溶解している上記のような溶媒Cの中に、アミンAに被覆された銀ナノ粒子を存在させ、30℃以上かつ溶媒Cの沸点以下の温度域で撹拌する。30℃より低温では置換が進行しにくい。溶媒Cにイソプロパノールを使用する場合だと、35〜80℃の範囲で行うことが好ましい。アミンAに被覆された粒子は一般に溶媒Cに対する分散性が悪く、液中で沈降しやすいので撹拌しなければならないが、あまり強く撹拌する必要はなく、粒子が液中に浮遊した状態を維持できる程度でよい。   However, this substitution proceeds in a solvent. The solvent used in this substitution step is referred to herein as solvent C. As the solvent C, it is necessary to employ a solvent in which the organic compound B is completely dissolved. Specifically, a solvent having good solubility may be selected from solvents such as isopropanol, methanol, ethanol and decalin. In the case of the organic compound B that dissolves well in isopropanol, it is often advantageous to select isopropanol in terms of safety and cost. In the solvent C as described above in which the organic compound B is dissolved, silver nanoparticles coated with the amine A are present and stirred in a temperature range of 30 ° C. or more and the boiling point of the solvent C or less. Substitution is difficult to proceed at a temperature lower than 30 ° C. When isopropanol is used as the solvent C, it is preferably carried out in the range of 35 to 80 ° C. Particles coated with amine A are generally poorly dispersible in solvent C and tend to settle in the liquid, so they must be stirred, but it is not necessary to stir so strongly, and the particles can remain suspended in the liquid. The degree is sufficient.

アミンAと有機化合物Bの置き換え反応は、数分程度の比較的短時間で起きていると考えられるが、工業的に安定した品質のものを供給するという観点から、1時間以上の置き換え反応時間を確保することが望ましい。ただし、24時間を超えても更なる置き換え反応はあまり進行しないので、24時間以内で置き換え反応を終了させるのが実用的である。置換に要する反応時間は1〜7時間の範囲で設定することが好ましい。   Although the substitution reaction of amine A and organic compound B is considered to occur in a relatively short time of about several minutes, the substitution reaction time of 1 hour or more is provided from the viewpoint of supplying industrially stable quality. It is desirable to ensure. However, since the further replacement reaction does not proceed much even after 24 hours, it is practical to terminate the replacement reaction within 24 hours. The reaction time required for the substitution is preferably set in the range of 1 to 7 hours.

具体的には、予め有機化合物Bを溶媒Cに完全に溶解させた液を作成し、この液と、固形分として回収されたアミンAが付着している銀ナノ粒子とを1つの容器に収容し、撹拌混合すればよい。有機化合物Bが常温で液体である場合、本明細書でいう「有機化合物Bが溶解している溶媒C」とは、有機化合物Bが溶媒Cの中で分離することなく両者が均一に混ざり合っている状態を意味する。粒子中の金属Agに対する有機化合物Bの当量B/Agは、0.1〜10当量とすることが好ましい。ここで、銀=1モルに対し、有機化合物B=1モルが1当量に相当する。溶媒Cの液量は銀ナノ粒子が液中を浮遊するに足る量が確保される範囲で設定すればよい。   Specifically, a liquid in which the organic compound B is completely dissolved in the solvent C is prepared in advance, and this liquid and silver nanoparticles to which the amine A recovered as a solid content is attached are contained in one container. And stirring and mixing. When the organic compound B is liquid at room temperature, the “solvent C in which the organic compound B is dissolved” as used in this specification means that the organic compound B is uniformly mixed without separation in the solvent C. Means the state. The equivalent B / Ag of the organic compound B to the metal Ag in the particles is preferably 0.1 to 10 equivalents. Here, 1 mol of organic compound B corresponds to 1 equivalent with respect to 1 mol of silver. The amount of the solvent C may be set within a range in which an amount sufficient for the silver nanoparticles to float in the solution is ensured.

このようにして有機化合物Bを表面に吸着させてなる銀粒子を形成させたのち、固液分離を行い、例えば「分離回収された固形分に洗浄液(例えばメタノールやイソプロパノール)を添加して超音波分散を加えた後、液を遠心分離して固形分を回収する」という操作を数回繰り返すことにより、付着している不純物を洗浄除去することが好ましい。洗浄後の粒子は、X線結晶粒子径Dxが1〜40nm好ましくは1〜15nm、TEM観察により測定される平均粒子径DTEMは3〜40nm好ましくは4〜15nmといった銀ナノ粒子であり、表面には有機化合物Bを吸着させてなる界面活性剤を有している。洗浄後の固形分を、ジエチルベンゼン、デカリンといった目的とする溶媒中に分散させることにより銀インクを得ることができる。 After silver particles formed by adsorbing organic compound B on the surface in this way are formed, solid-liquid separation is performed. For example, “cleaning liquid (for example, methanol or isopropanol) is added to the separated solid component and ultrasonic waves are added. After adding the dispersion, it is preferable to wash and remove the adhering impurities by repeating the operation of “centrifuge the liquid to recover the solid content” several times. The particles after washing are silver nanoparticles having an X-ray crystal particle diameter Dx of 1 to 40 nm, preferably 1 to 15 nm, and an average particle diameter D TEM measured by TEM observation of 3 to 40 nm, preferably 4 to 15 nm. Has a surfactant formed by adsorbing the organic compound B. A silver ink can be obtained by dispersing the solid content after washing in a target solvent such as diethylbenzene or decalin.

有機化合物B(保護材)が異なる2種以上の銀粒子を、それらがともに親和性に優れる溶媒中に混合して銀インクを作成することもできる。インク中の銀濃度は10質量%以上であることが望ましく、20質量%以上であることがより好ましく、30質量%以上が一層好ましい。銀濃度の上限については、良好な分散性が維持できる限り特に制限する必要はないが、概ね90質量%以下の範囲とすればよい。特に、分散性が極めて良好な液状の銀インクとしては、例えば60質量%以下の範囲にて高歩留りの生産が可能であることがわかった。   Two or more kinds of silver particles having different organic compounds B (protective materials) can be mixed in a solvent in which both are excellent in affinity to produce a silver ink. The silver concentration in the ink is desirably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more. The upper limit of the silver concentration is not particularly limited as long as good dispersibility can be maintained, but may be approximately 90% by mass or less. In particular, it has been found that a liquid silver ink having extremely good dispersibility can be produced at a high yield, for example, in the range of 60% by mass or less.

《実施例1》
界面活性剤(金属Ag粒子表面の保護材)として、置換前の1級アミンAにはオレイルアミン、置換後の有機化合物Bには没食子酸オクチルを使用し、下記工程により没食子酸オクチルを吸着させてなる銀粒子を作成した。そして、この銀粒子をジエチルベンゼンに分散させた極めて分散性の良い銀インクの作成を試みた。
Example 1
As a surfactant (protective material for metal Ag particle surface), oleylamine is used for primary amine A before substitution, and octyl gallate is used for organic compound B after substitution, and octyl gallate is adsorbed by the following steps. A silver particle was created. Then, an attempt was made to create a silver ink with extremely good dispersibility in which the silver particles were dispersed in diethylbenzene.

〔銀粒子合成工程〕
オレイルアミン(和光純薬工業株式会社試薬)6009.2g、2−オクタノール(東京化成工業株式会社製試薬)2270.3g、硝酸銀結晶(関東化学株式会社製特級試薬)1495.6gを用意した。
2−オクタノールと、オレイルアミンと、硝酸銀結晶を混合して、硝酸銀が完全に溶解した液を作成した。配合は以下のとおりである。
・オレイルアミン/銀のモル比=2.5
・アルコール/銀のモル比=2.0
・アルコール/オレイルアミンのモル比=2.0/2.5=0.8
[Silver particle synthesis process]
6009.2 g of oleylamine (reagent manufactured by Wako Pure Chemical Industries, Ltd.), 2270.3 g of 2-octanol (reagent manufactured by Tokyo Chemical Industry Co., Ltd.), and 1495.6 g of silver nitrate crystal (special grade reagent manufactured by Kanto Chemical Co., Ltd.) were prepared.
2-Octanol, oleylamine, and silver nitrate crystals were mixed to prepare a solution in which silver nitrate was completely dissolved. The formulation is as follows.
・ Mole ratio of oleylamine / silver = 2.5
-Alcohol / silver molar ratio = 2.0
Alcohol / oleylamine molar ratio = 2.0 / 2.5 = 0.8

上記配合の液10Lを準備し、還流器の付いた容器に移してオイルバスに載せ、プロペラにより100rpmで撹拌しながら120℃まで昇温速度1.0℃/min、次いで140℃まで昇温速度0.5℃/minで昇温した。その後、上記撹拌状態を維持しながら、140℃に1時間保持した。その際、容器の気相部に窒素ガスを500mL/minの流量で供給してパージしている。その後、加熱を止め、冷却した。   Prepare 10 L of the above mixture, transfer to a container equipped with a reflux condenser, place on an oil bath, heat up to 120 ° C. while stirring at 100 rpm with a propeller, 1.0 ° C./min, then heat up to 140 ° C. The temperature was raised at 0.5 ° C./min. Then, it maintained at 140 degreeC for 1 hour, maintaining the said stirring state. At that time, nitrogen gas is supplied to the gas phase portion of the container at a flow rate of 500 mL / min for purging. Thereafter, heating was stopped and cooling was performed.

反応後のスラリーを3日間静置した後、上澄みを除去した。その際、還元された銀が全スラリーに対して20質量%となるように上澄みの除去量を調整した。上澄み除去後のスラリー500gにイソプロパノール1700gを混合しプロペラにより400rpmで1時間撹拌し、その後、遠心分離により銀粒子を含む固形分を回収した。このようにして洗浄された固形分中にはアミンA(オレイルアミン)に被覆された銀粒子が存在している。
なお、洗浄前の上記スラリー500g中には金属Ag:約1モルが存在することが別途測定により判っている。
After the reaction, the slurry was allowed to stand for 3 days, and then the supernatant was removed. At that time, the removal amount of the supernatant was adjusted so that the reduced silver was 20% by mass with respect to the total slurry. 1700 g of isopropanol was mixed with 500 g of the slurry after removing the supernatant, and the mixture was stirred with a propeller at 400 rpm for 1 hour, and then the solid content including silver particles was recovered by centrifugation. Silver particles coated with amine A (oleylamine) are present in the solid content thus washed.
In addition, it is known by measurement separately that about 1 mol of metal Ag is present in 500 g of the slurry before washing.

別途、これと同一の条件で作成した洗浄後の固形分について、少量の固形分サンプルを採取して、下記の要領でX線結晶粒子径Dxを求めた。その結果、置換前の銀微粉のDxは約7nmであることが確認された。また、下記の要領で平均粒子径DTEMを求めた。その結果、置換前の銀微粉のDTEMは約8nmであることが確認された。
また、上記と同一の条件で作成した洗浄後の固形分から、オレイルアミンに被覆された置換前の銀微粉を回収し、昇温速度は10℃/minでTG−DTA測定を行った。そのDTA曲線の測定例を図4に示す。図4において、200〜300℃の間にある大きな山および300〜330℃の間にあるピークはアミンAであるオレイルアミンに起因するものであると考えられる。
Separately, a small amount of solid content sample was collected from the washed solid content prepared under the same conditions as above, and the X-ray crystal particle diameter Dx was determined in the following manner. As a result, it was confirmed that Dx of the silver fine powder before substitution was about 7 nm. Moreover, the average particle diameter DTEM was calculated | required in the following way. As a result, it was confirmed D TEM of the silver fine powder before substitution is about 8 nm.
Moreover, the silver fine powder before substitution coated with oleylamine was recovered from the solid content after washing prepared under the same conditions as described above, and TG-DTA measurement was performed at a heating rate of 10 ° C./min. A measurement example of the DTA curve is shown in FIG. In FIG. 4, a large peak between 200 and 300 ° C. and a peak between 300 and 330 ° C. are considered to be attributed to oleylamine, which is amine A.

<X線結晶粒子径Dxの測定>
銀粒子の固形分サンプルをガラス製セルに塗り、X線回折装置にセットし、Ag(111)面の回折ピークを用いて、下記(1)式に示すScherrerの式によりX線結晶粒径DXを求めた。X線にはCu−Kαを用いた。
Dx=K・λ/(β・cosθ) ……(1)
ただし、KはScherrer定数で、0.94を採用した。λはCu−Kα線のX線波長、βは上記回折ピークの半価幅、θは回折線のブラッグ角である。
<Measurement of X-ray crystal particle diameter Dx>
A solid sample of silver particles is applied to a glass cell, set in an X-ray diffractometer, and the diffraction peak of the Ag (111) plane is used to calculate the X-ray crystal grain size D according to Scherrer's formula shown in the following formula (1). X was determined. Cu-Kα was used for X-rays.
Dx = K · λ / (β · cos θ) (1)
However, K is a Scherrer constant and 0.94 is adopted. λ is the X-ray wavelength of the Cu—Kα ray, β is the half width of the diffraction peak, and θ is the Bragg angle of the diffraction line.

<平均粒子径DTEMの測定>
銀粒子分散液を透過型電子顕微鏡(TEM)により観察し、重なっていない独立した300個の銀粒子の粒子径を計測して、平均粒子径を算出した。
<Measurement of average particle diameter D TEM >
The silver particle dispersion was observed with a transmission electron microscope (TEM), and the particle diameters of 300 independent silver particles that did not overlap were measured to calculate the average particle diameter.

〔保護材置換工程〕
有機化合物Bとして没食子酸オクチル(東京化成工業株式会社製1級試薬)、溶媒Cとしてイソプロパノール(和光純薬工業株式会社製特級試薬、分子量60.1)を用意した。
没食子酸オクチル138.8gを、イソプロパノール400gと混合して、液温を40℃に保ち、イソプロパノール中に没食子酸オクチルを完全に溶解させた。この液中へ、アミンA(オレイルアミン)に被覆された銀粒子が存在している前記洗浄後の固形分(Agを約1モル(約100g)含有)を添加し、プロペラにて400rpmで撹拌した。この撹拌状態を維持しながら40℃で5時間保持した。この場合、Agに対する有機化合物Bの量は0.5当量となるように有機化合物Bの仕込量を調整してある。
[Protective material replacement process]
Octyl gallate (first grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared as the organic compound B, and isopropanol (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd., molecular weight 60.1) was prepared as the solvent C.
138.8 g of octyl gallate was mixed with 400 g of isopropanol, the liquid temperature was kept at 40 ° C., and octyl gallate was completely dissolved in isopropanol. To this liquid, the solid content after washing in which silver particles coated with amine A (oleylamine) were present (containing about 1 mol of Ag (about 100 g)) was added and stirred with a propeller at 400 rpm. . While maintaining this stirring state, it was kept at 40 ° C. for 5 hours. In this case, the charge amount of the organic compound B is adjusted so that the amount of the organic compound B with respect to Ag is 0.5 equivalent.

得られたスラリーを3000rpm×5minの遠心分離により固液分離した。その後、「固形分にメタノールを889.7g(銀に対して約30当量)添加して400rpmにて30分間洗浄し、遠心分離にて固形分を回収する」という操作を2回行い、保護材を没食子酸オクチルに置換した銀微粉サンプルを得た。
このサンプルについて、前記の方法にてTG−DTA測定を行った。そのDTA曲線の測定例を図5に示す。図4(置換前)と図5(置換後)の対比から、保護材は、アミンA(オレイルアミン)のほぼ全量が脱着し、有機化合物B(没食子酸オクチル)に置き換わったものと考えられる。
The obtained slurry was subjected to solid-liquid separation by centrifugation at 3000 rpm × 5 min. Thereafter, the operation of “889.7 g of methanol to the solid content (about 30 equivalents with respect to silver) and washing at 400 rpm for 30 minutes and collecting the solid content by centrifugation” was performed twice, and the protective material A silver fine powder sample in which was replaced with octyl gallate was obtained.
This sample was subjected to TG-DTA measurement by the method described above. A measurement example of the DTA curve is shown in FIG. From the comparison between FIG. 4 (before substitution) and FIG. 5 (after substitution), it is considered that the protective material was almost completely desorbed of amine A (oleylamine) and replaced with organic compound B (octyl gallate).

このサンプルについて上記の方法でX線結晶粒子径Dxおよび平均粒子径DTEMを測定したところ、Dxは6.53nm、DTEMは7.55nmであった。DTEMの算出に使用した個々の粒子の粒子径は、最小値Dminが2.22nm、最大値Dmaxが14.21nmであった。粒子径の標準偏差をσDとするとき、「σD/DTEM×100」の値をCV値と呼ぶ。この銀微粉のCV値は21%であった。CV値が小さいほど銀粒子の粒径は均一化されていると言える。銀インクの用途ではCV値が40%以下であることが望ましく、15%以下のものは非常に粒子径が揃っており、種々の微細配線用途に極めて好適である。 This for samples was measured X-ray crystal particle diameter Dx and the average particle diameter D TEM in the manner described above, Dx is 6.53nm, D TEM was 7.55Nm. D particle diameter of each particle used in computing TEM, the minimum value D min is 2.22Nm, the maximum value D max was 14.21Nm. When the standard deviation of the particle diameter is σ D , the value of “σ D / D TEM × 100” is called CV value. The silver fine powder had a CV value of 21%. It can be said that the smaller the CV value, the more uniform the particle size of the silver particles. In the use of silver ink, it is desirable that the CV value is 40% or less, and those having a CV value of 15% or less have extremely uniform particle diameters and are extremely suitable for various fine wiring applications.

〔銀インク作成工程〕
上記のようにして得られた銀微粉サンプル(メタノール洗浄後、未乾燥のもの)には、金属銀、保護材、および洗浄に使用したメタノールが含まれている。この銀微粉中の正味の銀含有量を以下の方法で求めた。
[Silver ink production process]
The silver fine powder sample obtained as described above (after being washed with methanol and not dried) contains metallic silver, a protective material, and methanol used for washing. The net silver content in the silver fine powder was determined by the following method.

<銀微粉中の銀含有量>
[1]銀微粉サンプルから分取した試料の質量W0(g)を測定する。
[2]メタノールを除去するために、試料を真空乾燥機を用いて室温で30分処理する。
[3]その後、試料をマッフル炉(ヤマト科学株式会社製;FO100型)により10℃/分の昇温速度で700℃まで加熱することにより保護材を揮発させ、揮発後の試料の質量W1(g)を測定する。
[4]銀微粉サンプル中の銀含有量(質量%)=W1/W0×100により算出される。
<Silver content in fine silver powder>
[1] The mass W 0 (g) of the sample taken from the silver fine powder sample is measured.
[2] In order to remove methanol, the sample is treated for 30 minutes at room temperature using a vacuum dryer.
[3] Then, the protective material is volatilized by heating the sample to 700 ° C. at a heating rate of 10 ° C./min in a muffle furnace (manufactured by Yamato Scientific Co., Ltd .; FO100 type), and the mass W 1 of the sample after volatilization (G) is measured.
[4] silver content in the silver fine powder sample (wt%) is calculated by = W 1 / W 0 × 100 .

上記の銀微粉サンプル中の金属銀含有量(質量%)に基づいて、金属銀の質量が10.0gとなる量の銀微粉サンプルを秤量し、これをジエチルベンゼン(和光純薬工業製特級試薬)と混合して、金属銀+保護材+ジエチルベンゼンの合計量に占める金属銀の含有量が50質量%となる銀粒子+ジエチルベンゼン混合物を作成した。この混合物を超音波洗浄機(シャープ株式会社製;UT606)を用いて40℃以下で60分間処理し、銀粒子をメタジエチルベンゼン中に分散させた。次いで真空混練脱泡機(EME製;Vmini300型)により、真空引き1分、混練2分の工程を重量減少が認められなくなるまで繰り返し、液中の残存メタノールを除去した。これにより銀濃度50質量%の銀分散液(銀インク元液)が得られた。   Based on the metal silver content (% by mass) in the above-mentioned silver fine powder sample, a silver fine powder sample in which the mass of metallic silver is 10.0 g is weighed, and this is diethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries). And a silver particle + diethylbenzene mixture in which the content of metallic silver in the total amount of metallic silver + protective material + diethylbenzene was 50 mass%. This mixture was treated at 40 ° C. or lower for 60 minutes using an ultrasonic cleaner (manufactured by Sharp Corporation; UT606), and silver particles were dispersed in metadiethylbenzene. Subsequently, the process of evacuation for 1 minute and kneading for 2 minutes was repeated with a vacuum kneading defoaming machine (manufactured by EME; Vmini300 type) until no weight loss was observed, and the residual methanol in the liquid was removed. As a result, a silver dispersion (silver ink base solution) having a silver concentration of 50% by mass was obtained.

銀インク元液中には沈降しやすい銀粒子も存在しているので、優れた分散性を呈する銀インクを得るためには、そのような粒子を除去する必要がある。そこで、銀インク元液を遠心分離機(日立工機株式会社製;himacCF7D2型)により25℃の条件下で3000rpmにて30分間の遠心分離に供した。その後、上澄みを回収することにより、分散性に優れた粒子のみが分散した銀インクを得た。
図8に、この銀インクから採取した没食子酸オクチルを吸着させてなる銀粒子のTEM写真の一例を示す。
この銀インク中の銀濃度およびインク化効率を以下のようにして求めた。
Since silver particles that are likely to settle are also present in the silver ink base liquid, it is necessary to remove such particles in order to obtain a silver ink exhibiting excellent dispersibility. Therefore, the silver ink original solution was subjected to centrifugation at 3000 rpm for 30 minutes under a condition of 25 ° C. using a centrifuge (manufactured by Hitachi Koki Co., Ltd .; himacCF7D2 type). Thereafter, the supernatant was recovered to obtain a silver ink in which only particles having excellent dispersibility were dispersed.
FIG. 8 shows an example of a TEM photograph of silver particles obtained by adsorbing octyl gallate collected from the silver ink.
The silver concentration and ink formation efficiency in the silver ink were determined as follows.

<銀インク中の銀濃度>
[1]銀インクから分取した分散液試料の質量W2(g)を測定する。
[2]その分散液試料をマッフル炉(ヤマト科学株式会社製;FO100型)により10℃/分の昇温速度で700℃まで加熱することにより保護材を揮発させ、揮発後の試料の質量W3(g)を測定する。
[3]銀インク中の銀濃度(質量%)=W3/W2×100により算出される。
本例では、銀インク中の銀濃度は42.40質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。
<Silver concentration in silver ink>
[1] The mass W 2 (g) of the dispersion sample taken from the silver ink is measured.
[2] The dispersion liquid sample is heated to 700 ° C. by a muffle furnace (manufactured by Yamato Scientific Co., Ltd .; FO100 type) at a heating rate of 10 ° C./min to volatilize the protective material, and the mass W of the sample after volatilization 3 Measure (g).
[3] Silver concentration (mass%) in silver ink = W 3 / W 2 × 100
In this example, the silver concentration in the silver ink was 42.40% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles.

<インク化効率>
以下の式により求める。
インク化効率(%)=[銀インク中の銀濃度(質量%)]/[銀インク元液中の銀濃度(質量%)]×100=[銀インク中の銀濃度(質量%)]/50(質量%)×100
インク化効率は、極めて分散性に優れた銀粒子のみを回収する際の銀の歩留りに相当するものであり、高いほど望ましい。
本例では、インク化効率は84.8%と高く、これは工業化が十分可能な水準である。
<Ink conversion efficiency>
Obtained by the following formula.
Ink conversion efficiency (%) = [Silver concentration in silver ink (% by mass)] / [Silver concentration in silver ink original solution (% by mass)] × 100 = [Silver concentration in silver ink (% by mass)] / 50 (mass%) x 100
The ink conversion efficiency corresponds to the yield of silver when only silver particles having extremely excellent dispersibility are recovered, and the higher the better.
In this example, the ink conversion efficiency is as high as 84.8%, which is a level that can be industrialized sufficiently.

〔静置試験〕
次に、得られた銀インクの分散維持性を確認するため、上記銀インクを入れたガラス容器を軽く撹拌した後、前記の超音波洗浄機にて10分間の超音波分散処理を施して均一に分散させた状態とし、常温で168時間静置させた後に、液の濁りや沈降凝集の発生の有無を目視確認した。その結果、液面近くに透明な上澄み部分が形成されず、液全体が銀粒子の存在により濁っており、分散状態が維持されていることが確認された。また、容器の底には堆積している銀粒子は確認されなかった。
[Standing test]
Next, in order to confirm the dispersion maintainability of the obtained silver ink, after lightly stirring the glass container containing the silver ink, it was uniformly subjected to ultrasonic dispersion treatment for 10 minutes with the ultrasonic cleaner. And allowed to stand at room temperature for 168 hours, and then visually confirmed for the occurrence of turbidity of liquid and precipitation aggregation. As a result, it was confirmed that a transparent supernatant portion was not formed near the liquid surface, the entire liquid was cloudy due to the presence of silver particles, and the dispersed state was maintained. Further, no silver particles deposited on the bottom of the container were confirmed.

《実施例2》
有機化合物Bを没食子酸ドデシル(東京化成工業株式会社製1級試薬)に変えたことを除き、実施例1と同様の実験を行った。すなわち本例では、没食子酸ドデシルを吸着させてなる銀粒子を作成して、この銀粒子をジエチルベンゼンに分散させた極めて分散性の良い銀インクの作成を試みた。なお、保護材置換工程において、Agに対する有機化合物B(没食子酸ドデシル)の量は0.5当量となるように有機化合物Bの仕込量を調整した。
Example 2
An experiment similar to Example 1 was performed except that the organic compound B was changed to dodecyl gallate (first grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.). That is, in this example, silver particles formed by adsorbing dodecyl gallate were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in diethylbenzene. In the protective material replacement step, the amount of organic compound B was adjusted so that the amount of organic compound B (dodecyl gallate) with respect to Ag was 0.5 equivalent.

置換後の銀粒子サンプルについて、前記の方法にてTG−DTA測定を行った。そのDTA曲線の測定例を図6に示す。図4(置換前)と図6(置換後)の対比から、保護材は、アミンA(オレイルアミン)のほぼ全量が脱着し、有機化合物B(没食子酸ドデシル)に置き換わったものと考えられる。   About the silver particle sample after substitution, the TG-DTA measurement was performed by the said method. A measurement example of the DTA curve is shown in FIG. From the comparison between FIG. 4 (before substitution) and FIG. 6 (after substitution), it is considered that the protective material was almost completely desorbed from amine A (oleylamine) and replaced with organic compound B (dodecyl gallate).

このサンプルについてのDxは7.31nm、DTEMは10.36nmであった。DTEMの算出に使用した個々の粒子の粒子径は、最小値Dminが6.29nm、最大値Dmaxが15.2nmであり、この銀微粉のCV値は20%であった。 Dx for this sample was 7.31 nm and D TEM was 10.36 nm. Particle diameter of each particle used in computing D TEM, the minimum value D min is 6.29Nm, the maximum value D max is 15.2 nm, CV value of the silver micropowder was 20%.

ジエチルベンゼンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は39.45質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は78.9%と高く、これは工業化が十分可能な水準である。
図9に、この銀インクから採取した没食子酸ドデシルを吸着させてなる銀粒子のTEM写真の一例を示す。
168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。
A silver ink using diethylbenzene as a solvent was prepared in the same manner as in Example 1. As a result, the silver concentration in the silver ink was 39.45% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. The ink conversion efficiency is as high as 78.9%, which is a level that can be industrialized sufficiently.
FIG. 9 shows an example of a TEM photograph of silver particles obtained by adsorbing dodecyl gallate collected from the silver ink.
As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

《実施例3》
有機化合物Bをひまし油(和光純薬株式会社製)に変えたことを除き、実施例1と同様の実験を行った。すなわち本例では、ひまし油を吸着させてなる銀粒子を作成して、この銀粒子をジエチルベンゼンに分散させた極めて分散性の良い銀インクの作成を試みた。なお、保護材置換工程の仕込み時おいて、イソプロパノール400gに対し有機化合物B(ひまし油)の混合量は261.77gとした。
Example 3
An experiment similar to Example 1 was performed except that the organic compound B was changed to castor oil (manufactured by Wako Pure Chemical Industries, Ltd.). That is, in this example, silver particles formed by adsorbing castor oil were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in diethylbenzene. In addition, the mixing amount of the organic compound B (castor oil) was set to 261.77 g with respect to 400 g of isopropanol at the time of preparation of the protective material replacement step.

置換後の銀粒子サンプルについて、前記の方法にてTG−DTA測定を行った。そのDTA曲線の測定例を図7に示す。図4(置換前)と図7(置換後)の対比から、保護材は、アミンA(オレイルアミン)のほぼ全量が脱着し、有機化合物B(ひまし油)に置き換わったものと考えられる。   About the silver particle sample after substitution, the TG-DTA measurement was performed by the said method. A measurement example of the DTA curve is shown in FIG. From the comparison between FIG. 4 (before substitution) and FIG. 7 (after substitution), it is considered that almost all the amine A (oleylamine) was desorbed and replaced with the organic compound B (castor oil) in the protective material.

このサンプルについてのDxは8.08nm、DTEMは10.42nmであった。DTEMの算出に使用した個々の粒子の粒子径は、最小値Dminが4.83nm、最大値Dmaxが15.08nmであり、この銀微粉のCV値は15%であった。 Dx for this sample was 8.08 nm and D TEM was 10.42 nm. Particle diameter of each particle used in computing D TEM, the minimum value D min is 4.83Nm, the maximum value D max is 15.08Nm, CV value of the silver micropowder was 15%.

ジエチルベンゼンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は40.94質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は81.9%と高く、これは工業化が十分可能な水準である。
図10に、この銀インクから採取したひまし油を吸着させてなる銀粒子のTEM写真の一例を示す。
168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。
A silver ink using diethylbenzene as a solvent was prepared in the same manner as in Example 1. As a result, the silver concentration in the silver ink was 40.94% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. The ink conversion efficiency is as high as 81.9%, which is a level that can be industrialized sufficiently.
FIG. 10 shows an example of a TEM photograph of silver particles obtained by adsorbing castor oil collected from the silver ink.
As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

《実施例4》
銀インクの溶媒をデカリンとしたことを除き、実施例1と同様の実験を行った。すなわち本例では、没食子酸オクチルを吸着させてなる銀粒子を作成して、この銀粒子をデカリンに分散させた極めて分散性の良い銀インクの作成を試みた。置換後の銀粒子サンプルは実施例1で得られたものと同様である。
Example 4
The same experiment as in Example 1 was performed except that the solvent of the silver ink was decalin. In other words, in this example, silver particles formed by adsorbing octyl gallate were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in decalin. The silver particle sample after substitution is the same as that obtained in Example 1.

デカリンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は45.95質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は91.9%と高く、これは工業化が十分可能な水準である。168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。   A silver ink using decalin as a solvent was prepared in the same manner as in Example 1. As a result, the silver concentration in the silver ink was 45.95% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. The ink conversion efficiency is as high as 91.9%, which is a level that can be industrialized sufficiently. As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

《実施例5》
銀インクの溶媒をデカリンとしたことを除き、実施例2と同様の実験を行った。すなわち本例では、没食子酸ドデシルを吸着させてなる銀粒子を作成して、この銀粒子をデカリンに分散させた極めて分散性の良い銀インクの作成を試みた。置換後の銀粒子サンプルは実施例2で得られたものと同様である。
Example 5
The same experiment as in Example 2 was performed except that the solvent of the silver ink was decalin. In other words, in this example, silver particles formed by adsorbing dodecyl gallate were prepared, and an attempt was made to produce a silver ink with extremely good dispersibility in which the silver particles were dispersed in decalin. The silver particle sample after substitution is the same as that obtained in Example 2.

デカリンを溶媒とする銀インクを実施例1と同様の方法で作成した結果、銀インク中の銀濃度は44.13質量%であった。これは銀ナノ粒子を用いた導電塗膜の形成に十分適用可能な高濃度の銀インクである。インク化効率は88.3%と高く、これは工業化が十分可能な水準である。168時間の静置試験の結果、実施例1と同様、分散状態が維持されていることが確認された。   A silver ink containing decalin as a solvent was prepared in the same manner as in Example 1. As a result, the silver concentration in the silver ink was 44.13% by mass. This is a high-concentration silver ink that is sufficiently applicable to the formation of a conductive coating film using silver nanoparticles. The ink conversion efficiency is as high as 88.3%, which is a level that can be industrialized sufficiently. As a result of the static test for 168 hours, it was confirmed that the dispersed state was maintained as in Example 1.

没食子酸の構造式を表した図。The figure showing the structural formula of gallic acid. 没食子酸オクチルの構造式を表した図。The figure showing the structural formula of octyl gallate. 没食子酸ドデシルの構造式を表した図。The figure showing the structural formula of dodecyl gallate. オレイルアミンに被覆された保護材置換前の銀粒子についてのDTA曲線。DTA curve for silver particles before replacement of protective material coated with oleylamine. 没食子酸オクチルを吸着させてなる銀粒子についてのDTA曲線。The DTA curve about the silver particle formed by making octyl gallate adsorb | suck. 没食子酸ドデシルを吸着させてなる銀粒子についてのDTA曲線。The DTA curve about the silver particle formed by making dodecyl gallate adsorb | suck. ひまし油を吸着させてなる銀粒子についてのDTA曲線。The DTA curve about the silver particle which makes castor oil adsorb | suck. 没食子酸オクチルを吸着させてなる銀粒子のTEM写真。TEM photograph of silver particles formed by adsorbing octyl gallate. 没食子酸ドデシルを吸着させてなる銀粒子のTEM写真。TEM photograph of silver particles formed by adsorbing dodecyl gallate. ひまし油を吸着させてなる銀粒子のTEM写真。A TEM photograph of silver particles obtained by adsorbing castor oil.

Claims (4)

没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、およびひまし油を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種以上が、ジエチルベンゼン中に分散している銀インク。   X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1-40 nm silver particles, X-ray crystal particle diameter Dx formed by adsorbing dodecyl gallate on the surface: silver particles having 1-40 nm, and castor oil A silver ink in which one or more of silver particles having an X-ray crystal particle diameter Dx of 1 to 40 nm are dispersed in diethylbenzene. 没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、および没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種が、デカリン中に分散している銀インク。   X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1 to 40 nm silver particle, and X-ray crystal particle diameter Dx formed by adsorbing dodecyl gallate on the surface: 1 of 1-40 nm silver particle A silver ink in which seeds or two are dispersed in decalin. 没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、およびひまし油を表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種以上が、20〜60質量%の銀濃度でジエチルベンゼン中に分散している液状インクであって、液を撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インク。   X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1-40 nm silver particles, X-ray crystal particle diameter Dx formed by adsorbing dodecyl gallate on the surface: silver particles having 1-40 nm, and castor oil A liquid ink in which one or more of silver particles having an X-ray crystal particle diameter Dx of 1 to 40 nm are dispersed in diethylbenzene at a silver concentration of 20 to 60% by mass. A silver ink that maintains a dispersed state for at least 168 hours when the liquid is allowed to stand after stirring. 没食子酸オクチルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子、および没食子酸ドデシルを表面に吸着させてなるX線結晶粒子径Dx:1〜40nmの銀粒子の1種または2種が、20〜60質量%の銀濃度でデカリン中に分散している液状インクであって、液を撹拌後に静置したとき分散状態が少なくとも168時間維持される銀インク。   X-ray crystal particle diameter Dx formed by adsorbing octyl gallate on the surface: 1 to 40 nm, and X-ray crystal particle diameter Dx formed by adsorbing dodecyl gallate on the surface: 1 of 1-40 nm silver particles A liquid ink in which the seed or two are dispersed in decalin at a silver concentration of 20 to 60% by mass, and the dispersed state is maintained for at least 168 hours when the liquid is allowed to stand after stirring.
JP2008063048A 2008-03-12 2008-03-12 Silver ink containing alicyclic and aromatic hydrocarbon as solvent Pending JP2009215502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063048A JP2009215502A (en) 2008-03-12 2008-03-12 Silver ink containing alicyclic and aromatic hydrocarbon as solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063048A JP2009215502A (en) 2008-03-12 2008-03-12 Silver ink containing alicyclic and aromatic hydrocarbon as solvent

Publications (1)

Publication Number Publication Date
JP2009215502A true JP2009215502A (en) 2009-09-24

Family

ID=41187688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063048A Pending JP2009215502A (en) 2008-03-12 2008-03-12 Silver ink containing alicyclic and aromatic hydrocarbon as solvent

Country Status (1)

Country Link
JP (1) JP2009215502A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765025B2 (en) * 2010-06-09 2014-07-01 Xerox Corporation Silver nanoparticle composition comprising solvents with specific hansen solubility parameters
CN104520033A (en) * 2012-08-02 2015-04-15 株式会社大赛璐 Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
CN105234388A (en) * 2015-09-29 2016-01-13 成都博岩科技有限公司 Stability-enhanced nano-silver and preparation method and application thereof
JP2017002409A (en) * 2014-07-31 2017-01-05 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
CN106573301A (en) * 2014-07-31 2017-04-19 同和电子科技有限公司 Silver powder, method for producing same, and conductive paste

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765025B2 (en) * 2010-06-09 2014-07-01 Xerox Corporation Silver nanoparticle composition comprising solvents with specific hansen solubility parameters
CN104520033A (en) * 2012-08-02 2015-04-15 株式会社大赛璐 Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
US9422443B2 (en) 2012-08-02 2016-08-23 Daicel Corporation Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
JP2017002409A (en) * 2014-07-31 2017-01-05 Dowaエレクトロニクス株式会社 Silver powder and manufacturing method therefor
CN106573301A (en) * 2014-07-31 2017-04-19 同和电子科技有限公司 Silver powder, method for producing same, and conductive paste
CN105234388A (en) * 2015-09-29 2016-01-13 成都博岩科技有限公司 Stability-enhanced nano-silver and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5371247B2 (en) Silver paint and production method thereof
JP5139848B2 (en) Silver nanoparticles coated with a derivative of gallic acid
JP4294705B2 (en) Method for producing silver fine powder coated with organic substance and silver fine powder
US20100243967A1 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
US11767443B2 (en) Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
JP2013151753A (en) Silver micropowder excellent in affinity for polar medium, and silver ink
EP3150306A1 (en) Coated copper particles and method for manufacturing same
JP5377483B2 (en) Composition containing fine metal particles and method for producing the same
JP2009138243A (en) Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
EP3437760B1 (en) Production method for coated silver particle
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
WO2009087919A1 (en) Silver micropowder having excellent affinity for polar medium, and silver ink
JP5162383B2 (en) Method for producing silver-coated copper fines
JP2009215502A (en) Silver ink containing alicyclic and aromatic hydrocarbon as solvent
JP5274000B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP4897624B2 (en) Low-temperature sinterable silver fine powder and silver paint and method for producing them
JP2011063828A (en) Copper-nickel nanoparticle, and method for producing the same
JP2010059453A (en) Fine copper powder, dispersion liquid thereof, and method for producing fine copper powder
JP2009102716A (en) Method for producing silver nanoparticle
JP2010275580A (en) Method for producing low-temperature-sinterable metal nanoparticle, metal nanoparticle and method for producing dispersion liquid using the same
JP2009215503A (en) Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent
CN108025358B (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP2009013443A (en) Method for producing silver fine powder
JP5139846B2 (en) Silver fine powder and silver ink excellent in affinity with ketone
JP2009091634A (en) Method for producing silver fine powder