JP5134463B2 - Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting - Google Patents
Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting Download PDFInfo
- Publication number
- JP5134463B2 JP5134463B2 JP2008193730A JP2008193730A JP5134463B2 JP 5134463 B2 JP5134463 B2 JP 5134463B2 JP 2008193730 A JP2008193730 A JP 2008193730A JP 2008193730 A JP2008193730 A JP 2008193730A JP 5134463 B2 JP5134463 B2 JP 5134463B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inner hole
- side layer
- continuous casting
- refractory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009749 continuous casting Methods 0.000 title claims description 84
- 239000011819 refractory material Substances 0.000 title claims description 28
- 230000002093 peripheral effect Effects 0.000 claims description 98
- 229910000831 Steel Inorganic materials 0.000 claims description 34
- 239000010959 steel Substances 0.000 claims description 34
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 10
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 322
- 230000035882 stress Effects 0.000 description 36
- 239000004570 mortar (masonry) Substances 0.000 description 33
- 239000002245 particle Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 239000000203 mixture Substances 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- 239000012298 atmosphere Substances 0.000 description 17
- 230000006378 damage Effects 0.000 description 15
- 230000001590 oxidative effect Effects 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 239000011230 binding agent Substances 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000005266 casting Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000011049 filling Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011304 carbon pitch Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011295 pitch Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
Description
本発明は、溶鋼が接触する内孔面に外周側層よりも高い熱膨張性を有する内孔側層を配置した連続鋳造用ノズルに関する。 The present invention relates to a continuous casting nozzle in which an inner hole side layer having higher thermal expansion than an outer peripheral side layer is disposed on an inner hole surface with which molten steel contacts.
なお、本発明において「内孔側層」とは、連続鋳造用ノズルの溶鋼通過方向(垂直方向)を全長とするいずれかの位置の水平方向断面において、中間層よりも内孔側に存在する耐火物層を総称するものとし、内孔側層が複数の層からなる場合も含み、その場合の熱膨張率は、その内孔側層の中のいずれかの層の最大の値とする。 In the present invention, the “inner hole side layer” is present on the inner hole side of the intermediate layer in the horizontal cross section at any position where the molten steel passage direction (vertical direction) of the continuous casting nozzle is the entire length. The refractory layer is generically referred to, and includes the case where the inner hole side layer is composed of a plurality of layers, and the thermal expansion coefficient in that case is the maximum value of any one of the inner hole side layers.
また、本発明おいて「外周側層」とは、前記断面において、中間層よりも外周側に存在する耐火物層を総称するものとし、外周側層が複数の層からなる場合(例えば、AG質の外にZG質が存在する2層構造等)も含み、その場合の熱膨張率は、その外周側層の中のいずれかの層の最小の値とする。 In the present invention, the “peripheral layer” is a general term for the refractory layer existing on the outer peripheral side of the intermediate layer in the cross section, and the outer peripheral layer is composed of a plurality of layers (for example, AG In this case, the coefficient of thermal expansion is the minimum value of any one of the outer peripheral layers.
取鍋からタンディッシュに溶鋼を排出するロングノズルや、タンディッシュから連続鋳造用モールドに溶鋼を注入する浸漬ノズルなど(以下、総称して「連続鋳造用ノズル」という。)、内部に溶鋼等の高温度物体が滞留又は通過する内孔を有する管状耐火物は、その内孔側と外周側で温度勾配が生じる。とくに溶鋼の排出・通過開始時には、内孔側が急激に昇温されるので、その現象は顕著になる。 Long nozzles that discharge molten steel from a ladle to a tundish, immersion nozzles that inject molten steel from a tundish into a continuous casting mold (hereinafter collectively referred to as “nozzles for continuous casting”), etc. A tubular refractory having an inner hole through which a high-temperature object stays or passes has a temperature gradient between the inner hole side and the outer peripheral side. In particular, when the discharge and passage of molten steel are started, the temperature is rapidly increased on the inner hole side, and this phenomenon becomes remarkable.
このような温度勾配は、耐火物が単層であるか複数層であるかにかかわらず耐火物の内部に応力の歪みを生じさせ、管状耐火物に外部の割れ等の破壊を生じさせる原因の一つになっている。この温度勾配が大きいほど、また内孔側層の熱膨張率が外周側層の熱膨張率よりも大きいほど、熱応力が大きくなって外周側層の破壊の危険性が高くなる。 Such temperature gradients cause stress distortion inside the refractory regardless of whether the refractory is a single layer or multiple layers, and cause damage such as external cracks in the tubular refractory. It is one. The greater the temperature gradient and the greater the coefficient of thermal expansion of the inner hole side layer than the coefficient of thermal expansion of the outer peripheral side layer, the greater the thermal stress and the higher the risk of destruction of the outer peripheral side layer.
この温度勾配(熱応力)に起因する破壊の一般的な対策としては、例えば、連続鋳造用ノズルを構成する耐火物に黒鉛を多量に含有させる、熱膨張量の小さい溶融シリカなどを添加ないし増量するなどの、高熱伝導率化、低膨張化、低弾性率化等による熱応力の低減がある。しかし、黒鉛や溶融シリカの増量は一方で耐酸化性の低下や溶鋼成分等との反応性が増すため、耐摩耗性や耐食性等のとくに内孔側層の耐用性の低下を招く弊害がある。 As a general countermeasure against destruction caused by this temperature gradient (thermal stress), for example, a refractory constituting a continuous casting nozzle contains a large amount of graphite, or fused silica with a small thermal expansion amount is added or increased. There is a reduction in thermal stress due to high thermal conductivity, low expansion, low elastic modulus and the like. However, increasing the amount of graphite and fused silica, on the other hand, reduces oxidation resistance and increases reactivity with molten steel components, and thus has a detrimental effect on wear resistance, corrosion resistance, etc., particularly the durability of the inner hole side layer. .
また、連続鋳造用ノズルの内孔面には溶鋼流が激しく衝突しながら通過するので、とくに内孔面近傍は、溶鋼や溶鋼中の非金属介在物等による摩耗、溶鋼中の酸化性成分等による組織の脆弱化と流失、FeOその他の溶鋼中成分との反応溶損等の損傷が大きい。 In addition, since the molten steel flow passes through the inner hole surface of the continuous casting nozzle while violently colliding, the vicinity of the inner hole surface is particularly worn by molten metal and non-metallic inclusions in the molten steel, oxidizing components in the molten steel, etc. Damages such as weakening and loss of structure due to corrosion, reaction melting loss with FeO and other components in molten steel are large.
さらに近年は、アルミナ等の溶鋼中の非金属介在物の増加もあって、連続鋳造用ノズルの内孔面にはアルミナを中心とする介在物の付着ないしは内孔の閉塞も、連続鋳造用ノズルの寿命を決定する大きな要素の一つとなっている。 In recent years, nonmetallic inclusions in molten steel such as alumina have increased, and the continuous casting nozzle has also been found to have inclusions centering on alumina or clogging of the inner hole on the inner hole surface of the continuous casting nozzle. It has become one of the major factors that determine the lifespan.
このような状況の中、連続鋳造用ノズルの高耐用化や安全性(安定鋳造)の要求はますます高まっている。 Under such circumstances, demands for high durability and safety (stable casting) of nozzles for continuous casting are increasing.
これらの要求に応えるため、耐熱衝撃性の優れた材質の耐火物を連続鋳造用ノズルの本体部分即ち外周側層に適用して連続鋳造用ノズルの基本的な骨格となる部分を構成し、溶鋼流と接触する内孔面を有する内孔側層には、耐摩耗性や耐食性等に優れた材質の耐火物を配置することにより、連続鋳造用ノズルの寿命延長が図られてきた。 In order to meet these demands, a refractory material having excellent thermal shock resistance is applied to the main body portion of the continuous casting nozzle, that is, the outer peripheral side layer to form the basic skeleton portion of the continuous casting nozzle. The life of the continuous casting nozzle has been extended by disposing a refractory material having excellent wear resistance and corrosion resistance on the inner hole side layer having the inner hole surface in contact with the flow.
とくに内孔側層に関しては多様な高機能化が進められており、最近では、炭素含有量の少ない材質、黒鉛を全く含まない材質や、耐摩耗性、耐溶損性に優れる成分、例えば塩基性成分を含む材質を内孔面に内張りすることも珍しくない。さらには浸漬ノズル内孔面へのアルミナ成分等の付着及び閉塞現象を低減ないし防止するために、浸漬ノズル内孔面にアルミナ成分と反応性の高いCaO成分を含有する耐火物層を内装した浸漬ノズルの適用が進められてきている。 In particular, various functions have been promoted for the inner-hole side layer. Recently, a material with a low carbon content, a material that does not contain graphite at all, and a component that has excellent wear resistance and erosion resistance, such as basicity. It is not uncommon to line a material containing ingredients on the inner hole surface. Furthermore, in order to reduce or prevent the adhesion and clogging phenomenon of alumina component etc. to the inner surface of the immersion nozzle, the immersion nozzle is equipped with a refractory layer containing a CaO component highly reactive with the alumina component on the inner surface of the immersion nozzle. Nozzle applications are being promoted.
このような高機能の耐火物は、熱膨張を緩和する機能の大きい黒鉛等の含有量が少なく、高い熱膨張性を有する耐火骨材を多量に含有するので、内孔側層を高膨張化し、また炭素含有量の低減に伴う、内孔側層の外周側層に対する相対的な熱伝導率の上昇による熱勾配の増大も加わって、内孔側層と外周側層の熱膨張量の差及びそれによる熱応力はますます増大する傾向にあり、連続鋳造用ノズルのとくに外周側層の破壊の危険性はいっそう増大している。 Such a high-performance refractory has a small content of graphite or the like having a large function of relaxing thermal expansion and contains a large amount of refractory aggregate having a high thermal expansion property. The difference in thermal expansion between the inner hole side layer and the outer peripheral side layer is also due to the increase in thermal gradient due to the increase in the thermal conductivity relative to the outer peripheral side layer of the inner hole side layer due to the reduction of the carbon content. And the thermal stress caused by it tends to increase more and more, the risk of destruction of the continuous casting nozzle, especially the outer peripheral layer, is further increased.
このような高膨脹性の内孔側層の熱応力による破壊を防止するための試みとして、例えば特許文献1には、CaOを20質量%以上含有する耐火物製スリーブを内装した連続鋳造用ノズルにおいて、前記スリーブ外周面若しくは前記スリーブが装着される部分の本体内孔壁面の一部または全体、あるいは挿入された前記スリーブと本体内孔壁面間に形成される目地部に対して、耐火性骨材とバインダーとを混合した接着材を施して、乾燥された目地部接着材の気孔率を15〜90%に調整した連続鋳造用ノズル内孔用耐火物製スリーブの接合構造が示されている。また、その目地部接着材の気孔率は、接着材を構成する溶剤とバインダーの増減あるいは充填量を変えることで調整することが示されている。これは応力緩和能を、モルタルの気孔率即ちモルタル組織の中の空間によって得ようとするものであって、その程度はモルタル(接着材)を構成する溶剤とバインダーの増減あるいは充填量を変えることで調整しようとするものである。
As an attempt to prevent destruction of such a highly inflatable inner hole side layer due to thermal stress, for example,
しかしながら、このような調整方法で高い応力緩和能を得るためには多量の液(溶剤とバインダー)を要することから、モルタルに流動性が生じ、保形性が著しく低下する等の弊害があり、必要なモルタル層の厚みや充填層を確保することが困難である。具体的には、外周側層である連続鋳造用ノズル本体にこのような高流動性又は保形性の低いモルタルによって内孔側層を設置する作業において、内孔側層が偏ってモルタル層の厚みが殆どない部分や過剰に大きい部分が生じたり、空間部が多数生じたりすることが多い。これらにより応力緩和機能、溶鋼その他の侵入物の抑制機能等を確保できないで、とくに外周側層の破壊や内孔側層の脱落等を生じる。 However, since a large amount of liquid (solvent and binder) is required to obtain a high stress relaxation capability with such an adjustment method, there is a negative effect such that fluidity occurs in the mortar and the shape retention is significantly reduced. It is difficult to ensure the necessary thickness of the mortar layer and the filling layer. Specifically, in the operation of installing the inner hole side layer with such high fluidity or low shape retention mortar on the continuous casting nozzle body which is the outer peripheral side layer, the inner hole side layer is biased and the mortar layer In many cases, there is a portion with little thickness or an excessively large portion, or a large number of space portions. As a result, the stress relaxation function, the function of suppressing molten steel and other intruders, etc. cannot be ensured, and in particular, the outer peripheral layer is broken and the inner hole side layer is dropped.
また、このようなモルタル層で内孔側層を外周側層(連続鋳造用ノズルの本体)への所定の配置での固定をなし得たとしても、このようなモルタル層では必然的に密度の低い組織及び組織結合の弱い構造となって低強度となっているので、熱間で応力を緩和する際にはもちろん、ノズルのハンドリングの際等の弱い外力でも破壊して、安定した構造体を維持することが困難となる。 Even if the inner hole side layer can be fixed to the outer peripheral side layer (the main body of the nozzle for continuous casting) in a predetermined arrangement with such a mortar layer, the mortar layer inevitably has a density. Since the structure is low and the structure is weak, the structure is weak and low in strength. When relieving stress during the heat, the structure can be destroyed by weak external forces such as when handling the nozzle. It becomes difficult to maintain.
さらに、モルタル施工では作業性を得るために液体を多量に含有させるので、液体が接着対象の耐火物中に吸収されて、充填されたモルタルの固形分濃度が変化しやすい。このことは、見掛け気孔率の異なる隣接する耐火物材質との接触により、可塑性や結合性を与えているモルタル中の溶媒が吸収されるためにモルタルの可縮率や接着力が部位毎に変化することを意味しており、隣接する材質や、モルタル目地厚さによって可縮性や接着性が安定しない問題を抱えていることになる。さらに、吸収や乾燥過程でのモルタル層自体の収縮や亀裂や対象耐火物との間に空隙や剥離を生じたりする問題を生じやすい。また、液体が減少する際に骨材微粒子が相互に凝集してモルタル層内に亀裂や剥離などが発生しやすくなるため接着性面で問題が発生しやすい。 Furthermore, since a large amount of liquid is contained in the mortar construction in order to obtain workability, the liquid is absorbed into the refractory to be bonded and the solid content concentration of the filled mortar is likely to change. This is because the shrinkage rate and adhesive strength of the mortar vary from site to site because the solvent in the mortar that gives plasticity and bonding properties is absorbed by contact with adjacent refractory materials with different apparent porosity. This means that the contractibility and adhesiveness are not stable depending on the adjacent material and mortar joint thickness. Furthermore, it tends to cause problems such as shrinkage and cracking of the mortar layer itself during absorption and drying processes, and voids and peeling between the refractory and the target refractory. Further, when the liquid is reduced, aggregate fine particles are aggregated with each other, and cracks and peeling are likely to occur in the mortar layer, so that problems are likely to occur in terms of adhesion.
さらには、このようなモルタル層は高気孔率であるとともに組織中の大きな気孔が連続して存在することから、その気孔(破壊して拡張した気孔を含む)を経路としてモルタル層へ溶鋼やスラグ成分等が浸透し、モルタル層の溶損や破壊も生じる等の問題がある。 Furthermore, since such a mortar layer has a high porosity and large pores in the structure are continuously present, molten steel and slag are transferred to the mortar layer through the pores (including fractured and expanded pores) as a route. There are problems such as penetration of components and the like, and mortar layer erosion and destruction.
このように、高膨張な内孔側層を内装した連続鋳造用ノズルの応力緩和層には、内孔側層からの熱膨張による応力を緩和する機能に加え、溶鋼やスラグ成分の浸透を抑制するような大きな気孔が連続して存在せず、かつ設置作業において必要な厚みや充填組織を得ることのできる性状と保形性を有し、さらに内孔側層の熱膨張による応力に至らない程度の外力によっては破壊しない程度の強度を備える必要があるが、これらの機能を兼備したモルタル層は未だ得られていない。
本発明の課題は、内孔側に高耐食性、高い付着防止性等の高機能の層を配置して耐用性を高めた連続鋳造用ノズルにおいて、その内孔側層と本体材質である外周側層との熱膨張差に起因する外周側層の押し割れを防止すると共に、内孔側層を外周側層(連続鋳造用ノズルの本体)に所定の配置での固定をなし得る性状を備えた連続鋳造用ノズルの中間層用の耐火物(モルタル)及びその中間層用の耐火物を使用した連続鋳造用ノズルを提供することにある。 An object of the present invention is to provide a continuous casting nozzle in which a highly functional layer such as high corrosion resistance and high adhesion prevention is arranged on the inner hole side to improve durability, and the inner hole side layer and the outer peripheral side which is a main body material The outer side layer is prevented from being cracked due to the difference in thermal expansion with the layer, and the inner hole side layer is fixed to the outer side layer (main body of the continuous casting nozzle) in a predetermined arrangement. An object of the present invention is to provide a refractory (mortar) for an intermediate layer of a nozzle for continuous casting and a nozzle for continuous casting using the refractory for the intermediate layer.
本発明は、
(1)粒の平均半径Rと前記粒の平均の壁の厚みtの比がR/t≧10を満たす中空耐火骨材を10体積%以上75体積%以下含む連続鋳造用ノズルの中間層用の耐火物(請求項1)、
(2)前記中空耐火骨材が、SiO2を70質量%以上、かつアルカリ金属酸化物、アルカリ土類金属酸化物を合計で1質量%以上10質量%以下含むガラス質の組織を含む請求項1に記載の連続鋳造用ノズルの中間層用の耐火物(請求項2)、
(3)2.5MPaの加圧下の可縮率が10%以上80%以下である請求項1又は請求項2に記載の連続鋳造用ノズルの中間層用の耐火物(請求項3)、
(4)溶鋼が接触する内孔面の全部又は一部の領域が、内孔面から順に内孔側層、中間層、外周側層の複数層構造であり、かつ、前記内孔側層の熱膨張が、その内孔側層に対応する位置の外周側層の熱膨張より大きい連続鋳造用ノズルにおいて、
前記中間層は請求項1から請求項3のいずれかに記載の耐火物からなり、かつ、次の式1を満たすことを特徴とする連続鋳造用ノズル。
K ≧ [(Di×αi−Do×αo)/(2×Tm)]×100 … 式1
ここで、
Kは中間層の可縮率(%)
Diは内孔側層の外径(mm)
Doは外周側層の内径(mm)
Tmは中間層の室温における(初期)厚み(mm)
αiは内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
αoは外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)
(請求項4)、
である。
The present invention
(1) For an intermediate layer of a continuous casting nozzle containing 10% to 75% by volume of a hollow refractory aggregate satisfying a ratio of the average radius R of the grains to the average wall thickness t of the grains of R / t ≧ 10 Refractories (Claim 1),
(2) The hollow refractory aggregate contains a vitreous structure containing 70 mass% or more of SiO 2 and 1 to 10 mass% in total of alkali metal oxide and alkaline earth metal oxide. A refractory for an intermediate layer of the continuous casting nozzle according to claim 1 (claim 2),
(3) The refractory material for the intermediate layer of the nozzle for continuous casting according to
(4) The whole or part of the inner hole surface with which the molten steel contacts has a multi-layer structure of an inner hole side layer, an intermediate layer, and an outer peripheral side layer in order from the inner hole surface, and the inner hole side layer In the continuous casting nozzle, the thermal expansion is greater than the thermal expansion of the outer peripheral side layer at a position corresponding to the inner hole side layer.
The said intermediate | middle layer consists of the refractory material in any one of Claims 1-3, and satisfy |
K ≧ [(Di × αi−Do × αo) / (2 × Tm)] × 100
here,
K is the shrinkage ratio of the intermediate layer (%)
Di is the outer diameter of the inner hole side layer (mm)
Do is the inner diameter of the outer peripheral layer (mm)
Tm is the (initial) thickness of the intermediate layer at room temperature (mm)
αi is the maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C of the refractory on the inner hole side layer
αo is the coefficient of thermal expansion (%) at the temperature at the start of steel passing of the refractories on the outer layer
(Claim 4),
It is.
以下、詳細に述べる。 Details will be described below.
内孔側層による外周側層の亀裂や押し割りに起因する連続鋳造用ノズルの破壊は、内孔側層の熱膨張が外周側層の熱膨張よりも大きい場合、とくに内孔側層の耐火物の熱膨張特性(本発明では温度上昇に伴う線膨張率と同義)が外周側層の耐火物の熱膨張特性よりも大きい場合に顕著に生じる。 The failure of the continuous casting nozzle due to cracking or splitting of the outer peripheral layer by the inner hole side layer is caused when the thermal expansion of the inner hole side layer is larger than the thermal expansion of the outer peripheral side layer, particularly the refractory of the inner hole side layer. This is noticeably generated when the thermal expansion characteristic (synonymous with the coefficient of linear expansion associated with temperature rise in the present invention) is larger than the thermal expansion characteristic of the refractory on the outer peripheral side layer.
内孔側層の熱膨張による応力は、連続鋳造用ノズルの水平方向断面における半径方向の圧縮応力として作用し、さらに連続鋳造用ノズルが長尺側軸方向の端部にも外周側層を有する構造の場合には、その軸方向の圧縮応力としても外周側層に作用する。そしてこれらの圧縮応力は外周側層内にて、半径方向の圧縮応力は円周方向の、軸方向の圧縮応力は同じ軸方向の引張り応力に転化し、外周側層の引張り強度を超えたところで、前者の場合は軸(縦)方向の、後者の場合は水平(横)方向の亀裂を生じて、外周側層を損傷させる。 The stress due to the thermal expansion of the inner hole side layer acts as a radial compressive stress in the horizontal section of the continuous casting nozzle, and the continuous casting nozzle also has an outer peripheral side layer at the end in the long side axial direction. In the case of the structure, the axial compressive stress also acts on the outer peripheral layer. These compressive stresses are converted into tensile stresses in the outer circumferential layer, radial compressive stresses in the circumferential direction, and axial compressive stresses in the same axial direction, exceeding the tensile strength of the outer peripheral layer. In the former case, cracks in the axial (longitudinal) direction occur, and in the latter case, horizontal (lateral) direction cracks are generated, and the outer peripheral layer is damaged.
このような関係にある内孔側層と外周側層との間に、応力を緩和する機能を付与する手段として、本発明では、予熱終了時以降、少なくとも溶鋼の通鋼開始(本発明においては浸漬ノズル内の鋳造開始、ロングノズルのタンディッシュへの溶鋼注入開始も同義。以下同じ。)時点の状態で可縮性を有する中間層を設置する。 As a means for imparting a function to relieve stress between the inner hole side layer and the outer peripheral side layer having such a relationship, in the present invention, at least after the preheating is finished, at least the start of passing the molten steel (in the present invention The start of casting in the submerged nozzle and the start of pouring of molten steel into the tundish of the long nozzle are synonymous. The same shall apply hereinafter.) An intermediate layer having a contractibility is installed at the time.
このような中間層を設置することで、内孔側層の熱膨張は外周側層に直接作用することなく中間層への圧縮応力として作用する。この際、中間層自体が圧縮応力に応じて半径方向の厚み、あるいは軸方向の厚みを小さくする、言い換えるとその体積を縮小することで、内孔側層の膨張による応力を緩和させることが可能となる。本発明において、このような厚みや体積を縮小することができる性質を可縮性という。 By installing such an intermediate layer, the thermal expansion of the inner hole side layer acts as a compressive stress on the intermediate layer without directly acting on the outer peripheral side layer. At this time, the intermediate layer itself can reduce the stress due to expansion of the inner hole side layer by reducing the thickness in the radial direction or the axial direction according to the compressive stress, in other words, by reducing its volume. It becomes. In the present invention, such a property that the thickness and volume can be reduced is referred to as contractibility.
本発明において、この中間層を構成する耐火物の可縮性は主として、耐火物の構成原料の一つである中空耐火骨材により得る。 In the present invention, the contractibility of the refractory constituting the intermediate layer is obtained mainly by the hollow refractory aggregate which is one of the constituent materials of the refractory.
この中空耐火骨材により可縮性が得られ、熱膨張による応力が緩和される主なメカニズムは次の2点である。 This hollow refractory aggregate provides shrinkability, and the main mechanisms that relieve stress due to thermal expansion are the following two points.
(1)内孔側層の熱膨張により中空耐火骨材がその破壊強度以上の応力で加圧され、中空耐火骨材の壁面が破壊して体積が縮小し、その破壊によって生じた空間容積が内孔側層の熱膨張の吸収代となる。この過程は主に中空骨材粒子の軟化前に荷重を受けた場合に発生する。 (1) The hollow refractory aggregate is pressurized with a stress greater than its breaking strength due to thermal expansion of the inner hole side layer, the wall surface of the hollow refractory aggregate is destroyed and the volume is reduced, and the space volume generated by the destruction is reduced. It becomes an absorption margin for thermal expansion of the inner hole side layer. This process occurs mainly when a load is applied before the softening of the hollow aggregate particles.
(2)1000℃を超える高温域では、中空耐火骨材の壁が軟化し(温度により軟化の程度は異なる)、その軟化した中空耐火骨材が加圧されると容易に変形して体積が縮小し、その軟化変形〜縮小によって生じた空間容積が内孔側層の熱膨張の吸収代となる。 (2) In a high temperature range exceeding 1000 ° C., the wall of the hollow refractory aggregate softens (the degree of softening varies depending on the temperature), and when the softened hollow refractory aggregate is pressurized, the volume is easily deformed. The space volume generated by the reduction and the softening deformation to the reduction serves as an absorption margin for the thermal expansion of the inner hole side layer.
中間層によって得ようとする可縮性の目標範囲について以下に説明する。 The shrinkable target range to be obtained by the intermediate layer will be described below.
浸漬ノズルの一般的な外周側層の材質であるAl2O3−C質を主とする材料系の耐火物の場合、一般的には外周側層の内壁面に数MPaの圧力を加えると破断する。例えば、最大引張り強度が6MPaのAl2O3−黒鉛材質の外周側層を持ち一般的な連続鋳造用ノズル形状の円筒状で、かつ実用上ほぼ最小の径方向の構造を有する耐火物(外周側層の内径φ80mm、外周側層の外径φ135mm)の場合、管内壁面から圧力を負荷していくと、肉圧円筒の式から計算により内壁面に約2.5MPaの圧力を負荷すると破断に至ることになる。 In the case of a refractory material mainly composed of Al 2 O 3 —C, which is a general material of the outer peripheral side layer of the immersion nozzle, generally when a pressure of several MPa is applied to the inner wall surface of the outer peripheral side layer Break. For example, a refractory material having an outer peripheral side layer of Al 2 O 3 -graphite material having a maximum tensile strength of 6 MPa and having a general cylindrical shape of a nozzle for continuous casting and a practically minimum radial structure (outer periphery) In the case of the inner diameter of the side layer is 80 mm and the outer diameter of the outer layer is 135 mm, if pressure is applied from the inner wall surface of the pipe, it will break if a pressure of about 2.5 MPa is applied to the inner wall surface by calculation from the equation of the wall pressure cylinder. Will come.
予熱や鋳造開始ないし途中で、この外周側層の内孔側に中間層と内孔側層とを配した場合で内孔側層の熱膨脹に伴う外周側層にかかる応力を緩和するためには、中間層自体が変形挙動を示す必要がある。即ち内孔側層から外周側層にかかる応力は、中間層の変形(縮小)によって2.5MPa以下に止める必要があるということになる。 In order to relieve the stress applied to the outer peripheral layer due to the thermal expansion of the inner hole side layer when preheating or casting is started or during the middle layer and inner hole side layer are arranged on the inner hole side of the outer peripheral side layer The intermediate layer itself must exhibit deformation behavior. That is, the stress applied from the inner hole side layer to the outer peripheral side layer needs to be stopped to 2.5 MPa or less by deformation (reduction) of the intermediate layer.
以上のことから、内孔側層の加熱ないし通鋼過程で、外周側層内に発生する引張り応力を2.5MPa以下、安全性をより高めるためにはさらにできるだけ小さい引張り応力に抑制することが好ましく、このような引張り応力値になるような圧縮応力値の下で、中間層自体が変形挙動を示す必要がある。 From the above, in the process of heating the inner hole side layer or through the steel, the tensile stress generated in the outer peripheral side layer is 2.5 MPa or less, and in order to further improve safety, the tensile stress should be suppressed to as small as possible. Preferably, the intermediate layer itself needs to exhibit a deformation behavior under such a compressive stress value that results in a tensile stress value.
そして2.5MPaの加圧力下における中間層に必要な可縮性は、次式の可縮率K(%)で表すことができる。
K ≧ [(Di×αi−Do×αo)/(2×Tm)]×100 … 式1
ここで、
Kは中間層の可縮率(%)
Diは内孔側層の外径(mm)
Doは外周側層の内径(mm)
Tmは中間層の室温における(初期)厚み(mm)
αiは内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
αoは外周側層の耐火物の通鋼開始時の温度における熱膨張率(%)
The contractibility required for the intermediate layer under a pressure of 2.5 MPa can be expressed by the contraction rate K (%) of the following equation.
K ≧ [(Di × αi−Do × αo) / (2 × Tm)] × 100
here,
K is the shrinkage ratio of the intermediate layer (%)
Di is the outer diameter of the inner hole side layer (mm)
Do is the inner diameter of the outer peripheral layer (mm)
Tm is the (initial) thickness of the intermediate layer at room temperature (mm)
αi is the maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C of the refractory on the inner hole side layer
αo is the coefficient of thermal expansion (%) at the temperature at the start of steel passing of the refractories on the outer layer
Di及びDoは、軸方向の全域において対象となる部分の、軸方向に水平な方向の断面上の内孔側層及び外周側層の平面形状につき、それぞれ内孔側層の外周側面の位置、外周側層の内孔側面の位置の直径を意味する。またこれらの平面形状が円形ではない場合は、当該平面上の内孔側層の平面形状の中心から放射状に延びる同一直線上において、内孔側層の外周側面の位置をDi、外周側層の内孔側面の位置をDoとして、当該形状全体につき、前記式1を満たせばよい。
Di and Do are the positions of the outer peripheral side surfaces of the inner hole side layer for the planar shape of the inner hole side layer and the outer peripheral side layer on the cross section in the direction horizontal to the axial direction of the target portion in the entire area in the axial direction, It means the diameter of the position of the inner hole side surface of the outer peripheral side layer. Further, when these planar shapes are not circular, the position of the outer peripheral side surface of the inner hole side layer is Di and the position of the outer peripheral side layer on the same straight line extending radially from the center of the planar shape of the inner hole side layer on the plane. If the position of the side surface of the inner hole is Do, the
なお、軸方向端部における可縮性は、軸方向(垂直な方向)の軸の中心を通過する断面上の内孔側層及び外周側層の平面形状につき、上記式1において、Diを内孔側層の軸方向外側面位置を一端部とする他の端部までの軸方向の長さ、Doを外周側層の軸方向内孔側面位置を一端部とする他の端部までの外周側層の軸方向の長さに置き換えればよい。
It should be noted that the contractibility at the end in the axial direction is obtained by dividing Di in the
ここでαiは内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨脹率(%)であるということは、実質的に溶鋼温度までにおける内孔側層の耐火物の最大の熱膨脹率を意味し、αoは外周側層の耐火物の通鋼開始時の温度における熱膨脹率(%)であるということは、予熱条件等の操業条件に応じて溶鋼の通鋼開始時に外周側層が曝される温度であって、その条件は各現場ごとに個別に決定するべきものである。なお、温度上昇に伴う熱膨張率の測定は、JIS R 2207−1又はこれに準じた方法(但し、非酸化雰囲気内)により行うことができる。 Here, αi is the maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C. of the refractory in the inner hole side layer, which means that the maximum refractory in the inner hole side layer is substantially up to the molten steel temperature. The coefficient of thermal expansion means that αo is the coefficient of thermal expansion (%) at the temperature at the start of steel passing of the refractory on the outer peripheral side layer. The temperature to which the layer is exposed, and the condition should be determined individually for each site. In addition, the measurement of the thermal expansion coefficient accompanying a temperature rise can be performed by the method (however, in non-oxidizing atmosphere) according to JISR2207-1 or this.
連続鋳造用ノズルを予熱無しで使用する場合には、外周側層は室温(周囲の環境の温度)と同じであって、このときαoは熱膨脹率測定の基準点である室温における膨脹率、即ちほぼ「ゼロ」とみなすことができ、前記の式1は式2となる。
K ≧ [Di×αi/(2×Tm)] … 式2
When the continuous casting nozzle is used without preheating, the outer peripheral layer is the same as the room temperature (temperature of the surrounding environment), and αo is an expansion rate at room temperature, which is a reference point for measuring the thermal expansion rate, that is, It can be regarded as almost “zero”, and the
K ≧ [Di × αi / (2 × Tm)] Equation 2
この式2を満足する可縮率Kは最も厳しい条件、即ち内孔側層と外周側層との間の熱膨脹差が最大になる場合を考慮した可縮率となり、この式2を満足する可縮率以上であれば外周側層が破壊することはないが、より破壊しにくい安全性を確保するためには、全ての操業条件においてこの式2を満足する可縮率Kとすることが好ましい。 The shrinkage ratio K satisfying this expression 2 is the shrinkage ratio considering the most severe condition, that is, the case where the thermal expansion difference between the inner hole side layer and the outer peripheral side layer is maximized. If the shrinkage is equal to or greater than the shrinkage ratio, the outer peripheral layer will not break, but in order to ensure safety that is more difficult to break, it is preferable to set the shrinkage ratio K to satisfy this equation 2 under all operating conditions. .
なお、この式1及び式2のKは、いずれも還元性ガスや不活性ガス雰囲気内の非酸化雰囲気又は表面に酸化防止材を塗布して空気等の酸化性のガス雰囲気内等の、対象の耐火物が酸化しない条件での値とする。実際の連続鋳造用ノズルの使用時の中間層は非酸化雰囲気である。また、前記Kの測定において対象の試料が酸化すると正確な性状を把握することができない。
Note that K in the
本発明において、前述の中間層用の耐火物の可縮率は、10%以上80%以下を基準とすることが好ましい。 In the present invention, the shrinkage rate of the refractory for the intermediate layer is preferably 10% or more and 80% or less.
中間層の可縮率に応じてその中間層厚さを調整することにより、内孔側層の膨脹代を緩和することができるが、10%未満であると内孔側層と外周側層の熱膨脹率差から中間層の厚さを厚くせざるを得ず、連続鋳造用ノズルの肉厚に制限があるため、結果として本体材質の肉厚が薄くなり構造体としての強度に問題が生じる。また、80%より大きいと中間層の厚さは薄く設計できるため前述したような問題は生じにくいが、薄い中間層を形成する上での製造上の問題や内孔側層と外周側層との接着の強度低下問題が生じ易くなる。例えば、一般的に使用されている連続鋳造用ノズルの最小サイズ付近である外周側層の内径が約φ80mm、内孔側層の熱膨張率が2.0%、外周側層の熱膨張率が0.8%の条件を想定した場合、中間層の厚みが約4mmで中間層の耐火物に必要な可縮率は10%となり、最大サイズ付近である外周側層の内径が約φ150mm、内孔側層の熱膨張率が2.0%、外周側層の熱膨張率が0.8%の条件を想定した場合、中間層の厚みが約1.2mmで中間層の耐火物に必要な可縮率は約78%となる。 By adjusting the thickness of the intermediate layer according to the contractibility of the intermediate layer, the expansion allowance of the inner hole side layer can be reduced, but if it is less than 10%, the inner hole side layer and the outer peripheral side layer Due to the difference in thermal expansion coefficient, the thickness of the intermediate layer must be increased, and the thickness of the nozzle for continuous casting is limited. As a result, the thickness of the main body material is reduced, causing a problem in strength as a structure. On the other hand, if the thickness is greater than 80%, the thickness of the intermediate layer can be designed to be thin, so the above-described problems are unlikely to occur. However, manufacturing problems in forming the thin intermediate layer and the inner hole side layer and the outer peripheral side layer This is likely to cause a problem of lowering the adhesion strength. For example, the inner diameter of the outer peripheral layer, which is near the minimum size of a commonly used continuous casting nozzle, is approximately φ80 mm, the thermal expansion coefficient of the inner hole side layer is 2.0%, and the thermal expansion coefficient of the outer peripheral layer is Assuming a condition of 0.8%, the thickness of the intermediate layer is about 4 mm, the contractibility required for the refractory of the intermediate layer is 10%, the inner diameter of the outer peripheral layer near the maximum size is about φ150 mm, Assuming the condition that the thermal expansion coefficient of the hole side layer is 2.0% and the thermal expansion coefficient of the outer peripheral side layer is 0.8%, the thickness of the intermediate layer is about 1.2 mm, which is necessary for the refractory of the intermediate layer. The contractibility is about 78%.
ここで、可縮率の下限値は1000℃、上限値は1500℃(いずれも非酸化雰囲気中)における測定値を基準とすることができる。可縮率の下限の基準を1000℃とできるのは、1000℃では、中空耐火骨材を含む耐火物の可縮性は殆ど中空耐火骨材の破壊によってもたらされ(厳密には耐火物のマトリクス組織の可縮性も若干加わる)、この破壊の特性は室温から1000℃程度以下の温度域ではほとんど同じであること、結合材成分中の揮発質成分が十分に飛散し炭素質結合組織が完成し、その耐火物のマトリクスの基本となる結合組織が形成されていること等で可縮率はほぼ下限値を示すと考えられること、そのためばらつきの少ない評価が可能であること、また1000℃から1500℃(溶鋼温度)の高温度域では、中空耐火骨材の破壊に中空耐火骨材の軟化特性等が加わり、1000℃における可縮率よりも高い傾向となること等の理由による。可縮率の上限の基準を1500℃とできるのは、内孔面が最高温度である溶鋼の温度に対し、中間層の温度が約1500℃程度であるからである。 Here, the lower limit value of the shrinkable rate can be based on a measured value at 1000 ° C., and the upper limit value can be based on a measured value at 1500 ° C. (both in a non-oxidizing atmosphere). The standard of the lower limit of the shrinkable rate can be 1000 ° C. At 1000 ° C., the shrinkability of the refractory including the hollow refractory aggregate is almost caused by the destruction of the hollow refractory aggregate (strictly speaking, the refractory The shrinkage characteristics of the matrix structure are also slightly added), and the characteristics of this destruction are almost the same in the temperature range from room temperature to about 1000 ° C., and the volatile components in the binder component are sufficiently scattered, so that the carbonaceous bond structure is Completion of the connective structure that forms the basis of the matrix of the refractory is considered to indicate that the contractibility is almost the lower limit, so that evaluation with little variation is possible, and 1000 ° C. In the high temperature range from 1500 to 1500 ° C. (molten steel temperature), the softening characteristics of the hollow refractory aggregate are added to the destruction of the hollow refractory aggregate, which tends to be higher than the contractibility at 1000 ° C. The reason why the upper limit of the shrinkable ratio can be set to 1500 ° C. is that the temperature of the intermediate layer is about 1500 ° C. with respect to the temperature of the molten steel whose inner hole surface is the maximum temperature.
前記の可縮率は、次のような方法により測定することができ、この測定値を前記の可縮率と同視することができる。 The shrinkable rate can be measured by the following method, and the measured value can be regarded as the shrinkable rate.
予め、成形圧力と同じ圧力で成形され熱処理後に可縮性を示す特性をもつ混合物からなる円柱状耐火物(φ20×5mmt)を、円柱状耐火物と同じ形状のカーボン質の拘束空間内に入れて、非酸化雰囲気下で所定の昇温パターンで熱処理を加え可燃性成分を消失させ円柱状サンプル(約φ20×約5mmt)を得る。この熱処理後の円柱状サンプルをφ20×40mmLの形状をもつ2本の耐火物製治具の端面間に配置する。さらに、挟み込まれた円柱状サンプルを長手方向から加圧する際に、その側面からのサンプルの剥落を防止するために、内径φ20mm/外径φ50mm高さ78mmの耐火物製で円筒状のサンプル用ガイドを当該サンプルに外挿して測定用サンプルとする。 A columnar refractory (φ20 × 5 mmt) made of a mixture that has been molded at the same pressure as the molding pressure and has the property of being shrinkable after heat treatment is placed in a carbon-based restraint space having the same shape as the columnar refractory. Then, heat treatment is performed in a predetermined temperature rising pattern in a non-oxidizing atmosphere to eliminate the combustible component, and a cylindrical sample (about φ20 × about 5 mmt) is obtained. The columnar sample after this heat treatment is placed between the end faces of two refractory jigs having a shape of φ20 × 40 mmL. Furthermore, when pressing the sandwiched cylindrical sample from the longitudinal direction, a cylindrical sample guide made of a refractory with an inner diameter of 20 mm / outer diameter of 50 mm and a height of 78 mm in order to prevent the sample from peeling off from the side surface. Is extrapolated to the sample to obtain a measurement sample.
この測定用サンプルを温度、雰囲気、加圧速度が制御できる材料試験機の炉内に設置して、非酸化雰囲気で所定の温度まで昇温して、温度が均一になるまで保持した後、加圧を開始して測定を行う。まず、無加圧の状態での円筒状サンプルの初期厚みt0(mm)を測定する。次に、測定用サンプルを所定の温度に保持した後に、クロスヘッド移動速度0.001〜0.01mm/secの範囲で円筒状サンプルを上下方向から圧縮して、2.5MPaまで加圧した後、その変位量h1(mm)を測定する。また円筒状サンプルを挟み込む耐火物製治具の同荷重、同温度でのブランク値を測定するために、円筒状サンプルを挟まない状態で、同条件で加圧し変位量h2を測定する。これらの測定値を次式にて計算することで各温度での可縮率K(%)を得ることができる。 This measurement sample is placed in a furnace of a material testing machine that can control the temperature, atmosphere, and pressurization rate, heated to a predetermined temperature in a non-oxidizing atmosphere, held until the temperature becomes uniform, and then heated. Start pressure and take measurements. First, the initial thickness t 0 (mm) of the cylindrical sample in a non-pressurized state is measured. Next, after holding the measurement sample at a predetermined temperature, the cylindrical sample is compressed from the vertical direction at a crosshead moving speed of 0.001 to 0.01 mm / sec and pressurized to 2.5 MPa. The displacement amount h 1 (mm) is measured. The same load of the refractory-made jig for sandwiching a cylindrical sample, in order to measure the blank value at the same temperature, in a state not to pinch the cylindrical sample, measuring the pressurized displacement h 2 under the same conditions. By calculating these measured values according to the following equation, the shrinkable ratio K (%) at each temperature can be obtained.
K = (h1−h2)/t0 ×100 (%) … 式3
K = (h 1 −h 2 ) / t 0 × 100 (%)
また、内孔側層が中間層により外周側層に成形時に一体化され連続した構造の実際の鋳造用ノズルからも測定することが可能である。外周側層より耐火物中心軸に対して直角に中心軸に向かってφ20mmのコアボーリングを行い、内孔側層、中間層及び外周側層を含む一体化した約φ20mmの、内孔及び外周側面に曲率をもったコアサンプルを得る。中間層の可縮率は、均一に加圧できるようにコアサンプルの上下面を水平に加工し耐火物製治具に接着するか、コアサンプル上下面と同じ曲率をもった耐火物製治具に接着するなどして、内孔側層、中間層及び外周側層を含む所定のφ20×80〜100mmLの測定用サンプルに加工する。(測定用サンプルが前記大きさより小さい場合は、単位面積、単位長さ等の条件を計算により前記と同程度にして測定し、換算することも可能である。)上述した方法と同じく、無加圧の状態での中間層の初期厚みt0(mm)を正確に計測し、また、所定の温度で非酸化雰囲気中で中間層の変位量h1を測定すると共に中間層の無い状態でのブランク値での変位量h2を計測し可縮率Kを算出する。実際のノズルからサンプリングすることにより、中間層の可縮性を正確に測定することが可能となる。 It can also be measured from an actual casting nozzle having a continuous structure in which the inner hole side layer is integrated with the outer peripheral side layer by the intermediate layer during molding. Core drilling of φ20mm from the outer peripheral side layer to the central axis at right angles to the refractory central axis, and an integrated inner hole and outer peripheral side of about φ20mm including the inner hole side layer, intermediate layer and outer peripheral side layer A core sample with a curvature is obtained. The shrinkage ratio of the intermediate layer is such that the upper and lower surfaces of the core sample are processed horizontally and bonded to a refractory jig so that they can be uniformly pressed, or a refractory jig with the same curvature as the upper and lower surfaces of the core sample. The sample is processed into a predetermined measurement sample of φ20 × 80 to 100 mmL including the inner hole side layer, the intermediate layer, and the outer peripheral side layer. (If the sample for measurement is smaller than the size, it is possible to measure and convert the conditions such as the unit area, unit length, etc. to the same extent as described above by calculation.) The initial thickness t 0 (mm) of the intermediate layer in the pressure state is accurately measured, the displacement amount h 1 of the intermediate layer is measured in a non-oxidizing atmosphere at a predetermined temperature, and the intermediate layer has no intermediate layer. the displacement amount h 2 of the blank value to calculate the measured Kachijimi rate K. By sampling from an actual nozzle, the contractibility of the intermediate layer can be accurately measured.
本発明において応力緩和のための可縮性は、前述のとおり主として中間層内の中空耐火骨材によって得ることができる。この可縮性の大きさは、中間層用の耐火物内の中空耐火骨材の体積割合にほぼ一致する。即ち中間層が中空耐火骨材を10体積%以上75体積%以下含むことで、可縮率が前記の1000℃において10%以上80%以下の要件を満たすことができる。なお、中空耐火骨材以外のマトリクス部分も若干の可縮性を有するが、中空耐火骨材を10体積%以上75体積%以下含むことで、マトリクス部分の可縮性の大小に異存せずに安定的な設計上の可縮性を得ることが可能となる。 In the present invention, the contractibility for stress relaxation can be obtained mainly by the hollow refractory aggregate in the intermediate layer as described above. The size of the contractibility is substantially equal to the volume ratio of the hollow refractory aggregate in the refractory for the intermediate layer. That is, when the intermediate layer contains 10% by volume or more and 75% by volume or less of the hollow refractory aggregate, the shrinkable ratio can satisfy the requirement of 10% or more and 80% or less at 1000 ° C. The matrix portion other than the hollow refractory aggregate also has a slight contractibility, but by including 10% by volume or more and 75% by volume or less of the hollow refractory aggregate, there is no difference in the contractibility of the matrix portion. It becomes possible to obtain a stable design contractibility.
ここで、中空耐火骨材の体積%は、その平均の粒子密度とその添加重量から算出した体積(即ち、中空耐火骨材自身の体積、骨材内の閉気孔の体積及び骨材表面の凹凸部の空間の体積)を中空耐火骨材の占める体積及びその他残部のマトリックス部の占める体積の和で除した値の百分率をいう。中空耐火骨材の体積%の算出方法は、配合中に使用している原料密度から算出する方法が最も正確であるが、顕微鏡組織写真などからによる中空耐火骨材の2次元的な情報を元に、線分法などの画像解析により、中空耐火骨材の体積分率の数値を代用することもできる。 Here, the volume% of the hollow refractory aggregate is the volume calculated from the average particle density and the weight of the hollow refractory aggregate (that is, the volume of the hollow refractory aggregate itself, the volume of closed pores in the aggregate, and the unevenness of the aggregate surface. The volume of the space of the part) divided by the sum of the volume occupied by the hollow refractory aggregate and the volume occupied by the remaining matrix part. The method for calculating the volume% of hollow refractory aggregate is the most accurate method based on the raw material density used during blending, but it is based on the two-dimensional information of the hollow refractory aggregate from micrographs. In addition, the numerical value of the volume fraction of the hollow refractory aggregate can be substituted by image analysis such as a line segment method.
本発明で使用する中空耐火骨材は、内部に空間を有し、外郭が壁によって形成されたものである。その耐圧強度は、1000℃未満の温度下(室温までの変化は殆どないので室温下での評価とすることができる。)では、骨材粒子1個当たりを2つの平面間で圧縮した場合に、連続鋳造用ノズルを前提とする設定最大加圧、即ち2.5MPa以下の圧縮応力で破壊するものであることが好ましい。 The hollow refractory aggregate used in the present invention has a space inside and an outer wall formed by a wall. The compressive strength is less than 1000 ° C. (it can be evaluated at room temperature since there is almost no change to room temperature). When the aggregate particle is compressed between two planes, Further, it is preferable to break at a set maximum pressure based on a continuous casting nozzle, that is, a compressive stress of 2.5 MPa or less.
この耐圧強度を満足するためには、中空耐火骨材の平均半径Rとの平均の壁の厚みtとの比(R/t)が10以上であることが必要である。R/tが10未満であると2.5MPaの圧力下での破壊率が少なく、必要な可縮率を確保することができないことがある。またこのR/tは60以下が好ましい。60を超えると、本発明の中間層の施工時やこの中間層を設置した連続鋳造用ノズルのハンドリング等の機械的な衝撃でも中空耐火骨材が破壊して中間層の安定性を損なう可能性が大きくなるからである。 In order to satisfy this pressure strength, the ratio (R / t) of the average radius R of the hollow refractory aggregate to the average wall thickness t (R / t) needs to be 10 or more. When R / t is less than 10, the fracture rate under a pressure of 2.5 MPa is small, and the necessary contractible rate may not be ensured. The R / t is preferably 60 or less. If it exceeds 60, the hollow refractory aggregate may be destroyed by the mechanical impact such as the handling of the nozzle for continuous casting in which the intermediate layer of the present invention is installed or the stability of the intermediate layer may be impaired. This is because it becomes larger.
ここで平均半径とは、中空耐火骨材粒子単体について、投影又は中央付近の断面の、最大寸法と最小寸法を単純平均した値、又は任意の複数の点の加重平均値等をいう。 Here, the average radius means a value obtained by simply averaging the maximum dimension and the minimum dimension of the cross section near the center of the projection or the center of the hollow refractory aggregate particles, or a weighted average value of arbitrary plural points.
前記のR/t比を満足する中空耐火骨材の大きさ(粒の平均半径R)は、中間層の中に均一に分散させて中間層内の可縮性挙動を均一化するためにも、微細である方がよい。このような中空耐火骨材粒子の大きさの上限は、設置する当該耐火物による層(中間層)の厚みやその設置(施工)方法等によっても異なる相対的なものなので、絶対値で特定することは適当ではない。しかし、本発明の耐火物を適用する連続鋳造用ノズルの産業上の現実的な大きさから、その中間層の厚みを考慮すると、中間層の下限厚みは約1mm程度(一般的には設置時の作業性、品質等、さらには連続鋳造用ノズルの合理的な構造等を考慮して数mm程度である。また上限は可縮率の要素もあって広範囲に及ぶ。)であることから、このような厚みの層内に中空耐火骨材を均一に分散させることはその径が大きくなるにしたがい困難になる。例えば内孔側層と外周側層との間に中間層となる耐火物を充填する(目地モルタルと同様な方法や流し込みの方法で充填する)際には、粗大な中空耐火骨材粒子はその施工時から既に分離傾向となって偏析しやすく、さらには平均半径Rが大きいほど割れやすくもなる。これらの結果として中間層内の部分ごとの可縮性にもばらつきが生じる。このような理由から、中空耐火骨材粒子の最大半径は250μm以下であることが好ましい。 The size of the hollow refractory aggregate satisfying the above R / t ratio (average radius R of the grains) is also distributed uniformly in the intermediate layer to make the contractible behavior in the intermediate layer uniform. It is better to be fine. The upper limit of the size of such a hollow refractory aggregate particle is a relative value that varies depending on the thickness of the layer (intermediate layer) of the refractory to be installed, its installation (construction) method, and the like. That is not appropriate. However, considering the industrial thickness of the continuous casting nozzle to which the refractory of the present invention is applied, considering the thickness of the intermediate layer, the lower limit thickness of the intermediate layer is about 1 mm (generally during installation) In consideration of the workability, quality, etc., as well as the rational structure of the nozzle for continuous casting, etc., it is about several millimeters. It is difficult to uniformly disperse the hollow refractory aggregate in the layer having such a thickness as the diameter increases. For example, when filling a refractory material as an intermediate layer between the inner hole side layer and the outer peripheral side layer (filling by a method similar to joint mortar or pouring), coarse hollow refractory aggregate particles are From the time of construction, segregation tends to occur and segregation tends to occur. Furthermore, the larger the average radius R, the easier it is to crack. As a result, the contractibility of each part in the intermediate layer also varies. For this reason, the maximum radius of the hollow refractory aggregate particles is preferably 250 μm or less.
また、中空耐火骨材の最小半径は2.5μm以上が好ましい。最小半径が2.5μm未満であると、均一性の面では好ましいものの、耐圧強度が高くなる傾向となって2.5MPa以下の圧縮応力では破壊しない割合が大きくなり、可縮量が減少する傾向になるので好ましくない。 The minimum radius of the hollow refractory aggregate is preferably 2.5 μm or more. When the minimum radius is less than 2.5 μm, it is preferable in terms of uniformity, but the pressure strength tends to be high, and the ratio of not breaking at a compressive stress of 2.5 MPa or less increases, and the shrinkable amount tends to decrease. This is not preferable.
なお、本発明において最大半径とは、升目の1辺が設定の半径粒子の直径の大きさを有する網目を通過したもの、又はこれに相当する方法で分級されたものをいい、最小半径とは、升目の1辺が設定の半径粒子の直径の大きさを有する網目を通過しないもの、又はこれに相当する方法で分級されたものをいう。 In the present invention, the maximum radius means that one side of the mesh passes through a mesh having a set radius particle diameter, or is classified by a method corresponding thereto, and the minimum radius is , One in which one side of the mesh does not pass through a mesh having a diameter of a set radius particle, or one classified by a method equivalent thereto.
また、中空耐火骨材は、その外郭形状が球状あるいは丸みを帯びていることが好ましい。中空耐火骨材が球状あるいは丸みを帯びていることで、骨材粒子相互が点接触となって、接触部が広い面等の場合に比較してばらつきの小さい応力(ここでは2.5MPa以下)で中空耐火骨材の壁が破壊し、安定的な耐圧強度を得やすい。また、内孔側層と外周側層(連続鋳造用ノズル本体部)との間隙に、モルタル状にした中間層を充填又は塗布して配置する場合に、その間隙での中間層の流動性が改善されて溶液を過剰に使用する必要がなく、また偏析を少なくすることもできる。充填時の作業性を得るために必要とする流動性付与を目的とする揮発分を多く含む液を多量に使用する場合は、中間層の耐火物の接着性や強度の低下を招くおそれがある。 Moreover, it is preferable that the outer shape of the hollow refractory aggregate is spherical or rounded. Since the hollow refractory aggregate is spherical or rounded, the aggregate particles are in point contact with each other, and the stress is less variable than in the case of a wide contact surface (here 2.5 MPa or less) The wall of the hollow refractory aggregate breaks down, and it is easy to obtain stable pressure resistance. Also, when the mortar-shaped intermediate layer is filled or applied in the gap between the inner hole side layer and the outer peripheral side layer (continuous casting nozzle body), the fluidity of the intermediate layer in the gap is As a result, it is not necessary to use an excessive amount of solution, and segregation can be reduced. When using a large amount of a liquid containing a large amount of volatile components for the purpose of providing fluidity necessary to obtain workability during filling, there is a risk of lowering the adhesion and strength of the refractory in the intermediate layer. .
このような中空耐火骨材としては、とくにガラスバル−ン、シリカバルーン、シラスバルーンなどの呼称で知られるガラス質を含む中空耐火骨材が好ましい。さらに、このガラス質を含む中空耐火骨材の化学組成は、SiO2を70質量%以上、アルカリ金属酸化物、アルカリ土類金属酸化物を合計で1質量%以上10質量%以下を含むガラス質の組織を含み、残部(SiO2、アルカリ金属酸化物、アルカリ土類金属酸化物以外の部分)が中性酸化物やSiO2以外の酸性酸化物成分からなるものが好適であり、具体的には残部がAl2O3からなる、アルミノ珪酸塩系が最もよい。 As such a hollow refractory aggregate, a hollow refractory aggregate containing vitreous material known as a glass balloon, silica balloon, shirasu balloon or the like is particularly preferable. Furthermore, the chemical composition of the hollow refractory aggregate containing the vitreous material is a vitreous material containing 70% by mass or more of SiO 2 and 1% by mass or more and 10% by mass or less of alkali metal oxide and alkaline earth metal oxide in total. In which the balance (parts other than SiO 2 , alkali metal oxides, and alkaline earth metal oxides) is composed of neutral oxides or acidic oxide components other than SiO 2. Is most preferably an aluminosilicate system, the balance being Al 2 O 3 .
このような組成、とくに残部がAl2O3からなるアルミノ珪酸塩系では、軟化点が1000〜1400℃(ここで「軟化」とは、2.5MPa以下の加圧下で、破壊とは別に外形状に変形を生じる状態をいう。)となり、中間層が高温域で軟化変形を起こしやすくなるため熱間での可縮量の増大をもたらす。 In such a composition, especially an aluminosilicate system with the balance being Al 2 O 3 , the softening point is 1000 to 1400 ° C. (where “softening” is outside of fracture under pressure of 2.5 MPa or less) This is a state in which the shape is deformed.), And the intermediate layer is liable to be softened and deformed in a high temperature range, so that the amount of heat shrinkage is increased.
また、このような中空耐火骨材は、軟化以前の低温域即ち約1000℃未満では2.5MPa以下の加圧時に脆性破壊により可縮性を発現するが、アルカリ金属酸化物、アルカリ土類金属酸化物を合計で1質量%以上10質量%以下を含むガラス質の組成にすることにより、約1000℃以上1500℃(溶鋼温度)以下の高温度域で軟化変形しやすくなることで、その体積を縮小して応力吸収機能や熱間強度の発現に寄与することができる。 Further, such a hollow refractory aggregate exhibits a contractibility due to brittle fracture at a pressure of 2.5 MPa or less in a low temperature range before softening, that is, less than about 1000 ° C., but an alkali metal oxide, an alkaline earth metal By making the oxide into a vitreous composition containing 1% by mass or more and 10% by mass or less in total, it becomes easy to soften and deform in a high temperature range of about 1000 ° C. or more and 1500 ° C. (molten steel temperature) or less, and its volume Can be reduced to contribute to the development of stress absorption function and hot strength.
SiO2が70質量%未満、アルカリ金属酸化物、アルカリ土類金属酸化物の合計が10質量%より多い場合や、SiO2が70質量%以上、アルカリ金属酸化物、アルカリ土類金属酸化物が合計で10質量%より多い場合は、溶融ガラスの粘性から中空原料を製造する上での問題が生じたり、高温粘性が低いために内孔側層を保持するための接着力で問題が生じやすい。一方、SiO2が70質量%未満で、アルカリ金属酸化物の合計が1質量%未満の場合や、SiO2が70質量%以上でアルカリ金属酸化物、アルカリ土類金属酸化物が合計で1質量%未満の場合は、ガラス組成の粘性が高すぎる傾向があり、中空原料製造上の問題が生じたり、高温域での軟化変形挙動や内孔側耐火物層を保持するための粘着力が低下する問題がある。 When the total amount of SiO 2 is less than 70% by mass, alkali metal oxides, and alkaline earth metal oxides is more than 10% by mass, or SiO 2 is 70% by mass or more, alkali metal oxides, alkaline earth metal oxides When the total amount is more than 10% by mass, a problem in producing a hollow raw material arises from the viscosity of the molten glass, or a problem occurs in the adhesive force for holding the inner hole side layer because the high temperature viscosity is low. . On the other hand, when SiO 2 is less than 70% by mass and the total amount of alkali metal oxides is less than 1% by mass, or when SiO 2 is 70% by mass or more, the total amount of alkali metal oxides and alkaline earth metal oxides is 1% by mass. If it is less than%, the viscosity of the glass composition tends to be too high, causing problems in the production of hollow raw materials, softening deformation behavior at high temperatures, and lowering the adhesive strength to retain the inner hole side refractory layer There is a problem to do.
なお、本発明における中空耐火骨材の組成の特定にあたっては、非酸化雰囲気における揮発分や可燃物は含まないものとする。具体的には約600℃以上の非酸化雰囲気での熱処理後の試料を基準にする。 In specifying the composition of the hollow refractory aggregate in the present invention, volatile matter and combustible materials in a non-oxidizing atmosphere are not included. Specifically, a sample after heat treatment in a non-oxidizing atmosphere of about 600 ° C. or higher is used as a reference.
このような中空耐火骨材は、応力によって破壊や軟化して体積を縮小する以前には、耐火物組織中では体積を有する骨材として存在するので、当初から空間を配置した通常のモルタル等と比較して、中間層としての高い強度の発現や維持、高い応力分散機能、溶融金属や空気等の外部からの流体の侵入ないし通過を大幅に減少させることができる。即ち、層自体の安定性、連続鋳造用ノズルの層構造の安定性等にも寄与することができる。 Such hollow refractory aggregates exist as aggregates with a volume in the refractory structure before the volume is reduced by breaking or softening due to stress, so normal mortar with a space from the beginning etc. In comparison, it is possible to greatly reduce the expression and maintenance of high strength as the intermediate layer, the high stress dispersion function, and the intrusion or passage of fluid such as molten metal or air from the outside. That is, it can also contribute to the stability of the layer itself, the stability of the layer structure of the continuous casting nozzle, and the like.
本発明の耐火物を、内孔側層の熱膨張がその外周側層の熱膨張より大きい場合、とくに内孔側に高耐食性、高い付着防止性等の高機能の層を配置して耐用性を高めた連続鋳造用ノズルの中間層に適用することで、その内孔側層と本体材質である外周側層との熱膨張差に起因する外周側層の押し割れを防止すること、及び、鋳造途中の内孔側層の剥落、破壊を防止することができる。 When the thermal expansion of the inner hole side layer is larger than the thermal expansion of the outer peripheral side layer, the refractory of the present invention is particularly durable by disposing a high-functional layer such as high corrosion resistance and high adhesion prevention on the inner hole side. By applying to the intermediate layer of the continuous casting nozzle with increased, preventing cracking of the outer peripheral side layer due to the thermal expansion difference between the inner hole side layer and the outer peripheral side layer that is the body material, and It is possible to prevent peeling and destruction of the inner hole side layer during casting.
内孔側層を外周側層(連続鋳造用ノズルの本体)に、モルタル状混和物を用いて所定の配置で内装して一体化する方法において、本発明の中間層用の耐火物を使用することにより、中間層用としての可縮性の均一化を図ることができるとともに耐火物の厚みの偏りや亀裂、剥離、可縮性の低下等を防止することができ、前記熱膨張差に起因する外周側層の押し割れ等を防止することができる。 In the method of integrating the inner hole side layer with the outer peripheral side layer (main body of the nozzle for continuous casting) in a predetermined arrangement using a mortar mixture, the refractory for the intermediate layer of the present invention is used. As a result, it is possible to make the compressibility uniform for the intermediate layer and prevent uneven thickness of the refractory, cracking, peeling, shrinkage reduction, etc. It is possible to prevent the outer peripheral side layer from being cracked.
本発明の耐火物を適用した多層構造の連続鋳造用ノズルを使用することにより、個別の連続鋳造の固有の操業条件に応じて、その連続鋳造用ノズルに求められる特性、具体的には湯当部の耐摩耗性、内孔の耐食性、内孔へのAl2O3等介在物付着防止等の、それぞれの目的に適う特性を備える多様な材質の耐火物を必要な部位ごとに適宜使用することができ、その材質やそれらの組み合わせの選択肢を大幅に拡大することができる。ひいては連続鋳造用ノズルの寿命延長、鋼の品質向上、安定操業、省資源等にも寄与することができる。 By using the multi-layered continuous casting nozzle to which the refractory material of the present invention is applied, the characteristics required for the continuous casting nozzle, specifically the hot water supply, according to the specific operating conditions of individual continuous casting. Refractories made of various materials with suitable properties for each part, such as wear resistance of the parts, corrosion resistance of the inner holes, and prevention of adhesion of inclusions such as Al 2 O 3 to the inner holes, are appropriately used for each necessary part. And the choice of materials and combinations thereof can be greatly expanded. As a result, it can contribute to extending the life of nozzles for continuous casting, improving the quality of steel, stable operation, and resource saving.
まず本発明の耐火物の製造方法を説明する。 First, a method for producing a refractory according to the present invention will be described.
中間層の施工前の本発明の耐火物は、構成原料からなる粉体の混和、前記粉体に樹脂を加えた混合物の混練によって得ることができる。 The refractory material of the present invention before construction of the intermediate layer can be obtained by mixing powder composed of constituent raw materials and kneading a mixture obtained by adding a resin to the powder.
次に、この混練物を内孔側層と外周側層との間に配置し、乾燥等による保形性の発現、熱処理等による硬化等により、中間層とすることができる。以下詳細に述べる。 Next, this kneaded material is disposed between the inner hole side layer and the outer peripheral side layer, and can be formed into an intermediate layer by developing shape retention by drying or the like, curing by heat treatment or the like. Details will be described below.
10〜75体積%の中空耐火骨材と、25〜90体積%の、鱗状黒鉛、土状黒鉛、カーボンブラック、ピッチ等の炭素質粒子、マグネシア質、ジルコニア質、コランダム質粒子等の酸化物粒子、非酸化物粒子の群から選択する1又は複数の耐火材料粒子を混和する。例えば連続鋳造用ノズルの使用時間や温度等の操業上の条件により変化する中間層の状態に応じて、中空耐火骨材とより反応し難い又は反応し易い組成の耐火材料粒子を選択する好ましい。この原料の粒サイズは、中空耐火骨材は最大半径250μm以下(2.5μm以上が好ましい)、炭素質粒子の最大半径は500μm以下、その他の構成物の最大半径は250μm以下(2.5μm以上が好ましい)が、中間層の耐火物の可縮能をより均一にするため、及び塗布作業性に優れたモルタル状となすためには好ましい。前記各原料の粒サイズが前記各サイズより大きいと、可縮性が不均一な組織になりやすく、またモルタルとしての施工作業性や鏝塗り性、流動性の劣化等を生じやすくなる。 10 to 75% by volume of hollow refractory aggregate and 25 to 90% by volume of carbonaceous particles such as scaly graphite, earthy graphite, carbon black and pitch, oxide particles such as magnesia, zirconia and corundum particles Mix one or more refractory material particles selected from the group of non-oxide particles. For example, it is preferable to select refractory material particles having a composition that is more difficult to react or react more easily with the hollow refractory aggregate, depending on the state of the intermediate layer, which varies depending on operating conditions such as operating time and temperature of the continuous casting nozzle. The particle size of this raw material is that the maximum radius of hollow refractory aggregate is 250 μm or less (preferably 2.5 μm or more), the maximum radius of carbonaceous particles is 500 μm or less, and the maximum radius of other components is 250 μm or less (2.5 μm or more). Is preferable) in order to make the shrinkable ability of the refractory in the intermediate layer more uniform and to form a mortar having excellent coating workability. If the grain size of each raw material is larger than each of the above sizes, the structure tends to have a non-shrinkable structure, and the workability, paintability, and fluidity of the mortar are likely to deteriorate.
中空耐火骨材の量は、内孔側層及び外周側層の熱膨張率と中間層の耐火物の厚みとの関係から必要な可縮率を算出し、その可縮率になるように、中空耐火骨材と他の構成原料との割合を10〜75体積%の範囲内で調整することで決定すればよい。 The amount of the hollow refractory aggregate is calculated from the relationship between the thermal expansion coefficient of the inner hole side layer and the outer peripheral side layer and the thickness of the refractory material of the intermediate layer, What is necessary is just to determine by adjusting the ratio of a hollow refractory aggregate and another structural raw material within the range of 10-75 volume%.
その混和物にフェノール樹脂、酢酸ビニル系等の有機系樹脂等の、前記混和物を湿潤状態にして粒相互の凝集性又は接着性を付与すること及びそれらの硬化後に成形体としての保形性を有する程度の強度を有する結合材を、その成形のために必要な適当な軟度になるように調整した量を添加し、それらをモルタルミキサー等のミキサーを使用して混練してモルタル状の混和物を得る。フェノール樹脂と他の有機系樹脂の使用量は、粉体の混和物を100質量部とするときに40質量部以上90質量部以下程度の範囲で、求められる作業性に応じて調整すればよい。 The blend is wetted to give the mixture a cohesiveness or adhesion between grains, such as phenolic resin, vinyl acetate, and other organic resins. A binder having a strength sufficient to have a suitable amount for the molding is added in an appropriate amount, and they are kneaded using a mixer such as a mortar mixer to form a mortar shape. Obtain a blend. The amount of the phenolic resin and other organic resin used may be adjusted according to the required workability within a range of about 40 parts by mass or more and 90 parts by mass or less when the powder mixture is 100 parts by mass. .
次に、そのモルタル状混和物を、内孔側層及び外周側層の間に予め設けた空間に、一方又は両方の面に塗布して嵌合する、流し込む、吹き込む等の適宜な方法で充填して内孔側層を外周側層と一体化する。そして、110℃以上600℃以下程度の、結合材等の特性に応じた適宜の温度で乾燥、焼成等の加熱処理をすることで保形能及び層間固定能を発現させる。 Next, the mortar-like admixture is filled into a space previously provided between the inner hole side layer and the outer peripheral side layer by an appropriate method such as application, fitting, pouring, or blowing on one or both surfaces. Then, the inner hole side layer is integrated with the outer peripheral side layer. And shape retention ability and interlayer fixing ability are expressed by performing heat processing, such as drying and baking, at an appropriate temperature according to the properties of the binder, such as 110 ° C. or more and 600 ° C. or less.
このような中間層の耐火物は、実用上は主として、前述の工程を後述のような連続鋳造用ノズルの構造体の一部の製造工程として組み込み、製品個体の1単位の連続鋳造用ノズルとしての形態として得る。そのほか、型枠等を使用して成形、乾燥ないし非酸化雰囲気での焼成を行って、例えば筒状等の任意の形状の部品として形成し、連続鋳造用ノズルの一部として組み立てて利用することも可能である。 Such an intermediate layer refractory is practically used mainly as a part of a continuous casting nozzle structure as described below as a manufacturing process of a continuous casting nozzle structure as described later, as a single unit continuous casting nozzle of a product. Get as a form. In addition, molding using molds, etc., firing in a dry or non-oxidizing atmosphere, forming as a part of any shape such as a cylinder, etc., and assembling and using as a part of a continuous casting nozzle Is also possible.
次に、本発明の耐火物を適用した連続鋳造用ノズルの製造方法について述べる。 Next, a method for manufacturing a continuous casting nozzle to which the refractory of the present invention is applied will be described.
予め単体で成形、熱処理、外周加工が完了した内孔側層とする成形体と、予め単体で成形、熱処理、加工が完了した連続鋳造用ノズル本体となる外周側層とを用意し、外周側層と内孔側層との間に所定の中間層厚みの空間が形成できるように所定厚さのスペーサーを内孔側層外面に設置し、泥状の中間層用混練物を介して外周側層の内側に当該内孔側層を挿入して所定の中間層を形成し、多層構造からなるノズルとする。以下詳細に述べる。 Prepare a molded body to be an inner hole side layer that has been molded, heat-treated, and peripherally processed in advance as a single unit, and an outer peripheral side layer that will be a nozzle body for continuous casting that has been previously molded, heat-treated, and processed as a single unit. A spacer with a predetermined thickness is installed on the outer surface of the inner hole side layer so that a space with a predetermined intermediate layer thickness can be formed between the inner layer and the inner hole side layer, and the outer peripheral side through the mud-like intermediate layer kneaded material The inner hole side layer is inserted inside the layer to form a predetermined intermediate layer to obtain a nozzle having a multilayer structure. Details will be described below.
中間層に適用する本発明の耐火物は、内孔側層と外周側層との間の狭い空間に充填するために充填が可能な程度の泥状の不定形状にする。充填工程での作業性を付与するために、中空耐火骨材、固体としての炭素原料、他の構成物としての耐火材料を混和した粉体100質量部に対し、例えば液状の樹脂を外掛けで40質量部以上90質量部以下程度の量(空間の大きさと施工作業性とを考慮して決定する)を加えて混練する。 The refractory material of the present invention applied to the intermediate layer has a mud-like indefinite shape that can be filled to fill a narrow space between the inner hole side layer and the outer peripheral side layer. In order to provide workability in the filling process, for example, a liquid resin is externally applied to 100 parts by mass of powder mixed with a hollow refractory aggregate, a carbon raw material as a solid, and a refractory material as another component. An amount of about 40 parts by weight to 90 parts by weight (determined in consideration of space size and construction workability) is added and kneaded.
このように施工作業性を付与した中間層用の耐火物を、所定の中間層厚みの空間が形成できるようにスペーサーを設置した内孔側層の外周面、又は外周側層の内孔面に塗布し、外周側層(連続鋳造用ノズルの本体)の内側に内孔側層を挿入する。内孔側層の外周面と外周側層の内孔面との間の空間は中間層の耐火物層の厚みと等しくなる。 In this way, the refractory for the intermediate layer provided with workability is applied to the outer peripheral surface of the inner hole side layer in which the spacer is installed so that a space with a predetermined intermediate layer thickness can be formed, or the inner hole surface of the outer peripheral side layer. The inner hole side layer is inserted inside the outer peripheral side layer (the main body of the nozzle for continuous casting). The space between the outer peripheral surface of the inner hole side layer and the inner hole surface of the outer peripheral side layer is equal to the thickness of the refractory layer of the intermediate layer.
このような塗布による方法のほか、外周側層と内孔側層との間に設けた所定の厚みの空間に、液の添加割合を大きくする等で流動性を高めた中間層の耐火物を流し込み等の方法で充填することもできる。 In addition to such a method by coating, an intermediate layer refractory with improved fluidity, such as by increasing the liquid addition ratio, in a space of a predetermined thickness provided between the outer peripheral side layer and the inner hole side layer. It can also be filled by a method such as pouring.
この中間層用の耐火物を充填した後の連続鋳造用ノズルを乾燥、焼成等の加熱処理を行って、中間層用の耐火物を硬化させ、内孔側層と外周側層とを固定する。この硬化は、室温以上600℃以下程度の、中間層の耐火物に含まれる結合材の特性に応じた適宜の温度で行えばよい。例えば、ビニル系を使用の場合は、150℃程度の乾燥でよく、また、フェノール樹脂を使用した場合は、200℃以上であることが好ましい。さらにその後、例えば1000〜1300℃程度の非酸化雰囲気内で焼成してもよい。 The continuous casting nozzle after being filled with the refractory for the intermediate layer is subjected to heat treatment such as drying and firing to cure the refractory for the intermediate layer and fix the inner hole side layer and the outer peripheral side layer. . This curing may be performed at an appropriate temperature according to the characteristics of the binder contained in the refractory material of the intermediate layer, which is about room temperature to 600 ° C. For example, when a vinyl type is used, it may be dried at about 150 ° C., and when a phenol resin is used, it is preferably 200 ° C. or higher. Further, after that, it may be fired in a non-oxidizing atmosphere of about 1000 to 1300 ° C., for example.
このようにして本発明の耐火物を中間層に有する連続鋳造用ノズルの成形体を得ることができる。 In this way, a molded article of a continuous casting nozzle having the refractory of the present invention in the intermediate layer can be obtained.
本発明の中間層用の耐火物に使用する中空耐火骨材は、上述のような内孔側層の外周側層への設置施工時の外力によっては潰れないので、施工作業によって中間層の厚みが過度に小さくなったり、溶媒が吸収されるなどして必要な可縮性が損なわれることはない。さらに、この中空耐火骨材は風船状に形成されているので、破砕粒のようなエッジ部が少なく、丸みを帯びた外形状であるので、泥状の中間層の耐火物の流動性を向上させる効果を得ること、即ち液相量を減じて緻密なマトリクス組織にすることも可能となる。 The hollow refractory aggregate used for the refractory for the intermediate layer of the present invention is not crushed by the external force during the installation work on the outer peripheral side layer of the inner hole side layer as described above. Therefore, the necessary contractibility is not impaired by excessively reducing the solvent or absorbing the solvent. Furthermore, since this hollow refractory aggregate is formed in a balloon shape, there are few edge parts like crushed grains and it has a rounded outer shape, which improves the fluidity of the refractory in the mud intermediate layer In other words, it is possible to obtain an effect, that is, to reduce the amount of liquid phase to form a dense matrix structure.
ただし、いずれの方法であっても成形時その他の施工時に中空耐火骨材の強度を超える圧力で加圧をすると中空耐火骨材が破壊して応力を緩和する機能を損なってしまう。したがって、中空耐火骨材が破壊する、少なくとも、2.5MPaをはるかに超える加圧を前提とする連続鋳造用ノズルの一般的な同時・一体的な静圧成形(CIP)その他の各種の高圧のプレス成形をすることはできない。 However, in any method, if a pressure exceeding the strength of the hollow refractory aggregate is applied during molding or other construction, the hollow refractory aggregate is broken and the function of relaxing the stress is impaired. Therefore, general simultaneous and integral hydrostatic molding (CIP) and other various high pressures of continuous casting nozzles premised on pressurization far exceeding 2.5 MPa at which the hollow refractory aggregate breaks. It cannot be press-molded.
前記の製造方法において、中間層用の耐火物の中には中間層自体の保形性及び室温から使用時の熱間までの間における強度の付与、及びはい土の成形性の確保等を目的として結合材を使用するが、内孔側層にMgO−CaO系、とくに単独の形態で存在する(固溶体や化合物ではない)CaOを含む場合は、その中のCaO成分の水和に起因する施工体の崩壊等を防止するために、結合材には水分を含まず、また昇温過程での水分の放出の少ない材料を使用することが必要である。このような条件に適う結合材として、非水系フェノール樹脂やフラン樹脂、タール類、メラミン樹脂、エポキシ樹脂、アルコールを溶媒とする酢酸ビニル系樹脂等を使用することができる。 In the above-mentioned manufacturing method, the refractory for the intermediate layer has the purpose of retaining the shape of the intermediate layer itself, imparting strength between room temperature and hot during use, and ensuring the moldability of the soil. If the inner hole side layer contains MgO-CaO, especially CaO that exists in a single form (not a solid solution or compound), the construction caused by the hydration of the CaO component therein In order to prevent the body from collapsing, it is necessary to use a material that does not contain moisture and that does not release moisture during the heating process. As a binder suitable for such conditions, non-aqueous phenol resins, furan resins, tars, melamine resins, epoxy resins, vinyl acetate resins using alcohol as a solvent, and the like can be used.
なお、結合材に由来し600℃以上で残留する炭素は、前記中間層の耐火物の炭素成分としての組成の一部となる。 Carbon derived from the binder and remaining at 600 ° C. or higher becomes a part of the composition as a carbon component of the refractory of the intermediate layer.
このような充填及び加熱等処理後の連続鋳造用ノズルの成形体は、外周その他の成形加工、酸化防止材の塗布等の一般的な連続鋳造用ノズルにおける加工工程と同様の加工を行うことができる。 The molded body of the nozzle for continuous casting after such processing as filling and heating can be processed in the same manner as the processing steps for a general continuous casting nozzle, such as the outer periphery and other molding processes, and the application of an antioxidant. it can.
以上の製造方法により、可縮性を有し、しかも内孔側層と外周側層とが一体である連続構造の、中間層を有する連続鋳造用ノズルを得ることができる。 By the above manufacturing method, a continuous casting nozzle having an intermediate layer having a shrinkable structure and a continuous structure in which the inner hole side layer and the outer peripheral side layer are integrated can be obtained.
図1に、本発明の連続鋳造用ノズルの一例として浸漬ノズルを示す。図1において、1は本発明の中間層用の耐火物からなる中間層、2は内孔側層、3は外周側層のうち連続鋳造用ノズルの本体をなすアルミナ−黒鉛質の層、4は外周側層のうち連続鋳造用ノズルのパウダー部をなすジルコニア−黒鉛質の層、5は内孔、6は溶鋼流入孔、7は吐出孔である。 FIG. 1 shows an immersion nozzle as an example of the continuous casting nozzle of the present invention. In FIG. 1, 1 is an intermediate layer made of a refractory for the intermediate layer of the present invention, 2 is an inner-hole side layer, 3 is an alumina-graphite layer that forms the main body of a continuous casting nozzle among the outer peripheral side layers, 4 Is a zirconia-graphite layer forming a powder part of a continuous casting nozzle in the outer peripheral side layer, 5 is an inner hole, 6 is a molten steel inflow hole, and 7 is a discharge hole.
以下に実施例を示す。 Examples are shown below.
<実施例A>
実施例Aは、中空耐火骨材に2.5MPaの外力を加えた場合に、中空耐火骨材の平均半径R、及び平均半径Rとその粒の平均の壁の厚みtとの比(R/t)が、その破壊に及ぼす影響を実験により調査した結果である。
<Example A>
In Example A, when an external force of 2.5 MPa was applied to the hollow refractory aggregate, the average radius R of the hollow refractory aggregate and the ratio of the average radius R to the average wall thickness t of the grain (R / t) is the result of an experiment investigating the effect of t) on the destruction.
表1に実施例Aの各試料の構成及び実験結果を示す。 Table 1 shows the configuration and experimental results of each sample of Example A.
供試料は、一般的に市販されていて入手可能なものから選択し、水中に分散させた後、浮上した粒子を選別、分級し110℃で乾燥することで得た。供試料の組成は、SiO2を70質量%以上、アルカリ金属酸化物、アルカリ土類金属酸化物を合計で1質量%以上10質量%以下、Al2O3を5質量%以上20質量%以下を含み、ガラス質の組織を含むものである。 The sample was selected from those that are generally available on the market and dispersed in water, and then the floating particles were selected, classified, and dried at 110 ° C. The composition of the sample is 70% by mass or more of SiO 2 , 1% by mass to 10% by mass in total of alkali metal oxide and alkaline earth metal oxide, and 5% by mass to 20% by mass of Al 2 O 3. And a glassy structure.
供試料の大きさは、平均半径が2.5μm(好ましい最小半径)、250μm(好ましい最大半径)、及びその中間の35μmとし、各粒子につき、壁の厚さが異なる複数の粒子群の集団に分級して、R/t比が異なる試料を得た。 The size of the sample is 2.5 μm (preferred minimum radius), 250 μm (preferred maximum radius), and 35 μm between them, and each particle is divided into a group of a plurality of particle groups having different wall thicknesses. Classification was performed to obtain samples having different R / t ratios.
試験方法は、図2に示すように、供試料8を内径60mmの円筒形の金属製の容器9内に高さ10mm厚さの初期高さになるように充填し、加圧機(上部ライナー10及び下部ライナー11)により2.5MPa圧力で静止するまでの加圧を行い、その後、容器9内の供試料8を取り出した後に、1リットルの水中へ分散させ浮上したものと沈降するものとを分離し、浮上したものを回収し、乾燥した後にその重量を測定した。
As shown in FIG. 2, the test method is such that the
破砕率(%)は、円筒形の金属製の容器9内に最初に充填した供試料8の総重量(以下、「当初総重量」という。)から前記の浮上分の総重量を差し引き、その値を前記の当初総重量で除した値を100分率で表示した。
The crushing rate (%) is obtained by subtracting the total weight of the floating part from the total weight of the
本実施例Aにおいては、マトリクス部も若干の可縮性を示すことを考慮して、この中空耐火骨材の破砕率が90%以上であることを、必要な可縮率を得るための要件とした。また、本試験方法では、加圧によって破壊した粒の破片が粒間の空間へ充填してその破片が応力分散機能を果たすことになり、加圧時間に伴い破壊せずに残留している粒が破壊しにくい状態となって、一部が破壊せずに残ることも考えられるので、90%以上の破砕率を示す粒子は、耐火物の組織内では同一レベル以上の破壊の特性を有すると判断することができる。 In this Example A, considering that the matrix portion also shows some contractibility, the crushing rate of the hollow refractory aggregate is 90% or more, and the requirement for obtaining the required contraction rate It was. Further, in this test method, the fragments of particles broken by pressurization are filled in the spaces between the particles, and the fragments perform a stress distribution function. It is considered that the particles are difficult to break, and some of them may remain without being broken. Therefore, particles having a crushing rate of 90% or more have the same or higher destruction characteristics in the refractory structure. Judgment can be made.
好ましい最小半径であるRが2.5μmから、好ましい最大半径であるRが250μmの範囲の各試料で、前記のR/t比が10以上の場合に90%以上の破壊率を示した。 In each sample in which the preferable minimum radius R was 2.5 μm and the preferable maximum radius R was 250 μm, the fracture rate was 90% or more when the R / t ratio was 10 or more.
<実施例B>
実施例Bは、耐火物中に占める中空耐火骨材の体積割合が、可縮性に及ぼす影響を実験により調査した結果、並びに内孔加熱による溶鋼の鋳造のシミュレーション試験を行った結果である。
<Example B>
Example B is the result of investigating the influence of the volume ratio of the hollow refractory aggregate in the refractory on the contractibility, and the result of conducting a simulation test of molten steel casting by heating the inner hole.
表2に実施例Bの各試料の構成及び実験結果を示す。 Table 2 shows the configuration of each sample of Example B and the experimental results.
中空耐火骨材は、前記実施例Aに使用したものと同じ組成で、平均半径Rが35μm、壁の厚さが1μmの中空粒子であって、2.5MPaで99%の破砕率を有する粉体(実施例3)を使用した。中空耐火骨材を除く残部の組成は何れの例も同一とした。 The hollow refractory aggregate is a powder having the same composition as that used in Example A, a hollow particle having an average radius R of 35 μm, a wall thickness of 1 μm, and a crushing rate of 99% at 2.5 MPa. The body (Example 3) was used. The composition of the remainder excluding the hollow refractory aggregate was the same in all examples.
可縮率の測定は、次の方法により行った。形状がφ20×50mmL、Al2O3が約75質量%、Cが約25質量%の被接着用の試験片2つを通常の連続鋳造用ノズルの製造方法と同じ製造方法(同じ成形圧、乾燥、焼成等)で作製し、その2つの被接着用の試験片の平面間にモルタル状にした各配合試料を2mm厚みで設置して、前述した方法により測定用サンプルを成形し、乾燥処理をした。この測定用サンプルにつき、前述(手段)に準じた方法で可縮率を測定した。ここでの測定温度は1000℃、1500℃(共に窒素ガス雰囲気中)である。 The shrinkage rate was measured by the following method. Two test pieces for adhesion having a shape of φ20 × 50 mmL, Al 2 O 3 of about 75% by mass, and C of about 25% by mass are manufactured by the same manufacturing method (same molding pressure, Each of the blended samples prepared by drying, firing, etc.) and placed in a mortar shape between the two adherent test pieces in a plane of 2 mm thickness is molded by the method described above, and dried. Did. For this measurement sample, the contractibility was measured by the method according to the above (means). The measurement temperatures here are 1000 ° C. and 1500 ° C. (both in a nitrogen gas atmosphere).
内孔加熱試験用の円筒状試料は、次の方法により作製した。まず、円筒状で管状の成形体をCIPにより成形した。この成形体に200℃の乾燥処理、1000℃の非酸化雰囲気での熱処理を施し、後に外周加工により外径φ90mm、内径φ70mm、高さ750mmのドロマイトカーボン質材質のスリーブを作製した。当該材質の1500℃での熱膨張量は1.32%であった。このスリーブをAl2O3が約55質量%、Cが約30質量%、SiO2が約14質量%のAl2O3−SiO2−C材質(1500℃での熱膨張量は0.55%)で構成されたフランジ部を持つ円筒状耐火物(内径95mm、外径140mm、高さ750mm)の内側に、目地厚さ2.5mmで、表2に示すモルタル状の中間層用の耐火物を介して均一に内装した。この中間層用の耐火物は、黒鉛微粉、Al−Mg合金粉、MgO微粉、ピッチ粉末、及び可縮源として中空耐火骨材(中空状ガラス骨材)を配合してなり、液状のフェノール樹脂を施工作業性付与剤及び結合材とした。200℃の乾燥処理を施し内孔加熱用の円筒状試料とした。 The cylindrical sample for the inner hole heating test was produced by the following method. First, a cylindrical and tubular molded body was molded by CIP. The molded body was subjected to a drying process at 200 ° C. and a heat treatment in a non-oxidizing atmosphere at 1000 ° C., and a sleeve made of a dolomite carbon material having an outer diameter of 90 mm, an inner diameter of 70 mm, and a height of 750 mm was manufactured by outer peripheral processing. The thermal expansion amount of the material at 1500 ° C. was 1.32%. The sleeve Al 2 O 3 is about 55 wt%, C is from about 30 wt%, the thermal expansion amount at SiO 2 is about 14 wt% of Al 2 O 3 -SiO 2 -C material (1500 ° C. 0.55 %) And a refractory for a mortar-shaped intermediate layer shown in Table 2 with a joint thickness of 2.5 mm inside a cylindrical refractory having a flange portion (inner diameter: 95 mm, outer diameter: 140 mm, height: 750 mm) The interior was evenly distributed through the objects. This refractory for the intermediate layer is composed of graphite fine powder, Al-Mg alloy powder, MgO fine powder, pitch powder, and hollow refractory aggregate (hollow glass aggregate) as a compressible source, and is a liquid phenolic resin Were used as a workability imparting agent and a binder. A 200 ° C. drying treatment was applied to obtain a cylindrical sample for heating the inner hole.
内孔加熱試験は次のように実施した。フランジ部上部から下部に向かって、内孔部をプロパンと酸素による燃焼ガスを通過させ内孔部から急速加熱を行った。円筒状試料の中央部の外表面温度が1時間で1400℃になる条件で加熱し、1400℃で1時間保持した。その後、加熱をやめ300℃以下になるまで放冷した。この熱処理を繰り返し、内孔側層及び外周側層の状態を観察した。 The inner hole heating test was performed as follows. From the upper part of the flange part toward the lower part, a combustion gas of propane and oxygen was passed through the inner hole part, and rapid heating was performed from the inner hole part. The cylindrical sample was heated under the condition that the outer surface temperature at the center of the cylindrical sample reached 1400 ° C. in 1 hour and held at 1400 ° C. for 1 hour. Thereafter, the heating was stopped and the mixture was allowed to cool to 300 ° C. or lower. This heat treatment was repeated, and the states of the inner hole side layer and the outer peripheral side layer were observed.
表2に示す可縮率の測定結果より、中空耐火骨材の体積割合とほぼ同じ可縮率が得られることがわかる。そして、中空耐火骨材が10体積%以上75体積%以下で、1000℃及び1500℃における可縮率が10%以上80%以下を満足し、かつ上記の式1も満足する実施例6から実施例10においてのみ、内孔加熱試験をクリアできていることがわかる。
From the measurement result of the shrinkable ratio shown in Table 2, it can be seen that the shrinkable ratio almost the same as the volume ratio of the hollow refractory aggregate is obtained. Then, the embodiment is carried out from Example 6 in which the hollow refractory aggregate is 10% by volume or more and 75% by volume or less, the shrinkage rate at 1000 ° C. and 1500 ° C. is 10% or more and 80% or less, and the
可縮率及び式1を満足できなかった比較例3〜比較例5は、内孔加熱試験において、主として縦亀裂が発生した。また、中空耐火骨材が75体積%を超える比較例6、比較例7の場合には内孔側層の緩みが発生し、脱落する傾向となった。
In Comparative Examples 3 to 5 that could not satisfy the shrinkage rate and the
<実施例C>
実施例Cは、中空耐火骨材を含む本発明の耐火物を、連続鋳造用ノズルの中間層用の耐火物として使用して内孔側層を外周側層に設置した場合の、実際の可縮率のばらつきを調査した結果である。
<Example C>
In Example C, the refractory material of the present invention including the hollow refractory aggregate is used as the refractory material for the intermediate layer of the continuous casting nozzle, and the inner hole side layer is installed on the outer peripheral side layer. It is the result of investigating the variation in reduction ratio.
実施例の中間層は前記実施例8の可縮率53%(at1000℃)、モルタル状の耐火物を施工して得た。 The intermediate layer of the example was obtained by constructing a mortar-like refractory having a contractibility of 53% (at 1000 ° C.) as in Example 8.
比較例8として、炭素25質量%、MgO75質量%の中空耐火骨材を含まないモルタル状混合物の可縮率を測定した。可縮率の測定においては、端面をワックスにて溶剤の浸透を防止した耐火物片にモルタル状混合物を2mm厚さで塗布し、同様の処理をした耐火物片で挟み、乾燥処理を加えて測定用サンプルとした。測定結果を表3に示す。可縮率14%の値を示した。 As Comparative Example 8, the contractibility of a mortar-like mixture containing 25% by mass of carbon and 75% by mass of MgO and containing no hollow refractory aggregate was measured. In the measurement of the shrinkable ratio, the mortar-like mixture was applied to a refractory piece whose end face was prevented by solvent penetration with wax at a thickness of 2 mm, sandwiched between the refractory pieces treated in the same manner, and dried. A sample for measurement was used. Table 3 shows the measurement results. A value of 14% contractibility was shown.
比較例8、実施例8で示したモルタルを用いて、実際の連続鋳造用ノズル(図1に示す浸漬ノズル)において、内孔側層を外周側層へ内装セットした。200℃の乾燥後にこれらの連続鋳造用ノズルの下端部T、中央部M、上端部B(図1参照)から、連続鋳造用ノズルの長手方向中心軸に向かってφ20mmでボーリングして、内孔側層、中間層、外周側層が一体化したコアサンプルを得た。前述した実形状からの可縮率を測定する方法により窒素雰囲気下、1000℃での可縮率を測定した。結果を表4示す。 Using the mortar shown in Comparative Example 8 and Example 8, the inner hole side layer was internally set to the outer peripheral side layer in the actual continuous casting nozzle (immersion nozzle shown in FIG. 1). After drying at 200 ° C., boring at a diameter of 20 mm from the lower end T, the center M, and the upper end B (see FIG. 1) of these continuous casting nozzles toward the longitudinal central axis of the continuous casting nozzle. A core sample in which the side layer, the intermediate layer, and the outer peripheral side layer were integrated was obtained. The shrinkability at 1000 ° C. was measured under a nitrogen atmosphere by the method for measuring the shrinkability from the actual shape described above. Table 4 shows the results.
実施例8では中空耐火骨材を使用しているため、施工後でも初期の可縮率が低下せずに、可縮率が安定していることがわかる。一方、比較例8では、可縮率が残留溶媒に依存しているため、施工途中にモルタル中から材質中への溶媒の吸収を伴い可縮率が大幅に低下している。このことから、溶媒を多量に含み可縮性を確保しようとする従来のモルタルでは、制御された可縮量を確保することが困難であることがわかる。 In Example 8, since the hollow refractory aggregate is used, it can be seen that the initial contractible ratio does not decrease even after the construction, and the contractible ratio is stable. On the other hand, in the comparative example 8, since the shrinkage ratio depends on the residual solvent, the shrinkage ratio is greatly lowered with the absorption of the solvent from the mortar into the material during the construction. From this, it can be seen that it is difficult to secure a controlled contractible amount in a conventional mortar that contains a large amount of a solvent and attempts to ensure contractibility.
<実施例D>
実施例Dは、実施例Cの実施例8を使用して作製した多層構造の連続鋳造用ノズルを実操業に供した結果である。
<Example D>
Example D is the result of subjecting a multilayer continuous casting nozzle produced using Example 8 of Example C to actual operation.
内孔側層の耐火物は、実施例Bと同じ、CIPにより成形した円筒状、管状の成形体を200℃の乾燥処理、1000℃の非酸化雰囲気での熱処理を施し、その後外周加工により外径φ90mm、内径φ70mm、高さ750mmに成形した、1500℃での熱膨張量が1.32%のドロマイトカーボン質材質のスリーブである。 The refractory for the inner hole side layer is the same as in Example B. Cylindrical and tubular molded bodies molded by CIP are subjected to a drying treatment at 200 ° C. and a heat treatment in a non-oxidizing atmosphere at 1000 ° C. This is a sleeve made of a dolomite carbonaceous material having a diameter of 90 mm, an inner diameter of 70 mm, and a height of 750 mm, and a thermal expansion amount at 1500 ° C. of 1.32%.
このスリーブをAl2O3が約55質量%、Cが約30質量%、SiO2が約14質量%のAl2O3−SiO2−C材質(1500℃での熱膨張量は0.55%)で構成された連続鋳造用ノズル本体(外周側層)の内側に、目地厚さ2.5mmで、実施例Bの実施例8のモルタル状の中間層用の耐火物を介して均一に内装した。 The sleeve Al 2 O 3 is about 55 wt%, C is from about 30 wt%, the thermal expansion amount at SiO 2 is about 14 wt% of Al 2 O 3 -SiO 2 -C material (1500 ° C. 0.55 %) Inside the nozzle body (outer peripheral layer) for continuous casting, with a joint thickness of 2.5 mm, uniformly through the refractory for the mortar-shaped intermediate layer of Example B of Example B Decorated.
この連続鋳造用ノズルを110℃で乾燥した後、900℃で2時間予熱が行った後1520℃の溶鋼を600分間受鋼した。 The nozzle for continuous casting was dried at 110 ° C., preheated at 900 ° C. for 2 hours, and then molten steel at 1520 ° C. was received for 600 minutes.
比較例として、同様に実施例Cにて使用した比較例8のモルタルを使用して作製した連続鋳造用ノズルを実操業に供した。 As a comparative example, the nozzle for continuous casting similarly produced using the mortar of the comparative example 8 used in Example C was used for the actual operation.
実験の結果、実施例8は連続鋳造用ノズル本体(外周側層)に亀裂や破壊等が生じることがなく、問題なく鋳造を終えることができた。内孔側層も健全に残存しており、中間層内への溶鋼やスラグ成分の浸透等も観られなかった。 As a result of the experiment, in Example 8, the nozzle body (outer peripheral layer) for continuous casting was not cracked or broken, and the casting could be finished without any problem. The inner hole side layer also remained soundly, and the penetration of molten steel and slag components into the intermediate layer was not observed.
これに対し比較例8では、受鋼開始10分頃に連続鋳造用ノズル本体(外周側層)に縦方向の亀裂を生じ、鋳造停止となった。 On the other hand, in Comparative Example 8, a vertical crack occurred in the continuous casting nozzle body (outer peripheral layer) around 10 minutes from the start of steel receiving, and the casting was stopped.
実験後の両試料を解体して調査したところ、実施例8はその構成物である中空耐火骨材の破壊による圧縮が観られ、内孔側層の膨張を緩和すると同時に鋳造中の内孔側層の剥離を防止できていた。 When both samples after the experiment were disassembled and investigated, in Example 8, compression was observed due to the destruction of the hollow refractory aggregate that is the component, and the expansion of the inner hole side layer was eased and at the same time the inner hole side during casting. The peeling of the layer could be prevented.
一方、比較例8では、内孔側層には亀裂が見られないことから、中間層の可縮率不足のため内孔側層が外周側層を押し割ったことが明らかであった。 On the other hand, in Comparative Example 8, since no crack was observed in the inner hole side layer, it was clear that the inner hole side layer cracked the outer peripheral side layer due to insufficient contractibility of the intermediate layer.
1 中間層(本発明の中間層用の耐火物からなる層)
2 内孔側層
3 外周側層のうち連続鋳造用ノズルの本体をなすアルミナ−黒鉛質の層
4 外周側層のうち連続鋳造用ノズルのパウダー部をなすジルコニア−黒鉛質の層
5 内孔
6 溶鋼流入孔
7 吐出孔
8 供試料(中空耐火骨材)
9 容器
10 上部ライナー(下降による加圧用治具)
11 下部ライナー(上昇による加圧用治具)
1 Intermediate layer (a layer made of a refractory for the intermediate layer of the present invention)
2 Inner
9
11 Lower liner (Jig for pressurization by raising)
Claims (4)
前記中間層は請求項1から請求項3のいずれかに記載の耐火物からなり、かつ、次の式1を満たすことを特徴とする連続鋳造用ノズル。
K ≧ [(Di×αi−Do×αo)/(2×Tm)]×100 … 式1
ここで、
Kは中間層の可縮率(%)
Diは内孔側層の外径(mm)
Doは外周側層の内径(mm)
Tmは中間層の室温における(初期)厚み(mm)
αiは内孔側層の耐火物の室温から1500℃までの範囲における最大の熱膨張率(%)
αoは外周側層の耐火物の通鋼開始時の温度における熱膨張率(%) All or a part of the inner hole surface with which the molten steel contacts has a multi-layer structure of an inner hole side layer, an intermediate layer, and an outer peripheral side layer in order from the inner hole surface, and the thermal expansion of the inner hole side layer is In the continuous casting nozzle larger than the thermal expansion of the outer peripheral side layer at the position corresponding to the inner hole side layer,
The said intermediate | middle layer consists of the refractory material in any one of Claims 1-3, and satisfy | fills following Formula 1, The nozzle for continuous casting characterized by the above-mentioned.
K ≧ [(Di × αi−Do × αo) / (2 × Tm)] × 100 Equation 1
here,
K is the shrinkage ratio of the intermediate layer (%)
Di is the outer diameter of the inner hole side layer (mm)
Do is the inner diameter of the outer peripheral layer (mm)
Tm is the (initial) thickness of the intermediate layer at room temperature (mm)
αi is the maximum coefficient of thermal expansion (%) in the range from room temperature to 1500 ° C of the refractory on the inner hole side layer
αo is the coefficient of thermal expansion (%) at the temperature at the start of steel passing of the refractories on the outer layer
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008193730A JP5134463B2 (en) | 2008-07-28 | 2008-07-28 | Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting |
CN200980137914.XA CN102164695B (en) | 2008-07-28 | 2009-07-27 | Refractory for nozzle used in continuous casting and nozzle for continuous casting |
PCT/JP2009/063371 WO2010013686A1 (en) | 2008-07-28 | 2009-07-27 | Refractory for nozzle used in continuous casting and nozzle for continuous casting |
KR1020117003481A KR101310737B1 (en) | 2008-07-28 | 2009-07-27 | Nozzle for continuous casting |
US12/509,641 US8172114B2 (en) | 2008-07-28 | 2009-07-27 | Refractory material for nozzle for use in continuous casting, and continuous casting nozzle |
BRPI0916819-2A BRPI0916819B1 (en) | 2008-07-28 | 2009-07-27 | REFRACTORY MATERIAL FOR AN INTERMEDIATE LAYER OF A CONTINUOUS LANGUAGE NOZZLE AND A CONTINUOUS LANGUAGE NOZZLE |
EP09802929.1A EP2322300B8 (en) | 2008-07-28 | 2009-07-27 | Refractory for nozzle used in continuous casting and nozzle for continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008193730A JP5134463B2 (en) | 2008-07-28 | 2008-07-28 | Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010029894A JP2010029894A (en) | 2010-02-12 |
JP5134463B2 true JP5134463B2 (en) | 2013-01-30 |
Family
ID=41735029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008193730A Active JP5134463B2 (en) | 2008-07-28 | 2008-07-28 | Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5134463B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7130518B2 (en) | 2018-09-28 | 2022-09-05 | キヤノン株式会社 | Magnetic carrier, two-component developer, replenishment developer, and image forming method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6204825B2 (en) * | 2013-12-26 | 2017-09-27 | 黒崎播磨株式会社 | Immersion nozzle |
KR101674819B1 (en) | 2015-08-12 | 2016-11-09 | 주식회사 엘지실트론 | Method for Growing Single Crystal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3344929B2 (en) * | 1997-07-22 | 2002-11-18 | 東芝セラミックス株式会社 | Nozzle for continuous casting |
JP4572521B2 (en) * | 2003-10-06 | 2010-11-04 | 住友金属工業株式会社 | Castable refractories, manufacturing method thereof and lance pipe |
JP4644044B2 (en) * | 2004-10-04 | 2011-03-02 | 黒崎播磨株式会社 | Long nozzle for continuous casting |
JP2006312188A (en) * | 2005-05-09 | 2006-11-16 | Shinagawa Refract Co Ltd | Continuous casting nozzle |
-
2008
- 2008-07-28 JP JP2008193730A patent/JP5134463B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7130518B2 (en) | 2018-09-28 | 2022-09-05 | キヤノン株式会社 | Magnetic carrier, two-component developer, replenishment developer, and image forming method |
Also Published As
Publication number | Publication date |
---|---|
JP2010029894A (en) | 2010-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2103580B1 (en) | Durable sleeve bricks | |
JP4644044B2 (en) | Long nozzle for continuous casting | |
WO2010013686A1 (en) | Refractory for nozzle used in continuous casting and nozzle for continuous casting | |
KR101171367B1 (en) | Nozzle for continuous casting and method for manufacturing the same | |
JP5134463B2 (en) | Refractories for intermediate layer of continuous casting nozzle and nozzle for continuous casting | |
JP5069592B2 (en) | Immersion nozzle | |
CN113649772B (en) | Production process of high-temperature structural ceramic/metal composite pipe for aluminum alloy die casting machine | |
JP5129684B2 (en) | Continuous casting nozzle | |
JP5134464B2 (en) | Refractories for nozzles used for continuous casting and nozzles for continuous casting | |
KR101798843B1 (en) | Refractory composition and well block for steel casting by using it | |
JP2009241123A (en) | Nozzle for continuous casting | |
JP5166302B2 (en) | Continuous casting nozzle | |
JP4589425B2 (en) | Nozzle for continuous casting and manufacturing method thereof | |
JP4751277B2 (en) | Non-adhesive continuous casting nozzle | |
JP6855646B1 (en) | Refractory for sliding nozzle plate and its manufacturing method | |
WO2021117742A1 (en) | Refractory material | |
EP4450478A1 (en) | Refractory product for use in continuous casting, and refractory product member | |
JP4589151B2 (en) | Nozzle for continuous casting and continuous casting method | |
KR100411295B1 (en) | Sliding plate | |
JP2009090319A (en) | Nozzle for continuous casting | |
Burr et al. | al.:'Micromechanics of Refractory Ceramics' |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121012 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5134463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |