JP5133149B2 - Indoor lighting design method and lighting control system - Google Patents

Indoor lighting design method and lighting control system Download PDF

Info

Publication number
JP5133149B2
JP5133149B2 JP2008166592A JP2008166592A JP5133149B2 JP 5133149 B2 JP5133149 B2 JP 5133149B2 JP 2008166592 A JP2008166592 A JP 2008166592A JP 2008166592 A JP2008166592 A JP 2008166592A JP 5133149 B2 JP5133149 B2 JP 5133149B2
Authority
JP
Japan
Prior art keywords
brightness
luminance
lighting
window
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008166592A
Other languages
Japanese (ja)
Other versions
JP2010009891A (en
Inventor
雅行 井口
直也 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008166592A priority Critical patent/JP5133149B2/en
Publication of JP2010009891A publication Critical patent/JP2010009891A/en
Application granted granted Critical
Publication of JP5133149B2 publication Critical patent/JP5133149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

本発明は、屋内照明設計方法、および照明制御システムに関するものである。   The present invention relates to an indoor lighting design method and a lighting control system.

一室複数灯での間接照明や壁面照明を主体とするデザイン性の高い部屋において、部屋の条件を考慮したうえで、部屋の用途に合った明るさ感の照明環境を実現する照明器具、照明器具の組み合わせを、照明の専門知識を持たない一般ユーザが手軽に選択できる従来の屋内照明設計方法として、「屋内の照明空間において照明器具の光源とは別の光源を用いて表面の輝度が変化する色票を部屋内に備えて、観測者から見た色票が部屋内に置かれた物体として認識される輝度のレベルと自ら発光している光源として認識される輝度のレベルとの中間である不自然な色の見え方になるときの色票の輝度である色モード境界輝度」との相関関係に基づいて、照明空間の明るさ感を表す「明るさ感覚指標」を照明器具個別に設定し、照明器具個別に設定した各明るさ感覚指標の和が、その部屋に必要な明るさ感覚指標となるように、照明器具を組み合わせる方法がある(例えば、特許文献1参照)。   Lighting equipment and lighting that achieves a lighting environment that matches the room's usage in a highly designed room mainly composed of indirect lighting with multiple lights in a room and wall lighting. As a conventional indoor lighting design method that allows a general user who does not have lighting expertise to easily select a combination of fixtures, the surface brightness changes using a light source that is different from the light source of the lighting fixture in an indoor lighting space. The color chart seen from the observer is between the level of brightness recognized as an object placed in the room and the level of brightness recognized as a light source that emits light. Based on the correlation with the color mode boundary luminance, which is the luminance of the color chart when an unnatural color appears, a “brightness sensation index” that represents the brightness of the lighting space Set up and install lighting fixtures individually Sum of the brightness feeling index that is, such that the brightness feeling index needed in the room, there is a method of combining luminaire (e.g., see Patent Document 1).

また、上記特許文献1では、明るさ感単位の設定の際、標準条件の部屋において器具毎に色モード境界輝度をテストパッチ輝度提示装置を用いて実測する必要が有り、工数が多大にかかるうえに、個人の感覚にもとづく測定であることから、感覚のぶれによる測定誤差が大きくなる虞があり、この問題を改善するため、様々な条件での色モード境界輝度の実測データと、その各条件下での計算シミュレーションあるいは機器による測定によって得ることができる物理量との相関関係に着目し、その相関関係から導出される実験式によって、ある条件を設定した場合の色モード境界輝度にもとづく明るさ感覚指標を規定する方法が提案されたことを可能としていた(例えば、特許文献2参照)。
特開2006−269378号公報 特開2007−171055号公報
Moreover, in the above-mentioned Patent Document 1, when setting the brightness sensation unit, it is necessary to actually measure the color mode boundary luminance for each appliance using a test patch luminance presentation device in a room under standard conditions, which requires a lot of man-hours. In addition, since the measurement is based on individual senses, there is a risk that measurement errors due to blurring of the senses may increase, and in order to improve this problem, measured data of color mode boundary luminance under various conditions and each of the conditions Paying attention to the correlation with the physical quantity that can be obtained by the simulation below or the measurement by the equipment, the brightness sensation based on the color mode boundary luminance when a certain condition is set by the empirical formula derived from the correlation It has been possible to propose a method for defining an index (for example, see Patent Document 2).
JP 2006-269378 A JP 2007-171055 A

しかしながら、上記従来の明るさ感覚指標では、昼光の入射する窓面等が存在する照明空間は想定していない。一般に、窓面等のように他の領域に比べて輝度が高い高輝度部が室内に存在する場合、その高輝度部に目が順応するために、高輝度部がない場合に比べて照明空間の印象は暗くなる。すなわち、同一の明るさ感覚指標に対して感じる照明空間の明るさ感が、高輝度部がない場合に比べて減少する。また、逆に、他の領域に比べて輝度が低い低輝度部が室内に存在する場合、その低輝度部に目が順応するために、低輝度部がない場合に比べて照明空間の印象は明るくなる。すなわち、同一の明るさ感覚指標に対して感じる照明空間の明るさ感が、低輝度部がない場合に比べて増加する。   However, the conventional brightness sensation index does not assume an illumination space in which a daylight incident window surface or the like exists. In general, when a high-luminance part with higher brightness than other areas such as a window surface is present in the room, the eyes adjust to the high-luminance part, so that the illumination space is larger than when there is no high-luminance part. The impression becomes darker. That is, the feeling of brightness in the illumination space that is felt with respect to the same brightness sensation index is reduced as compared with the case where there is no high luminance part. Conversely, when there is a low-luminance part in the room that has a lower brightness than other areas, the eyes adjust to the low-luminance part, so the impression of the lighting space is less than when there is no low-luminance part. It becomes brighter. That is, the feeling of brightness of the illumination space that is felt for the same brightness sensation index is increased as compared to the case where there is no low luminance part.

したがって、窓面のような高輝度部または低輝度部の存在によって影響を受ける明るさ感覚指標に基づいて屋内照明を設計する屋内照明設計方法や、屋内照明を制御する照明制御装置では、適切な明るさ感を確保することができなかった。   Therefore, in an indoor lighting design method for designing indoor lighting based on a brightness sensation index that is affected by the presence of a high-luminance part or a low-luminance part such as a window surface, and an illumination control device that controls indoor lighting, A feeling of brightness could not be secured.

本発明は、上記事由に鑑みてなされたものであり、その目的は、高輝度部または低輝度部が存在する照明空間において目の順応を考慮した適切な明るさ感を確保することができる屋内照明設計方法、および照明制御システムを提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is indoors that can ensure appropriate brightness in consideration of adaptation to the eyes in an illumination space where a high-luminance portion or a low-luminance portion exists. An object of the present invention is to provide an illumination design method and an illumination control system.

請求項1の発明は、屋内の照明空間において照明器具の光源とは別の光源を用いて表面の輝度が変化する色票を部屋内に備えて、観測者から見た色票が部屋内に置かれた物体として認識される輝度のレベルと自ら発光している光源として認識される輝度のレベルとの中間である不自然な色の見え方になるときの色票の輝度である色モード境界輝度との相関関係に基づいて、照明空間の明るさ感を表す明るさ感覚指標を規定し、照明空間の他の領域に比べて高い輝度となる高輝度部、または照明空間の他の領域に比べて低い輝度となる低輝度部が屋内と屋外との間の窓面に存在する照明空間で当該高輝度部または低輝度部に観測者の目が順応することによって生じる、同一の明るさ感覚指標に対して観測者が評価する照明空間の明るさの変化分を、窓面の輝度に応じた明るさ感覚指標と観測者による照明空間の明るさ評価との関係を窓の位置と窓外の景色の組み合わせ毎に示す予測式に基づいて補正した補正明るさ感覚指標を規定し、補正明るさ感覚指標を用いて屋内照明を設計することを特徴とする。   According to the first aspect of the present invention, a color chart in which the luminance of the surface changes using a light source different from the light source of the luminaire in the indoor illumination space is provided in the room, and the color chart viewed from the observer is in the room. Color mode boundary, which is the brightness of the color chart when an unnatural color is seen, which is halfway between the brightness level recognized as a placed object and the brightness level recognized as a light source that emits light Based on the correlation with the brightness, a brightness sensation index that expresses the brightness of the lighting space is specified, and it is applied to a high-luminance part that has higher brightness than other areas of the lighting space, or to other areas of the lighting space. The same brightness sensation that occurs when the observer's eyes adapt to the high-brightness or low-brightness part in an illumination space where the low-brightness part has a lower brightness than the indoor and outdoor windows. Change in brightness of the lighting space evaluated by the observer for the indicator , Corrected brightness sensation corrected based on a prediction formula that shows the relationship between the brightness sensation index corresponding to the brightness of the window surface and the brightness evaluation of the lighting space by the observer for each combination of window position and scenery outside the window An index is defined, and indoor lighting is designed using a corrected brightness sense index.

この発明によれば、高輝度部または低輝度部が存在する照明空間において目の順応を考慮した適切な明るさ感を確保した屋内照明を設計することができ、屋内の照明空間における在室者の快適性向上を図ることができる。   According to the present invention, it is possible to design indoor lighting that secures an appropriate brightness feeling in consideration of adaptation to the eyes in an illumination space in which a high-luminance part or a low-luminance part exists. Comfort can be improved.

請求項2の発明は、屋内の照明空間を照明する照明器具と、屋内の照明空間において照明器具の光源とは別の光源を用いて表面の輝度が変化する色票を部屋内に備えて、観測者から見た色票が部屋内に置かれた物体として認識される輝度のレベルと自ら発光している光源として認識される輝度のレベルとの中間である不自然な色の見え方になるときの色票の輝度である色モード境界輝度との相関関係に基づいて、照明空間の明るさ感を表す明るさ感覚指標を計測する明るさ感覚指標計測手段と、照明空間の他の領域に比べて高い輝度となる高輝度部、または照明空間の他の領域に比べて低い輝度となる低輝度部が屋内と屋外との間の窓面に存在する照明空間で当該高輝度部または低輝度部に観測者の目が順応することによって生じる、同一の明るさ感覚指標に対して観測者が評価する照明空間の明るさの変化分を、窓面の輝度に応じた明るさ感覚指標と観測者による照明空間の明るさ評価との関係を窓の位置と窓外の景色の組み合わせ毎に示す予測式に基づいて補正した補正明るさ感覚指標を導出する明るさ感覚指標補正手段と、補正明るさ感覚指標が目標値となるように照明器具を調光制御する制御手段とを備えることを特徴とする。   The invention of claim 2 includes a lighting fixture that illuminates an indoor lighting space, and a color chart in which the luminance of the surface changes using a light source different from the light source of the lighting fixture in the indoor lighting space, in the room, The color chart seen by the observer looks like an unnatural color that is intermediate between the luminance level recognized as an object placed in the room and the luminance level recognized as a light source that emits light. Brightness sensation index measuring means for measuring a brightness sensation index representing the brightness sensation of the illumination space based on the correlation with the color mode boundary luminance, which is the luminance of the color chart, and other areas in the illumination space A high-brightness part or a low-brightness part in an illumination space where a high-brightness part with higher brightness or a lower-brightness part with lower brightness than other areas in the illumination space exists on the window surface between indoor and outdoor The same as the eyes of the observer The change in the brightness of the lighting space evaluated by the observer with respect to the Russian sensation index, and the relationship between the brightness sensation index according to the brightness of the window and the evaluation of the brightness of the lighting space by the observer Brightness sensation index correction means for deriving a corrected brightness sensation index corrected based on the prediction formula shown for each combination of the scenery outside the window, and dimming the lighting fixture so that the corrected brightness sensation index becomes a target value And a control means for controlling.

この発明によれば、高輝度部または低輝度部が存在する照明空間において目の順応を考慮した適切な明るさ感を確保した調光制御を行うことができ、屋内の照明空間における在室者の快適性向上を図ることができる。   According to the present invention, it is possible to perform dimming control that secures an appropriate brightness feeling in consideration of adaptation to the eyes in an illumination space in which a high-luminance part or a low-luminance part exists, and a resident in an indoor illumination space Comfort can be improved.

請求項3の発明は、請求項2において、前記照明空間における前記窓面の面積、位置を可変とする遮光装置を具備し、前記制御手段は、補正明るさ感覚指標が所定値となるように、照明器具の調光と、窓面の遮光装置の動作とを連動制御することを特徴とする。   According to a third aspect of the present invention, there is provided the light shielding device according to the second aspect, wherein the area and position of the window surface in the illumination space are variable, and the control means is configured so that the corrected brightness sense index becomes a predetermined value. The dimming of the lighting fixture and the operation of the light shielding device for the window surface are controlled in conjunction with each other.

この発明によれば、照明器具の調光と遮光装置の動作とを連動制御することで、調光範囲が広がる。   According to this invention, the dimming range is widened by interlockingly controlling the dimming of the lighting fixture and the operation of the light shielding device.

以上説明したように、本発明では、高輝度部または低輝度部が存在する照明空間において目の順応を考慮した適切な明るさ感を確保することができ、屋内の照明空間における在室者の快適性向上を図ることができる屋内照明設計方法、および照明制御システムを提供することができるという効果がある。   As described above, according to the present invention, it is possible to ensure an appropriate brightness feeling in consideration of adaptation to the eyes in an illumination space where a high-luminance part or a low-luminance part exists, There is an effect that it is possible to provide an indoor lighting design method capable of improving comfort and a lighting control system.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
本実施形態は、屋内空間に照明器具を設置しようとする場合に、所要の明るさや雰囲気を実現するためには、どのような照明器具を設置する必要があるのかを決定するための屋内照明設計方法に関するものである。
(Embodiment 1)
In this embodiment, when a lighting fixture is to be installed in an indoor space, an indoor lighting design for determining what type of lighting fixture needs to be installed in order to achieve the required brightness and atmosphere. It is about the method.

「明るさ感覚指標」とは、照明空間を観察したときに該空間に対して感じられる「明るさ」の総合評価であり、本発明では、この「明るさ感覚指標」を定量的に規定する明るさ感覚指標規定方法として、照明認識視空間の概念における「色モード境界輝度」(参考文献1:照明認識視空間の明るさサイズの測定による実環境における空間の明るさ感の評価、照明学会誌、第86巻第11号、2002、P830〜836、山口他)との相関関係に基づいて規定している。ここで、「色モード境界輝度」とは、照明された部屋に置かれた色票(以下、テストパッチと呼ぶ)を観測者(被験者)から見た見え方が、その部屋内に置かれた物体(物体色)として認識される輝度のレベルと自ら発光している光源(光源色)として認識される輝度のレベルとの中間である、その部屋に置かれた物体としては不自然な色の見え方になる輝度のレベルのことであり、照明された部屋の明るさ感を定量的に表すものである。   The “brightness sensation index” is a comprehensive evaluation of “brightness” that can be felt with respect to the space when the illumination space is observed. In the present invention, the “brightness sensation index” is defined quantitatively. “Color mode boundary luminance” in the concept of illumination-recognized visual space (Reference 1: Evaluation of the sense of brightness in the real environment by measuring the brightness size of the illumination-recognized visual space; Magazine, Vol. 86, No. 11, 2002, P830-836, Yamaguchi et al.). Here, “color mode boundary luminance” means that a color chart (hereinafter referred to as a test patch) placed in an illuminated room is viewed from an observer (subject) and placed in that room. It is an intermediate color between the brightness level recognized as an object (object color) and the brightness level recognized as a light source that emits light (light source color). This is the level of luminance that is visible, and it quantitatively represents the brightness of the illuminated room.

また、不均一な照明環境において色モード境界輝度の加法性が成り立つことが示されており(参考文献2:不均一な照明環境における空間の明るさ感の加法性、第36回照明学会全国大会講演論文集、P154、2003、山口他)、ある照明環境K1が、照明環境K2とK3との和であるとき、照明環境K2,K3における各々の色モード境界輝度の和で照明環境K1における色モード境界輝度が予測できることが実証されている。   It has also been shown that color mode boundary luminance additivity holds in non-uniform lighting environments (Reference 2: Additivity of spatial brightness in non-uniform lighting environments, 36th National Congress of the Illuminating Society of Japan) Proceedings, P154, 2003, Yamaguchi et al.) When a certain lighting environment K1 is the sum of the lighting environments K2 and K3, the color in the lighting environment K1 is the sum of the color mode boundary luminances in the lighting environments K2 and K3. It has been demonstrated that mode boundary luminance can be predicted.

以上から、照明認識視空間の概念における「色モード境界輝度」によって、空間の明るさ感を定量的に把握することができ、ある照明器具を設置した部屋の明るさ感を規定する「明るさ感覚指標」を設定することが技術的に可能であるといえる。   From the above, the “color mode boundary luminance” in the concept of illumination-recognition visual space can quantitatively grasp the sense of brightness of the space, and “brightness” that defines the sense of brightness of the room where a certain luminaire is installed It can be said that it is technically possible to set a “sensory index”.

この色モード境界輝度設定には、図2に示すテストパッチ輝度提示装置1を使用する。テストパッチ輝度提示装置1は、設置プレート1g上に設置された、光源にハロゲン電球を用いたスライドプロジェクターで構成される光源システム1bを収納した光源ボックス1a、回転濃度フィルター1dを収納した光学系ボックス1c、可動式平面ミラー1e、支持具1fによって設置プレート1aから1100mmの高さに設けられたテストパッチTとからなる。テストパッチTは、光源システム1bから回転濃度フィルター1dを通った光が可動式平面ミラー1eで反射して局所照明されている。観測者は、手元のスイッチで回転濃度フィルター1dを回転させることで自由にテストパッチTの輝度を調節することが可能である。また、テストパッチTは照明の影響をほとんど受けないように照射面を下向きに斜め45°に傾けてある。テストパッチTは、60mm×60mmの大きさで、被照射面はN5,グレーの紙面からなる。   For the color mode boundary luminance setting, the test patch luminance presentation device 1 shown in FIG. 2 is used. The test patch luminance presentation device 1 includes a light source box 1a that houses a light source system 1b that is a slide projector using a halogen light bulb as a light source, and an optical box that houses a rotational density filter 1d. 1c, a movable flat mirror 1e, and a test patch T provided at a height of 1100 mm from the installation plate 1a by a support 1f. The test patch T is locally illuminated by the light passing through the rotational density filter 1d from the light source system 1b reflected by the movable plane mirror 1e. The observer can freely adjust the brightness of the test patch T by rotating the rotational density filter 1d with a switch at hand. Further, the test patch T is inclined at an angle of 45 ° downward so that the irradiation surface is hardly affected by illumination. The test patch T has a size of 60 mm × 60 mm, and the irradiated surface is made of N5 and gray paper.

上記テストパッチ輝度提示装置1を操作して測定されたテストパッチTの「色モード境界輝度A」から、下記[数1]に基づいて「明るさ感覚指標F’」を導出する。なお、「色モード境界輝度A」の単位は[cd/m]である。 From the “color mode boundary luminance A” of the test patch T measured by operating the test patch luminance presentation device 1, a “brightness sensation index F ′” is derived based on the following [Equation 1]. The unit of “color mode boundary luminance A” is [cd / m 2 ].

Figure 0005133149
Figure 0005133149

以下、この「色モード境界輝度A」との相関関係に基づいて規定された「明るさ感覚指標F’」を用いる屋内照明設計方法の概略について説明する。   The outline of the indoor lighting design method using the “brightness sensation index F ′” defined based on the correlation with the “color mode boundary luminance A” will be described below.

まず、図3に示す、部屋サイズ:3500mm×3500mm、天井高さ:2500mmの8畳実物大の住宅居室Raを標準条件の測定環境として準備し、天井および壁の3面は白のクロス仕上げ、壁の一面は白のロールスクリーン2で間仕切りを施し、床はダークブラウンのフローリング仕上げであり、天井および壁の反射率を80%、床の反射率を10%とする。   First, as shown in FIG. 3, an 8-tatami real-sized residential room Ra having a room size of 3500 mm × 3500 mm and a ceiling height of 2500 mm is prepared as a measurement environment under standard conditions, and the three surfaces of the ceiling and the wall are finished with a white cloth. One side of the wall is partitioned by a white roll screen 2 and the floor has a dark brown flooring finish. The ceiling and wall reflectivity is 80%, and the floor reflectivity is 10%.

図2に示すテストパッチ輝度提示装置1を用いて、住宅居室Ra内に様々な照明器具L1〜Lnを単体で個別に配置した場合の「色モード境界輝度A1〜An」を測定し、上記[数1]に基づいて照明器具L1〜Ln個別の「明るさ感覚指標F1’〜Fn’」を算出する。   Using the test patch luminance presentation device 1 shown in FIG. 2, the “color mode boundary luminances A1 to An” when various lighting fixtures L1 to Ln are individually arranged in the residential room Ra are measured, and the above [ Based on Equation 1, the individual “brightness sensation indicators F1 ′ to Fn ′” of the lighting fixtures L1 to Ln are calculated.

次に、上記測定環境に、乳白アクリルカバーが付いた天井直付のシーリングライトである照明器具Lr(図3中の破線)を部屋中央に設置する。照明器具Lrは、25%〜100%の範囲で調光可能であり、観測者の主観評価によって、ちょうどよい明るさとなるように調光した場合の「色モード境界輝度Ar」を測定し、[数1]より上記測定環境における「所要の明るさ感覚指標Fr’」を設定する。   Next, a lighting fixture Lr (dashed line in FIG. 3), which is a ceiling-mounted ceiling light with a milky white acrylic cover, is installed in the center of the room in the measurement environment. The luminaire Lr can be dimmed in the range of 25% to 100%, and measures the “color mode boundary luminance Ar” when dimming so as to obtain just the right brightness according to the subjective evaluation of the observer. From “Equation 1”, “required brightness sensation index Fr ′” in the measurement environment is set.

次に、部屋の形状、内装レイアウト、大きさより照明器具の設置位置を決定し、各設置位置に配置する照明器具の「明るさ感覚指標F’」の和が「所要の明るさ感覚指標Fr’」となるように、照明器具L1〜Lnから照明器具を選択する。例えば、照明器具L10,L15,Lnを選択して、各照明器具の明るさ感覚指標F10’,F15’,Fn’とすると、Fr’=[F10’+F15’+Fn’]となればよい。   Next, the installation position of the luminaire is determined from the shape, interior layout, and size of the room, and the sum of the “brightness sensation index F ′” of the luminaires arranged at each installation position is “the required brightness sensation index Fr ′”. The lighting fixture is selected from the lighting fixtures L1 to Ln. For example, when the lighting fixtures L10, L15, and Ln are selected and the brightness sense indexes F10 ′, F15 ′, and Fn ′ of the respective lighting fixtures are set, Fr ′ = [F10 ′ + F15 ′ + Fn ′] may be satisfied.

このように、「色モード境界輝度A」との相関関係に基づいて「明るさ感覚指標F’」を規定することで、「所要の明るさ感覚指標Fr’」が設定された部屋に対して、各照明器具の「明るさ感覚指標の和」が前記部屋の「所要の明るさ感覚指標Fr’」となるように照明器具を組み合わせれば、一室複数灯での間接照明や壁面照明を主体とする部屋においても、部屋の条件を考慮したうえで、部屋の用途に合った所要の明るさ感の照明環境を実現することができる。   In this way, by defining the “brightness sensation index F ′” based on the correlation with the “color mode boundary luminance A”, for a room in which the “required brightness sensation index Fr ′” is set. If the lighting fixtures are combined so that the “sum of brightness sensation indicators” of each lighting fixture becomes the “required brightness sensation indicator Fr ′” of the room, indirect lighting and wall lighting with a plurality of lamps in one room can be performed. Even in the main room, it is possible to realize a lighting environment having a required brightness according to the use of the room in consideration of the room conditions.

すなわち、カタログ等に記載された照明器具個々の「明るさ感覚指標」の値に基づく足し算を行うことで、専門の知識を持たない一般ユーザでも容易に、所要の明るさ感の照明環境を実現する照明器具の組み合わせを決定することができるのである。   In other words, by performing addition based on the value of “brightness sensation index” for each lighting fixture described in the catalog, etc., even a general user without specialized knowledge can easily achieve a lighting environment with the required brightness. The combination of lighting fixtures to be determined can be determined.

しかしながら、上記方法では照明器具毎に「色モード境界輝度A」の測定を行う必要があり、多くの工数がかかる上に、「色モード境界輝度A」の測定が個人の感覚に基づく測定であるので、個人毎の感覚のぶれによる測定誤差が大きくなる可能性があった。   However, in the above method, it is necessary to measure the “color mode boundary luminance A” for each lighting fixture, which takes a lot of man-hours, and the measurement of the “color mode boundary luminance A” is a measurement based on an individual sense. Therefore, there is a possibility that measurement errors due to sensory blur for each individual may increase.

そこで、様々な条件での「色モード境界輝度A」の実測データと、前記様々な条件での観測者の視野内における照明空間の特定領域の光源輝度を除く「幾何平均輝度」との相関関係に着目し、その相関関係から導出される実験式に基づいて、ある条件を設定した場合の「明るさ感覚指標F’」を規定する方法について、以下説明する。   Therefore, correlation between the measured data of “color mode boundary luminance A” under various conditions and “geometric mean luminance” excluding the light source luminance of a specific area of the illumination space within the observer's field of view under the various conditions. A method of defining “brightness sensation index F ′” when a certain condition is set based on an empirical formula derived from the correlation will be described below.

まず、図3に示す住宅居室Raにおいて、ロールスクリーン2を右手に臨む背面壁Ra1側の略中央を観測者の視点位置Pとする。そして、本実施形態の屋内照明設計方法においては図4(a)(b)に示すように、人間の有効な視野の範囲に基づいて、被験者の視点位置Pから視線方向P1に対して上方向θ1=35°、下方向θ2=50°、左方向θ3=50°、右方向θ4=50°の視野角内の領域Gを設定し、領域G内の「幾何平均輝度B」を、各照明器具L1,L2,L3の配光データから、ラジオシティ法を用いた計算シミュレーションによって算出する。   First, in the residential room Ra shown in FIG. 3, an approximate center on the back wall Ra1 side facing the roll screen 2 on the right hand is set as the observer's viewpoint position P. And in the indoor lighting design method of this embodiment, as shown to Fig.4 (a) (b), based on the range of a human's effective visual field, it is upward from the test subject's viewpoint position P with respect to the gaze direction P1. A region G within a viewing angle of θ1 = 35 °, a downward direction θ2 = 50 °, a leftward direction θ3 = 50 °, and a rightward direction θ4 = 50 ° is set, and the “geometric mean luminance B” in the region G is set for each illumination. It calculates from the light distribution data of the appliances L1, L2, and L3 by calculation simulation using the radiosity method.

図3に示す住宅居室Raにおいて、被験者の視点位置Pから正面壁Ra2の略中心を注視したときの領域Gは図5に示すように立体的な領域となる。   In the residential room Ra shown in FIG. 3, the region G when looking at the approximate center of the front wall Ra <b> 2 from the viewpoint position P of the subject is a three-dimensional region as shown in FIG. 5.

使用する照明器具は、間接照明系の3台の照明器具L1,L2,L3を、観測者からは光源が見えないように配置している。照明器具L1としては、バーチカルコーナーライトを観測者の視点位置Pに対面する正面壁Ra2の右コーナー近傍に配置する。照明器具L2としては、床置のホリゾントライトを正面壁Ra2の左コーナー近傍に配置する。照明器具L3としては、フロアスタンドを背面壁Ra1の左コーナー近傍に配置する。なお、これらの各照明器具L1,L2,L3は、観測者の手元に配置した調光器3によって調光可能である。   The lighting fixtures used are three lighting fixtures L1, L2, and L3 of the indirect illumination system that are arranged so that the light source cannot be seen by the observer. As the lighting fixture L1, a vertical corner light is arranged in the vicinity of the right corner of the front wall Ra2 facing the observer's viewpoint position P. As the lighting fixture L2, a floor-mounted horizon light is arranged in the vicinity of the left corner of the front wall Ra2. As lighting fixture L3, a floor stand is arrange | positioned in the left corner vicinity of back wall Ra1. In addition, each of these lighting fixtures L1, L2, and L3 can be dimmed by the dimmer 3 arranged at the hand of the observer.

まず、テストパッチTが背面壁Ra1から2500mmに位置するようにテストパッチ輝度提示装置1を設置し、各照明器具L1,L2,L3単体で点灯した場合の「色モード境界輝度A1,A2,A3」を測定した。この「色モード境界輝度A1,A2,A3」の測定は、各照明器具L1,L2,L3を調光して、部屋の床面中央部に設置した照度計4によって測定される「床面中央照度」を変えた複数の条件下で3回づつ行った。   First, the test patch luminance presentation device 1 is installed so that the test patch T is located 2500 mm from the rear wall Ra1, and the “color mode boundary luminances A1, A2, A3 when the lighting fixtures L1, L2, L3 are lit alone are installed. Was measured. The measurement of the “color mode boundary luminances A1, A2, A3” is performed by dimming each of the lighting fixtures L1, L2, L3, and measured by the “illuminance meter 4” installed at the center of the floor of the room. The test was performed three times under a plurality of conditions with different “illuminance”.

また、上記複数の条件下において、領域Gの「幾何平均輝度B」の値を、各照明器具L1,L2,L3の配光データから、ラジオシティ法を用いた計算シミュレーションによって算出した。ここで、領域Gにおける照明器具L1,L2,L3の各「幾何平均輝度B」の値を、「幾何平均輝度B1,B2,B3」とする。なお、「幾何平均輝度B」の単位は[cd/m]である。 Further, under the above-mentioned plurality of conditions, the value of “geometric mean luminance B” of the region G was calculated from the light distribution data of each of the lighting fixtures L1, L2, and L3 by calculation simulation using the radiosity method. Here, the value of each “geometric mean luminance B” of the lighting fixtures L1, L2, and L3 in the region G is “geometric mean luminance B1, B2, and B3”. The unit of “geometric mean luminance B” is [cd / m 2 ].

図6(a)(b)(c)は、上記「色モード境界輝度A1,A2,A3」の測定結果、および上記領域Gの「幾何平均輝度B1,B2,B3」のシミュレーション結果を示す表であり、図6(a)は照明器具L1単体で点灯した場合の結果、図6(b)は照明器具L2単体で点灯した場合の結果、図6(c)は照明器具L3単体で点灯した場合の結果を各々示す。   6A, 6B, and 6C are tables showing the measurement results of the “color mode boundary luminances A1, A2, and A3” and the simulation results of “geometric average luminances B1, B2, and B3” of the region G. FIG. 6 (a) shows the result when the lighting fixture L1 is turned on alone, FIG. 6 (b) shows the result when the lighting fixture L2 is turned on alone, and FIG. 6 (c) shows that the lighting fixture L3 is turned on alone. Each case result is shown.

なお、実験設備の内装面の反射率を実際に測定しており、上記シミュレーションに用いる住宅居室Raの内装面の反射率の設定は、天井の反射率を79%、壁の反射率を81%、床の反射率を9.8%とし、さらにはロールスクリーン2の反射率を68%とする。   The reflectance of the interior surface of the experimental equipment is actually measured, and the reflectance of the interior surface of the residential room Ra used for the simulation is 79% for the ceiling and 81% for the wall. The reflectance of the floor is 9.8%, and the reflectance of the roll screen 2 is 68%.

図7は、領域Gの「幾何平均輝度B」を対数目盛の横軸に、「色モード境界輝度A」を対数目盛の縦軸にとって、図6(a)(b)(c)に示す「床面中央照度」を変えた各条件での「色モード境界輝度A1,A2,A3」の測定結果の平均値と、領域Gの「幾何平均輝度B1,B2,B3」のシミュレーション結果との関係をグラフに示したものである。   FIG. 7 shows “geometric mean luminance B” of region G on the logarithmic scale on the horizontal axis and “color mode boundary luminance A” on the logarithmic scale on the vertical axis. Relationship between average value of measurement result of “color mode boundary luminance A1, A2, A3” and simulation result of “geometric average luminance B1, B2, B3” of region G under various conditions with different “floor center illumination” Is shown in a graph.

図7中の直線51は、全てのプロット点に対して線形回帰で求めた直線であり、線形回帰分析の結果、その決定係数は0.93と高い値を示している。すなわち、「色モード境界輝度A」と上記領域Gの「幾何平均輝度B」との間には高い相関関係があるといえ、「色モード境界輝度A」と上記領域Gの「幾何平均輝度B」との関係は、下記[数2]で表される。したがって、「色モード境界輝度A」は、上記領域Gの「幾何平均輝度B」から推定することができる。   A straight line 51 in FIG. 7 is a straight line obtained by linear regression with respect to all plot points, and as a result of linear regression analysis, the coefficient of determination shows a high value of 0.93. That is, it can be said that there is a high correlation between the “color mode boundary luminance A” and the “geometric average luminance B” of the region G, and the “color mode boundary luminance A” and the “geometric average luminance B of the region G”. ] Is expressed by the following [Equation 2]. Therefore, the “color mode boundary luminance A” can be estimated from the “geometric mean luminance B” of the region G.

Figure 0005133149
Figure 0005133149

そして、「明るさ感覚指標F’」を「色モード境界輝度A」の1/2として定義した場合、「明るさ感覚指標F’」は下記[数3]で表される。   When “brightness sensation index F ′” is defined as ½ of “color mode boundary luminance A”, “brightness sensation index F ′” is expressed by the following [Equation 3].

Figure 0005133149
Figure 0005133149

このように、「色モード境界輝度A」と上記領域Gの「幾何平均輝度B」との相関関係(上記[数2]参照)と、「明るさ感覚指標F’」と「色モード境界輝度A」との相関関係(上記[数1]参照)とに基づいて、「明るさ感覚指標F’」を、上記領域Gの「幾何平均輝度B」の関数として規定することができる(上記[数3]参照)。   As described above, the correlation between the “color mode boundary luminance A” and the “geometric mean luminance B” of the region G (see [Expression 2] above), the “brightness sense index F ′”, and the “color mode boundary luminance”. Based on the correlation with “A” (see [Expression 1] above), the “brightness sensation index F ′” can be defined as a function of the “geometric mean luminance B” of the region G (see above [ (See Equation 3]).

具体例を以下説明する。図8に示す部屋サイズ:3600mm×3600mm、天井高さ:2500mmの居住居室Rを標準条件の部屋として設定し、照明器具L1(バーチカルコーナーライト)を被験者の視点位置Pに対面する正面壁R2の右コーナー近傍に配置する。   A specific example will be described below. The room size: 3600 mm × 3600 mm and the ceiling height: 2500 mm shown in FIG. 8 is set as a standard condition room, and the lighting fixture L1 (vertical corner light) faces the subject's viewpoint position P. Place near the right corner.

そして、この照明器具L1を対象として、照明器具個別の「明るさ感覚指標F’」を設定する場合、まず、照明器具L1を単体で点灯させたときの領域Gの「幾何平均輝度B」を、ラジオシティ法を用いた計算シミュレーションによって算出する。   Then, when setting the “brightness sensation index F ′” for each lighting fixture for this lighting fixture L1, first, the “geometric mean luminance B” of the region G when the lighting fixture L1 is lit alone is set. Calculated by a simulation using the radiosity method.

計算シミュレーションを行う場合、まず、対象とする部屋の条件(大きさ、内装反射率、照明器具の配置等)を設定し、照明器具の条件(光束、配光データ等)に基づいて、各内装面に入射する直射照度を算出する。次に、各内装面を光源とした場合の相互反射成分をラジオシティ法を用いて計算し、最終的に各内装面に入射する光束を決定した後、視点位置、注視点および視野の範囲を設定することで、その視野の範囲における各内装面の輝度分布を得ることができる。   When performing a simulation, first set the conditions of the target room (size, interior reflectance, arrangement of lighting fixtures, etc.), and each interior based on the lighting fixture conditions (light flux, light distribution data, etc.) The direct illuminance incident on the surface is calculated. Next, the mutual reflection component when each interior surface is used as a light source is calculated using the radiosity method, and finally the light flux incident on each interior surface is determined, and then the viewpoint position, gazing point and field of view range are determined. By setting, it is possible to obtain the luminance distribution of each interior surface in the field of view.

図8に示す居住居室Raであれば、X軸,Y軸,Z軸を有する3次元空間内で、居住居室Rの大きさをX方向寸法3600mm、Y方向寸法3600mm、Z方向寸法2500mmに設定し、各内装面の内装反射率を設定する。そして、被験者の視点位置Pに対面する正面壁Ra2の右コーナー近傍に、所定の光束、配光データ等を有する照明器具L1(バーチカルコーナーライト)を配置する。さらに、視点位置Pの座標(X,Y,Z)=(1800mm、0mm、1250mm)、注視点Qの位置座標(X,Y,Z)=(1800mm、3600mm、1250mm)とし、視野の範囲を、被験者の視点位置Pから視線方向P1に対して上方向θ1=35°、下方向θ2=50°、右方向θ3=50°、左方向θ4=50°の視野角内の領域Gとすると、領域Gの「幾何平均輝度B」は6.0[cd/m]というシミュレーション結果を得た。このように、領域Gの「幾何平均輝度B」は、各照明器具の配光データ等に基づいて、ラジオシティ法を用いた計算シミュレーションによって客観的に算出可能である。 In the case of the residential room Ra shown in FIG. 8, the size of the residential room R is set to an X-direction dimension of 3600 mm, a Y-direction dimension of 3600 mm, and a Z-direction dimension of 2500 mm in a three-dimensional space having an X axis, a Y axis, and a Z axis. Then, set the interior reflectance of each interior surface. And lighting fixture L1 (vertical corner light) which has a predetermined light beam, light distribution data, etc. is arrange | positioned in the right-corner vicinity of front wall Ra2 facing a test subject's viewpoint position P. FIG. Further, the coordinates of the viewpoint position P (X, Y, Z) = (1800 mm, 0 mm, 1250 mm), the position coordinates of the gazing point Q (X, Y, Z) = (1800 mm, 3600 mm, 1250 mm), and the field of view range. The region G within the viewing angle of the subject's viewpoint P from the viewing direction P1 in the upward direction θ1 = 35 °, the downward direction θ2 = 50 °, the rightward direction θ3 = 50 °, and the leftward direction θ4 = 50 °. A simulation result of “geometric mean luminance B” of the region G was 6.0 [cd / m 2 ]. As described above, the “geometric mean brightness B” of the region G can be objectively calculated by a calculation simulation using the radiosity method based on the light distribution data of each lighting fixture.

そして、照明器具L1の「明るさ感覚指標F’」は、上記[数3]に基づいて、F’=1.5B0.7=5.3に設定され、「明るさ感覚指標F’」と「色モード境界輝度A」との相関関係を維持しながら、客観的に算出した領域Gの「幾何平均輝度B」に基づいて個人の主観による誤差の少ない照明空間の「明るさ感覚指標F’」を容易に得ることができる。 The “brightness sensation index F ′” of the lighting fixture L1 is set to F ′ = 1.5B 0.7 = 5.3 based on the above [Equation 3], and “brightness sensation index F ′” is set. And “color mode boundary luminance A” while maintaining the correlation between the “color mode boundary luminance A” and the “brightness sensation index F” of the illumination space with less error due to the subjectivity of the individual based on the “geometric mean luminance B” of the region G that is objectively calculated You can get '"easily.

また、照明器具毎の「幾何平均輝度B」は上記計算シミュレーションによって算出するので、照明器具毎に「色モード境界輝度A」の測定を行う必要はなく、工数の短縮が可能になる。   In addition, since the “geometric mean luminance B” for each lighting fixture is calculated by the above-described calculation simulation, it is not necessary to measure “color mode boundary luminance A” for each lighting fixture, and the number of man-hours can be reduced.

そして、一室複数灯での間接照明や壁面照明を主体とする部屋においても、部屋の条件を考慮したうえで、カタログ等に記載された照明器具個々の「明るさ感覚指標F’」の値に基づく足し算を行うことで、専門の知識を持たない一般ユーザでも容易に、所要の明るさ感の照明環境を実現する照明器具の組み合わせを決定することができるのである。   Even in a room mainly composed of indirect lighting or wall lighting with multiple lamps in a room, the value of the “brightness sensation index F ′” of each lighting fixture described in the catalog, etc., in consideration of the room conditions By performing addition based on the above, even a general user who does not have specialized knowledge can easily determine a combination of lighting fixtures that realizes a lighting environment with a required brightness.

しかしながら、上記のような「明るさ感覚指標F’」の規定方法は、昼光の入射する窓面等のように他の領域に比べて輝度が高い高輝度部や、他の領域に比べて輝度が低い低輝度部が存在する照明空間は想定していない。一般に、他の領域に比べて輝度が高い高輝度部が室内に存在する場合、その高輝度部に目が順応するために、高輝度部がない場合に比べて照明空間の印象は暗くなる。すなわち、同一の明るさ感覚指標に対して感じる照明空間の明るさ感が、高輝度部がない場合に比べて減少するのである。また、逆に、他の領域に比べて輝度が低い低輝度部が室内に存在する場合、その低輝度部に目が順応するために、低輝度部がない場合に比べて照明空間の印象は明るくなる。すなわち、同一の明るさ感覚指標に対して感じる照明空間の明るさ感が、低輝度部がない場合に比べて増加する。   However, the method of defining the “brightness sensation index F ′” as described above is higher than that of a high-luminance part having a higher luminance than other regions, such as a window surface on which daylight is incident, or other regions. An illumination space in which a low-luminance part with low luminance exists is not assumed. In general, when a high-brightness part having higher brightness than other areas is present in the room, the eyes adapt to the high-brightness part, so the impression of the illumination space is darker than when there is no high-brightness part. That is, the feeling of brightness in the illumination space that is felt with respect to the same brightness sensation index is reduced as compared with the case where there is no high luminance part. Conversely, when there is a low-luminance part in the room that has a lower brightness than other areas, the eyes adjust to the low-luminance part, so the impression of the lighting space is less than when there is no low-luminance part. It becomes brighter. That is, the feeling of brightness of the illumination space that is felt for the same brightness sensation index is increased as compared to the case where there is no low luminance part.

そこで、本発明では、室内の高輝度部や低輝度部による影響を排除するために「明るさ感覚指標F’」に補正を施す。   Therefore, in the present invention, the “brightness sensation index F ′” is corrected in order to eliminate the influence of the high luminance part and the low luminance part in the room.

まず、種々の屋外の明るさに対して、窓を有する室内の主観的な明るさ評価を得ることを目的として、昼および夜および夕方に屋外の明るさが時々刻々と変化する間、窓の位置と景色の種類、屋内照明の出力を種々に設定し、室内の明るさを被験者に評価させる主観評価実験を実施した。   First, for the purpose of obtaining a subjective brightness evaluation of a room with a window for various outdoor brightness, while the outdoor brightness changes momentarily in the daytime, night and evening, A subjective evaluation experiment was conducted in which the subject was evaluated for indoor brightness by setting the position and type of scenery and the output of indoor lighting.

部屋は、東(窓外景色は住宅)と北(窓外景色は緑木)の2面が全面ガラスであり、室内側に設置されたロールスクリーンがガラス面を適宜遮光することによって、ガラス面の開口部の位置と大きさを可変として、窓の位置、大きさを任意に設定可能なW5.0m×D5.0m×H2.4mの実験室であり、天井は天井面全体を光源に見せる光天井、床がフローリング、壁が白クロス張りで構成される。   The room is made of glass on both sides of the east (outdoor view is residential) and north (outside view is green wood), and the roll screen installed on the indoor side shields the glass surface appropriately. This is a W5.0m × D5.0m × H2.4m laboratory where the position and size of the window can be changed and the position and size of the window can be set arbitrarily. The ceiling shows the entire ceiling surface to the light source. It consists of a light ceiling, flooring, and white cloth.

そして、部屋に設ける窓の位置(窓条件)は、「観測者の対向壁の全面に窓が位置する(窓条件:M1)」、「部屋幅の1/3、部屋高さと同一寸法の縦長窓が対向壁中央に位置する(窓条件:M2)」、「部屋高さの1/3、部屋幅と同一寸法の横長窓が対向壁中央に位置する(窓条件:M3)」、「対向壁の上部2/3に窓が位置する(窓条件:M4)」の4条件とした。   And the position of the window provided in the room (window condition) is “the window is located on the entire surface of the observer's facing wall (window condition: M1)”, “longitudinal length of 1/3 of the room width and the same dimension as the room height. “The window is located in the center of the opposing wall (window condition: M2)”, “A horizontal window with the same dimension as the room height and 1/3 of the room width is located in the center of the opposing wall (window condition: M3)”, “Opposite The window was positioned at the upper 2/3 of the wall (window condition: M4) ”.

窓から見える景色の種類(景色条件)は、東面を対向壁とした場合は「住宅」であり、北面を対向壁とした場合は「緑」であり、東面を対向壁とした場合(すなわち、景色条件「住宅」とした場合)は、窓の位置を上述の窓条件M1〜M4とし、北面を対向壁とした場合(すなわち、景色条件「緑」とした場合)は、窓の位置を上述の窓条件M1,M2とした。   The type of scenery that can be seen from the window (scenery conditions) is “housing” when the east side is the opposing wall, “green” when the north side is the opposing wall, and when the east side is the opposing wall ( That is, when the scenery condition is “house”), the window position is the above-described window conditions M1 to M4, and when the north surface is the facing wall (that is, when the scenery condition is “green”), the window position is Was set as the window conditions M1 and M2 described above.

また、室内においては光天井を常に全面発光させるとともに、この光天井以外に他の人工照明が設置されており、照明条件として、昼および夜は、「人工照明のみで床面中央照度を300lxに設定」し、夕方は、さらに「人工照明を消灯する」、「床面中央照度を窓面鉛直面照度の3%に設定する」、「床面中央照度を窓面鉛直面照度の10%に設定する」、「床面中央照度を窓面鉛直面照度の30%に設定する」の4条件を加えた計5条件を設けた。   Also, in the room, the entire surface of the optical ceiling always emits light, and other artificial lighting is installed in addition to this optical ceiling. As lighting conditions, the daytime and nighttime are “artificial lighting only and the floor surface central illumination is 300 lx. In the evening, further “turn off artificial lighting”, “set floor center illumination to 3% of window vertical illumination”, “floor center illumination to 10% of window vertical illumination A total of 5 conditions including 4 conditions of “setting” and “setting the floor center illumination to 30% of the window vertical illumination” were provided.

観測者は5名であり、上記窓条件、景色条件、照明条件を各々設定した条件(以降、環境条件と称す)下で部屋内に着座して眼を開け、この環境条件に3分間順応した後、室内の明るさを評価させた。各観測者が明るさ評価を行い、全観測者の明るさ評価が完了した後に環境条件を変更し、環境条件を変更している間、被験者が眼を閉じて待機するまでを一連の作業とし、次の環境条件を設定した後にこの一連の作業を繰り返した。夕方の時々刻々と昼光が変化する間の実験は、同一日には景色条件と窓条件の組み合せ2通りについて、屋外の明るさが異なる3段階で全照明条件(5条件)における明るさ評価を得た。実験は複数日に亘って実施し、同一の環境条件で1観測者につき3回の明るさ評価データを得た。   There were five observers, and they sat in the room under the conditions (hereinafter referred to as “environmental conditions”) that set the window conditions, scenery conditions, and illumination conditions, and opened their eyes, and adapted to these environmental conditions for 3 minutes. Later, the room brightness was evaluated. Each observer conducts a brightness evaluation, and after all the observers have completed the brightness evaluation, the environmental conditions are changed, and while the environmental conditions are changed, the test subjects close their eyes and wait for a series of tasks. After setting the following environmental conditions, this series of operations was repeated. In the experiment of the daylight changing every moment in the evening, the brightness evaluation under all lighting conditions (5 conditions) in three stages with different outdoor brightness for two combinations of scenery conditions and window conditions on the same day Got. The experiment was conducted over a plurality of days, and brightness evaluation data was obtained three times per observer under the same environmental conditions.

そして、各環境条件下において各観測者の明るさに対する主観評価と同時に、窓面鉛直面照度、観測者の顔前鉛直面照度、および観測者の視野内の輝度分布を測定している。観測者視野内の輝度分布からは窓面の幾何平均輝度、および領域G内の幾何平均輝度(上述の[数3]における「幾何平均輝度B」)が得られ、領域G内の幾何平均輝度からは[数3]に基づいて「明るさ感覚指標F’」が導出される。   Then, simultaneously with the subjective evaluation of the brightness of each observer under each environmental condition, the window surface vertical surface illuminance, the observer's frontal vertical surface illuminance, and the luminance distribution in the observer's visual field are measured. From the luminance distribution in the observer's field of view, the geometric average luminance of the window surface and the geometric average luminance in the region G (“geometric average luminance B” in [Expression 3] above) are obtained. From “Equation 3”, “brightness sensation index F ′” is derived.

実験結果の一例として、窓条件「M1」且つ景色条件「住宅」における「明るさ感覚指標F’」と室内の明るさ評価との関係を図9に示す。この実験結果から、室内の明るさ評価が窓面幾何平均輝度(=窓外の景色の輝度)によって影響されていることが明らかとなり、「明るさ感覚指標F’」と「観測者による室内の明るさ評価」との関係が窓外の輝度に依って左右されていることが判明した。   As an example of the experimental results, FIG. 9 shows the relationship between the “brightness sensation index F ′” and the indoor brightness evaluation in the window condition “M1” and the scenery condition “house”. From this experimental result, it is clear that the indoor brightness evaluation is influenced by the geometric average brightness of the window surface (= the brightness of the scenery outside the window), and “brightness sensation index F ′” and “ It was found that the relationship with "brightness evaluation" depends on the brightness outside the window.

窓外の輝度に影響された「明るさ感覚指標F’」と「観測者による室内の明るさのカテゴリカル評価」との関係は、図9中の予測曲線Y1〜Y10で示され、Y1,Y2,...,Y9,Y10の順に窓面幾何平均輝度が高くなっており、窓面幾何平均輝度が高いほど同一の明るさ感覚指標F’であっても明るさの評価が低くなり、窓面幾何平均輝度が低いほど同一の明るさ感覚指標F’であっても明るさの評価が高くなっている。これら予測曲線Y1〜Y10は、窓の位置と景色の種類の組み合せ毎に、明るさ感覚指標と窓面幾何平均輝度とを変量として、「観測者による室内の明るさ評価」を予測する予測式として示すことが可能である。   The relationship between “brightness sensation index F ′” influenced by the brightness outside the window and “categorical evaluation of indoor brightness by the observer” is indicated by prediction curves Y1 to Y10 in FIG. Y2,. . . , Y9, and Y10, the window surface geometric average brightness increases, and the higher the window surface geometric average brightness, the lower the evaluation of the brightness even with the same brightness sensation index F ′. The lower the is, the higher the evaluation of the brightness is even with the same brightness sense index F ′. These prediction curves Y1 to Y10 are prediction formulas for predicting “indoor brightness evaluation by an observer” using a brightness sense index and window surface geometric mean luminance as variables for each combination of window position and scenery type. Can be shown as

明るさ感覚指標と室内の明るさのカテゴリカル評価との対応関係については、全般照明された窓のない標準内装の部屋に代表されるような、室内の輝度分布に大きな変化のない状態においては、既往の実験データから、高い相関関係が成立することが明らかになっている。このことから、窓のある部屋において室内の輝度と窓面の輝度とがほぼ等しい状態、つまり、室内の輝度分布に大きな変化がない状態で得られる明るさ感覚指標と室内の明るさのカテゴリカル評価との対応関係を基準状態として設定する。   Regarding the correspondence between the brightness sensation index and the categorical evaluation of indoor brightness, in a state where there is no significant change in the brightness distribution in the room, as represented by a standard interior room with no general lighting, From the past experimental data, it is clear that a high correlation is established. Therefore, in a room with a window, the brightness sensation index and the indoor brightness categorical obtained in a state where the brightness of the room and the brightness of the window surface are almost equal, that is, the brightness distribution in the room is not significantly changed. The correspondence with the evaluation is set as the reference state.

例えば、窓面幾何平均輝度と領域Gの幾何平均輝度がほぼ等しい基準状態となる条件を、窓面幾何平均輝度と領域Gの幾何平均輝度の比が2/3〜3/2の範囲になる場合とすると、基準状態における明るさ感覚指標と室内の明るさのカテゴリカル評価との対応関係は、図9中の基準曲線Yaで示される関係となる。この関係は、明るさ感覚指標のみを変量とした関数として表現することができる。   For example, under the condition that the geometric average luminance of the window surface and the geometric average luminance of the region G are almost equal, the ratio of the geometric average luminance of the window surface and the geometric average luminance of the region G is in the range of 2/3 to 3/2. In this case, the correspondence between the brightness sensation index in the reference state and the categorical evaluation of the room brightness is the relationship indicated by the reference curve Ya in FIG. This relationship can be expressed as a function with only the brightness sense index as a variable.

次に、窓面幾何平均輝度(窓外の景色の輝度)の影響を考慮して、明るさ感覚指標F’を補正した補正明るさ感覚指標Fを算出する方法としては、まず、上述の測定方法で測定した明るさ感覚指標F’、および測定時の窓面幾何平均輝度に基づいて、景色や窓面輝度の影響を考慮した上述の予測式(予測曲線Y1〜Y10)のいずれかを用いて部屋の明るさ評価を予測する。そして、基準状態(図9中の基準曲線Ya)において、上記予測した評価が得られる明るさ感覚指標の値を、補正明るさ感覚指標Fとして用いることで、これまでの明るさ感覚指標と室内の明るさ評価との関係を維持したまま、窓面幾何平均輝度の影響を受けた室内の明るさを、明るさ感覚指標で示すことが可能となる。   Next, as a method for calculating the corrected brightness sensation index F in which the brightness sensation index F ′ is corrected in consideration of the influence of the window surface geometric average brightness (the brightness of the scenery outside the window), first, the above-described measurement is performed. Using one of the above prediction formulas (prediction curves Y1 to Y10) in consideration of the influence of scenery and window surface brightness based on the brightness sense index F ′ measured by the method and the window surface geometric average brightness at the time of measurement. Predict the brightness of the room. Then, in the reference state (reference curve Ya in FIG. 9), the value of the brightness sensation index from which the predicted evaluation is obtained is used as the corrected brightness sensation index F. While maintaining the relationship with the brightness evaluation of the room, the brightness of the room affected by the geometric average luminance of the window surface can be indicated by a brightness sense index.

図9は、窓条件「M1」且つ景色条件「住宅」における明るさ感覚指標と室内の明るさとの関係を、窓面幾何平均輝度の変化に応じて例示したものであるが、図9における予測曲線Y1〜Y10を示す各予測式において、各予測式に含まれる1つの係数のみを変化させることで、他の窓条件や景色条件においても同様の予測曲線Y1〜Y10を得ることができる。つまり、代表的な窓条件や景色条件の組み合せ毎に上記係数を求めておくことで、それぞれの窓条件や景色条件に対応した窓面幾何平均輝度の影響を考慮した明るさ感覚指標と観測者による室内の明るさ評価との関係(予測曲線Y1〜Y10)を規定することが可能となり、測定した明るさ感覚指標F’と、測定時の窓面幾何平均輝度と、予測曲線Y1〜Y10と、基準曲線Yaとから、窓条件や景色条件の組み合せ毎の補正明るさ感覚指標Fを上述のように求めることができる。   FIG. 9 exemplifies the relationship between the brightness sensation index and the room brightness in the window condition “M1” and the scenery condition “house” in accordance with the change in the geometric average luminance of the window surface. In each prediction formula showing the curves Y1 to Y10, by changing only one coefficient included in each prediction formula, the same prediction curves Y1 to Y10 can be obtained even in other window conditions and scenery conditions. In other words, by obtaining the above coefficients for each combination of typical window conditions and scenery conditions, the brightness sensation index and the observer taking into account the influence of the window surface geometric mean luminance corresponding to each window condition and scenery condition It is possible to define the relationship (prediction curves Y1 to Y10) with the indoor brightness evaluation by the measured brightness sense index F ′, the window surface geometric mean luminance at the time of measurement, and the prediction curves Y1 to Y10. From the reference curve Ya, the corrected brightness sensation index F for each combination of window conditions and scenery conditions can be obtained as described above.

このように求められた「補正明るさ感覚指標F」は、高輝度部または低輝度部の存在に目が順応することの影響を補正されており、この「補正明るさ感覚指標F」を用いて屋内照明を設計すれば、高輝度部または低輝度部が存在する照明空間において目の順応を考慮して適切な明るさ感を確保した屋内照明を設計することができ、屋内の照明空間における在室者の快適性向上を図ることができる。   The “corrected brightness sensation index F” obtained in this way is corrected for the effect of the eyes adapting to the presence of the high-luminance part or the low-luminance part, and this “corrected brightness sensation index F” is used. By designing indoor lighting, it is possible to design indoor lighting that secures appropriate brightness in consideration of adaptation to the eyes in lighting spaces where there are high-luminance parts or low-luminance parts. The comfort of the occupants can be improved.

上述した本発明の屋内照明設計方法は、図1のフローチャートに表され、まず上記[数1]または[数3]により、色モード境界輝度Aとの相関関係に基づいて、明るさ感覚指標F’を規定し(ステップS1)、高輝度部または低輝度部が存在する照明空間で当該高輝度部または低輝度部に観測者の目が順応することによって同一の明るさ感覚指標に対して観測者が感じる照明空間の明るさ感の変化分(減少分または増加分)を、窓面の輝度に応じた明るさ感覚指標と観測者による照明空間の明るさ評価との関係を窓の位置と窓外の景色の組み合わせ毎に示す予測式に基づいて補正した補正明るさ感覚指標Fを規定し(ステップS2)、この補正明るさ感覚指標Fを用いて屋内照明を設計する(ステップS3)という手順で行われる。   The indoor lighting design method of the present invention described above is shown in the flowchart of FIG. 1, and first, the brightness sense index F based on the correlation with the color mode boundary luminance A according to the above [Equation 1] or [Equation 3]. (Step S1), and observation is performed for the same brightness sensation index by the observer's eyes adapting to the high-luminance part or the low-luminance part in the illumination space where the high-luminance part or the low-luminance part exists The amount of change (decrease or increase) in the lighting space sensed by the viewer, and the relationship between the brightness sense index corresponding to the brightness of the window surface and the brightness evaluation of the lighting space by the observer, and the window position A corrected brightness sensation index F corrected based on a prediction formula shown for each combination of scenery outside the window is defined (step S2), and indoor lighting is designed using the corrected brightness sensation index F (step S3). Performed in the procedure.

なお、上記「所要の明るさ感覚指標Fr’」についても同様に補正することで、「補正後の所要の明るさ感覚指標Fr」を得ることができる。   Note that the “required brightness sensation index Fr after correction” can be obtained by correcting the “required brightness sensation index Fr ′” in the same manner.

(実施形態2)
本実施形態では、実施形態1で説明した「補正明るさ感覚指標F」を用いて照明器具の調光制御を行う照明制御システムについて説明する。
(Embodiment 2)
In the present embodiment, a lighting control system that performs dimming control of a lighting fixture using the “corrected brightness sensation index F” described in the first embodiment will be described.

まず、図10は、照明制御システムの構成を示し、窓Wから外光が入射する部屋Rbの照明空間を照明する照明器具Laと、照明器具Laへ供給する点灯電力を可変として調光制御する制御部10と、「明るさ感覚指標F’」を計測する明るさ感覚指標計測部11と、「補正明るさ感覚指標F」を導出する明るさ感覚指標補正部12とで構成される。   First, FIG. 10 shows the configuration of the illumination control system, and the lighting fixture La that illuminates the illumination space of the room Rb in which external light enters from the window W and the lighting power supplied to the lighting fixture La are dimmed and controlled. The control unit 10 includes a brightness sensation index measurement unit 11 that measures “brightness sensation index F ′”, and a brightness sensation index correction unit 12 that derives “corrected brightness sensation index F”.

明るさ感覚指標計測部11は、図11に示すように、CCDカメラ11aと、輝度分布測定部11bと、幾何平均輝度算出部11cと、明るさ感覚指標算出部11dとで構成される。まず、CCDカメラ11aの撮像範囲は観測者の視野と略同範囲に設定されており、窓Wを設けている壁面Rb1の画像をCCDカメラ11aで撮像し、輝度分布測定部11bは、撮像データに基づいて撮像空間の輝度分布を測定し、幾何平均輝度算出部11cは、この輝度分布に基づいて領域G内の「幾何平均輝度B」を算出し、明るさ感覚指標算出部11dは、「幾何平均輝度B」から上記[数3]にしたがって「明るさ感覚指標F’」を算出する。   As shown in FIG. 11, the brightness sensation index measurement unit 11 includes a CCD camera 11a, a luminance distribution measurement unit 11b, a geometric average luminance calculation unit 11c, and a brightness sensation index calculation unit 11d. First, the imaging range of the CCD camera 11a is set to be approximately the same as the visual field of the observer, and the image of the wall surface Rb1 provided with the window W is captured by the CCD camera 11a. The luminance distribution measuring unit 11b The geometrical average luminance calculation unit 11c calculates the “geometric average luminance B” in the region G based on the luminance distribution, and the brightness sensation index calculation unit 11d “Brightness sensation index F ′” is calculated from “geometric mean luminance B” according to the above [Equation 3].

明るさ感覚指標補正部12は、図11に示すように、輝度分布測定部11bで測定された輝度分布データから窓Wの窓面幾何平均輝度を算出する窓面輝度演算部12aと、補正明るさ感覚指標算出部12bとで構成されている。そして、補正明るさ感覚指標算出部12bは、窓面輝度演算部12aが算出した窓面幾何平均輝度に基づき、窓条件と景色条件との組み合せ毎に予め設定され、明るさ感覚指標と窓面幾何平均輝度を変量として「観測者による室内の明るさ評価」を予測する予測式(予測曲線Y1〜Y10のいずれか)を選択し、選択した予測式と、基準曲線Yaと、測定した明るさ感覚指標F’とから「補正明るさ感覚指標」を、上記実施形態1の方法で算出する。   As shown in FIG. 11, the brightness sensation index correction unit 12 includes a window surface luminance calculation unit 12a that calculates the window surface geometric average luminance of the window W from the luminance distribution data measured by the luminance distribution measurement unit 11b, and a corrected brightness. And a sense index calculation unit 12b. Then, the corrected brightness sensation index calculation unit 12b is preset for each combination of the window condition and the scenery condition based on the window surface geometric average luminance calculated by the window surface luminance calculation unit 12a. A prediction formula (any one of the prediction curves Y1 to Y10) for predicting “indoor brightness evaluation by an observer” is selected using the geometric average luminance as a variable, and the selected prediction formula, the reference curve Ya, and the measured brightness From the sensory index F ′, the “corrected brightness sensory index” is calculated by the method of the first embodiment.

制御部10は、上述の「補正明るさ感覚指標F」が、予め設定されている目標値に一致するように照明装置Laを調光制御することで、窓Wを介して入射する外光の影響を考慮した適切な明るさ感に調光することができる。すなわち、窓面等の高輝度あるいは低輝度の箇所が存在する照明空間において、目の順応を考慮して適切な明るさ感を確保した調光制御を行うことができ、屋内の照明空間における在室者の快適性向上を図ることができる。   The control unit 10 performs dimming control on the illumination device La so that the above-described “corrected brightness sensation index F” matches a preset target value, so that the outside light incident through the window W is controlled. The light can be adjusted to an appropriate brightness with the influence taken into account. In other words, dimming control that ensures appropriate brightness can be performed in consideration of the adaptation of the eyes in an illumination space where there is a high-luminance or low-luminance location such as a window surface. The comfort of the occupants can be improved.

また、図11に破線で示すように、ブラインド、ロールスクリーン等の遮光手段15を開閉させることで窓の開口条件を可変とする遮光装置14を設けて、制御部10は、「補正明るさ感覚指標F」が目標値に一致するように照明装置Laを調光制御するとともに、遮光装置14の動作も連動して制御すれば、調光範囲が広がる。この場合、窓の開口条件は遮光装置14の動作によって変動するが、明るさ感覚指標補正部12は、遮光装置14の動作状態を逐次取得して、遮光装置14の動作状態に応じた適切な「補正明るさ感覚指標F」を算出している。   Further, as shown by a broken line in FIG. 11, a light shielding device 14 that makes the window opening condition variable by opening and closing the light shielding means 15 such as a blind or a roll screen is provided. If the lighting device La is dimmed and controlled so that the index “F” matches the target value, and the operation of the light shielding device 14 is also controlled in conjunction, the dimming range is expanded. In this case, the opening condition of the window varies depending on the operation of the light shielding device 14, but the brightness sensation index correction unit 12 sequentially acquires the operation state of the light shielding device 14 and is appropriate for the operation state of the light shielding device 14. The “corrected brightness sensation index F” is calculated.

実施形態1の屋内照明設計方法のフローチャートを示す図である。It is a figure which shows the flowchart of the indoor lighting design method of Embodiment 1. FIG. 同上のテストパッチ輝度提示装置の構成を示す図である。It is a figure which shows the structure of a test patch brightness | luminance presentation apparatus same as the above. 同上の実験設備を示す図である。It is a figure which shows experimental equipment same as the above. (a)(b)同上の幾何平均輝度を算出する領域を示す平面図である。(A) (b) It is a top view which shows the area | region which calculates geometric average brightness | luminance same as the above. 同上の幾何平均輝度を算出する領域を視線方向から見た図である。It is the figure which looked at the area | region which calculates geometric average brightness | luminance same as the above from the gaze direction. (a)(b)(c)同上の照明器具毎の実験結果を示す図である。(A) (b) (c) It is a figure which shows the experimental result for every lighting fixture same as the above. 同上の領域Gの幾何平均輝度と色モード境界輝度との相関を示す図である。It is a figure which shows the correlation with the geometric average brightness | luminance of the area | region G same as the above, and color mode boundary brightness | luminance. 同上の居住居室を示す図である。It is a figure which shows a residence room same as the above. 屋内での明るさ感覚指標と明るさ評価との関係を示す図である。It is a figure which shows the relationship between an indoor brightness sensation parameter | index and brightness evaluation. 実施形態2の照明制御システムの構成を示す図である。It is a figure which shows the structure of the illumination control system of Embodiment 2. FIG. 同上の一部の詳細構成を示す図である。It is a figure which shows the one part detailed structure same as the above.

符号の説明Explanation of symbols

A 色モード境界輝度
F’ 明るさ感覚指標
F 補正明るさ感覚指標
A Color mode boundary luminance F 'Brightness sense index F Corrected brightness sense index

Claims (3)

屋内の照明空間において照明器具の光源とは別の光源を用いて表面の輝度が変化する色票を部屋内に備えて、観測者から見た色票が部屋内に置かれた物体として認識される輝度のレベルと自ら発光している光源として認識される輝度のレベルとの中間である不自然な色の見え方になるときの色票の輝度である色モード境界輝度との相関関係に基づいて、照明空間の明るさ感を表す明るさ感覚指標を規定し、
照明空間の他の領域に比べて高い輝度となる高輝度部、または照明空間の他の領域に比べて低い輝度となる低輝度部が屋内と屋外との間の窓面に存在する照明空間で当該高輝度部または低輝度部に観測者の目が順応することによって生じる、同一の明るさ感覚指標に対して観測者が評価する照明空間の明るさの変化分を、窓面の輝度に応じた明るさ感覚指標と観測者による照明空間の明るさ評価との関係を窓の位置と窓外の景色の組み合わせ毎に示す予測式に基づいて補正した補正明るさ感覚指標を規定し、
補正明るさ感覚指標を用いて屋内照明を設計する
ことを特徴とする屋内照明設計方法。
In the indoor lighting space, a color chart that changes the brightness of the surface is provided in the room using a light source that is different from the light source of the luminaire, and the color chart viewed by the observer is recognized as an object placed in the room. Based on the correlation between the color mode boundary luminance, which is the luminance of the color chart when it looks like an unnatural color that is intermediate between the luminance level that is recognized as the light source that emits light Prescribing a brightness sensation index that represents the brightness of the lighting space,
In an illumination space where there is a high-brightness part that has higher brightness than other areas in the illumination space or a low-brightness part that has lower brightness than other areas in the illumination space on the window surface between indoor and outdoor Depending on the brightness of the window surface, the change in the brightness of the lighting space evaluated by the observer with respect to the same brightness sensation index caused by the observer's eyes adapting to the high-luminance part or low-luminance part A corrected brightness sensation index that is corrected based on a prediction formula that shows the relationship between the brightness sensation index and the brightness evaluation of the lighting space by the observer for each combination of window position and scenery outside the window,
An indoor lighting design method characterized by designing indoor lighting using a corrected brightness sense index.
屋内の照明空間を照明する照明器具と、
屋内の照明空間において照明器具の光源とは別の光源を用いて表面の輝度が変化する色票を部屋内に備えて、観測者から見た色票が部屋内に置かれた物体として認識される輝度のレベルと自ら発光している光源として認識される輝度のレベルとの中間である不自然な色の見え方になるときの色票の輝度である色モード境界輝度との相関関係に基づいて、照明空間の明るさ感を表す明るさ感覚指標を計測する明るさ感覚指標計測手段と、
照明空間の他の領域に比べて高い輝度となる高輝度部、または照明空間の他の領域に比べて低い輝度となる低輝度部が屋内と屋外との間の窓面に存在する照明空間で当該高輝度部または低輝度部に観測者の目が順応することによって生じる、同一の明るさ感覚指標に対して観測者が評価する照明空間の明るさの変化分を、窓面の輝度に応じた明るさ感覚指標と観測者による照明空間の明るさ評価との関係を窓の位置と窓外の景色の組み合わせ毎に示す予測式に基づいて補正した補正明るさ感覚指標を導出する明るさ感覚指標補正手段と、
補正明るさ感覚指標が目標値となるように照明器具を調光制御する制御手段と
を備えることを特徴とする照明制御システム。
A lighting fixture that illuminates an indoor lighting space;
In the indoor lighting space, a color chart that changes the brightness of the surface is provided in the room using a light source that is different from the light source of the luminaire, and the color chart viewed by the observer is recognized as an object placed in the room. Based on the correlation between the color mode boundary luminance, which is the luminance of the color chart when it looks like an unnatural color that is intermediate between the luminance level that is recognized as the light source that emits light A brightness sensation index measuring means for measuring a brightness sensation index representing the brightness of the lighting space,
In an illumination space where a high-intensity part with higher brightness than other areas in the illumination space or a low-intensity part with lower brightness than other areas in the illumination space exists on the window surface between indoor and outdoor Depending on the brightness of the window surface, the change in the brightness of the lighting space evaluated by the observer with respect to the same brightness sensation index caused by the observer's eyes adapting to the high-luminance part or low-luminance part Brightness sensation that derives a corrected brightness sensation index based on a prediction formula that shows the relationship between the measured brightness sensation index and the brightness evaluation of the lighting space by the observer for each combination of window position and scenery outside the window Index correction means;
And a control means for dimming the lighting fixture so that the corrected brightness sensation index becomes a target value.
前記照明空間における前記窓面の面積、位置を可変とする遮光装置を具備し、
前記制御手段は、補正明るさ感覚指標が所定値となるように、照明器具の調光と、窓面の遮光装置の動作とを連動制御することを特徴とする請求項2記載の照明制御システム。
Comprising a light-shielding device capable of varying the area and position of the window surface in the illumination space;
3. The illumination control system according to claim 2, wherein the control unit controls the dimming of the lighting fixture and the operation of the light shielding device on the window surface in an interlocking manner so that the corrected brightness sense index becomes a predetermined value. .
JP2008166592A 2008-06-25 2008-06-25 Indoor lighting design method and lighting control system Expired - Fee Related JP5133149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008166592A JP5133149B2 (en) 2008-06-25 2008-06-25 Indoor lighting design method and lighting control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008166592A JP5133149B2 (en) 2008-06-25 2008-06-25 Indoor lighting design method and lighting control system

Publications (2)

Publication Number Publication Date
JP2010009891A JP2010009891A (en) 2010-01-14
JP5133149B2 true JP5133149B2 (en) 2013-01-30

Family

ID=41590136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008166592A Expired - Fee Related JP5133149B2 (en) 2008-06-25 2008-06-25 Indoor lighting design method and lighting control system

Country Status (1)

Country Link
JP (1) JP5133149B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120386A1 (en) 2011-03-04 2012-09-13 Koninklijke Philips Electronics N.V. Apparatus and method for luminance control
JP6154100B2 (en) * 2012-02-17 2017-06-28 株式会社大林組 Light environment control method and light environment control system
JP6310842B2 (en) * 2014-12-24 2018-04-11 鹿島建設株式会社 Angle setting method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146992A (en) * 1984-12-18 1986-07-04 シャープ株式会社 Light control apparatus
JP4473760B2 (en) * 2005-03-25 2010-06-02 パナソニック電工株式会社 Indoor lighting design method
JP4626511B2 (en) * 2005-12-22 2011-02-09 パナソニック電工株式会社 Method for defining brightness sensation index in lighting space, and indoor lighting design method using the same
JP4821598B2 (en) * 2006-12-25 2011-11-24 パナソニック電工株式会社 Indoor lighting design method and lighting control system

Also Published As

Publication number Publication date
JP2010009891A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP4626511B2 (en) Method for defining brightness sensation index in lighting space, and indoor lighting design method using the same
Konstantzos et al. Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades
JP2010009874A (en) Lighting control system
Bullough et al. Predicting discomfort glare from outdoor lighting installations
Kim et al. Real-time daylight glare control using a low-cost, window-mounted HDRI sensor
Bodart et al. Assessing daylight luminance values and daylight glare probability in scale models
Fathy et al. Conceptual framework for daylighting and facade design in museums and exhibition spaces
US20130231905A1 (en) Lighting environment evaluation method and lighting environment evaluation apparatus
JP2008202283A (en) False window
JP5133149B2 (en) Indoor lighting design method and lighting control system
Kruisselbrink et al. Feasibility of ceiling-based luminance distribution measurements
JP4473760B2 (en) Indoor lighting design method
JP4654842B2 (en) Illumination space atmosphere design method and illumination space atmosphere control system
JP4821598B2 (en) Indoor lighting design method and lighting control system
JP4900047B2 (en) Lighting environment measuring device
JP4872806B2 (en) Method for defining the brightness sensation index of the lighting space
JP6154100B2 (en) Light environment control method and light environment control system
JP2944915B2 (en) Indoor lighting fixtures
Cai et al. Case studies of a camera-aided imaging method for evaluation of interior luminous environments
Gavioli Lighting retrofitting: Improving energy efficiency and lighting quality
JP5877326B2 (en) Lighting system
JP2005071706A (en) Lighting control method and system
Sawicki et al. Glare assessment for research and development of measurement methods
Mahoney Using Luminance for Design and Evaluation of Energy Efficient and Sustainable Luminous Environments to Supplement Current Illuminance-Based Design Codes
JP2018006020A (en) Outdoor lighting method and outdoor lighting fixture

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees