JP5134395B2 - Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module - Google Patents

Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module Download PDF

Info

Publication number
JP5134395B2
JP5134395B2 JP2008043821A JP2008043821A JP5134395B2 JP 5134395 B2 JP5134395 B2 JP 5134395B2 JP 2008043821 A JP2008043821 A JP 2008043821A JP 2008043821 A JP2008043821 A JP 2008043821A JP 5134395 B2 JP5134395 B2 JP 5134395B2
Authority
JP
Japan
Prior art keywords
temperature side
low temperature
side electrode
electrode member
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008043821A
Other languages
Japanese (ja)
Other versions
JP2009206113A (en
Inventor
一雄 戎森
拓志 木太
浩史 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2008043821A priority Critical patent/JP5134395B2/en
Publication of JP2009206113A publication Critical patent/JP2009206113A/en
Application granted granted Critical
Publication of JP5134395B2 publication Critical patent/JP5134395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、温度差を利用した発電、直流電圧を印加することによる冷却若しくは加熱が実現できる熱電モジュール、熱電モジュールを用いた熱電装置及び熱電モジュールの製造方法に関する。   The present invention relates to a thermoelectric module capable of realizing power generation using a temperature difference and cooling or heating by applying a DC voltage, a thermoelectric device using the thermoelectric module, and a method of manufacturing the thermoelectric module.

図7に従来型の熱電モジュール31の側断面図を示す。図7(a)は、図において上側の電極が高温とされ、下側の電極がそれに比べて低温とされた直後の状態の熱電モジュール31を示し、図7(b)は、その上下の電極を図7(a)と比べてより温度の高低差のある状態にして一定時間経過した後の熱電モジュール31の状態を示す。   FIG. 7 shows a side sectional view of a conventional thermoelectric module 31. FIG. 7A shows the thermoelectric module 31 in a state immediately after the upper electrode is set to a high temperature and the lower electrode is set to a lower temperature than that in the drawing, and FIG. 7 shows a state of the thermoelectric module 31 after a certain period of time has elapsed with the temperature difference being higher than that in FIG.

熱電モジュール31は、低温となる側の電極35に、例えばハンダ等によって熱電材料チップであるn型半導体32が接合され、n型半導体32の反対側の端部と高温となる側の電極34とが同じくハンダ等によって接合されている。更に同じ電極34と熱電材料チップであるp型半導体33とが接合され、p型半導体33の反対側の端部は別のn型半導体32が接合された別の電極35に接合されている。このような構成にすることによって電気的に直列に接続することができる。   In the thermoelectric module 31, an n-type semiconductor 32, which is a thermoelectric material chip, is joined to the electrode 35 on the low temperature side by solder or the like, for example, and the opposite end of the n-type semiconductor 32 and the electrode 34 on the high temperature side are connected. Are also joined by solder or the like. Further, the same electrode 34 and a p-type semiconductor 33 which is a thermoelectric material chip are joined, and the opposite end of the p-type semiconductor 33 is joined to another electrode 35 to which another n-type semiconductor 32 is joined. With such a configuration, it can be electrically connected in series.

電極34が高温、電極35がそれに比べて低温となるような環境に熱電モジュール31を設置して端部の電極を電気回路等に接続すると、ゼーベック効果によって電圧が発生し、矢印で示すように、電極35→n型半導体32→電極34→p型半導体33と電流が流れる。これはつまり、n型半導体32内の電子が高温の電極34から熱エネルギーを得て低温の電極35へ移動してそこで熱エネルギーを放出し、それに対してp型半導体33の正孔が高温の電極34から熱エネルギーを得て低温の電極35へ移動してそこで熱エネルギーを放出するという原理によって電流が流れる。   When the thermoelectric module 31 is installed in an environment in which the electrode 34 is at a high temperature and the electrode 35 is at a lower temperature than that, and the end electrode is connected to an electric circuit or the like, a voltage is generated by the Seebeck effect, as indicated by an arrow The current flows through the electrode 35 → the n-type semiconductor 32 → the electrode 34 → the p-type semiconductor 33. This means that the electrons in the n-type semiconductor 32 obtain thermal energy from the high-temperature electrode 34 and move to the low-temperature electrode 35 where the thermal energy is released, whereas the holes in the p-type semiconductor 33 are hot. A current flows on the principle that heat energy is obtained from the electrode 34 and moved to the low temperature electrode 35 where the heat energy is released.

このような熱電モジュール31の上下の電極34及び35の温度差を更に大きくすると、その温度差における熱電材料チップ及び電極間の熱膨張率の違いによって、接合界面付近で破壊36が生じてしまうおそれがある(図7(b))。   If the temperature difference between the upper and lower electrodes 34 and 35 of the thermoelectric module 31 is further increased, there is a risk that the fracture 36 may occur near the bonding interface due to the difference in thermal expansion coefficient between the thermoelectric material chip and the electrode at the temperature difference. (FIG. 7B).

これを解決するために、弾性を有する網目状の金属細線網を低温側の低温側電極部材と熱電材料チップとの間に配置することにより、金属細線網の弾力が失われるのを防ぎ、また放熱側電極と熱電材料チップとのハンダ接合を不要とした技術が開示されている(特許文献1)。熱膨張率の違いは低温側電極部材又は熱電材料チップと金属細線網との間で摺動させることにより吸収する。更に、組み立て時の熱電材料チップの高さのバラツキを吸収することもできる。   In order to solve this, an elastic mesh metal wire network is disposed between the low temperature side electrode member and the thermoelectric material chip to prevent loss of elasticity of the metal wire network, and A technique that eliminates the need for solder bonding between the heat radiation side electrode and the thermoelectric material chip is disclosed (Patent Document 1). The difference in coefficient of thermal expansion is absorbed by sliding between the low-temperature side electrode member or thermoelectric material chip and the metal wire network. Furthermore, it is possible to absorb variations in the height of the thermoelectric material chip during assembly.

また、穴を有する導電性の電極材料と熱電材料とが電極材料の穴を介して接合されていることを特徴とする技術が開示されている(特許文献2)。ここで、電極材料は金属製メッシュであることが開示されている。
特開2005−277206号公報 特開2006−253343号公報
In addition, a technique is disclosed in which a conductive electrode material having a hole and a thermoelectric material are joined through a hole in the electrode material (Patent Document 2). Here, it is disclosed that the electrode material is a metal mesh.
JP-A-2005-277206 JP 2006-253343 A

しかしながら、特許文献1に開示された熱電モジュールは低温側電極部材と熱電材料チップとの界面での電気抵抗及び熱抵抗が大きく、充分な性能を発揮することが困難であった。また、金属細線網は電極部材として用いられておらず、低温側電極部材と熱電材料チップとの間に配置され完全に接合されていないため、使用するに従って相対的な位置がずれてモジュール内で電気的に短絡するおそれがあった。   However, the thermoelectric module disclosed in Patent Document 1 has a large electric resistance and thermal resistance at the interface between the low-temperature electrode member and the thermoelectric material chip, and it is difficult to exhibit sufficient performance. In addition, the metal fine wire network is not used as an electrode member, and is disposed between the low temperature side electrode member and the thermoelectric material chip and is not completely joined. There was a risk of electrical short circuit.

そして、特許文献2に開示された熱電モジュールは、高温下で且つ温度差が大きい環境で使用するときに、熱電材料と電極材料との接合部に応力が集中し、その接合部から破壊するおそれがあった。   When the thermoelectric module disclosed in Patent Document 2 is used in an environment at a high temperature and a large temperature difference, there is a risk that stress concentrates on the joint between the thermoelectric material and the electrode material and breaks from the joint. was there.

本発明は、上記課題に鑑みてなされたもので、高い耐久性と高い性能とを両立できる熱電モジュール及びその製造方法を提供することを解決すべき課題とする。また、その熱電モジュールを用いた熱電装置を提供することも解決すべき課題とする。   This invention is made | formed in view of the said subject, and makes it the subject which should be solved to provide the thermoelectric module which can make high durability and high performance compatible, and its manufacturing method. Another object to be solved is to provide a thermoelectric device using the thermoelectric module.

上記課題を解決するための請求項1に係る熱電モジュールの発明の構成上の特徴は、複数の低温側電極部材及び高温側電極部材と、前記低温側電極部材及び前記高温側電極部材の間に設けられ一端側を前記高温電極部材に接触するとともに他端側を前記低温側電極部材に接触して電気的に配列される複数の熱電材料チップと、を有し、一端側と他端側との温度差により電気エネルギーに変換し又は電気エネルギーを温度差に変換する熱電モジュールであって、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であり、前記熱電材料チップとの接触部分が接合部材により固着されていることである。
The structural feature of the thermoelectric module according to claim 1 for solving the above-described problem is that a plurality of low-temperature side electrode members and high-temperature side electrode members are interposed between the low-temperature side electrode members and the high-temperature side electrode members. A plurality of thermoelectric material chips that are arranged in electrical contact with one end side in contact with the high temperature electrode member and the other end side in contact with the low temperature side electrode member. A thermoelectric module that converts electrical energy into temperature difference or converts electrical energy into temperature difference,
The low temperature side electrode member is a stretchable fibrous member having electrical conductivity, the contact portion between the thermoelectric material chips is that they are fixed by bonding member.

また請求項2に係る発明の構成上の特徴は、請求項1において、前記低温側電極部材は、前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることである。 The structural feature of the invention according to claim 2, in claim 1, wherein the low temperature side electrode member, by the fibrous member is woven diagonally to the thermal expansion direction of the electrode member is there.

また請求項3に係る発明の構成上の特徴は、請求項1又は2において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることである。 The structural feature of the invention according to Claim 3 resides in that in Claim 1 or 2, wherein the low temperature side electrode member, by cloth-like body of the fibrous member is constituted by stacked two or more is there.

そして上記課題を解決するための請求項4に係る熱電装置の発明の構成上の特徴は、低温側基板と、
前記低温側基板に対向する高温側基板と、
前記低温側基板及び前記高温側基板の各対向面に接合部材で接触又は固着するように配置された複数の低温側電極部材及び高温側電極部材と、前記低温側電極部材及び前記高温側電極部材の間に設けられ一端側を前記高温電極部材に固着するとともに他端側を前記低温側電極部材に固着して電気的に配列される複数の熱電材料チップと、をもち、一端側と他端側との温度差により電気エネルギーに変換し又は電気エネルギーを温度差に変換する熱電モジュールと、
を有する熱電装置であって、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であることである。
And the structural feature of the invention of the thermoelectric device according to claim 4 for solving the above-mentioned problems is a low temperature side substrate,
A high temperature side substrate facing the low temperature side substrate;
A plurality of low temperature side electrode members and high temperature side electrode members arranged so as to contact or adhere to respective opposing surfaces of the low temperature side substrate and the high temperature side substrate with a bonding member, the low temperature side electrode member, and the high temperature side electrode member A plurality of thermoelectric material chips, one end side of which is fixed to the high temperature electrode member and the other end side is fixed to the low temperature side electrode member, and is electrically arranged. A thermoelectric module that converts the electrical energy into a temperature difference or a temperature difference with the side, and converts the electrical energy into a temperature difference;
A thermoelectric device comprising:
The low temperature side electrode member is that it is a stretchable fibrous member with electrical conductivity.

また請求項5に係る発明の構成上の特徴は、請求項4において、前記低温側電極部材は前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることである。 The structural feature of the invention according to claim 5, in claim 4, wherein the low temperature side electrode member is that the fibrous member is woven diagonally to the thermal expansion direction of the electrode member .

また請求項6に係る発明の構成上の特徴は、請求項4又は5において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることである。 The structural feature of the invention according to Claim 6 resides in that in Claim 4 or 5, wherein the low temperature side electrode member, by cloth-like body of the fibrous member is constituted by stacked two or more is there.

更に上記課題を解決するための請求項7に係る熱電モジュールの製造方法の発明の構成上の特徴は、複数の高温側電極部材の一面側と複数の熱電材料チップの一端側とを接合する高温側電極接合操作と、
前記熱電材料チップの他端側と複数の低温側電極部材の一面側とを接合部材を介して固着する低温側電極固着操作と、を含み、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であることである。
Further, the structural feature of the invention of the method of manufacturing a thermoelectric module according to claim 7 for solving the above-described problem is that a high temperature for joining one surface side of the plurality of high temperature side electrode members and one end side of the plurality of thermoelectric material chips. Side electrode bonding operation;
Low temperature side electrode fixing operation for fixing the other end side of the thermoelectric material chip and one surface side of a plurality of low temperature side electrode members through a bonding member,
The low temperature side electrode member is that it is a stretchable fibrous member with electrical conductivity.

また請求項8に係る発明の構成上の特徴は、請求項7において、前記低温側電極部材は、前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることである。 The structural feature of the invention according to claim 8, in claim 7, wherein the low temperature side electrode member, by the fibrous member is woven diagonally to the thermal expansion direction of the electrode member is there.

また請求項9に係る発明の構成上の特徴は、請求項7又は8において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることである。 The structural feature of the invention according to claim 9, in claim 7 or 8, wherein the low temperature side electrode member, by cloth-like body of the fibrous member is constituted by stacked two or more is there.

請求項1に係る発明においては、熱電モジュールの低温側電極部材として、電気伝導性をもつ伸縮可能な繊維状部材を採用していることから、熱電モジュールの一端側と他端側との間に加えた温度差により発生する変形が生じても、低温側電極部材に採用した繊維状部材が伸縮することによって応力が緩和されるため、熱電材料チップ、電極部材、そしてそれらの間の接合部分において応力集中が抑制され耐久性が向上できる。 In the invention according to claim 1, and a low temperature side electrode member of the thermoelectric module, since it adopts a stretchable fibrous member having electrical conductivity, and one end and the other end of the thermoelectric module even if deformation caused by the temperature difference applied between the, because the fibrous member was used in the low temperature side electrode member stress is relieved by stretching, thermoelectric material chips, the electrode member and between them, Stress concentration is suppressed at the joint portion of the, and durability can be improved.

そして、低温側電極部材は伸縮可能な部材を用いた上で、熱電材料チップとの接触部分を固着する構成を採用しているから、電極部材がずれるなどの理由による電気的な短絡が抑制できると共に、熱電材料チップと電極部材との間の電気的且つ熱的接続を十分に確保できる。また、この接触部分の固着は接合部材により実現しているため、熱電モジュールを構成する熱電材料チップ、電極部材などの高さのバラツキを吸収して性能のバラツキの発生を少なくできると共に、充分な熱的接続が実現できる。 Then, on the low temperature side electrode member with expandable member, because they employ a structure for fixing the contact portion between the thermoelectric material chips, electrical short circuit due to reasons such as the electrode member is displaced suppression In addition, the electrical and thermal connection between the thermoelectric material chip and the electrode member can be sufficiently secured. In addition, since the bonding of the contact portion is realized by the joining member, it is possible to absorb the variation in the height of the thermoelectric material chip, the electrode member, etc. constituting the thermoelectric module and to reduce the occurrence of the variation in performance. Thermal connection can be realized.

請求項2に係る発明においては、低温側電極部材に採用する繊維状部材がその電極部材の熱膨張が相対的に大きな方向に対して斜めに編み込まれている構成を採用することにより、熱膨張により電極部材に生じる変形を効果的に吸収することができる。つまり、電極部材に生じる変形は、斜めに編み込まれた繊維状部材の角度の変化に置き換えられることにより、応力の集中が更に低減される。 In the invention according to claim 2, by adopting a configuration in which fibrous members to adopt the low temperature side electrode member is thermal expansion of the electrode member is woven diagonally to relatively large direction, heat The deformation generated in the electrode member due to the expansion can be effectively absorbed. That is, the stress concentration is further reduced by replacing the deformation generated in the electrode member with the change in the angle of the fibrous member knitted obliquely.

請求項3に係る発明においては、低温側電極部材に採用した繊維状部材として、布状体が2枚以上重ねられている部材を採用することにより、熱膨張により生じる変形が大きくなっても重ねられた布状体の部材の間でずれることにより、その変形を吸収することができる。重ねられた布状体は元々一体的な部材であるため、発生するずれの大きさには限界があり、隣接する電極部材などとの間における短絡発生のおそれを最小限にすることができる。ここで、本明細書における「布状体が2枚以上重ねられている」というのは、もともと一体的に形成されている布状体を折り曲げて形成したり、繊維状部材を編み込むときに筒状の一体的な部材として形成することを意味する。 In the invention according to claim 3, as the fibrous member was used in the low temperature side electrode member, by employing a member cloth-like body is two or more discs, even if deformation caused by thermal expansion increases The displacement can be absorbed by shifting between the members of the overlapped cloth-like bodies. Since the overlapped cloth-like body is originally an integral member, there is a limit to the size of the generated displacement, and the possibility of occurrence of a short circuit between adjacent electrode members and the like can be minimized. Here, “two or more cloth-like bodies are overlapped” in this specification means that the cloth-like body originally formed integrally is formed by bending or when a fibrous member is knitted. It is meant to be formed as an integral member.

請求項4に係る発明においては、熱電モジュールの低温側電極部材として、電気伝導性をもつ伸縮可能な繊維状部材を採用していることから、熱電モジュールの一端側と他端側との間に加えた温度差により発生する変形が生じても、低温側電極部材に採用した繊維状部材が伸縮することによって応力が緩和されるため、熱電材料チップ、電極部材、そしてそれらの間の接合部分において応力集中が抑制され耐久性が向上できる。 In the invention according to claim 4, in the low temperature side electrode member of the thermoelectric module, since it adopts a stretchable fibrous member having electrical conductivity, and one end and the other end of the thermoelectric module even if deformation caused by the temperature difference applied between the, because the fibrous member was used in the low temperature side electrode member stress is relieved by stretching, thermoelectric material chips, the electrode member and between them, Stress concentration is suppressed at the joint portion of the, and durability can be improved.

そして、低温側電極部材は伸縮可能な部材を用いた上で、熱電材料チップとの接触部分を固着する構成を採用しているから、電極部材がずれるなどの理由による電気的な短絡が防止できると共に、熱電材料チップと電極部材との間の電気的且つ熱的接続を十分に確保できる。また、この接触部分の固着は接合部材により実現しているため、熱電モジュールを構成する熱電材料チップ、電極部材などの高さのバラツキを吸収して性能のバラツキの発生を少なくできると共に、充分な熱的接続が実現できる。 Then, on the low temperature side electrode member with expandable member, because they employ a structure for fixing the contact portion between the thermoelectric material chips, electrical short circuit due to reasons such as the electrode member is displaced is prevented In addition, the electrical and thermal connection between the thermoelectric material chip and the electrode member can be sufficiently secured. In addition, since the bonding of the contact portion is realized by the joining member, it is possible to absorb the variation in the height of the thermoelectric material chip, the electrode member, etc. constituting the thermoelectric module and to reduce the occurrence of the variation in performance. Thermal connection can be realized.

請求項5に係る発明においては、低温側電極部材に採用する繊維状部材がその電極部材の熱膨張が相対的に大きな方向に対して斜めに編み込まれている構成を採用することにより、熱膨張により電極部材に生じる変形を効果的に吸収することができる。つまり、電極部材に生じる変形は、斜めに編み込まれた繊維状部材の角度の変化に置き換えられることにより、応力の集中が更に低減される。 In the invention according to Claim 5, by employing a configuration in which fibrous members to adopt the low temperature side electrode member is thermal expansion of the electrode member is woven diagonally to relatively large direction, heat The deformation generated in the electrode member due to the expansion can be effectively absorbed. That is, the stress concentration is further reduced by replacing the deformation generated in the electrode member with the change in the angle of the fibrous member knitted obliquely.

請求項6に係る発明においては、低温側電極部材に採用した繊維状部材として、布状体が2枚以上重ねられている部材を採用することにより、熱膨張により生じる変形が大きくなっても重ねられた布状体の部材の間でずれることにより、その変形を吸収することができる。重ねられた布状体は元々一体的な部材であるため、発生するずれの大きさには限界があり、隣接する電極部材などとの間における短絡発生のおそれを最小限にすることができる。 In the invention according to claim 6, as the fibrous member was used in the low temperature side electrode member, by employing a member cloth-like body is two or more discs, even if deformation caused by thermal expansion increases The displacement can be absorbed by shifting between the members of the overlapped cloth-like bodies. Since the overlapped cloth-like body is originally an integral member, there is a limit to the size of the generated displacement, and the possibility of occurrence of a short circuit between adjacent electrode members and the like can be minimized.

請求項7に係る発明においては、熱電モジュールの低温側電極部材として、電気伝導性をもつ伸縮可能な繊維状部材を採用していることから、熱電モジュールの一端側と他端側との間に加えた温度差により発生する変形が生じても、低温側電極部材に採用した繊維状部材が伸縮することによって応力が緩和されるため、熱電材料チップ、電極部材、そしてそれらの間の接合部分において応力集中が抑制され耐久性が向上できる。 In the invention according to claim 7, and a low temperature side electrode member of the thermoelectric module, since it adopts a stretchable fibrous member having electrical conductivity, and one end and the other end of the thermoelectric module even if deformation caused by the temperature difference applied between the, because the fibrous member was used in the low temperature side electrode member stress is relieved by stretching, thermoelectric material chips, the electrode member and between them, Stress concentration is suppressed at the joint portion of the, and durability can be improved.

そして、低温側電極部材は伸縮可能な部材を用いた上で、熱電材料チップとの接触部分を固着する構成を採用しているから、電極部材がずれるなどの理由による電気的な短絡が防止できると共に、熱電材料チップと電極部材との間の電気的且つ熱的接続を十分に確保できる。また、この接触部分の固着は接合部材により実現しているため、熱電モジュールを構成する熱電材料チップ、電極部材などの高さのバラツキを吸収して性能のバラツキの発生を少なくできると共に、充分な熱的接続が実現できる。 Then, on the low temperature side electrode member with expandable member, because they employ a structure for fixing the contact portion between the thermoelectric material chips, electrical short circuit due to reasons such as the electrode member is displaced is prevented In addition, the electrical and thermal connection between the thermoelectric material chip and the electrode member can be sufficiently secured. In addition, since the bonding of the contact portion is realized by the joining member, it is possible to absorb the variation in the height of the thermoelectric material chip, the electrode member, etc. constituting the thermoelectric module and to reduce the occurrence of the variation in performance. Thermal connection can be realized.

請求項8に係る発明においては、低温側電極部材に採用する繊維状部材がその電極部材の熱膨張が相対的に大きな方向に対して斜めに編み込まれている構成を採用することにより、熱膨張により電極部材に生じる変形を効果的に吸収することができる。つまり、電極部材に生じる変形は、斜めに編み込まれた繊維状部材の角度の変化に置き換えられることにより、応力の集中が更に低減される。 In the invention according to claim 8, by adopting a configuration in which fibrous members to adopt the low temperature side electrode member is thermal expansion of the electrode member is woven diagonally to relatively large direction, heat The deformation generated in the electrode member due to the expansion can be effectively absorbed. That is, the stress concentration is further reduced by replacing the deformation generated in the electrode member with the change in the angle of the fibrous member knitted obliquely.

請求項9に係る発明においては、低温側電極部材に採用した繊維状部材として、布状体が2枚以上重ねられている部材を採用することにより、熱膨張により生じる変形が大きくなっても重ねられた布状体の間でずれることにより、その変形を吸収することができる。重ねられた布状体は元々一体的な部材であるため、発生するずれの大きさには限界があり、隣接する電極部材などとの間における短絡発生のおそれを最小限にすることができる。 In the invention according to claim 9, as a fibrous member employing the low temperature side electrode member, by employing a member cloth-like body is two or more discs, even if deformation caused by thermal expansion increases The deformation | transformation can be absorbed by shifting | deviating between the piled cloth-like bodies. Since the overlapped cloth-like body is originally an integral member, there is a limit to the size of the generated displacement, and the possibility of occurrence of a short circuit between adjacent electrode members and the like can be minimized.

以下、実施形態を用いて本発明を具体的に説明する。
(実施形態1)
本実施形態の熱電発電モジュール(熱電モジュール)10の構成及び製造工程を図1に示す。
Hereinafter, the present invention will be specifically described using embodiments.
(Embodiment 1)
The structure and manufacturing process of the thermoelectric power generation module (thermoelectric module) 10 of this embodiment are shown in FIG.

本実施形態の熱電発電モジュール10は、全体として所定の長さと所定の幅とをもつ平板状の外観をもつ部材であり、Ti−Cu合金から形成された平板状の部材である高温側電極部材1と、高さが同一の角柱状部材であるp型熱電材料チップ2a及びn型熱電材料チップ2bと、低温側電極部材5とを有する。低温側電極部材5は金属製の繊維状部材を編み込んだ平編銅線電極から形成されており、電気伝導性をもつと共に伸縮可能な部材である。低温側電極部材5は筒状の外観をもち、繊維状部材から形成される。繊維状部材は平編みにより電極部材を形成しており、低温側電極部材5の長さ方向及び幅方向に対して繊維状部材は斜め方向に編み込まれている。なお、場合によっては、低温側電極部材5は不織布あるいは組物の一種である丸打紐とすることもできる。高温側電極部材1は熱電材料チップ2a及び2bの間を跨ぐように設けられており、加熱されることにより熱電材料チップ2a及び2bの間隔が開く方向に熱膨張するため、低温側電極部材5はその熱膨張により発生する変形(応力)を吸収するように熱電材料チップ2a及び2bを結ぶ方向(低温側電極部材5の長さ方向)に伸縮できるように長さ方向に対して斜めに繊維状部材を編み込んでいる。   The thermoelectric power generation module 10 of this embodiment is a member having a flat appearance having a predetermined length and a predetermined width as a whole, and a high temperature side electrode member which is a flat member formed of a Ti—Cu alloy. 1, a p-type thermoelectric material chip 2 a and an n-type thermoelectric material chip 2 b that are prismatic members having the same height, and a low-temperature side electrode member 5. The low temperature side electrode member 5 is formed of a flat knitted copper wire electrode in which a metallic fibrous member is knitted, and is an electrically conductive and expandable member. The low temperature side electrode member 5 has a cylindrical appearance and is formed of a fibrous member. The fibrous member forms an electrode member by flat knitting, and the fibrous member is knitted in an oblique direction with respect to the length direction and the width direction of the low temperature side electrode member 5. In some cases, the low temperature side electrode member 5 may be a non-woven fabric or a round string that is a kind of braid. The high temperature side electrode member 1 is provided so as to straddle between the thermoelectric material chips 2a and 2b. When heated, the high temperature side electrode member 1 is thermally expanded in the direction in which the interval between the thermoelectric material chips 2a and 2b is opened. Are fibers obliquely to the length direction so that they can expand and contract in the direction connecting the thermoelectric material chips 2a and 2b (the length direction of the low temperature side electrode member 5) so as to absorb the deformation (stress) generated by the thermal expansion. The braided member is knitted.

高温側電極部材1は熱電発電モジュール10の一面側に表れており、低温側電極部材5は他面側に表れている。熱電材料チップ2a及び2bは一端側が熱電発電モジュール10の一面側に向き、他端側が他面側に向くように並設されている。   The high temperature side electrode member 1 appears on one side of the thermoelectric power generation module 10, and the low temperature side electrode member 5 appears on the other side. The thermoelectric material chips 2a and 2b are arranged side by side so that one end side faces the one surface side of the thermoelectric power generation module 10 and the other end side faces the other surface side.

熱電材料チップ2a及び2bはそれぞれ複数個かつ同数存在しており、一端側で高温側電極部材1の一面側に電気的に接続され、他端側で低温側電極部材5に電気的に接続されている。これらの熱電材料チップ2a及び2bは、それぞれ1つずつ組み合わせ、それらの一端側を高温側電極部材1の一面側に接合し、全体としてコ字状となるように組み合わせて接合した部材(組部材)を形成している(高温側電極接合操作:図1(a)及び(b))。つまり、組部材内において、熱電材料チップ2a及び2bは一端側と他端側とがなす方向(角柱の高さ方向)が所定間隔で平行に並ぶように並設されている。この接合は拡散接合によって行うことができる。   There are a plurality of thermoelectric material chips 2a and 2b in the same number, and one end side is electrically connected to one surface side of the high temperature side electrode member 1, and the other end side is electrically connected to the low temperature side electrode member 5. ing. Each of these thermoelectric material chips 2a and 2b is combined one by one, and one end thereof is bonded to one surface side of the high temperature side electrode member 1, and is combined and bonded so as to form a U-shape as a whole (assembled member) (High temperature side electrode joining operation: FIGS. 1A and 1B). That is, in the assembled member, the thermoelectric material chips 2a and 2b are arranged side by side so that the direction formed by the one end side and the other end side (the height direction of the prism) is arranged in parallel at a predetermined interval. This bonding can be performed by diffusion bonding.

このように組部材について、高温側電極部材1が同一平面に並ぶように並設する。組部材の並べ方としては、所定の長さになるように、所定数の組部材を連ねて並設して形成した列を所定の幅になるように、所定列だけ並べて、全体として、所定の長さ及び所定の幅をもつ平板状の外観をもつ部材を形成して本実施形態の熱電発電モジュール10としている。隣接した組部材間ではp型熱電材料チップ2aとn型熱電材料チップ2bとが隣接するようにし、熱電材料チップ2a及び2bそれぞれの他端側に低温側電極部材5の一面側を接続することにより、その間を電気的に接続する。この接続は熱電材料チップ2a及び2bの他端側に対してメッキ処理を行い(図1(c))、メッキ層3を形成した後、低温側電極部材5との間に形成した接合部材としてのハンダ層4により接合する。ハンダ層4の形成は、まず低温側電極部材5の一面側にハンダをスクリーン印刷することにより行う。各々の低温側電極部材5上に形成するハンダ層の厚み及び面積は、スクリーン印刷に使用するマスクの厚みと開口部面積で管理する。その後、組部材がもつ熱電材料チップ2a及び2bの他端側のメッキ層3を低温側電極部材5の一面側に形成したハンダ層4に接触させた状態で加熱することにより接合すること(低温側電極固着操作:図1(d)及び(e))で、本実施形態の熱電発電モジュール10が得られる。ハンダにより接合するときにリード線取り出し部6も同時に接合する。   In this way, the assembled members are arranged side by side so that the high temperature side electrode members 1 are arranged in the same plane. As a method of arranging the assembled members, a predetermined number of assembled members are arranged side by side so that a predetermined number of assembled members are arranged side by side so that a predetermined width is obtained. A member having a flat appearance having a length and a predetermined width is formed to form the thermoelectric power generation module 10 of the present embodiment. The p-type thermoelectric material chip 2a and the n-type thermoelectric material chip 2b are adjacent to each other between the adjacent assembled members, and one surface side of the low temperature side electrode member 5 is connected to the other end side of each of the thermoelectric material chips 2a and 2b. To electrically connect between them. In this connection, the other end side of the thermoelectric material chips 2a and 2b is plated (FIG. 1 (c)), and after forming the plating layer 3, the bonding member formed between the low temperature side electrode member 5 is used. The solder layer 4 is used for bonding. The solder layer 4 is first formed by screen-printing solder on one surface side of the low temperature side electrode member 5. The thickness and area of the solder layer formed on each low temperature side electrode member 5 are managed by the thickness and opening area of the mask used for screen printing. Thereafter, bonding is performed by heating the plated layer 3 on the other end side of the thermoelectric material chips 2a and 2b of the assembled member in contact with the solder layer 4 formed on one surface side of the low temperature side electrode member 5 (low temperature). Side electrode fixing operation: In FIGS. 1D and 1E, the thermoelectric power generation module 10 of the present embodiment is obtained. When joining by soldering, the lead wire take-out portion 6 is also joined at the same time.

得られた熱電発電モジュール10においては、p型熱電材料チップ2a、高温側電極部材1、n型熱電材料チップ2b、低温側電極部材5、p型熱電材料チップ2a・・・の順に、p型熱電材料チップ2aとn型熱電材料チップ2bとが交互に連続して接続される。p型熱電材料チップ2aとn型熱電材料チップ2bとの組み合わせで、所定の起電力に対応しており、必要な起電力に応じて直列に接続される。   In the obtained thermoelectric power generation module 10, the p-type thermoelectric material chip 2a, the high temperature side electrode member 1, the n type thermoelectric material chip 2b, the low temperature side electrode member 5, the p type thermoelectric material chip 2a,. The thermoelectric material chips 2a and the n-type thermoelectric material chips 2b are connected alternately and continuously. The combination of the p-type thermoelectric material chip 2a and the n-type thermoelectric material chip 2b corresponds to a predetermined electromotive force, and is connected in series according to the required electromotive force.

この熱電発電モジュール10は、図2に示すように、一面側に高温側基板20が配設され、他面側に低温側基板21が配設されることで熱電発電装置(熱電装置)を形成する。低温側基板21と高温側基板20とは、それらの厚み方向に熱電発電モジュール10の厚みに対応する所定間隔を開けて並設されている。低温側基板21及び高温側基板20と熱電発電モジュール10とはそれぞれ熱交換器であり、外部の高温源と及び低温源にそれぞれ接続される。例えば、高温源としては車両の排気ガスが通過するマフラー、低温源としては冷却材料が流れるパイプ状の部材である。低温側基板21及び高温側基板20と熱電発電モジュール10との間は十分な熱伝導性を発揮できるように接続される。例えば、熱伝導性グリースなどを介して接触した状態で接続したり、拡散接合、溶接、ハンダ付けなどを用いて一体的に固着した状態で接続することもできる。一体的に固着する場合には固着する部材間の熱膨張率が近似していることが望ましい。本実施形態では高温側電極部材1と高温側基板20との間は耐熱性接着剤からなる接着層8、低温側電極部材5と低温側基板21との間は熱伝導性グリースからなる接合層9を介して接続される。本実施形態においては熱伝導性グリースは低温側電極部材5の内部にまで浸透、充填されることにより、接触面積が増加して熱伝導性が向上すると共に、熱伝導性グリースが使用により外部に流出して熱伝導性が低下するおそれが少なくなる。   As shown in FIG. 2, the thermoelectric power generation module 10 is provided with a high temperature side substrate 20 on one side and a low temperature side substrate 21 on the other side to form a thermoelectric power generation device (thermoelectric device). To do. The low temperature side substrate 21 and the high temperature side substrate 20 are arranged side by side with a predetermined interval corresponding to the thickness of the thermoelectric power generation module 10 in their thickness direction. The low temperature side substrate 21 and the high temperature side substrate 20 and the thermoelectric power generation module 10 are heat exchangers, and are connected to an external high temperature source and a low temperature source, respectively. For example, the high temperature source is a muffler through which vehicle exhaust gas passes, and the low temperature source is a pipe-like member through which a cooling material flows. The low temperature side substrate 21 and the high temperature side substrate 20 and the thermoelectric power generation module 10 are connected so as to exhibit sufficient thermal conductivity. For example, they can be connected in contact with each other via heat conductive grease, or can be connected in a state of being integrally fixed using diffusion bonding, welding, soldering, or the like. When fixing together, it is desirable that the coefficient of thermal expansion between the members to be fixed is approximate. In this embodiment, an adhesive layer 8 made of a heat-resistant adhesive is provided between the high temperature side electrode member 1 and the high temperature side substrate 20, and a bonding layer made of heat conductive grease is provided between the low temperature side electrode member 5 and the low temperature side substrate 21. 9 is connected. In this embodiment, the thermally conductive grease penetrates and fills the inside of the low temperature side electrode member 5, thereby increasing the contact area and improving the thermal conductivity, and using the thermally conductive grease on the outside. There is less risk of spilling and reducing thermal conductivity.

本実施形態の熱電発電モジュール10は、以上の構成を有することから、以下の作用効果を発揮する。   Since the thermoelectric power generation module 10 of the present embodiment has the above configuration, the following operational effects are exhibited.

すなわち、熱電発電装置に対して、低温側基板21を低温源に接触させ、高温側基板20を高温源に接触させることにより、それぞれ低温側電極部材5及び高温側電極部材1を介して熱電材料チップ2a及び2bの一端側と他端側との間に温度差を生じさせることになる。発生した温度差によって、p型熱電材料チップ2aではホールがn型熱電材料チップ2bでは電子がそれぞれ低温側電極部材5方向に移動して起電力が生じることになる。   That is, with respect to the thermoelectric generator, the low temperature side substrate 21 is brought into contact with the low temperature source, and the high temperature side substrate 20 is brought into contact with the high temperature source, whereby the thermoelectric material is passed through the low temperature side electrode member 5 and the high temperature side electrode member 1, respectively. A temperature difference is generated between one end side and the other end side of the chips 2a and 2b. Due to the generated temperature difference, holes move in the p-type thermoelectric material chip 2a and electrons move in the direction of the low temperature side electrode member 5 in the n-type thermoelectric material chip 2b, and an electromotive force is generated.

このように生じた温度差によって、高温側電極部材1と低温側電極部材5とでは熱膨張の大きさが異なるものになる。特に、熱電発電モジュール10の広がり方向における伸びが一面側と他面側とにおいて異なるものになる。具体的には高温側電極部材1が配置されて高温にされる一面側の平面広がり方向における伸びが、低温側電極部材5が配置されて低温にされる他面側の平面広がり方向における伸びよりも大きくなる。この場合に、低温側電極部材5は筒状の部材である平編銅線部材から構成されているため伸縮性に優れており、自身に由来する熱膨張の大きさにかかわらず、高温側電極部材1の伸びに従って伸縮する。特に、図3に示すように、低温側電極部材5は図面上下方向において、独立して移動できるため、熱膨張の大きさの相違を低温側電極部材5が吸収することになり、その他の部位(例えば、熱電材料チップ2a及び2bと、高温側電極部材1又は低温側電極部材5との間)に対して加わる歪みが小さくなって不都合の発生が抑制される。例えば、図3において、高温側電極部材1の熱膨張に由来して、熱電材料チップ2a及び2bと低温側電極部材5とに対し、紙面表裏方向にずれる方向に応力が加わる場合には、低温側電極部材5の図面上側(I)と図面下側(II)とがずれることにより加えられる応力を吸収することができる。また、高温側電極部材1の熱膨張に由来して、熱電材料チップ2a及び2bと低温側電極部材5とに対し、紙面左右方向にずれる方向に応力が加わる場合には、図4に示すように、低温側電極部材5の図面上側(I)と図面下側(II)とが矢印L、矢印R方向にずれることにより加えられる応力を吸収することができる。この場合に、低温側電極部材5は筒状の部材であり、図3及び4における幅方向の両端部分においてそれぞれの部分(I及びII)が連結されているため、バラバラになったり、熱電材料チップ2a及び2bが低温側電極部材5や低温側基板21からずれることにより、隣接する熱電材料チップ2a及び2bなどとの間で接触・短絡するおそれが少なくなる。   Due to the temperature difference thus generated, the high-temperature side electrode member 1 and the low-temperature side electrode member 5 have different thermal expansion. In particular, the elongation in the spreading direction of the thermoelectric power generation module 10 is different between the one side and the other side. Specifically, the elongation in the plane spreading direction on the one surface side where the high temperature side electrode member 1 is disposed and brought to a high temperature is larger than the elongation in the plane spreading direction on the other surface side where the low temperature side electrode member 5 is placed and the temperature is lowered. Also grows. In this case, since the low temperature side electrode member 5 is composed of a flat knitted copper wire member which is a cylindrical member, it has excellent stretchability, and the high temperature side electrode regardless of the magnitude of thermal expansion derived from itself. It expands and contracts according to the elongation of the member 1. In particular, as shown in FIG. 3, since the low temperature side electrode member 5 can move independently in the vertical direction of the drawing, the low temperature side electrode member 5 absorbs the difference in the magnitude of thermal expansion. For example, the distortion applied to the thermoelectric material chips 2a and 2b and the high temperature side electrode member 1 or the low temperature side electrode member 5 is reduced, and the occurrence of inconvenience is suppressed. For example, in FIG. 3, when stress is applied to the thermoelectric material chips 2 a and 2 b and the low temperature side electrode member 5 in a direction deviating from the front and back of the paper surface due to the thermal expansion of the high temperature side electrode member 1, The stress applied when the upper side (I) of the side electrode member 5 is shifted from the lower side (II) of the drawing can be absorbed. Further, when stress is applied to the thermoelectric material chips 2a and 2b and the low temperature side electrode member 5 in the direction deviating in the horizontal direction of the drawing due to the thermal expansion of the high temperature side electrode member 1, as shown in FIG. Furthermore, the stress applied when the upper side (I) and the lower side (II) of the low temperature side electrode member 5 are shifted in the directions of the arrows L and R can be absorbed. In this case, the low temperature side electrode member 5 is a cylindrical member, and the respective portions (I and II) are connected at both end portions in the width direction in FIGS. When the chips 2a and 2b are displaced from the low temperature side electrode member 5 and the low temperature side substrate 21, the possibility of contact / short circuit with the adjacent thermoelectric material chips 2a and 2b is reduced.

また、本実施形態では、低温側電極部材5と熱電材料チップ2a及び2bとの間を接合するハンダ層4が低温側電極部材5図面上側部分(I)の更に表面近傍に局在しているため、低温側電極部材5内において絡み合っている繊維状部材間の相対移動をハンダ層4によって阻害することがなくなり、低温側電極部材5の伸縮性が十分に発揮できている。すなわち、低温側電極部材5は繊維状部材を編み込んで形成した部材であるため、接合部材が内部に浸透可能であるが、内部深くにまで接合部材が浸透して固着させると低温側電極部材5の伸縮性が十分でなくなる場合が想定できるためできるだけ表面近傍の接触部分にのみ接合部材を配設して固着を行うことが望ましい。従って、低温側電極部材5と熱電材料チップの他端側との間の固着はその接触部分のみで行うことが望ましい。   Moreover, in this embodiment, the solder layer 4 which joins between the low temperature side electrode member 5 and the thermoelectric material chip | tips 2a and 2b is located in the surface vicinity of the upper side part (I) of the low temperature side electrode member 5 drawing further. Therefore, the relative movement between the fibrous members entangled in the low temperature side electrode member 5 is not hindered by the solder layer 4, and the stretchability of the low temperature side electrode member 5 can be sufficiently exhibited. That is, since the low temperature side electrode member 5 is a member formed by weaving a fibrous member, the joining member can penetrate into the inside, but when the joining member penetrates deeply into the inside and is fixed, the low temperature side electrode member 5 Therefore, it is desirable to fix the bonding member only at the contact portion near the surface as much as possible. Therefore, it is desirable to fix the low temperature side electrode member 5 and the other end side of the thermoelectric material chip only at the contact portion.

(変形態様)
・前述の低温側電極部材5として、繊維状部材が編み込まれた布状体が2枚以上重ねられている部材を採用することができる。低温側電極部材5に替えて布状体を2枚以上重ねた構成を採用することにより、低温側電極部材の伸縮性を向上することができる。例えば、低温側電極部材の他面側を低温側基板21に固着させた態様を採用しても、2枚以上重ねた低温側電極部材内で滑ることができるため、低温側基板21の熱膨張の大きさにかかわらず熱電発電モジュール10の低温側電極部材を独立して伸縮させることができる。特に、1枚の布状体を折り曲げた部材を採用することにより、繊維状部材を筒状に編み込んだ筒状の一体的な部材として形成した実施形態1と同様に、重ね合わせた部材間がバラバラになり難いという利点がある。
(Modification)
-As the above-mentioned low temperature side electrode member 5, the member by which the cloth-like body by which the fibrous member was knitted was piled 2 or more is employable. By adopting a configuration in which two or more cloth-like bodies are stacked in place of the low temperature side electrode member 5, the stretchability of the low temperature side electrode member can be improved. For example, even if a mode in which the other surface side of the low temperature side electrode member is fixed to the low temperature side substrate 21 is adopted, the low temperature side substrate 21 can be slid within the two or more stacked low temperature side electrode members. Regardless of the size, the low temperature side electrode member of the thermoelectric power generation module 10 can be expanded and contracted independently. In particular, by adopting a member obtained by bending a single cloth-like body, as in the first embodiment in which a fibrous member is knitted into a tubular shape, the overlapped members are arranged. There is an advantage that it does not easily fall apart.

また、低温側電極部材としては複数の繊維状部材から構成される集合部材を平形に組み合わせた平打ち組み物を採用することもできる。そして、その表面近傍にハンダ層4を設けて熱電材料チップ2a及び2bに接合することにより、低温側電極部材の一面側と他面側との間での相対移動や伸縮性を付与した柔軟な部材とすることができる。
・高温側電極部材と熱電材料チップとの間の接合は拡散接合で行っているが、想定される使用温度における耐久性が保持できる限度において、その他の接合方法、例えば、ハンダ付け、ロウ付けなどを採用することもできる。また、高温側電極部材についても上述した低温側電極部材のような平編銅線電極から形成される部材を採用することもできる。
Further, as the low-temperature side electrode member, a flat hammered article obtained by combining a plurality of aggregate members composed of fibrous members into a flat shape can be adopted. Then, by providing a solder layer 4 in the vicinity of the surface and bonding it to the thermoelectric material chips 2a and 2b, a flexible material that imparts relative movement and stretchability between the one surface side and the other surface side of the low temperature side electrode member is provided. It can be a member.
・ The bonding between the high-temperature side electrode member and the thermoelectric material chip is performed by diffusion bonding. However, other bonding methods such as soldering and brazing can be used as long as the durability at the assumed operating temperature can be maintained. Can also be adopted. Moreover, the member formed from a flat knitted copper wire electrode like the low temperature side electrode member mentioned above can also be employ | adopted about a high temperature side electrode member.

(実施形態2)
本実施形態の熱電発電モジュール11の構成を図5に示す。
(Embodiment 2)
The structure of the thermoelectric power generation module 11 of this embodiment is shown in FIG.

本実施形態の熱電発電モジュール11は、実施形態1における低温側電極部材5に替えて低温側電極部材5’を採用した以外は先述した熱電発電モジュール10と同様の構成を有している。   The thermoelectric power generation module 11 of the present embodiment has the same configuration as the thermoelectric power generation module 10 described above except that a low temperature side electrode member 5 ′ is adopted instead of the low temperature side electrode member 5 in the first embodiment.

低温側電極部材5’は低温側電極部材5と同じく、平編銅線電極から形成されている。この低温側電極部材5’は、熱電材料チップ2a及び2bの他端側に接合される部分を構成する繊維状部材の間がパーカッション溶接、抵抗溶接、超音波溶接などの溶接により接合されて一体化されているものである。パーカッション溶接は、図6に示すように、繊維状部材を編み込んで形成した伸縮可能な部材である平編銅線電極Aに対して、上型50及び下型60によって押圧することにより、その押圧した部分における繊維状部材間を溶接接合する操作である。上型50及び下型60の間には押圧前に所定量の電力が蓄電されたコンデンサが接続されており、上型50及び下型60による押圧と同時に放電し、そのとき発生するアーク熱のエネルギーで接合が完了するものである。従って、放電と押圧とが同時に起こるため、繊維状部材間を瞬間的に接合することができる。処理した平編銅線電極Bを所定長さに切断することにより低温側電極部材5’を得ることができる。この低温側電極部材5’は熱電材料チップ2a及び2bと固着される部分5’aについては繊維状部材間が接合されて一体化していることにより、接合工程時や使用時において低温側電極部材5’が分解することを防止できるため、作業性、歩留まり、耐久性などを向上できる。そして、その固着部分5’aを繋ぐ間の部分5’bは平編がなされた状態を保っているため、繊維状部材間での相対的移動が制限されず、伸縮性を保持しているから、高温側電極部材1の熱膨張に応じて伸縮することが可能になって応力の集中を防止できる。   The low temperature side electrode member 5 ′ is formed of a flat knitted copper wire electrode like the low temperature side electrode member 5. The low temperature side electrode member 5 ′ is integrally formed by joining the fibrous members constituting the portion to be joined to the other end side of the thermoelectric material chips 2a and 2b by welding such as percussion welding, resistance welding, or ultrasonic welding. It is what has been made. As shown in FIG. 6, percussion welding is performed by pressing a flat knitted copper wire electrode A, which is a stretchable member formed by weaving a fibrous member, with an upper die 50 and a lower die 60. This is an operation of welding and joining between the fibrous members in the part. A capacitor in which a predetermined amount of electric power is stored before pressing is connected between the upper mold 50 and the lower mold 60, and is discharged simultaneously with pressing by the upper mold 50 and the lower mold 60, and the arc heat generated at that time is discharged. Joining is completed with energy. Therefore, since discharge and pressing occur simultaneously, the fibrous members can be instantaneously joined. By cutting the processed flat knitted copper wire electrode B into a predetermined length, the low temperature side electrode member 5 'can be obtained. The low-temperature side electrode member 5 'has a portion 5'a that is fixed to the thermoelectric material chips 2a and 2b, in which the fibrous members are joined and integrated, so that the low-temperature side electrode member can be used during the joining process and at the time of use. Since 5 ′ can be prevented from being decomposed, workability, yield, durability, and the like can be improved. And since the part 5'b between the adhering parts 5'a keeps the flat knitted state, the relative movement between the fibrous members is not restricted, and the stretchability is maintained. Therefore, it becomes possible to expand and contract in accordance with the thermal expansion of the high temperature side electrode member 1, and concentration of stress can be prevented.

(実施例)
・評価用熱電発電モジュールの製造
前述した実施形態1に開示した製造方法により、熱電発電モジュールを製造して評価用の熱電発電モジュールとした。使用した熱電材料チップ2a及び2bは四角柱であり、一辺が4mmの立方体であった。そして、Ti−Cu合金からなる高温側電極部材1のサイズは4mm×9mm×厚み1mm、平編銅線電極(双葉電線株式会社製平編銅線、JCSの1236:2001準拠、繊維状部材の素線径0.08mm)からなる低温側電極部材5のサイズは4mm×9mm×厚み0.6mmであった。これらを各17個(低温側電極部材5のみ18個)使用し、一辺が30mmの正方形の平板状の熱電発電モジュール10を製造した。
(Example)
-Manufacture of thermoelectric power generation module for evaluation A thermoelectric power generation module was manufactured as a thermoelectric power generation module for evaluation by the manufacturing method disclosed in the first embodiment. The thermoelectric material chips 2a and 2b used were quadrangular prisms and were cubes each having a side of 4 mm. And the size of the high temperature side electrode member 1 made of Ti—Cu alloy is 4 mm × 9 mm × thickness 1 mm, flat knitted copper wire electrode (Futaba Electric Wire Co., Ltd. flat knitted copper wire, JCS 1236: 2001 compliant, fibrous member The size of the low temperature side electrode member 5 made of a strand diameter of 0.08 mm was 4 mm × 9 mm × thickness 0.6 mm. Using 17 of these (18 only for the low temperature side electrode member 5), a square flat thermoelectric power generation module 10 having a side of 30 mm was manufactured.

それぞれの熱電材料チップ2a及び2bの他面側とそれぞれの低温側電極部材5の一面側との接合はハンダ付けによって行った。接合に用いるハンダの量を変化させることにより接合状態を制御した。ハンダの量の制御は、低温側電極部材5の一面側にハンダ層を印刷により形成する際に用いるハンダ印刷板の厚みとその開口部の一辺の大きさとを変化させることにより行い、実施例1及び比較例1〜3の熱電発電モジュールを製造した。実際の値は表1に示す。   The other surface side of each thermoelectric material chip 2a and 2b and the one surface side of each low temperature side electrode member 5 were joined by soldering. The joining state was controlled by changing the amount of solder used for joining. The amount of solder is controlled by changing the thickness of the solder printing plate used when forming the solder layer on one surface side of the low-temperature side electrode member 5 by printing and the size of one side of the opening portion. And the thermoelectric power generation module of Comparative Examples 1-3 was manufactured. The actual values are shown in Table 1.

製造した熱電発電モジュールの両面を低温側基板21及び高温側基板20にて挟持して対応する各実施例及び比較例の熱電発電装置を製造した。低温側電極部材5と低温側基板21との間は熱伝導性グリース(シリコングリース:KS613、信越化学工業株式会社製)にて接合し、高温側電極部材1と高温側基板20との間は耐熱性接着剤にて接着した。
・評価試験
各実施例及び比較例の熱電発電装置について、熱電発電モジュールの高温側電極部材の温度を600℃、低温側電極部材の温度を100℃に保持し、保持前後に室温で測定した内部抵抗の大きさの変化率を評価した。結果を表1に示す。ここで、内部抵抗の変化率が10%未満であるものを良品とした。また、低温側電極部材と熱電材料チップの他端側との接合状態を目視により評価した。
The both sides of the manufactured thermoelectric power generation module were sandwiched between the low temperature side substrate 21 and the high temperature side substrate 20 to manufacture the corresponding thermoelectric power generation devices of the respective examples and comparative examples. The low temperature side electrode member 5 and the low temperature side substrate 21 are joined with heat conductive grease (silicone grease: KS613, manufactured by Shin-Etsu Chemical Co., Ltd.), and between the high temperature side electrode member 1 and the high temperature side substrate 20. Bonded with a heat-resistant adhesive.
・ Evaluation test About the thermoelectric power generator of each example and comparative example, the temperature of the high temperature side electrode member of the thermoelectric power generation module was kept at 600 ° C., the temperature of the low temperature side electrode member was kept at 100 ° C., and the inside measured at room temperature before and after holding The rate of change in resistance magnitude was evaluated. The results are shown in Table 1. Here, a non-defective product having a rate of change in internal resistance of less than 10% was determined. Moreover, the joining state of the low temperature side electrode member and the other end side of the thermoelectric material chip was visually evaluated.

表1から明らかなように、実施例1の装置は内部抵抗の変化率が4%であって、十分な性能を示すのに対し、比較例1〜3の装置はいずれも内部抵抗の変化率が大きく十分な性能を発揮することができないことが分かった。特に比較例1の装置では内部抵抗の測定も困難であった。   As is apparent from Table 1, the change rate of internal resistance of the device of Example 1 is 4%, which shows sufficient performance, whereas the devices of Comparative Examples 1 to 3 all have a change rate of internal resistance. However, it was found that sufficient performance cannot be demonstrated. In particular, with the apparatus of Comparative Example 1, it was difficult to measure the internal resistance.

そして、低温側電極部材と熱電材料チップとの間の接合状態は、実施例1、比較例2及び3の装置について十分な状態であった。但し、実施例1の装置では、塗布したハンダが低温側電極部材と熱電材料チップとの接合界面のみに留まるため低温側電極部材は十分な伸縮性及び柔軟性を保っていたが、比較例2及び3の装置は、ハンダの量が多く、平編銅線電極から形成される低温側電極部材の内部にまでハンダが含浸されてしまって柔軟性が損なわれてしまった。   And the joining state between the low temperature side electrode member and the thermoelectric material chip | tip was a sufficient state about the apparatus of Example 1, Comparative Example 2 and 3. FIG. However, in the apparatus of Example 1, since the applied solder stayed only at the bonding interface between the low temperature side electrode member and the thermoelectric material chip, the low temperature side electrode member maintained sufficient elasticity and flexibility, but Comparative Example 2 The devices of No. 3 and No. 3 have a large amount of solder, and the solder is impregnated into the inside of the low temperature side electrode member formed from the flat knitted copper wire electrode, so that the flexibility is impaired.

以上の結果から、低温側電極部材として繊維状部材を編み込んで伸縮自在に形成した部材である平編銅線電極を採用し、その伸縮性を損なうことなく用いることにより、熱電発電モジュール及びその熱電発電モジュールを採用した熱電発電装置の耐久性を向上できることが分かった。平編銅線電極の伸縮性を保持する方法としては、熱電材料チップとの接合を行うハンダを平編銅線電極の接合界面である表面近傍に限定することにより達成できることが分かった。   From the above results, a flat knitted copper wire electrode, which is a member formed by weaving a fibrous member as the low temperature side electrode member so as to be stretchable, is employed without loss of stretchability, and thus the thermoelectric power generation module and its thermoelectric It was found that the durability of thermoelectric generators using power generation modules can be improved. It has been found that a method for maintaining the stretchability of the flat knitted copper wire electrode can be achieved by limiting the solder for bonding with the thermoelectric material chip to the vicinity of the surface which is the bonding interface of the flat knitted copper wire electrode.

本実施形態1の熱電発電モジュール10の構成及びその製造工程を示す図である。It is a figure which shows the structure of the thermoelectric power generation module 10 of this Embodiment 1, and its manufacturing process. 本実施形態1の熱電発電装置の構成を示す側面図である。It is a side view which shows the structure of the thermoelectric generator of this Embodiment 1. 本実施形態1の熱電発電装置の熱電材料チップ、電極部材及び基板の接合部分の断面を模式的に表した模式図である。It is the schematic diagram which represented typically the cross section of the junction part of the thermoelectric material chip | tip of the thermoelectric power generating apparatus of this Embodiment 1, an electrode member, and a board | substrate. 本実施形態1の熱電発電装置の熱電材料チップ、電極部材及び基板の接合部分の断面を模式的に表した模式図である。It is the schematic diagram which represented typically the cross section of the junction part of the thermoelectric material chip | tip of the thermoelectric power generating apparatus of this Embodiment 1, an electrode member, and a board | substrate. 本実施形態2の熱電発電モジュール11の構成及びその製造工程を示す図で ある。It is a figure which shows the structure of the thermoelectric generation module 11 of this Embodiment 2, and its manufacturing process. 本実施形態2の熱電発電モジュール11の低温側電極部材5’の製造工程を示す図である。It is a figure which shows the manufacturing process of the low temperature side electrode member 5 'of the thermoelectric generation module 11 of this Embodiment 2. FIG. 従来の熱電発電モジュールの側断面図である。It is a sectional side view of the conventional thermoelectric power generation module.

1:高温側電極部材、10,11:熱電発電モジュール、
20:低温側基板、21:高温側基板、2a:p型熱電材料チップ、2b:n型熱電材料チップ、
3:メッキ層、
4:ハンダ層、
5,5’:低温側電極部材、
6:リード線取り出し部、
8:接着層、
9:接合層、
31:熱電発電モジュール、32:n型半導体、33:p型半導体、34,35:電極、36:破壊。
1: high temperature side electrode member, 10, 11: thermoelectric power generation module,
20: Low temperature side substrate, 21: High temperature side substrate, 2a: p-type thermoelectric material chip, 2b: n-type thermoelectric material chip,
3: Plating layer,
4: Solder layer,
5, 5 ′: low temperature side electrode member,
6: Lead wire takeout part,
8: adhesive layer,
9: bonding layer,
31: Thermoelectric power generation module, 32: n-type semiconductor, 33: p-type semiconductor, 34, 35: electrode, 36: destruction.

Claims (9)

複数の低温側電極部材及び高温側電極部材と、前記低温側電極部材及び前記高温側電極部材の間に設けられ一端側を前記高温電極部材に接触するとともに他端側を前記低温側電極部材に接触して電気的に配列される複数の熱電材料チップと、を有し、一端側と他端側との温度差により電気エネルギーに変換し又は電気エネルギーを温度差に変換する熱電モジュールであって、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であり、前記熱電材料チップとの接触部分が接合部材により固着されていることを特徴とする熱電モジュール。
A plurality of low temperature side electrode members and high temperature side electrode members, provided between the low temperature side electrode member and the high temperature side electrode member and having one end in contact with the high temperature electrode member and the other end being the low temperature side electrode member A thermoelectric module that has a plurality of thermoelectric material chips that are electrically arranged in contact with each other, and converts the electrical energy into electrical energy due to a temperature difference between one end side and the other end side, or converts electrical energy into a temperature difference. ,
The low temperature side electrode member is a stretchable fibrous member having electrical conductivity, thermoelectric modules, wherein a contact portion between the thermoelectric material chip is fixed by bonding member.
請求項1において、前記低温側電極部材は、前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることを特徴とする熱電モジュール。 According to claim 1, wherein the low temperature side electrode member is a thermoelectric module, wherein the fibrous member is woven diagonally to the thermal expansion direction of the electrode member. 請求項1又は2において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることを特徴とする熱電モジュール。 According to claim 1 or 2, wherein the low temperature side electrode member is a thermoelectric module, characterized in that the cloth-like material of the fibrous member is constituted by stacked two or more. 低温側基板と、
前記低温側基板に対向する高温側基板と、
前記低温側基板及び前記高温側基板の各対向面に接合部材で接触又は固着するように配置された複数の低温側電極部材及び高温側電極部材と、前記低温側電極部材及び前記高温側電極部材の間に設けられ一端側を前記高温電極部材に固着するとともに他端側を前記低温側電極部材に固着して電気的に配列される複数の熱電材料チップと、をもち、一端側と他端側との温度差により電気エネルギーに変換し又は電気エネルギーを温度差に変換する熱電モジュールと、
を有し、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であることを特徴とする熱電モジュールを用いた熱電装置。
A low temperature side substrate,
A high temperature side substrate facing the low temperature side substrate;
A plurality of low temperature side electrode members and high temperature side electrode members arranged so as to contact or adhere to respective opposing surfaces of the low temperature side substrate and the high temperature side substrate with a bonding member, the low temperature side electrode member, and the high temperature side electrode member A plurality of thermoelectric material chips, one end side of which is fixed to the high temperature electrode member and the other end side is fixed to the low temperature side electrode member, and is electrically arranged. A thermoelectric module that converts the electrical energy into a temperature difference or a temperature difference with the side, and converts the electrical energy into a temperature difference;
Have
The low temperature side electrode member is a thermoelectric device using a thermoelectric module, which is a stretchable fibrous member with electrical conductivity.
請求項4において、前記低温側電極部材は前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることを特徴とする熱電装置。 According to claim 4, wherein the low temperature side electrode member thermoelectric device, wherein the fibrous member is woven diagonally to the thermal expansion direction of the electrode member. 請求項4又は5において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることを特徴とする熱電モジュールを用いた熱電装置。 According to claim 4 or 5, wherein the low temperature side electrode member is a thermoelectric device using a thermoelectric module, characterized in that the cloth-like material of the fibrous member is constituted by stacked two or more. 複数の高温側電極部材の一面側と複数の熱電材料チップの一端側とを接合する高温側電極接合操作と、
前記熱電材料チップの他端側と複数の低温側電極部材の一面側とを接合部材を介して固着する低温側電極固着操作と、を含み、
前記低温側電極部材は、電気伝導性をもつ伸縮可能な繊維状部材であることを特徴とする熱電モジュールの製造方法。
A high temperature side electrode joining operation for joining one surface side of the plurality of high temperature side electrode members and one end side of the plurality of thermoelectric material chips;
Low temperature side electrode fixing operation for fixing the other end side of the thermoelectric material chip and one surface side of a plurality of low temperature side electrode members through a bonding member,
The low temperature side electrode member The manufacturing method of the thermoelectric module, which is a stretchable fibrous member with electrical conductivity.
請求項7において、前記低温側電極部材は、前記繊維状部材が前記電極部材の熱膨張方向に対して斜めに編み込まれていることを特徴とする熱電モジュールの製造方法。 According to claim 7, wherein the low temperature side electrode member The manufacturing method of the thermoelectric module, wherein the fibrous member is woven diagonally to the thermal expansion direction of the electrode member. 請求項7又は8において、前記低温側電極部材は、前記繊維状部材の布状体が2枚以上重ねられて構成されていることを特徴とする熱電モジュールの製造方法。 According to claim 7 or 8, wherein the low temperature side electrode member The manufacturing method of the thermoelectric module, wherein a cloth-like body of the fibrous member is constituted by stacked two or more.
JP2008043821A 2008-02-26 2008-02-26 Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module Expired - Fee Related JP5134395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043821A JP5134395B2 (en) 2008-02-26 2008-02-26 Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043821A JP5134395B2 (en) 2008-02-26 2008-02-26 Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module

Publications (2)

Publication Number Publication Date
JP2009206113A JP2009206113A (en) 2009-09-10
JP5134395B2 true JP5134395B2 (en) 2013-01-30

Family

ID=41148131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043821A Expired - Fee Related JP5134395B2 (en) 2008-02-26 2008-02-26 Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module

Country Status (1)

Country Link
JP (1) JP5134395B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656295B2 (en) 2011-04-22 2015-01-21 パナソニックIpマネジメント株式会社 Thermoelectric conversion module and manufacturing method thereof
KR101401065B1 (en) * 2011-12-15 2014-05-30 현대자동차주식회사 Thermoelectric generator of vehicle
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
JP6403664B2 (en) * 2012-05-07 2018-10-10 フォノニック デバイセズ、インク Thermoelectric heat exchanger components including protective heat spreading lid and optimal thermal interface resistance
JP6171513B2 (en) * 2013-04-10 2017-08-02 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof
JP6206075B2 (en) * 2013-10-16 2017-10-04 ヤマハ株式会社 Thermoelectric module
CN108807451A (en) * 2014-05-09 2018-11-13 美国亚德诺半导体公司 Wafer level thermoelectric energy collector
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
CN106716640B (en) * 2014-09-22 2019-06-11 德尔塔蒂研究财团 The outer heat flux thermoelectric generator of the integrated plane of silicon
JP6430781B2 (en) * 2014-10-29 2018-11-28 京セラ株式会社 Thermoelectric module
JP6933441B2 (en) * 2016-03-10 2021-09-08 株式会社アツミテック Thermoelectric conversion module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521236B2 (en) * 2004-08-31 2010-08-11 株式会社東芝 Thermoelectric conversion device and method of manufacturing thermoelectric conversion device
JP4901350B2 (en) * 2005-08-02 2012-03-21 株式会社東芝 Thermoelectric conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009206113A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5134395B2 (en) Thermoelectric module, thermoelectric device using thermoelectric module, and method of manufacturing thermoelectric module
JP4728745B2 (en) Thermoelectric device and thermoelectric module
TWI301333B (en) Thermoelectric device and method of manufacturing the same
JP6881885B2 (en) Thermoelectric generation module
EP1580819A2 (en) Thermoelectric device
WO2010101049A1 (en) Thermoelectric conversion element and thermoelectric conversion module
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
US20140182644A1 (en) Structures and methods for multi-leg package thermoelectric devices
JP2005142282A (en) Interconnector, solar cell string using it and its manufacturing method, and solar cell module using solar cell string
JP2007324604A (en) Bonding junction and method of bonding two contact surfaces
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP6390546B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
CN111584706A (en) Flexible thermoelectric device and preparation method thereof
JP2007048916A (en) Thermoelectric module
JP2008177356A (en) Thermoelectric power generation element
JP2007059475A (en) Lead wire for solar cell
JP2010287729A (en) Heating/cooling test apparatus
JP2009231655A (en) Thermoelectric conversion module
JP3165129B2 (en) Thermoelectric conversion module block for thermoelectric generation
JPWO2018100933A1 (en) Thermoelectric module
JP2017069443A (en) Thermoelectric conversion module
JP6592996B2 (en) Thermoelectric generator
JP4259018B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees