JP5134279B2 - Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method - Google Patents

Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method Download PDF

Info

Publication number
JP5134279B2
JP5134279B2 JP2007098953A JP2007098953A JP5134279B2 JP 5134279 B2 JP5134279 B2 JP 5134279B2 JP 2007098953 A JP2007098953 A JP 2007098953A JP 2007098953 A JP2007098953 A JP 2007098953A JP 5134279 B2 JP5134279 B2 JP 5134279B2
Authority
JP
Japan
Prior art keywords
pipe
frequency coil
new
fusion
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007098953A
Other languages
Japanese (ja)
Other versions
JP2008256094A (en
Inventor
栄二 岡村
猛 荒谷
高裕 川北
誠 服部
哲司 北野
精太 清水
裕思 樋口
正樹 野瀬
康弘 豊田
孝知 原田
Original Assignee
日立情報通信エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立情報通信エンジニアリング株式会社 filed Critical 日立情報通信エンジニアリング株式会社
Priority to JP2007098953A priority Critical patent/JP5134279B2/en
Publication of JP2008256094A publication Critical patent/JP2008256094A/en
Application granted granted Critical
Publication of JP5134279B2 publication Critical patent/JP5134279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)
  • Pipe Accessories (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、既存の埋設管内で樹脂製配管を融着により接合する埋設管分岐部融着装置及び埋設管分岐部融着方法に関する。本発明は、各家屋まで埋設状態で延長された比較的小口径のガス配管等を掘削しないで管内部からライニングや樹脂配管を挿入して補修する場合に用いる分岐部融着装置に関し、特に老朽化した鋼製の既設配管に樹脂製の新規配管を挿入して配管を更新する工法において、本管に挿入された新規樹脂配管と分岐管に挿入された新規樹脂配管を埋設状態で配管内部から融着により接合するための分岐部融着装置とその運用方法に関する。   The present invention relates to a buried pipe branching part fusion device and a buried pipe branching part fusion method for joining resin pipes by fusion in an existing buried pipe. The present invention relates to a branch fusion apparatus used when repairing by inserting a lining or a resin pipe from the inside of a pipe without excavating a relatively small-diameter gas pipe extended in an embedded state up to each house. In the method of renewing a pipe by inserting a new resin pipe into an existing steel pipe, the new resin pipe inserted into the main pipe and the new resin pipe inserted into the branch pipe are embedded from the inside of the pipe. The present invention relates to a branch portion fusion apparatus for joining by fusion and an operation method thereof.

特許文献1には、埋設管の本管のライニングによる補修の後で分岐部分を穿孔した後の本管と分岐管の配管内部からのシール方法が開示されている。特許文献1には、分岐部樹脂ライニングの分岐部に穿孔した穴から索状体により雄ネジ付の鍔状の部材を引っ張り込み、分岐管側に設置した雌ネジ配管と前記鍔上の部材の雄ネジ部を嵌合させることで気密を保った状態で本管と分岐管を接続する方法が記載されている。   Patent Document 1 discloses a method of sealing the main pipe and the branch pipe from the inside after the branch pipe is drilled after the repair of the buried pipe by the lining of the main pipe. In Patent Document 1, a hook-like member with a male screw is pulled by a cord-like body from a hole drilled in a branch portion of a branch portion resin lining, and a female screw pipe installed on the branch pipe side and a member on the flange are connected. A method is described in which a main pipe and a branch pipe are connected in a state where airtightness is maintained by fitting a male screw portion.

さらに、電磁誘導によるプラスティック管路の接合方法としては、特許文献2に開示されたものが知られている。特許文献2には、融着したい部分の樹脂内に予め誘導コイルを埋め込んだ状態で樹脂継手を作成しておき、コイルを埋め込んだ継手と被融着物との間にヒーターを設置し、融着する方法が記載されている。   Furthermore, the method disclosed in Patent Document 2 is known as a method for joining plastic pipe lines by electromagnetic induction. In Patent Document 2, a resin joint is prepared in a state where an induction coil is embedded in a resin portion to be fused in advance, and a heater is installed between the joint in which the coil is embedded and a material to be fused. How to do is described.

特開平7−248092号公報JP-A-7-248092 特開平10−227385号公報Japanese Patent Laid-Open No. 10-227385

特許文献1に記載の発明では、分岐管側に雌ネジをきった配管部材を設置する必要があるため、分岐部分を掘削する必要があった。このため、埋設状態での分岐部の接合ができないという課題があった。   In the invention described in Patent Document 1, since it is necessary to install a piping member having a female screw on the branch pipe side, it is necessary to excavate the branch portion. For this reason, there existed a subject that a junction of an embedding state cannot be joined.

一方、特許文献2に記載の発明に関しては、樹脂配管側に予めヒーターを埋め込むことは困難であり、また、ヒーターをフランジ側に埋め込むにはフランジ部分の寸法制約により、ヒーターを融着が可能な温度まで加熱できない可能性があった。さらに、フランジ部分に埋め込んだコイルに電流を通電するための電線を融着終了時にはずす必要がある等の課題があった。   On the other hand, regarding the invention described in Patent Document 2, it is difficult to embed a heater in advance on the resin piping side, and in order to embed the heater in the flange side, it is possible to fuse the heater due to dimensional restrictions on the flange portion. There was a possibility that it could not be heated to the temperature. Furthermore, there has been a problem that it is necessary to disconnect the electric wire for supplying current to the coil embedded in the flange portion at the end of the fusion.

本発明の目的は、前記課題に鑑みなされたもので、配管内径が20mm乃至200mm程度の小口径の老朽化鋼製配管の本管及び分岐管内に新規樹脂配管を挿入して配管を補修する工法において、新規樹脂管の本管と分岐管を埋設状態で配管内部から融着接合するための埋設管分岐部融着装置及び前記装置を用いた埋設管分岐部融着方法を実現することである。   The object of the present invention has been made in view of the above-mentioned problems, and is a method of repairing a pipe by inserting a new resin pipe into the main pipe and branch pipe of an aged steel pipe having a small bore diameter of about 20 mm to 200 mm. In the present invention, a buried pipe branching portion fusion apparatus for fusion-bonding a main pipe and a branch pipe of a new resin pipe from the inside of the pipe in a buried state and a buried pipe branching portion fusion method using the apparatus are realized. .

前記課題を解決するために本発明の分岐部融着装置は、新規分岐管の端部に設置される継手のフランジ部のヒーターに誘導電流を発生させるための高周波コイルとこの高周波コイルを新規本管の内壁面に押し付けるための押し付け手段とを有する融着ヘッドと、前記高周波コイルに高周波電流を供給する電源を有する高周波ユニットと、前記押し付け手段を動作させるための動力源と、前記高周波コイルと前記電源、及び前記押し付け手段と前記動力源とを各々接続する遠隔ケーブルとを備えている。   In order to solve the above-mentioned problems, a branch part fusion apparatus according to the present invention comprises a high-frequency coil for generating an induction current in a heater of a flange part of a joint installed at the end of a new branch pipe, and the new high-frequency coil. A fusion head having pressing means for pressing against the inner wall surface of the tube, a high-frequency unit having a power source for supplying a high-frequency current to the high-frequency coil, a power source for operating the pressing means, and the high-frequency coil; The power supply, and remote cables for connecting the pressing means and the power source are provided.

押し付け手段、例えばエアバッグに供給するエアの圧力を変更することで、押し付け力を容易に変更することが可能であり、信頼性の高い融着を実施することができる。   By changing the pressure of the air supplied to the pressing means, for example, the airbag, the pressing force can be easily changed, and highly reliable fusion can be performed.

また、高周波コイルの縦断面形状を中央部が上方に突出した略円弧形状とする、より具体的には、高周波コイルの本管内壁面に接触する部分の断面の形状を円弧形状とし、前記円弧の半径を新規本管の内径の半径とほぼ一致させることで、分岐管に挿入される新規樹脂配管端部に設置されたフランジを、樹脂本管の内壁面と高周波コイルで挟み込むことで樹脂本管内壁面に沿わせて変形させ保持することができ、安定した融着が可能となる。   In addition, the longitudinal cross-sectional shape of the high-frequency coil is a substantially arc shape with the central portion protruding upward. More specifically, the cross-sectional shape of the portion that contacts the inner wall surface of the high-frequency coil is an arc shape, By making the radius approximately the same as the radius of the inner diameter of the new main pipe, the flange installed at the end of the new resin pipe inserted into the branch pipe is sandwiched between the inner wall surface of the resin main pipe and the high-frequency coil. It can be deformed and held along the wall surface, enabling stable fusion.

また、高周波コイルを中空のパイプを曲げることで製作し、前記中空の高周波コイルの内部に冷却のために水等の流体を供給することで、通電時の発熱による高周波コイルの破損を防ぐことが可能となる。   In addition, a high-frequency coil is manufactured by bending a hollow pipe, and a fluid such as water is supplied to the inside of the hollow high-frequency coil for cooling, thereby preventing damage to the high-frequency coil due to heat generation during energization. It becomes possible.

また、前記高周波コイルの中心に索状体を設置し、新規分岐管の内径より大きく、新規分岐管端部に設置された継手内径より小さい直径のこまを前記索状体が貫通するように備えたことで、高周波コイルを分岐部分に設置するときの位置決めが容易になる。すなわち、本管端部の装置を挿入する側と分岐管端部に予め牽引用のロープを通しておき、このロープに高周波コイル中心に設置した索状体を接続し、分岐管端部からこの索状体を引きながら、遠隔ケーブルを押し込むことにより高周波コイルを本管内に引き込む。このとき、継手内径より小さい直径のこまが、分岐管内に挿入された樹脂配管端部に接続された継手内部に引き込まれる。前記こまが継手中心に索状体を保持するため、押し込み操作による挿入で高周波コイルが継手の真下から行き過ぎた場合には、索状体を介して分岐管端部から引き出されたロープが引っ張られることで、位置ずれを検出できる。索状体に張力をかけた状態で遠隔ケーブルを押し引きしたときの手ごたえで高周波コイルが継手の真下にいることを検出し、エアバッグで高周波コイルを継手フランジと一緒に本管内壁面に押し付けて固定することで位置合わせができる。   Also, a cord-like body is installed at the center of the high-frequency coil so that the cord-like body penetrates a top having a diameter larger than the inner diameter of the new branch pipe and smaller than the inner diameter of the joint installed at the end of the new branch pipe. This facilitates positioning when the high frequency coil is installed at the branch portion. That is, a tow rope is passed in advance through the main pipe end insertion side and the branch pipe end, and a cord-like body installed at the center of the high-frequency coil is connected to this rope, and this cord-like shape is connected from the branch pipe end. While pulling the body, the high frequency coil is pulled into the main pipe by pushing the remote cable. At this time, a top having a diameter smaller than the joint inner diameter is drawn into the joint connected to the end of the resin pipe inserted into the branch pipe. Since the top holds the cord-like body at the center of the joint, when the high-frequency coil goes too far from directly below the joint by insertion by pushing operation, the rope drawn from the branch pipe end through the cord-like body is pulled. In this way, it is possible to detect a positional deviation. When the remote cable is pushed and pulled while tension is applied to the cord, it is detected that the high-frequency coil is directly under the joint, and the high-frequency coil is pressed against the inner wall of the main pipe together with the joint flange with an airbag. It can be aligned by fixing.

さらに、配管内での融着状態のときに前記高周波コイルと本管側端部のフランジ部との間に配置されるように索状体に貫通された可とう性のあるシートを設置したことにより、エアバッグを用いて、高周波コイルで新規分岐管フランジを樹脂本管内壁面に押し付ける際のクッションとなるので、押し付けを均一とすることができる。さらに、高周波コイルの面積をフランジ部の面積より大きくしたことにより、フランジの中心と高周波コイルの中心がずれた場合でも、高周波コイルでフランジを押し付けることが可能となり融着の信頼性を向上させることができる。   Furthermore, the flexible sheet | seat penetrated by the cable-like body was installed so that it might be arrange | positioned between the said high frequency coil and the flange part of the main pipe side edge part in the fusion | melting state in piping. Thus, since the air bag is used as a cushion when the new branch pipe flange is pressed against the inner wall surface of the resin main pipe with the high-frequency coil, the pressing can be made uniform. Furthermore, by making the area of the high-frequency coil larger than the area of the flange, even if the center of the flange and the center of the high-frequency coil are misaligned, it is possible to press the flange with the high-frequency coil and improve the reliability of fusion. Can do.

さらに、可とう性のあるシートと本管側端部のフランジ部との間に温度センサを配置し、その温度センサの信号を用いて高周波コイルに印加する電流を制御することで、融着の温度を最適に保つことが可能となるため、外気温等の変動があった場合でも融着の信頼性を向上させることができる。   Furthermore, a temperature sensor is arranged between the flexible sheet and the flange portion at the main pipe side end, and the current applied to the high-frequency coil is controlled using the signal of the temperature sensor, so that the fusion can be performed. Since it is possible to keep the temperature optimal, the reliability of fusion can be improved even when there is a change in the outside air temperature or the like.

さらに、配管内での融着状態のときに前記高周波コイルを挿入した本管の配管軸方向前方および後方に高周波コイルをはさむように、エアにより膨張して配管を閉塞する手段を設置したことにより、融着し冷却した後に前記閉塞する手段で分岐部をはさんで本管を閉塞させ、分岐管端部に圧力径を取り付けてエアを注入することで分岐部の検査を簡単にすることが出来る。さらに、漏れがあった場合には、再度高周波コイルに通電して再融着することができ、融着の信頼性を向上させることができる。   Further, by installing means for expanding the air and closing the pipe so that the high frequency coil is sandwiched in front and rear in the pipe axial direction of the main pipe into which the high frequency coil is inserted in the fused state in the pipe. It is possible to simplify the inspection of the branch part by sealing the main pipe with the means for closing after fusing and cooling, and closing the main pipe across the branch part, attaching a pressure diameter to the end of the branch pipe and injecting air. I can do it. Furthermore, when there is a leak, the high-frequency coil can be energized again and re-fused, so that the reliability of fusion can be improved.

これらにより、非開削で分岐部の融着を実現することが可能となる。
配管分岐部融着装置をこのように構成し運用することで、老朽化した鋼製小口径配管の本管及び分岐管内に樹脂製の新規樹脂配管を挿入して補修した後に、埋設状態で前記本管及び分岐管に挿入した樹脂配管を融着することが可能となり、本発明の目的は達成される。
As a result, it is possible to realize the fusion of the branch portion without non-cutting.
By constructing and operating the piping branch fusion device in this way, after repairing by inserting a new resin pipe made of resin into the main pipe and branch pipe of an old steel small-diameter pipe, The resin pipe inserted into the main pipe and the branch pipe can be fused, and the object of the present invention is achieved.

本発明によると、従来実施されていた鋼製配管内に新規樹脂配管を挿入し、分岐部分を掘削して配管外部から穿孔し、サドル式の分岐継手を配管外側から融着して補修していた更新工法の樹脂配管の本管と分岐管を接続する作業を、非開削で実施することが可能となり、工事時間短縮、工事コストの削減等の効果がある。   According to the present invention, a new resin pipe is inserted into a conventional steel pipe, a branch portion is excavated and drilled from the outside of the pipe, and a saddle type branch joint is fused from the outside of the pipe for repair. The work to connect the main pipe and branch pipe of the renewed resin pipe can be performed without open cutting, which has the effect of shortening construction time and construction cost.

以下、本発明をガス配管の分岐部融着に適用した実施例について、図面を用いて詳細に説明する。なお、本発明はガス以外の流体用の埋設配管に対する補修にも適用できる。   Hereinafter, an embodiment in which the present invention is applied to fusion of a branch portion of a gas pipe will be described in detail with reference to the drawings. In addition, this invention is applicable also to the repair with respect to the buried piping for fluids other than gas.

本発明をガス配管に適用した一実施例を、図1ないし図7により説明する。
最初に、図1、図2を参照して本発明の埋設管分岐部融着装置の全体的な構成及びこの装置を用いた埋設管分岐部融着方法の概念を説明する。図1は、本実施形態の埋設管分岐部融着装置100の全体構成をその実際の運用状態で示す図である。図2は埋設管分岐部融着装置の構成を示すブロック図である。
An embodiment in which the present invention is applied to a gas pipe will be described with reference to FIGS.
First, with reference to FIG. 1 and FIG. 2, the overall configuration of the buried pipe branching portion fusion apparatus of the present invention and the concept of the buried pipe branching portion fusion method using this apparatus will be described. FIG. 1 is a diagram illustrating the entire configuration of the buried pipe branching portion fusion apparatus 100 according to the present embodiment in its actual operation state. FIG. 2 is a block diagram showing the configuration of the buried pipe branching portion fusion apparatus.

この埋設管分岐部融着装置100の対象となる埋設管10は、地中40に埋設されて横方向に延びる鋼製の既設埋設本管20と、この埋設本管20の外周から分岐されて上方に延び地上に導き出される複数の鋼製の既設分岐管30とから構成される。既設配管20,30は、内径が20mm乃至200mm程度の小口径の老朽化鋼製配管であり、これらの既設配管の内部に新たな樹脂配管を挿入し、新規埋設管を構成する新規本管と新規分岐管を前記新規本管内部から接合することで既設配管は補修、更新される。45は地中40に設けられた工事用の掘削穴、22は工事用に設けられた既設埋設本管20の配管端部を示している。   The buried pipe 10 that is the target of the buried pipe branching portion fusion device 100 is branched from an existing buried main pipe 20 made of steel that is buried in the underground 40 and extends in the lateral direction, and an outer periphery of the buried main pipe 20. It consists of a plurality of existing branch pipes 30 made of steel that extend upward and are guided to the ground. The existing pipes 20 and 30 are small-diameter aging steel pipes having an inner diameter of about 20 mm to 200 mm, and a new main pipe constituting a new buried pipe by inserting a new resin pipe into the existing pipe. Existing pipes are repaired and updated by joining new branch pipes from inside the new main pipe. Reference numeral 45 denotes a construction excavation hole provided in the underground 40, and 22 denotes a pipe end portion of the existing buried main pipe 20 provided for the construction.

次に、図2を用いて埋設管分岐部融着装置100の詳細構成と機能について説明する。   Next, the detailed configuration and function of the buried pipe branching part fusion device 100 will be described with reference to FIG.

融着ヘッド105は、新規分岐管の端部に設けられた継手のフランジ部のヒーターを加熱するための高周波コイル110と、高周波コイルを新規本管の内壁面に押し付けるための押し付け手段としてのエアバッグ120と、高周波コイル110を貫通して設置されている牽引ロープ180と、可とう性シート190と、牽引ロープに設置されたセンタリングこま200及び温度センサ210から構成されている。   The fusion head 105 includes a high-frequency coil 110 for heating a heater of a flange portion of a joint provided at the end of the new branch pipe, and air as a pressing means for pressing the high-frequency coil against the inner wall surface of the new main pipe. The bag 120, a tow rope 180 installed through the high frequency coil 110, a flexible sheet 190, a centering top 200 and a temperature sensor 210 installed on the tow rope.

高周波コイル110は中空の銅パイプを渦巻状に曲げて略円板状に形成されており、高周波電流を通電すると同時に銅パイプ内部に冷却水を循環して冷やす構造となっている。寒冷時の作業においては、冷却水の代わりに不凍液を使用する。なお、高周波コイルは新規本管の内壁面に押し付けられた状態で新規樹脂配管25の内壁面に隙間なく沿うようにするために、その外径が新規本管の内径とほぼ一致するのが望ましい。工事の対象となる既設配管20,30は、内径が20mm乃至200mm程度の範囲で変わるため、予め、高周波コイル110はこれらの配管に対応できるように、その外径ないしは曲率に各種サイズのものを複数個準備しておく。高周波コイル110と冷却水循環用の配管を別部材で構成し、両者を一体化しても良い。   The high-frequency coil 110 is formed in a substantially disk shape by bending a hollow copper pipe into a spiral shape, and has a structure in which a high-frequency current is applied and at the same time circulating cooling water inside the copper pipe to cool it. When working in cold weather, use antifreeze instead of cooling water. Note that the outer diameter of the high-frequency coil is preferably substantially the same as the inner diameter of the new main pipe so that the high-frequency coil is pressed against the inner wall surface of the new main pipe without gaps. . Since the existing pipes 20 and 30 to be constructed change in an inner diameter range of about 20 mm to 200 mm, the high-frequency coil 110 has various sizes of outer diameters or curvatures so that these pipes can be accommodated in advance. Prepare several. The high frequency coil 110 and the cooling water circulation pipe may be configured as separate members, and both may be integrated.

温度センサ210は、可とう性シート190と埋設管本管側端部のフランジ部との間に配置されるものであり、検知した温度情報が信号ライン168及びインターフェース133を介してコントローラ132に送られる。   The temperature sensor 210 is disposed between the flexible sheet 190 and the flange portion at the buried pipe main pipe side end, and the detected temperature information is sent to the controller 132 via the signal line 168 and the interface 133. It is done.

高周波ユニット130は、高周波コイル110に高周波電流を供給する高周波電源134を有し、この高周波電源134の出力はコントローラ132により制御される。すなわち、コントローラ132は、操作盤131からのオペレータによる操作指令やインターフェース133を経て入力される信号などに基づき、予め設定された手順に従って、高周波電源134の出力を制御する。   The high frequency unit 130 includes a high frequency power source 134 that supplies a high frequency current to the high frequency coil 110, and the output of the high frequency power source 134 is controlled by the controller 132. That is, the controller 132 controls the output of the high frequency power supply 134 in accordance with a preset procedure based on an operation command from the operator panel 131 or a signal input via the interface 133.

融着ヘッド105と高周波ユニット130、及びエアバッグ120とその動力源であるコンプレッサ150とは遠隔ケーブル160で接続されている。すなわち、遠隔ケーブル160は、高周波電流を通電するためのケーブル162と、エアバッグに空気を供給するエアチューブ164と、冷却水を高周波コイルに供給するホース166を含み、これらを束ねて可とう性のあるコルゲート管に挿通して構成されている。170は、遠隔ケーブル160を巻いて収納するケーブルリールである。   The fusion head 105 and the high-frequency unit 130, and the airbag 120 and the compressor 150 that is a power source thereof are connected by a remote cable 160. That is, the remote cable 160 includes a cable 162 for supplying a high-frequency current, an air tube 164 for supplying air to the airbag, and a hose 166 for supplying cooling water to the high-frequency coil. It is configured to be inserted through a corrugated tube with Reference numeral 170 denotes a cable reel that winds and stores the remote cable 160.

コンプレッサ150の圧縮空気は、高周波ユニット内の切り換え弁137と、供給する圧縮空気の圧力を調整する減圧弁138を介してエアバッグ120に供給される。エアバッグ120内の圧縮空気は、切り換え弁137を切り換えることで排出可能となっており、挿入時や回収時はしぼませた状態(第1の状態)で取り扱いを容易にできる。また、減圧弁138によりエアバッグ120に供給する圧縮空気の圧力を自由に変えられるので、融着時(第2の状態)の面圧を自由に設定することができる。切り換え弁137及び減圧弁138は、オペレータが操作するように構成されているが、操作盤131を介してコントローラ132で制御出来るようにしても良い。   The compressed air of the compressor 150 is supplied to the airbag 120 via a switching valve 137 in the high frequency unit and a pressure reducing valve 138 that adjusts the pressure of the compressed air to be supplied. The compressed air in the airbag 120 can be discharged by switching the switching valve 137, and can be easily handled in a deflated state (first state) during insertion or collection. Moreover, since the pressure of the compressed air supplied to the airbag 120 can be freely changed by the pressure reducing valve 138, the surface pressure at the time of fusion (second state) can be set freely. The switching valve 137 and the pressure reducing valve 138 are configured to be operated by an operator, but may be controlled by the controller 132 via the operation panel 131.

また、高周波コイルを新規本管の内壁面に押し付けるための押し付け手段としては、油圧アクチュエータと油圧ポンプのように他の流体を用いた構成でも良い。   The pressing means for pressing the high-frequency coil against the inner wall surface of the new main pipe may be configured using other fluids such as a hydraulic actuator and a hydraulic pump.

冷却水ユニット140の冷却水は、冷却水ユニット140から高周波ユニット130内のマッチングボックス136に供給され、遠隔ケーブル160内のホース166を介して高周波コイル110に接続されている。本接続により、マッチングボックス内のコイルと高周波コイル110を冷却することができる。   The cooling water of the cooling water unit 140 is supplied from the cooling water unit 140 to the matching box 136 in the high frequency unit 130 and is connected to the high frequency coil 110 via the hose 166 in the remote cable 160. With this connection, the coil in the matching box and the high-frequency coil 110 can be cooled.

温度センサ210の信号は、遠隔ケーブル160を介して高周波ユニット内のインターフェース133を介してコントローラ132に取り込まれ、分岐部融着時の温度を作業条件の如何にかかわらず一定値に保持するように高周波電源から高周波コイル110に供給される電流を制御することが出来る構成となっている。   The signal from the temperature sensor 210 is taken into the controller 132 via the remote cable 160 and the interface 133 in the high-frequency unit, so that the temperature at the time of fusion of the branch portion is held at a constant value regardless of the working conditions. The current supplied from the high frequency power source to the high frequency coil 110 can be controlled.

温度センサ210を省略し、高周波電源から高周波コイル110への通電時間をタイマーによりオープンループ制御するように構成しても良い。この場合の通電時間は、予め実験などで得られたデータに基づき、融着作業を行なう環境の温度や分岐部融着継手の形状などに応じて適宜選定される。この場合は、信号ライン168及びインターフェース133も不要である。   The temperature sensor 210 may be omitted, and the energization time from the high-frequency power source to the high-frequency coil 110 may be configured to be open-loop controlled by a timer. The energization time in this case is appropriately selected according to the temperature of the environment in which the fusion work is performed, the shape of the branch fusion joint, and the like based on data obtained in advance through experiments or the like. In this case, the signal line 168 and the interface 133 are not necessary.

次に、図3を用いて分岐部融着継手36の構成を説明する。図3は、分岐部融着継手36の3面図である。分岐部融着継手36は、円筒部37とフランジ部38により構成されている。フランジ部38は、樹脂で薄肉のため、平滑管内壁面に沿って柔軟になじむことができる。さらにフランジ部38には、予め2重の同心円状に磁性体のヒーター39を埋め込んであり、本フランジ部38を平滑管内壁面に適正な面圧で押し付けた状態で高周波コイル110に高周波電流を通電すると、ヒーター39に誘導電流が発生し、そのときのジュール熱と交番磁界によるヒステリシス損によりヒーター39が発熱する。   Next, the structure of the branch part fusion joint 36 is demonstrated using FIG. FIG. 3 is a three-side view of the branch portion fusion joint 36. The branch portion fusion joint 36 includes a cylindrical portion 37 and a flange portion 38. Since the flange portion 38 is thin with resin, it can be flexibly adapted along the inner wall surface of the smooth tube. In addition, a magnetic heater 39 is embedded in the flange portion 38 in a double concentric shape in advance, and a high-frequency current is passed through the high-frequency coil 110 in a state where the flange portion 38 is pressed against the inner wall surface of the smooth tube with an appropriate surface pressure. Then, an induction current is generated in the heater 39, and the heater 39 generates heat due to the Joule heat and the hysteresis loss due to the alternating magnetic field.

次に、図4と図5により融着ヘッド105の構成と分岐部融着時における融着ヘッドの動作を説明する。図4(A)は、既設分岐管に対して、樹脂分岐管35と融着ヘッド105を挿入している途中の状態を示す図であり、図4(B)は、実際に融着している状態を示す図である。   Next, the configuration of the fusion head 105 and the operation of the fusion head at the time of fusion at the branch portion will be described with reference to FIGS. FIG. 4A is a diagram showing a state in the middle of inserting the resin branch pipe 35 and the fusion head 105 into the existing branch pipe, and FIG. FIG.

既設配管20,30の内部に、新規本管25と新規分岐管35を新規本管25の内部から接合することで既設配管は補修、更新される。既設分岐管30内に挿入される新規の樹脂分岐管35は、中空の管部材からなりその下端部は中空の分岐部融着継手36が接合される接合部35Cとなっている。   The existing main pipe 25 and the new branch pipe 35 are joined to the existing pipes 20 and 30 from the inside of the new main pipe 25 to repair and update the existing pipe. The new resin branch pipe 35 inserted into the existing branch pipe 30 is formed of a hollow pipe member, and a lower end portion thereof is a joint portion 35C to which a hollow branch portion fusion joint 36 is joined.

既設本管20に挿入された新規樹脂平滑管25に穿孔装置等を用いて穴26を開けておく。なお、穿孔穴26の径は、樹脂分岐管35の端部35Cに接続されるフランジ部38の外径よりも十分に小さいことは言うまでも無い。穿孔穴26から牽引ワイヤー(図示せず)を用いて予め牽引ロープ180を管内に挿通させた可とう性のある新規樹脂分岐管35をワイヤーで牽引しながら既設分岐管30内に引き込み(図4(A))、樹脂分岐管35の端部に接続された分岐部融着継手36のフランジ部38が平滑管25の穿孔穴26に引っ掛かるまで挿入する。さらに、分岐管端部31から牽引ロープ180のみを引っ張ることで、図4(B)に示すように、センタリングこま200を分岐部融着継手36内に引き込み、さらに、融着ヘッド105を分岐部融着継手36の直下に位置決めする。なお、融着ヘッド110は、エアバッグ120にエアが供給されないエアバッグの縮小した状態(第1の状態)において、エアバッグ120上に保持されている。   A hole 26 is made in the new resin smooth tube 25 inserted into the existing main pipe 20 using a punching device or the like. Needless to say, the diameter of the perforated hole 26 is sufficiently smaller than the outer diameter of the flange portion 38 connected to the end portion 35 </ b> C of the resin branch pipe 35. Using a pulling wire (not shown), a flexible new resin branch pipe 35 in which a pulling rope 180 is inserted into the pipe in advance is pulled from the hole 26 into the existing branch pipe 30 while being pulled by the wire (FIG. 4). (A)), until the flange portion 38 of the branch portion fusion joint 36 connected to the end portion of the resin branch pipe 35 is caught in the perforated hole 26 of the smooth tube 25. Further, by pulling only the pulling rope 180 from the branch pipe end portion 31, the centering top 200 is drawn into the branch portion fusion joint 36 as shown in FIG. 4B, and the fusion head 105 is further moved to the branch portion. Positioning is performed directly below the fusion joint 36. The fusion head 110 is held on the airbag 120 in a contracted state (first state) of the airbag in which no air is supplied to the airbag 120.

センタリングこま200の外径は、分岐部融着継手36の円筒部37と樹脂分岐管35の接合部35Cの内径より大きくなっており、この位置でセンタリングこまが引っかかって止まるようになっている。図5(a)はこの状態における分岐部を示す図である。分岐部融着継手36のフランジ部38の外縁部分が新規樹脂平滑管25の内壁に接触している。なお、分岐部融着継手36は、その円筒部に予め樹脂分岐管35を突合せ融着で接合し、図5(a)に示したような状態で分岐部融着に用いる。   The outer diameter of the centering top 200 is larger than the inner diameter of the joint portion 35C of the cylindrical portion 37 of the branch portion fusion joint 36 and the resin branch pipe 35, and the centering top is caught and stopped at this position. FIG. 5A is a diagram showing the branching portion in this state. The outer edge portion of the flange portion 38 of the branch portion fusion joint 36 is in contact with the inner wall of the new resin smooth tube 25. In addition, the branch part fusion joint 36 joins the resin branch pipe 35 to the cylindrical part by butt fusion in advance, and is used for the branch part fusion in a state as shown in FIG.

この状態でエアバッグ120に所定の圧力のエアを供給して伸張した状態(第2の状態)とし、可とう性シート190を平滑管内壁面との間に挟んで高周波コイル110を押し付けることで、平滑管内壁面と分岐部融着継手フランジ部との間に融着時に必要な面圧を発生させることができる(図4(C))。分岐部融着継手36のフランジ部38は、樹脂で薄肉のため、新規樹脂平滑管25の内壁面に沿って変形している。高周波コイル110とフランジ部38の間に可とう性シート190が介在しているため、高周波コイル110はフランジ部38の面に柔軟になじむことができる(図5(b))。可とう性シート190に代えて他のクッション吸収部材を配置しても良い。   In this state, by supplying air of a predetermined pressure to the airbag 120 and extending (second state), pressing the high frequency coil 110 with the flexible sheet 190 sandwiched between the smooth tube inner wall surface, A surface pressure required at the time of fusion can be generated between the inner wall surface of the smooth tube and the branch portion fusion joint flange (FIG. 4C). Since the flange portion 38 of the branch portion fusion joint 36 is thin with resin, it is deformed along the inner wall surface of the new resin smooth tube 25. Since the flexible sheet 190 is interposed between the high frequency coil 110 and the flange portion 38, the high frequency coil 110 can be flexibly adapted to the surface of the flange portion 38 (FIG. 5B). Instead of the flexible sheet 190, another cushion absorbing member may be arranged.

分岐部融着継手36のフランジ部38には、磁性体のヒーター39を埋め込んであり、本フランジ部38を平滑管内壁面に適正な面圧で押し付けた状態で高周波コイル110に高周波電流を通電すると、ヒーター39に誘導電流が発生し、そのときのジュール熱と交番磁界によるヒステリシス損によりヒーター39が発熱する。この発熱で、新規平滑管25の内壁面と分岐部融着継手36のフランジ表面の両方を溶かし、適正な面圧で押し付けて両者を融着させる。   A magnetic heater 39 is embedded in the flange portion 38 of the branch portion fusion joint 36. When a high-frequency current is passed through the high-frequency coil 110 in a state where the flange portion 38 is pressed against the inner wall surface of the smooth tube with an appropriate surface pressure. An induced current is generated in the heater 39, and the heater 39 generates heat due to Joule heat and hysteresis loss due to the alternating magnetic field. With this heat generation, both the inner wall surface of the new smooth tube 25 and the flange surface of the branch portion fusion joint 36 are melted and pressed together with an appropriate surface pressure to fuse them.

次に、図6から図7を用いて、分岐部融着装置100を用いた融着手順について説明する。図6は、融着手順を示したフローチャート、図7は融着手順の途中の分岐部の状態を示した説明図である。   Next, the fusion procedure using the branching part fusion | melting apparatus 100 is demonstrated using FIGS. 6-7. FIG. 6 is a flowchart showing the fusing procedure, and FIG. 7 is an explanatory diagram showing the state of the branching part in the middle of the fusing procedure.

(S610):通常配管工事に使用されるパラシュート等を用いて既設分岐管30から穿孔穴26を通って新規平滑管25を貫通するように挿通用のロープ182を通す。(図7(a))
(S620):新規の樹脂分岐管35に高周波コイルに取り付けられた牽引ロープ180を挿通し、樹脂分岐管を牽引するためのワイヤーに固定する。なお、樹脂分岐管35の下端部には予め分岐部融着継手36が接続されている。
(S630):挿通用のロープ180と樹脂分岐管35を牽引するワイヤーを接続し、挿通用のロープ180を分岐管側から牽引することで樹脂分岐管35を樹脂本管25内に引き込んでいく。このとき、融着ヘッド105も遠隔ケーブル160を押し込むことで樹脂本管25内に挿入されていく。
(S610): The insertion rope 182 is passed from the existing branch pipe 30 through the perforated hole 26 and through the new smooth pipe 25 using a parachute or the like used for normal piping work. (Fig. 7 (a))
(S620): The tow rope 180 attached to the high frequency coil is inserted into the new resin branch pipe 35 and fixed to the wire for towing the resin branch pipe. A branch portion fusion joint 36 is connected to the lower end portion of the resin branch pipe 35 in advance.
(S630): The insertion rope 180 and the wire that pulls the resin branch pipe 35 are connected, and the resin branch pipe 35 is pulled into the resin main pipe 25 by pulling the insertion rope 180 from the branch pipe side. . At this time, the fusion head 105 is also inserted into the resin main pipe 25 by pushing the remote cable 160.

(S640):分岐部融着継手36のフランジ38が樹脂本管25の穿孔穴26に引っかかるまで樹脂分岐管35を樹脂本管内に引き込む。このとき、管内カメラ300で分岐部の確認を行う(図7(b))
(S650):さらに、遠隔ケーブル160を操作して高周波コイル110を継手下方まで押し込む(図7(c))。
(S660):分岐管側の作業者が、牽引ロープ180を引っ張りながら、本管挿入側の遠隔ケーブル160を押し引きし、作業者が無線でのやり取りと分岐管側の作業者の手応えで融着ヘッド105の位置決めを判定する。
(S640): The resin branch pipe 35 is pulled into the resin main pipe until the flange 38 of the branch portion fusion joint 36 is caught in the hole 26 of the resin main pipe 25. At this time, the branch part is confirmed by the in-tube camera 300 (FIG. 7B).
(S650): Further, the remote cable 160 is operated to push the high-frequency coil 110 down to the lower part of the joint (FIG. 7C).
(S660): The operator on the branch pipe side pushes and pulls the remote cable 160 on the main pipe insertion side while pulling the tow rope 180, and the operator melts by wireless communication and the response of the operator on the branch pipe side. The positioning of the landing head 105 is determined.

(S670):所定の圧力のエアを供給してエアバッグ120を膨張させ、高周波コイル110で融着継手フランジ38を新規本管25の内壁面に対して押し付けて固定する(図7(d))。
(S680):高周波コイル110に冷却水を供給しながら、所定時間、高周波電流を通電する。このように、フランジ部38を平滑管25の内壁面に適正な面圧で押し付けた状態で高周波コイル110に高周波電流を通電すると、ヒーター39に誘導電流が発生し、そのときのジュール熱と交番磁界によるヒステリシス損によりヒーター39が発熱する。この発熱により、新規本管25の内壁面と分岐部融着継手36のフランジ表面の両方を溶かし、両者を融着させる。
(S670): Air of a predetermined pressure is supplied to inflate the airbag 120, and the fusion joint flange 38 is pressed against and fixed to the inner wall surface of the new main pipe 25 by the high-frequency coil 110 (FIG. 7D). ).
(S680): While supplying cooling water to the high frequency coil 110, a high frequency current is applied for a predetermined time. As described above, when a high frequency current is applied to the high frequency coil 110 with the flange portion 38 pressed against the inner wall surface of the smooth tube 25 with an appropriate surface pressure, an induction current is generated in the heater 39, and the Joule heat and the alternating current at that time are generated. The heater 39 generates heat due to hysteresis loss due to the magnetic field. With this heat generation, both the inner wall surface of the new main pipe 25 and the flange surface of the branch portion fusion joint 36 are melted, and both are fused.

(S690):通電終了後、エアバッグ120に圧縮空気を供給したままの状態で保持し、分岐部を冷却する。その後、エアバッグ120のエアを抜き、遠隔ケーブル160を本管側から牽引して高周波コイル110を回収する(図7(e))。
(S700):管内カメラ300を配管内に挿入し、分岐部の融着状態を確認する。
(S690): After energization is completed, the compressed air is kept supplied to the airbag 120, and the branch portion is cooled. Thereafter, the airbag 120 is evacuated, and the remote cable 160 is pulled from the main pipe side to collect the high-frequency coil 110 (FIG. 7E).
(S700): The in-pipe camera 300 is inserted into the pipe, and the fused state of the branch portion is confirmed.

以上のような手順によれば、非開削で既設鋼管20内に挿入した新規の樹脂配管25の分岐部の融着を実施することが出来る。   According to the above procedure, it is possible to perform the fusion of the branch portion of the new resin pipe 25 inserted into the existing steel pipe 20 by non-cutting.

さらに、高周波コイルの本管内壁面に接触する部分の縦断面形状を、図5に示すように新規樹脂配管25の内壁面に対応する円弧形状とし、前記コイルの円弧の半径を新規本管の内径の半径とほぼ一致させることで、分岐部融着継手のフランジ部38を、樹脂本管25の内壁面と高周波コイルで挟み込むことで樹脂本管内壁面に沿わせて変形させ保持することができ、安定した融着が可能となる。   Further, the longitudinal cross-sectional shape of the portion of the high frequency coil that contacts the inner wall surface of the main pipe is an arc shape corresponding to the inner wall surface of the new resin pipe 25 as shown in FIG. The flange portion 38 of the branch portion fusion joint can be deformed and held along the inner wall surface of the resin main body by being sandwiched between the inner wall surface of the resin main tube 25 and the high frequency coil. Stable fusion is possible.

さらに、フランジ部押し付け時にフランジと接触する部分の高周波コイルの面積をフランジ部の面積より大きくすることにより、樹脂分岐管中心と高周波コイルの中心がずれた場合でも、高周波コイルでフランジを本管内壁面に押し付けることが可能となり面圧不足による融着不良を防止し融着の信頼性を向上させることができる。   Furthermore, by making the area of the high-frequency coil in contact with the flange larger than the area of the flange when pressing the flange, even if the resin branch pipe center and the center of the high-frequency coil are displaced, It is possible to press against the surface of the steel sheet, thereby preventing poor fusion due to insufficient surface pressure and improving the reliability of fusion.

さらに、可とう性のあるシートと本管側端部のフランジ部との間に温度センサを配置し、その温度センサの信号を用いて高周波コイルに印加する電流を制御することで、融着の温度を最適に保つことが可能となるため、季節の違いによる外気温の変化があった場合でも融着部の温度を最適に保てるため、融着の信頼性を向上させることができる。   Furthermore, a temperature sensor is arranged between the flexible sheet and the flange portion at the main pipe side end, and the current applied to the high-frequency coil is controlled using the signal of the temperature sensor, so that the fusion can be performed. Since it is possible to keep the temperature optimal, the reliability of the fusion can be improved because the temperature of the fusion part can be kept optimum even when there is a change in the outside air temperature due to a difference in season.

実際の工事においては、図6、図7で説明した実施例1による融着手順に加えて、融着後の気密試験を行うのが望ましい。図8は、融着後の気密試験の状態を示した説明図である。   In actual construction, it is desirable to perform a hermetic test after fusion in addition to the fusion procedure according to the first embodiment described with reference to FIGS. FIG. 8 is an explanatory view showing a state of an airtight test after fusion.

すなわち、図6のS690の冷却後にエアバッグのエアを抜いた状態で、図8(a)に示すように配管端部を塞ぎ、樹脂製配管内に空気圧をかけることで新規樹脂配管の気密を確認する。この方法によれば、もし仮に融着不良が生じた場合でも再度エアバッグに圧力をかけて高周波コイルを固定し、再融着することができ、融着の信頼性を向上させることができる。   That is, in the state where the air of the airbag is removed after cooling of S690 in FIG. 6, the end of the pipe is closed as shown in FIG. 8 (a), and air pressure is applied to the resin pipe to make the new resin pipe airtight. Check. According to this method, even if a fusing defect occurs, the high-frequency coil can be fixed again by applying pressure to the airbag again, and the reliability of fusing can be improved.

また、樹脂本管の分岐部より奥の配管が長い場合は、図8(b)に示すように予め融着ヘッドの先にパッカーを備えた融着ヘッドとし、融着後にエアを供給してパッカーを膨張させて樹脂本管を塞いで気密試験を実施すれば、気密試験をより容易に実施することができる。この場合、図1において、埋設本管20の外周から分岐されて上方に延びる複数の分岐管30のうち、埋設管分岐部融着装置100のある側から見て手前の分岐管側から奥へと、順次、融着工事を行い、夫々気密試験を行なうのが望ましい。   Also, if the pipe behind the branch part of the resin main pipe is long, as shown in FIG. 8 (b), use a fusion head equipped with a packer at the tip of the fusion head in advance and supply air after fusion. If the airtight test is performed by inflating the packer and closing the resin main tube, the airtight test can be performed more easily. In this case, in FIG. 1, among the plurality of branch pipes 30 that are branched from the outer periphery of the buried main pipe 20 and extend upward, the branch pipe from the front side to the back as seen from the side where the buried pipe branching unit fusion device 100 is located. It is desirable to perform fusion work one after another and perform an airtight test.

以上本発明によれば、老朽化した鋼管に樹脂製配管を挿入し、本管分岐部を穿孔後、樹脂製分岐管を挿入して、埋設状態で配管内部から樹脂製本管と樹脂製分岐管を融着することが可能となり、工事時間短縮、工法コストの削減、掘削残土の削減を実現することが出来る。   As described above, according to the present invention, a resin pipe is inserted into an aged steel pipe, a main pipe branch portion is drilled, a resin branch pipe is inserted, and a resin main pipe and a resin branch pipe are embedded from the inside of the pipe in an embedded state. Can be fused, and the construction time, construction cost, and excavated soil can be reduced.

一実施例である埋設管分岐部融着装置の外観を示す説明図。Explanatory drawing which shows the external appearance of the buried pipe branch part melt | fusion apparatus which is one Example. 埋設管分岐部融着装置の詳細な構成を示す説明図。Explanatory drawing which shows the detailed structure of a buried pipe branch part fusion | fusion apparatus. 埋設管分岐部融着装置で融着する分岐部融着継手を示す説明図。Explanatory drawing which shows the branch part melt | fusion joint welded with a buried pipe branch part melt | fusion apparatus. 埋設管分岐部融着装置の分岐部の配置を示す説明図。Explanatory drawing which shows arrangement | positioning of the branch part of a buried pipe branch part fusion | fusion apparatus. 埋設管分岐部融着装置を実際に位置決め常態及び融着状態を示す説明図。Explanatory drawing which shows an actual positioning normal state and a fusion | melting state of a buried pipe branching part fusion | fusion apparatus. 分岐部融着の手順を示すフローチャート。The flowchart which shows the procedure of a branch part melt | fusion. 分岐部融着までの手順を示す説明図。Explanatory drawing which shows the procedure until a branch part fusion | fusion. 分岐部融着後の気密試験の状態を示す説明図。Explanatory drawing which shows the state of the airtight test after a branch part melt | fusion.

符号の説明Explanation of symbols

10…埋設管、20…既設本管、30…既設分岐管、100…埋設管分岐部融着装置、110…高周波コイル、120…エアバッグ、130…高周波ユニット、140…冷却水ユニット、150…エアコンプレッサ、160…遠隔ケーブル、170…ケーブルリール、180…牽引ロープ、190…可とう性シート、200…センタリングこま。 DESCRIPTION OF SYMBOLS 10 ... Embedded pipe, 20 ... Existing main pipe, 30 ... Existing branch pipe, 100 ... Embedded pipe branch part fusion | fusion apparatus, 110 ... High frequency coil, 120 ... Air bag, 130 ... High frequency unit, 140 ... Cooling water unit, 150 ... Air compressor, 160 ... remote cable, 170 ... cable reel, 180 ... tow rope, 190 ... flexible sheet, 200 ... centering top.

Claims (10)

既存本管及び既存分岐管からなる鋼製の既存埋設管の内部に樹脂製の新規埋設管を挿入することで老朽化した前記既存埋設管を更新する埋設管工事に用いられ、前記新規埋設管を構成する新規本管と新規分岐管を前記新規本管内部から接合する装置であって、
前記新規分岐管の端部に設置される継手のフランジ部のヒーターに誘導電流を発生させるための高周波コイルと、該高周波コイルを前記新規本管の内壁面に押し付けるための押し付け手段とを有する融着ヘッドと、
前記高周波コイルに高周波電流を供給する電源を有する高周波ユニットと、
前記押し付け手段を動作させるための動力源と、
前記高周波コイルと前記電源、及び前記押し付け手段と前記動力源とを各々接続する遠隔ケーブルとを備え
前記融着ヘッドは、前記高周波コイルの中心部に接続された索状体と、前記新規分岐管の内径より大きく、該新規分岐管の端部に設けられた前記継手の内径より小さい直径のこまとを有し、
前記索状体は前記こまを貫通していることを特徴とする埋設管分岐部融着装置。
The new buried pipe is used for the buried pipe construction for renewing the existing buried pipe aged by inserting the new buried pipe made of resin into the existing buried pipe made of steel consisting of the existing main pipe and the existing branch pipe. A device for joining a new main pipe and a new branch pipe constituting the main pipe from the inside of the new main pipe,
A high frequency coil for generating an induction current in the heater of the flange portion of the joint installed at the end of the new branch pipe, and a pressing means for pressing the high frequency coil against the inner wall surface of the new main pipe. The landing head,
A high frequency unit having a power supply for supplying a high frequency current to the high frequency coil;
A power source for operating the pressing means;
A remote cable connecting the high-frequency coil and the power source, and the pressing means and the power source, respectively .
The fusion head includes a rope connected to the center of the high-frequency coil, and a top having a diameter larger than the inner diameter of the new branch pipe and smaller than the inner diameter of the joint provided at the end of the new branch pipe. And
The buried pipe branching portion fusion device, wherein the cords penetrate the top .
請求項1に記載の埋設管分岐部融着装置であって、
前記押し付け手段がエアバッグであり、前記動力源としてのコンプレッサから前記エアバッグに空気を供給するエアチューブを前記遠隔ケーブル内に配設したことを特徴とする埋設管分岐部融着装置。
The buried pipe branching part fusion device according to claim 1,
The embedded pipe branching portion fusion device, wherein the pressing means is an airbag, and an air tube for supplying air from the compressor as the power source to the airbag is disposed in the remote cable.
請求項1に記載の埋設管分岐部融着装置であって、
前記高周波コイルの縦断面形状は、中央部が上方に突出した略円弧形状であることを特徴とする埋設管分岐部融着装置。
The buried pipe branching part fusion device according to claim 1,
The vertical section of the high-frequency coil has a substantially arc shape with a central portion protruding upward, and the buried pipe branching portion fusion device.
請求項3に記載の埋設管分岐部融着装置であって、
前記高周波コイルは中空のパイプで構成されており
高周波ユニットの冷却水ユニットから前記高周波コイルの冷却用の流体を供給するために、前記遠隔ケーブル内に配設されたホースを有することを特徴とする埋設管分岐部融着装置。
The buried pipe branching part fusion device according to claim 3,
The high frequency coil is formed of a hollow pipe, and has a hose disposed in the remote cable for supplying a cooling fluid for the high frequency coil from a cooling water unit of the high frequency unit. Embedded pipe branching part fusion device.
請求項1に記載の埋設管分岐部融着装置であって、
前記融着ヘッドは温度センサを有し、
前記高周波ユニットは、前記温度センサの信号を用いて前記高周波コイルに印加する電流を制御することを特徴とする埋設管分岐部融着装置。
The buried pipe branching part fusion device according to claim 1,
The fusing head has a temperature sensor;
The buried pipe branching portion fusion device , wherein the high frequency unit controls a current applied to the high frequency coil using a signal from the temperature sensor .
既存本管及び既存分岐管からなる鋼製の既存埋設管の内部に樹脂製の新規埋設管を挿入することで老朽化した前記既存埋設管を更新する埋設管工事に用いられ、前記新規埋設管を構成する新規本管と新規分岐管を前記新規本管内部から接合する装置であって、
前記新規分岐管の端部に設置される継手のフランジ部のヒーターに誘導電流を発生させるための高周波コイルと、該高周波コイルを前記新規本管の内壁面に押し付けるための押し付け手段とを有する融着ヘッドと、
前記高周波コイルに高周波電流を供給する電源を有する高周波ユニットと、
前記押し付け手段を動作させるための動力源と、
前記高周波コイルと前記電源、及び前記押し付け手段と前記動力源とを各々接続する遠隔ケーブルとを備え、
前記融着ヘッドは、前記高周波コイルと前記継手のフランジ部との間に配置されるように索状体に貫通された可とう性のあるシートを有し、該可とう性のあるシートを介して前記フランジ部と接触する前記高周波コイルの面積は該フランジ部の面積より大きいことを特徴とする埋設管分岐部融着装置。
The new buried pipe is used for the buried pipe construction for renewing the existing buried pipe aged by inserting the new buried pipe made of resin into the existing buried pipe made of steel consisting of the existing main pipe and the existing branch pipe. A device for joining a new main pipe and a new branch pipe constituting the main pipe from the inside of the new main pipe,
A high frequency coil for generating an induction current in the heater of the flange portion of the joint installed at the end of the new branch pipe, and a pressing means for pressing the high frequency coil against the inner wall surface of the new main pipe. The landing head,
A high frequency unit having a power supply for supplying a high frequency current to the high frequency coil;
A power source for operating the pressing means;
A remote cable connecting the high-frequency coil and the power source, and the pressing means and the power source, respectively.
The fusion head has a flexible sheet that is penetrated by a cord-like body so as to be disposed between the high-frequency coil and the flange portion of the joint, and the flexible sheet is interposed between the flexible sheet and the flexible sheet. The buried pipe branching portion fusion device, wherein an area of the high-frequency coil in contact with the flange portion is larger than an area of the flange portion.
請求項6に記載の埋設管分岐部融着装置であって、
前記融着ヘッドは、前記可とう性のあるシートと前記フランジ部との間に配置される温度センサを有し、
前記高周波ユニットは、前記温度センサの信号を用いて前記高周波コイルに印加する電流を制御することを特徴とする埋設管分岐部融着装置。
The buried pipe branching part fusion device according to claim 6,
The fusing head has a temperature sensor disposed between the flexible sheet and the flange portion,
The buried pipe branching portion fusion device, wherein the high frequency unit controls a current applied to the high frequency coil using a signal from the temperature sensor.
既存本管及び既存分岐管からなる鋼製の既存埋設管の内部に樹脂製の新規埋設管を挿入し、埋設管分岐部融着装置により前記新規埋設管を構成する新規本管と新規分岐管を前記新規本管内部から接合することで老朽化した既存埋設管を更新する埋設管分岐部融着方法であって、
前記埋設管分岐部融着装置は、前記新規分岐管の端部に設置される継手のフランジ部のヒーターに誘導電流を発生させるための高周波コイル及び該高周波コイルを前記新規本管の内壁面に押し付けるための押し付け手段を有する融着ヘッドと、前記高周波コイルに高周波電流を供給する電源を有する高周波ユニットと、前記押し付け手段を動作させるための動力源と、前記融着ヘッドと前記高周波ユニット及び前記押し付け手段と前記動力源とを各々接続する遠隔ケーブルとを備え、
前記融着ヘッドは、前記高周波コイルの中心部に接続された索状体と、前記新規分岐管の内径より大きく、該新規分岐管の端部に設けられた前記継手の内径より小さい直径のこまとを有し、前記索状体は前記こまを貫通しており、
前記新規分岐管の本管側の端部に、前記ヒーターの設置されたフランジ部を有する前記継手を接続し、
前記押し付け手段が縮小した第1の状態で、前記索状体を用いて、前記融着ヘッドを前記遠隔ケーブルと共に前記新規本管の開口部から前記新規分岐管の下方に挿入し、
前記押し付け手段が伸張した第2の状態とすることにより、前記フランジ部を介して前記高周波コイルを前記新規本管の内壁面に押し付け、
該押し付け状態で、前記高周波コイルに高周波電流を通電して前記フランジ部のヒーターに誘導電流を発生させて生ずる熱により前記フランジ部を前記新規本管内壁面に融着させることを特徴とする埋設管分岐部融着方法。
A new main pipe and a new branch pipe are constructed by inserting a new resin-made buried pipe into the existing main pipe and existing branch pipe made of steel, and constituting the new buried pipe by the buried pipe branching unit fusion device. Is a buried pipe branching portion fusion method for renewing an existing buried pipe that has been aged by joining the inside of the new main pipe,
The buried pipe branching portion fusion device includes a high frequency coil for generating an induction current in a heater of a flange portion of a joint installed at an end of the new branch pipe, and the high frequency coil on the inner wall surface of the new main pipe. A fusion head having a pressing means for pressing, a high-frequency unit having a power supply for supplying a high-frequency current to the high-frequency coil, a power source for operating the pressing means, the fusion head, the high-frequency unit, and the A remote cable connecting each of the pressing means and the power source,
The fusion head includes a rope connected to the center of the high-frequency coil, and a top having a diameter larger than the inner diameter of the new branch pipe and smaller than the inner diameter of the joint provided at the end of the new branch pipe. And the cord is penetrating the top,
Connect the joint having the flange portion where the heater is installed to the end of the main branch side of the new branch pipe,
In the first state in which the pressing means is reduced , using the cord-like body, the fusion head is inserted together with the remote cable from the opening of the new main pipe and below the new branch pipe,
By pressing the high-frequency coil against the inner wall surface of the new main pipe through the flange portion by setting the second state in which the pressing means is extended,
A buried pipe characterized in that, in the pressed state, a high-frequency current is applied to the high-frequency coil to generate an induction current in a heater of the flange part, and the flange part is fused to the inner wall surface of the new main pipe. Branch part fusion method.
請求項8に記載の埋設管分岐部融着方法であって、
前記押し付け手段はエアバッグであり、前記エアバッグにエアを供給するためのコンプレッサから空気を供給するためのエアチューブを前記遠隔ケーブル内に備え、
前記高周波コイルは中空のパイプで構成されており、
前記エアバッグの縮小した前記第1の状態で、前記索状体を用いて、前記融着ヘッドを前記遠隔ケーブルと共に前記新規本管内の開口部から前記新規分岐管下方に挿入し、
前記エアチューブを介してエアを供給し前記エアバッグを膨張させた前記第2の状態とすることにより、前記高周波コイルを押し上げて前記フランジ部を前記新規本管の内壁面に対して押し付けて固定し、
該固定状態で、前記高周波コイルに冷却水を供給しながら、所定時間、高周波電流を通電して前記フランジ部を前記新規本管内壁面に融着させ、
通電終了後、前記エアバッグに圧縮空気を供給した前記第2の状態で前記融着ヘッドを保持して、冷却を行い、
その後、前記エアバッグのエアを抜いた前記第1の状態で、前記遠隔ケーブルを前記新規本管の開口部から牽引して前記融着ヘッドを回収することを特徴とする埋設管分岐部融着方法。
The buried pipe branch portion fusion method according to claim 8,
The pressing means is an air bag, and an air tube for supplying air from a compressor for supplying air to the air bag is provided in the remote cable,
The high-frequency coil is composed of a hollow pipe,
In the first state where the airbag is reduced , using the cord-like body, the fusion head is inserted together with the remote cable from the opening in the new main pipe below the new branch pipe,
By supplying air through the air tube and inflating the airbag, the second state is established, and the high-frequency coil is pushed up and the flange portion is pressed against the inner wall surface of the new main pipe and fixed. And
While supplying cooling water to the high-frequency coil in the fixed state, a high-frequency current is applied for a predetermined time to fuse the flange portion to the inner wall surface of the new main pipe,
After completion of energization, holding the fusion head in the second state in which compressed air is supplied to the airbag, cooling is performed,
Thereafter, in the first state in which the air from the airbag has been removed, the remote cable is pulled from the opening of the new main pipe to collect the fusion head, and the buried pipe branch part fusion Method.
請求項8に記載の埋設管分岐部融着方法であって、
配管内での融着状態のときに前記高周波コイルを挿入した本管の配管軸方向前方および後方に前記高周波コイルをはさむように、エアにより膨張して配管を閉塞する閉塞手段を設置し、前記分岐管端部からエアを挿入して気密検査を実施することを特徴とする埋設管分岐部融着方法。
The buried pipe branch portion fusion method according to claim 8,
Installing a closing means for closing the pipe by expanding with air so as to sandwich the high-frequency coil between the front and rear of the main pipe into which the high-frequency coil is inserted in the fused state in the pipe; A method for fusing buried pipe branch parts, wherein air is inserted from an end part of the branch pipe to perform an airtight inspection.
JP2007098953A 2007-04-05 2007-04-05 Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method Expired - Fee Related JP5134279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098953A JP5134279B2 (en) 2007-04-05 2007-04-05 Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098953A JP5134279B2 (en) 2007-04-05 2007-04-05 Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method

Publications (2)

Publication Number Publication Date
JP2008256094A JP2008256094A (en) 2008-10-23
JP5134279B2 true JP5134279B2 (en) 2013-01-30

Family

ID=39979855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098953A Expired - Fee Related JP5134279B2 (en) 2007-04-05 2007-04-05 Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method

Country Status (1)

Country Link
JP (1) JP5134279B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101230168B1 (en) 2011-07-15 2013-02-05 정웅선 Structure of laying flexible electric wiring pipe underground
CN112212120B (en) * 2020-09-29 2021-06-01 武汉中仪物联技术股份有限公司 Underground pipeline point location repairing method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230135A (en) * 1984-03-30 1984-12-24 Hirobumi Nakano In-pipe moving type pressure measuring jig
JPH0752246A (en) * 1993-08-13 1995-02-28 Furukawa Electric Co Ltd:The Lining technique for inner face of pipe now in use
JP2644437B2 (en) * 1994-01-13 1997-08-25 株式会社湘南合成樹脂製作所 Branch pipe lining method
JPH10227385A (en) * 1997-02-14 1998-08-25 Fujipura Seiko Co Ltd High frequency induction heating joint
JP2001116180A (en) * 1999-10-15 2001-04-27 Tokyo Gas Co Ltd Construction method for installing supply pipe
JP4552000B2 (en) * 2004-09-10 2010-09-29 クボタシーアイ株式会社 Renewal or rehabilitation method using insertion pipe with branch joint and branch joint for insertion

Also Published As

Publication number Publication date
JP2008256094A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US7216674B2 (en) Installation assemblies for pipeline liners, pipeline liners and methods for installing the same
JP4237897B2 (en) Repair method for branch of pipe
AU2002328732A1 (en) Installation assemblies for pipeline liners, pipeline liners and methods for installing the same
GB2172845A (en) Method for joining polyolefin pipes by fusion
JP5134279B2 (en) Embedded pipe branching part fusion apparatus and buried pipe branching part fusion method
US20170210059A1 (en) Device And Method For Installing A Tubular Joint Sleeve For A Pipe Comprising An Inner Lining
EP3387211B1 (en) Apparatus and methods for joining in a tube
JP4926737B2 (en) Cable laid pipe lining method
US5007767A (en) Method for joining polyolefin pipes by fusion
JP5842303B2 (en) Pipe inner peripheral side structure and pipe inner peripheral surface lining method
WO2016001622A1 (en) Methods of testing electrofusion fittings and testing apparatus
JP2010070971A (en) Method for pulling out lining material after construction
JP2001116180A (en) Construction method for installing supply pipe
EP0441982B1 (en) Construction method of reversal tube lining on conduit without excavation
JP4552000B2 (en) Renewal or rehabilitation method using insertion pipe with branch joint and branch joint for insertion
JP2001108180A (en) Pipe repairing material, pipe repairing device and pipe repairing method
CN101684879B (en) Method and tool for connecting, repairing and maintaining insulated line pipes
KR101723209B1 (en) Winding device for plastic pipe
JP4134557B2 (en) Supply pipe installation method and centering fixing device
JP2001355784A (en) Pipe fixing jig and pipe fixing method for electro-fusion joint
KR101505836B1 (en) Trenchless sewer pipe repair method and apparatus
EP0329678B1 (en) Method and device for replacing damaged pipes buried in the ground
JP2004330612A (en) Traction jig and insertion construction method
JPH0540693U (en) Branch pipe branch lining material
JPH09144983A (en) Electric fusion pipe connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees