JP5132890B2 - Liquid crystalline resin molded product and method for producing the same - Google Patents

Liquid crystalline resin molded product and method for producing the same Download PDF

Info

Publication number
JP5132890B2
JP5132890B2 JP2006065645A JP2006065645A JP5132890B2 JP 5132890 B2 JP5132890 B2 JP 5132890B2 JP 2006065645 A JP2006065645 A JP 2006065645A JP 2006065645 A JP2006065645 A JP 2006065645A JP 5132890 B2 JP5132890 B2 JP 5132890B2
Authority
JP
Japan
Prior art keywords
liquid crystalline
crystalline resin
molded product
glycidyl
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065645A
Other languages
Japanese (ja)
Other versions
JP2007238851A (en
Inventor
淑子 熊井
一史 渡辺
俊雄 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2006065645A priority Critical patent/JP5132890B2/en
Publication of JP2007238851A publication Critical patent/JP2007238851A/en
Application granted granted Critical
Publication of JP5132890B2 publication Critical patent/JP5132890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電気・電子機器部品、携帯電話の筺体、自動車外板等として有用な優れた面衝撃強度を有する液晶性樹脂成形品及びその製造方法に関する。   The present invention relates to a liquid crystalline resin molded article having excellent surface impact strength useful as an electric / electronic device part, a mobile phone casing, an automobile outer plate, and the like, and a method for producing the same.

液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有するため高機能エンジニアリングプラスチックとして広く利用されている。しかし、液晶性樹脂は、成形時の分子配向により、シャルピー試験においては高い衝撃強度を示すが、落錘衝撃等の面衝撃強度は低いことが知られている。   Liquid crystalline resins typified by liquid crystalline polyester resins are widely used as highly functional engineering plastics because they have excellent mechanical strength, heat resistance, chemical resistance, electrical properties and the like in a well-balanced manner. However, liquid crystalline resins are known to exhibit high impact strength in the Charpy test due to molecular orientation during molding, but low surface impact strength such as falling weight impact.

これまでに、液晶性樹脂の面衝撃強度を改良するためにはオレフィン系共重合体を配合する技術が各種提案されている。   So far, various techniques for blending an olefin copolymer have been proposed in order to improve the surface impact strength of a liquid crystalline resin.

例えば、特許文献1には、液晶性ポリエステル樹脂の面衝撃強度を改良するため、エチレンと炭素数3以上のα−オレフィンからなるオレフィン系共重合体に対し0.01〜10重量%の不飽和カルボン酸またはその誘導体をグラフトして得た変性エチレン系共重合体、またはエチレン、炭素数3以上のα−オレフィン及び非共役ジエンからなる共重合体に対し0.01〜10重量%の不飽和カルボン酸またはその誘導体をグラフトして得た変性エチレン系共重合体を配合した液晶性ポリエステル樹脂組成物が開示されている。   For example, in Patent Document 1, in order to improve the surface impact strength of a liquid crystalline polyester resin, 0.01 to 10% by weight of an unsaturated carboxylic acid based on an olefin copolymer composed of ethylene and an α-olefin having 3 or more carbon atoms. Alternatively, a modified ethylene copolymer obtained by grafting a derivative thereof, or 0.01 to 10% by weight of an unsaturated carboxylic acid or a copolymer thereof composed of ethylene, an α-olefin having 3 or more carbon atoms and a non-conjugated diene A liquid crystalline polyester resin composition containing a modified ethylene copolymer obtained by grafting a derivative is disclosed.

同様に、特許文献2には、α−オレフィン類とα,β−不飽和酸のグリシジルエステルとからなるオレフィン系共重合体を配合した液晶性ポリエステル樹脂組成物が開示されている。   Similarly, Patent Document 2 discloses a liquid crystalline polyester resin composition in which an olefin copolymer composed of an α-olefin and a glycidyl ester of an α, β-unsaturated acid is blended.

しかし、何れの組成物も液晶性ポリエステル樹脂の面衝撃強度を十分に改善するものではなく、また反応性オレフィン系共重合体の過度の添加により本来液晶性ポリエステル樹脂の持つ流動性、弾性率が損なわれ、薄肉射出成形品へは使用が困難である。
特開平8−12862号公報 特開平7−316402号公報
However, none of the compositions sufficiently improves the surface impact strength of the liquid crystalline polyester resin, and the liquidity polyester resin inherently has fluidity and elastic modulus due to excessive addition of the reactive olefin copolymer. It is damaged and difficult to use for thin-walled injection molded products.
JP-A-8-12862 JP 7-316402 A

本発明は、上記従来技術の課題を解決するものであり、液晶性樹脂が有する機械的物性、特に流動性、弾性率を保持し、面衝撃強度が改善された液晶性樹脂成形品の提供を目的とする。   The present invention solves the above-mentioned problems of the prior art, and provides a liquid crystalline resin molded article having improved surface impact strength while maintaining the mechanical properties, particularly fluidity and elastic modulus, of the liquid crystalline resin. Objective.

本発明者らは上記目的を達成すべく鋭意検討を重ねた結果、(A) 液晶性樹脂に対して(B) 特定の化合物を適量配合した樹脂組成物を射出成形し、成形品のコア層厚みを小さくすることにより、面衝撃強度の改善された液晶性樹脂成形品が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned object, the present inventors injection molded a resin composition containing (B) a specific compound in an appropriate amount to (A) liquid crystalline resin, and formed a core layer of the molded product. The inventors found that a liquid crystalline resin molded article having improved surface impact strength can be obtained by reducing the thickness, and the present invention has been completed.

即ち本発明は、(A) 液晶性樹脂に対して(B) 液晶性樹脂と反応性を有する官能基を持つ重量平均分子量が12000以上あるいはJIS K7210に従って測定したメルトフローレートが10g/10分以下の高分子化合物を2〜15重量%配合した樹脂組成物を射出成形してなり、成形品全厚みに対する成形品のコア層厚みを28%以下とした液晶性樹脂成形品である。   That is, the present invention has a weight average molecular weight of 12000 or more or a melt flow rate measured according to JIS K7210 of 10 g / 10 min or less with respect to (A) liquid crystal resin and (B) a functional group having reactivity with liquid crystal resin. This is a liquid crystalline resin molded product obtained by injection molding a resin composition containing 2 to 15% by weight of the above polymer compound, wherein the core layer thickness of the molded product with respect to the total thickness of the molded product is 28% or less.

本発明の液晶性樹脂成形品は、従来の液晶性樹脂成形品に比べて飛躍的に面衝撃強度が向上し、且つ剛性、流動性に優れるため、携帯電話、デジタルカメラ等の外装部品等、各種分野で使用可能である。   The liquid crystalline resin molded product of the present invention has significantly improved surface impact strength compared to conventional liquid crystalline resin molded products, and is excellent in rigidity and fluidity. It can be used in various fields.

以下、本発明組成物の構成成分について詳しく説明する。本発明に使用する液晶性樹脂(A) は溶融時に光学的異方性を示すネマチック液晶性樹脂であり、本発明において耐熱性と易加工性を併せ持つ上で不可欠な要素である。溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。具体的にはLeitz 偏光顕微鏡を使用しLeitz ホットステージにのせた試料を溶融し、窒素雰囲気下で約40倍の倍率で観察することにより確認できる。上記光学的に異方性のポリマーは直交偏光子間に挿入したとき溶融静止液状態であっても偏光は透過する。   Hereinafter, the components of the composition of the present invention will be described in detail. The liquid crystalline resin (A) used in the present invention is a nematic liquid crystalline resin that exhibits optical anisotropy when melted, and is an indispensable element in the present invention for having both heat resistance and easy processability. The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. Specifically, it can be confirmed by melting a sample placed on a Leitz hot stage using a Leitz polarizing microscope and observing it at a magnification of about 40 times in a nitrogen atmosphere. When the optically anisotropic polymer is inserted between crossed polarizers, polarized light is transmitted even in a molten stationary liquid state.

本発明に用いられる液晶性樹脂(A) は、好ましくは下記一般式(1) よりなる芳香族ヒドロキシカルボン酸基を少なくとも30モル%以上含有する芳香族ポリエステルであり、他の一般式(2) で示すジカルボン酸基と一般式(3) で示すジオールからなる繰り返し単位を夫々35モル%以下で含有した芳香族ポリエテスルも含まれる。   The liquid crystalline resin (A) used in the present invention is preferably an aromatic polyester containing at least 30 mol% or more of an aromatic hydroxycarboxylic acid group having the following general formula (1), and other general formula (2) Also included are aromatic polyethers containing 35 mol% or less of repeating units each consisting of a dicarboxylic acid group represented by formula (3) and a diol represented by formula (3).

本発明に好ましく使用される液晶性ポリエステルの主たる繰り返し単位を構成する(1) 式の-Ar1- はフェニレン基及び/又はナフタレン基より成り、これらの芳香族ヒドロキシカルボン酸又はそのエステル形成性化合物の重縮合によって得られる。かかる芳香族ヒドロキシカルボン酸化合物の例を示せば、4−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸、7−ヒドロキシ−2−ナフトエ酸、4−(4−ヒドロキシフェニル)安息香酸の如き芳香族ヒドロキシカルボン酸又はそのエステル形成性化合物が挙げられ、1種又は2種以上の混合物であってもよい。特に(1) 式構成単位としては4−ヒドロキシ安息香酸基を主とし、一部ヒドロキシナフトエ酸基を含むものが好ましい。特に使用するポリエステルの構成単位として後述の(2) 式構成単位が不存在、又は極めて少ない場合には(1) 式構成単位が上記2種よりなることが特に成形性の点で好ましい。 -Ar 1-in the formula (1) constituting the main repeating unit of the liquid crystalline polyester preferably used in the present invention comprises a phenylene group and / or a naphthalene group, and these aromatic hydroxycarboxylic acids or ester-forming compounds thereof Obtained by polycondensation of Examples of such aromatic hydroxycarboxylic acid compounds include fragrances such as 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 7-hydroxy-2-naphthoic acid, and 4- (4-hydroxyphenyl) benzoic acid. Group hydroxycarboxylic acid or its ester-forming compound may be mentioned, and one or a mixture of two or more thereof may be used. In particular, as the structural unit of formula (1), those having mainly a 4-hydroxybenzoic acid group and partially containing a hydroxynaphthoic acid group are preferable. In particular, when the constituent unit of the polyester to be used is absent or extremely small, the constituent unit (1) is preferably composed of the above two types in view of moldability.

次に本発明に好ましく使用されるポリエステル(A) を構成する(2) 式の-Ar2- はフェニレン基、ナフタレン基、ジフェニレン基であり、又液晶性を保持する範囲で脂肪族基であってもよい。又、(3) 式の-R- はフェニレン基、ナフタレン基、ビフェニレン基等であり、炭素数2〜8の脂肪族基であってもよい。(2) 式及び(3) 式構成単位は、原料としてジカルボン酸 (HOOC-Ar2-COOH)又はそのエステル形成性化合物及びジオール(HO-R-OH) より形成され、かかる酸成分とジオール成分を前記芳香族ヒドロキシカルボン酸又はそのエステル形成性化合物と共に重縮合反応することにより導入される。(2) 式単位を構成するためのジカルボン酸成分としてはテレフタル酸、2,6 −ナフタレンジカルボン酸、イソフタル酸、2,7 −ナフタレンジカルボン酸、4,4'−ジフェニルカルボン酸等、公知の芳香族ジカルボン酸又はそのエステル形成性化合物が挙げられる。又、(3) 式単位を構成するためのジオールとしては、ハイドロキノン、核置換ハイドロキノン、4,4'−ビフェノール、2,6 −ジヒドロキシナフタレン、ビスフェノールA等の公知の芳香族ジオール、或いは脂肪族ジオール、例えばエチレングリコール、シクロヘキサンジメタノールから成る1種又は2種以上を用いることが出来る。 Next, -Ar 2-in the formula (2) constituting the polyester (A) preferably used in the present invention is a phenylene group, a naphthalene group, or a diphenylene group, and is an aliphatic group as long as it retains liquid crystallinity. May be. In the formula (3), -R- is a phenylene group, a naphthalene group, a biphenylene group or the like, and may be an aliphatic group having 2 to 8 carbon atoms. (2) Formula and (3) The structural unit is formed from a dicarboxylic acid (HOOC-Ar 2 -COOH) or an ester-forming compound thereof and a diol (HO-R-OH) as raw materials. Is introduced by a polycondensation reaction with the aromatic hydroxycarboxylic acid or its ester-forming compound. (2) Dicarboxylic acid components for constituting the formula unit include known fragrances such as terephthalic acid, 2,6-naphthalenedicarboxylic acid, isophthalic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-diphenylcarboxylic acid, etc. Group dicarboxylic acid or an ester-forming compound thereof. The diol for constituting the formula unit (3) is a known aromatic diol such as hydroquinone, nucleus-substituted hydroquinone, 4,4′-biphenol, 2,6-dihydroxynaphthalene, bisphenol A, or aliphatic diol. For example, one or more of ethylene glycol and cyclohexanedimethanol can be used.

本発明に好ましく使用される液晶性ポリエステル(A) は(1) 式構成単位が少なくとも30モル%以上、(2) 式及び(3) 式単位が夫々35モル%以下であり、好ましくは(1) 式40%以上、(2) 式及び(3) 式単位が夫々30%以下、更に好ましくは(1)式50%以上、(2) 式及び(3) 式単位が夫々25%以下である。尚、本発明に使用される液晶性樹脂(A) は更に上記(1) 式及び(2) 、(3) 式以外に、溶融時に液晶性を示す範囲内でエーテル結合やアミド結合を持つコモノマー成分を導入してもよく、又、液晶性を保持する範囲内で、ペンタエリスリトール、トリメリット酸、トリメシン酸、4−ヒドロキシイソフタル酸の様な多官能性エステル形成モノマーや、スルホイソフタル酸ナトリウム、パラヒドロキシエチルフェニルスルホン酸ナトリウムのようなイオン性基を持つエステル形成性モノマーを導入したものでもよい。特に好ましい液晶性ポリエステル樹脂(A) としては、4−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸から成る共重合芳香族ポリエステル、及び更にこれ以外にテレフタル酸、イソフタル酸よりなる酸成分と、ハイドロキノン、4,4'−ビフェノール、エチレングリコールよりなるジオール成分との組合せモノマーを共重合して得られる芳香族コポリエステルである。   In the liquid crystalline polyester (A) preferably used in the present invention, the structural unit (1) is at least 30 mol% or more, and the units (2) and (3) are each 35 mol% or less, preferably (1 ) Formula 40% or more, formula (2) and formula (3) are each 30% or less, more preferably formula (1) formula 50% or more, formula (2) and formula (3) are each 25% or less . The liquid crystalline resin (A) used in the present invention is a comonomer having an ether bond or an amide bond within the range showing liquid crystallinity when melted in addition to the above formulas (1) and (2) and (3). Ingredients may be introduced, and polyfunctional ester forming monomers such as pentaerythritol, trimellitic acid, trimesic acid, 4-hydroxyisophthalic acid, sodium sulfoisophthalate, An ester-forming monomer having an ionic group such as sodium parahydroxyethyl phenylsulfonate may be introduced. Particularly preferable liquid crystalline polyester resin (A) includes 4-hydroxybenzoic acid, a copolymerized aromatic polyester composed of 6-hydroxy-2-naphthoic acid, and an acid component composed of terephthalic acid and isophthalic acid in addition to these, An aromatic copolyester obtained by copolymerizing a combination monomer with a diol component comprising hydroquinone, 4,4′-biphenol, and ethylene glycol.

本発明に用いられる液晶性熱可塑性樹脂(A) の調製は、上記のモノマー化合物から直接重合法やエステル交換法を用いて公知の方法で行うことが出来るが、通常は溶融重合法やスラリー重合法等が用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いても良く、又、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものはジアルキル錫酸化物、ジアリール錫酸化物、2酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BF3 の如きルイス酸塩等があげられる。触媒の使用量は一般にはモノマーの全重量に基いて約 0.001乃至1重量%、特に約0.01乃至 0.2重量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。本発明で使用する液晶性樹脂(A) の溶融粘度は特に限定する必要はなく、射出成形可能なものであれば何れにても良い。一般には成形温度での溶融粘度が剪断速度1000sec-1で10Pa・s以上600Pa・s以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。尚、上記液晶性樹脂(A) は2種以上の液晶性樹脂の混合物であっても良い。 The liquid crystalline thermoplastic resin (A) used in the present invention can be prepared by a known method using a direct polymerization method or a transesterification method from the above-mentioned monomer compound. Legal etc. are used. The above compounds having ester-forming ability may be used for polymerization as they are, or may be modified from a precursor to a derivative having ester-forming ability in the previous stage of polymerization. In the polymerization, various catalysts can be used, and typical ones are dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkalis and alkalis of carboxylic acids. Examples include earth metal salts and Lewis acid salts such as BF 3 . The amount of catalyst used is generally about 0.001 to 1% by weight, particularly about 0.01 to 0.2% by weight, based on the total weight of the monomers. If the polymer produced by these polymerization methods is further necessary, the molecular weight can be increased by solid-phase polymerization by heating in a reduced pressure or an inert gas. The melt viscosity of the liquid crystalline resin (A) used in the present invention is not particularly limited and may be any as long as it can be injection molded. In general, those having a melt viscosity at a molding temperature of 10 Pa · s to 600 Pa · s at a shear rate of 1000 sec −1 can be used. However, those having a very high viscosity are not preferable because the fluidity is extremely deteriorated. The liquid crystalline resin (A) may be a mixture of two or more liquid crystalline resins.

本発明は、上記のような液晶性樹脂の欠点である面衝撃強度の改善を図るものである。以下に、本発明における液晶性樹脂の面衝撃強度向上の作用機構について説明する。   The present invention aims to improve the surface impact strength, which is a drawback of the liquid crystalline resin as described above. The action mechanism for improving the surface impact strength of the liquid crystalline resin in the present invention will be described below.

一般に、高分子材料が面衝撃力を受けたときの変形パターンは、クレーズ変形(脆性タイプ)と剪断降伏変形(延性タイプ)の2通りに大別できるとされている。どちらの変形を起こすかは高分子材料の基本構造によりほぼ決まり、クレーズ変形は分子の絡み合い密度、剪断降伏変形は分子鎖の柔軟性を見ることで大別できるとされている。高分子材料の高靱性化を図るには、通常、エラストマーが添加されるが、このエラストマーの役割はそれぞれの変形パターンによって異なり、クレーズ変形型ではエラストマーは応力集中の場を提供するものであり、そのためエラストマー粒子径の最適化が重要なポイントであり、最適粒子径は高分子材料の絡み合い密度によって異なるとされている。一方、剪断降伏変形型では、衝撃力はエラストマー粒子の内部破壊、もしくはエラストマーと高分子材料の界面剥離によるボイドによって緩和されていくと考えられるため、エラストマー粒子の壁間距離の最適化が重要になるとされている。   Generally, deformation patterns when a polymer material is subjected to a surface impact force can be roughly classified into two types: craze deformation (brittle type) and shear yield deformation (ductility type). Which deformation occurs is almost determined by the basic structure of the polymer material. Craze deformation is roughly classified by molecular entanglement density and shear yield deformation by looking at the flexibility of molecular chains. In order to increase the toughness of the polymer material, an elastomer is usually added, but the role of this elastomer varies depending on each deformation pattern. In the craze deformation type, the elastomer provides a place for stress concentration, Therefore, optimization of the elastomer particle size is an important point, and the optimum particle size is said to vary depending on the entanglement density of the polymer material. On the other hand, in the shear yield deformation type, the impact force is considered to be mitigated by voids due to internal fracture of the elastomer particles or interfacial delamination between the elastomer and the polymer material, so optimization of the distance between the walls of the elastomer particles is important. It is supposed to be.

しかし、液晶性樹脂の高靱性化においては、面衝撃強度とエラストマー粒子径、エラストマー粒子の壁間距離との間には相関はなく、液晶性樹脂の高靱性化メカニズムは、一般的な高分子の高靱性化理論とは異なる。   However, there is no correlation between the surface impact strength, the elastomer particle diameter, and the distance between the walls of the elastomer particles in increasing the toughness of the liquid crystalline resin, and the toughening mechanism of the liquid crystalline resin is a general polymer. This is different from the toughening theory.

液晶性樹脂射出成形品の内部は、図1の偏光顕微鏡写真(後記する比較例1)に示すように、表面のスキン層、中心のコア層、スキン層とコア層との間の中間層という3種5層構造になっていることが知られている。一般的な液晶性樹脂射出成形品では、図1の偏光顕微鏡写真の如く、スキン層と中間層は高い分子配向度と大きな光学的異方性を持ち、強い干渉色を示すが、コア層は比較的変色が弱く、低い分子配向度を持つことがわかる。この層間の分子配向度の差により、液晶性樹脂は衝撃力を受けると層間に応力が集中し脆性破壊すると考えられる。   The inside of the liquid crystalline resin injection-molded product is a surface skin layer, a central core layer, and an intermediate layer between the skin layer and the core layer, as shown in a polarizing micrograph of FIG. 1 (Comparative Example 1 described later). It is known that it has a three-kind five-layer structure. In a general liquid crystal resin injection-molded product, the skin layer and the intermediate layer have a high degree of molecular orientation and a large optical anisotropy as shown in the polarizing micrograph of FIG. It can be seen that the discoloration is relatively weak and has a low degree of molecular orientation. Due to the difference in the degree of molecular orientation between the layers, it is considered that when the liquid crystalline resin receives an impact force, stress is concentrated between the layers and brittle fracture occurs.

図2はエチレン−グリシジルメタクリレート共重合体を5重量%配合した液晶性樹脂射出成形品(後記する実施例3)の偏光顕微鏡写真である。図2からわかるように、エチレン−グリシジルメタクリレート共重合体を添加すると、中間層とコア層の厚みが変化する。実験の結果、中間層の厚みが72%を超えると、つまりコア層の厚みが28%以下になると急激に衝撃強度が向上することが判明した。分子配向度の低くなった中間層が衝撃力を緩和していると考えられる。即ち、一般的な液晶性樹脂成形品のコア層の厚みは30%以上であるが、中間層の厚みを増加させ、コア層厚みを28%以下、好ましくは23%以下とすることにより、液晶性樹脂成形品は高靱性化するのである。   FIG. 2 is a polarizing microscope photograph of a liquid crystalline resin injection molded product (Example 3 described later) containing 5% by weight of an ethylene-glycidyl methacrylate copolymer. As can be seen from FIG. 2, when the ethylene-glycidyl methacrylate copolymer is added, the thickness of the intermediate layer and the core layer changes. As a result of the experiment, it was found that when the thickness of the intermediate layer exceeds 72%, that is, when the thickness of the core layer becomes 28% or less, the impact strength is rapidly improved. It is thought that the intermediate layer having a low degree of molecular orientation relaxes the impact force. That is, the thickness of the core layer of a general liquid crystalline resin molded product is 30% or more, but by increasing the thickness of the intermediate layer, the core layer thickness is 28% or less, preferably 23% or less. The resin-molded product has high toughness.

つまり、液晶性樹脂の高靱性化では、一般的な高分子材料の高靱性化と異なり、必ずしもエラストマー成分(ゴム成分)を必要とせず、液晶性樹脂の末端基と反応性を有する官能基を持つ重量平均分子量が12000以上あるいはJIS K7210に従って測定したメルトフローレートが10g/10分以下程度の長い分子鎖を持つ高分子化合物を配合し、架橋分子を導入することにより、液晶性樹脂の分子配向度の低下、および液晶性樹脂の絡み合い密度を増加させることにより達成され、液晶性樹脂の絡み合い密度が増加し、液晶性樹脂マトリックス自体がクレーズ変形型(脆性タイプ)から剪断降伏変形型(延性タイプ)に変化した結果と考えられる。その剪断降伏変形型に変化した成形品は、液晶性樹脂成形品の中間層とコア層の厚みが変化する(中間層の厚みが増加し、コア層厚みが成形品全厚みに対し28%以下となる)という形で示されるのである。   In other words, the toughening of liquid crystalline resins does not necessarily require an elastomer component (rubber component), unlike functional polymers with high toughness, and functional groups that are reactive with the terminal groups of liquid crystalline resins. The molecular orientation of the liquid crystalline resin is obtained by blending a polymer compound having a long molecular chain with a weight average molecular weight of 12000 or more or a melt flow rate measured in accordance with JIS K7210 of about 10 g / 10 min or less and introducing cross-linked molecules. Is achieved by increasing the entanglement density of the liquid crystalline resin and increasing the entanglement density of the liquid crystalline resin, and the liquid crystalline resin matrix itself is changed from a craze deformation type (brittle type) to a shear yield deformation type (ductile type). ). The thickness of the intermediate layer and the core layer of the liquid crystalline resin molded product changes in the molded product changed to the shear yield deformation type (the thickness of the intermediate layer increases, and the core layer thickness is 28% or less of the total thickness of the molded product) It is shown in the form of

次に、液晶性樹脂成形品のコア層厚みを28%以下とするための(B) 重量平均分子量が12000以上あるいはJIS K7210に従って測定したメルトフローレートが10g/10分以下の高分子化合物は、エポキシ基、オキサゾリル基、イミド基、アミノ基、酸無水物基等の液晶性樹脂と反応性を有する官能基を持つものである。   Next, (B) a polymer compound having a weight average molecular weight of 12000 or more or a melt flow rate measured according to JIS K7210 of 10 g / 10 min or less for setting the core layer thickness of the liquid crystalline resin molded product to 28% or less, It has a functional group having reactivity with a liquid crystalline resin such as an epoxy group, an oxazolyl group, an imide group, an amino group, and an acid anhydride group.

これらの官能基は他の官能基の一部として存在していてもよく、例えばエポキシ基を有する官能基としては、グリシジル基が好ましく例示される。グリシジル基を有する単量体としては、不飽和カルボン酸グリシジルエステル、不飽和カルボン酸グリシジルエーテル等が好ましく用いられる。   These functional groups may be present as a part of other functional groups. For example, a glycidyl group is preferably exemplified as the functional group having an epoxy group. As the monomer having a glycidyl group, unsaturated carboxylic acid glycidyl ester, unsaturated carboxylic acid glycidyl ether and the like are preferably used.

また、液晶性樹脂の分子配向度低下効果、液晶性樹脂の絡み合い密度増加効果を考慮すると、(B) 高分子化合物の基体となる高分子の重量平均分子量は12000以上、あるいはJIS K7210に従って測定したメルトフローレートが10g/10分以下が好ましい。分子量が12000より小さい、あるいはJIS K7210に従って測定したメルトフローレートが10g/10分より大きいと、液晶性樹脂の分子配向度低下効果、液晶性樹脂の絡み合い密度増加効果が小さい。したがって、溶融粘度の上昇が少なく、射出成形した成形品のコア層厚みが28%以下にならず、十分な面衝撃強度が得られず好ましくない。但し、液晶性樹脂組成物の溶融粘度が上昇しすぎると、コア層厚みが28%より多くなり好ましくない。したがって、液晶性樹脂の溶融粘度(η1)と液晶性樹脂組成物の溶融粘度(η2)との比(η 2 /η 1 )は、2.0〜5.0が好ましく、特に2.0〜4.0が好ましい。溶融粘度は、液晶性樹脂の融点+20℃にて、内径1mm、長さ20mmのオリフィスを用い、剪断速度1000sec-1の条件のもとISO 11443に準拠して測定したものである。
Further, considering the effect of decreasing the degree of molecular orientation of the liquid crystalline resin and the effect of increasing the entanglement density of the liquid crystalline resin, the weight average molecular weight of the polymer serving as the base of the polymer compound (B) was 12000 or more, or measured according to JIS K7210 The melt flow rate is preferably 10 g / 10 min or less. When the molecular weight is smaller than 12000 or the melt flow rate measured according to JIS K7210 is larger than 10 g / 10 min, the effect of decreasing the degree of molecular orientation of the liquid crystalline resin and the effect of increasing the entanglement density of the liquid crystalline resin are small. Therefore, the increase in melt viscosity is small, the core layer thickness of the injection-molded molded product is not 28% or less, and a sufficient surface impact strength cannot be obtained, which is not preferable. However, if the melt viscosity of the liquid crystalline resin composition is excessively increased, the core layer thickness is more than 28%, which is not preferable. Accordingly, the ratio ( η 2 / η 1 ) between the melt viscosity (η1) of the liquid crystal resin and the melt viscosity (η2) of the liquid crystal resin composition is preferably 2.0 to 5.0, particularly preferably 2.0 to 4.0. The melt viscosity was measured in accordance with ISO 11443 under the condition of a shear rate of 1000 sec-1 using an orifice having an inner diameter of 1 mm and a length of 20 mm at a melting point of the liquid crystalline resin + 20 ° C.

液晶性樹脂と反応性を有する官能基を持つ高分子化合物の量としては、液晶性樹脂に対して2〜15重量%が好ましく、特に好ましくは2〜9重量%である。2重量%より少ないと液晶性樹脂と高分子化合物が十分反応せずに、十分な面衝撃強度が得られず、15重量%より多いと、コア層厚みが28%より多くなってしまうばかりか、流動性の悪化、ゲル化等、良好な成形品を得ることができず好ましくない。但し、(B) 高分子化合物の添加量は、面衝撃強度向上の重要な要素であるが、それだけではなく、高分子化合物の種類によっては、上記添加量の範囲であっても面衝撃強度向上が十分でない場合があり、十分な面衝撃強度を得るためには(B) 高分子化合物の添加量とコア層厚みの両者の規定を満足する必要がある。   The amount of the polymer compound having a functional group reactive with the liquid crystalline resin is preferably 2 to 15% by weight, particularly preferably 2 to 9% by weight, based on the liquid crystalline resin. If the amount is less than 2% by weight, the liquid crystalline resin and the polymer compound do not sufficiently react to obtain sufficient surface impact strength. If the amount is more than 15% by weight, the core layer thickness becomes more than 28%. It is not preferable because good molded products such as poor fluidity and gelation cannot be obtained. However, (B) the amount of the polymer compound added is an important factor for improving the surface impact strength, but not only that, but depending on the type of polymer compound, the surface impact strength can be improved even within the above range. However, in order to obtain sufficient surface impact strength, it is necessary to satisfy the requirements of both (B) the amount of the polymer compound added and the core layer thickness.

(B) 高分子化合物の基体となる高分子は、特に限定するものではないが、オレフィン系樹脂或いはスチレン系樹脂が好ましく、上述した好ましい官能基であるグリシジル基と組み合わされた、α−オレフィンとα,β−不飽和酸のグリシジルエステルよりなるもの、スチレン類とα,β−不飽和酸のグリシジルエステルよりなるものが好ましい。   (B) Although the polymer used as the base of the polymer compound is not particularly limited, an olefin resin or a styrene resin is preferable, and an α-olefin combined with a glycidyl group, which is a preferable functional group described above, Those composed of glycidyl ester of α, β-unsaturated acid and those composed of styrenes and glycidyl ester of α, β-unsaturated acid are preferred.

α−オレフィンとしては、具体的にはエチレン、プロピレン、ブテン等が挙げられるが、中でもエチレンが好ましく用いられる。スチレン類としては、スチレン、α−メチルスチレン、ジビニルベンゼン等が挙げられるが、スチレンが好ましい。   Specific examples of the α-olefin include ethylene, propylene, and butene. Among them, ethylene is preferably used. Examples of styrenes include styrene, α-methylstyrene, divinylbenzene and the like, and styrene is preferable.

α,β−不飽和酸のグリシジルエステルは下記一般式(4) で示されるものである。   The glycidyl ester of α, β-unsaturated acid is represented by the following general formula (4).

(式中、R' は水素又は炭素数1〜5の低級アルキル基である。)
α,β−不飽和酸のグリシジルエステルユニットは、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル、イタコン酸グリシジルエステル等であるが、特にメタクリル酸グリシジルエステルが好ましい。
(In the formula, R ′ is hydrogen or a lower alkyl group having 1 to 5 carbon atoms.)
Examples of the glycidyl ester unit of α, β-unsaturated acid include glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate and the like, and glycidyl methacrylate is particularly preferable.

また、本発明の目的を損なわない範囲で上記2成分以外に第3成分としてアクリロニトリル、アクリル酸エステル、メタクリル酸エステル、α−メチルスチレン、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上を、上記2成分100重量部に対し0〜48重量部含有しても良い。   In addition to the above two components, one or two olefinic unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, α-methylstyrene, maleic anhydride or the like as the third component in the range not impairing the object of the present invention. You may contain seed | species or more 0-48 weight part with respect to 100 weight part of said 2 components.

また、本発明の液晶性樹脂には、シリカ、タルク等の各種フィラー(但し、ガラス繊維は除く)、一般に合成樹脂に添加される公知の物質、すなわち酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、離型剤、および結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加することができる。
The liquid crystalline resin of the present invention includes various fillers such as silica and talc (excluding glass fibers) , and known substances generally added to synthetic resins, that is, stabilizers such as antioxidants and ultraviolet absorbers. Antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, mold release agents, crystallization accelerators, crystal nucleating agents, and the like can be appropriately added according to the required performance.

本発明の組成物の調製は、上記(A) 、(B) 成分を添加配合して溶融混練処理し、場合によってはその他の所望成分をも配合して溶融混練し、次いで射出成形に供される。かかる各成分の溶融混練は1軸又は2軸押出機を使用して一旦ペレット化した後、射出成形に供するのが一般的である。   The composition of the present invention is prepared by adding and blending the above components (A) and (B), melt-kneading treatment, and optionally blending other desired components and melt-kneading, and then subjected to injection molding. The In general, the melt kneading of each component is once pelletized using a single-screw or twin-screw extruder and then subjected to injection molding.

本発明の液晶性樹脂成形品は、電気・電子機器部品、携帯電話の筺体、自動車外板等の射出成形品に好適に利用される。特に、薄肉成形性に優れているので、筺体等の肉厚2mm以下の射出成形品に有効である。   The liquid crystalline resin molded product of the present invention is suitably used for injection molded products such as electrical / electronic device parts, mobile phone casings, and automobile outer panels. In particular, since it is excellent in thin-wall formability, it is effective for injection molded products having a wall thickness of 2 mm or less such as a casing.

以下に実施例をもって本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。使用した各成分は以下のものである。
製造例1(全芳香族ポリエステル液晶樹脂(成分(A) )の合成)
p−ヒドロキシ安息香酸345重量部(73モル%)、6−ヒドロキシ−2−ナフトエ酸175重量部(27モル%)、酢酸カリウム0.02重量部、無水酢酸350重量部を、攪拌機及び留出管を備えた反応器に仕込み、十分に窒素置換した後、常圧下で150℃まで温度を上げ、攪拌を開始した。150℃で30分攪拌し、更に徐々に温度を上昇させ、副生する酢酸を留去した。温度が300℃に達したところで、徐々に反応器を減圧し、5Torr(即ち665Pa)の圧力で1時間攪拌を続け、目標の攪拌トルクに達した時点で、反応器下部の排出孔を開け、窒素圧を使って樹脂をストランド状に取り出した。排出されたストランドをペレタイザーにより粒子状にした。この全芳香族ポリエステル液晶樹脂の融点は280℃、300℃での溶融粘度は50.1Pa・sであった。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Each component used is as follows.
Production Example 1 (Synthesis of wholly aromatic polyester liquid crystal resin (component (A)))
p-Hydroxybenzoic acid 345 parts by weight (73 mol%), 6-hydroxy-2-naphthoic acid 175 parts by weight (27 mol%), potassium acetate 0.02 parts by weight, acetic anhydride 350 parts by weight, stirrer and distillation tube After the reactor was charged and sufficiently purged with nitrogen, the temperature was raised to 150 ° C. under normal pressure, and stirring was started. The mixture was stirred at 150 ° C. for 30 minutes, and the temperature was gradually raised, and acetic acid by-produced was distilled off. When the temperature reached 300 ° C., the reactor was gradually depressurized, and stirring was continued for 1 hour at a pressure of 5 Torr (ie, 665 Pa). When the target stirring torque was reached, a discharge hole at the bottom of the reactor was opened, The resin was taken out into strands using nitrogen pressure. The discharged strand was made into particles by a pelletizer. The wholly aromatic polyester liquid crystal resin had a melting point of 280 ° C. and a melt viscosity at 300 ° C. of 50.1 Pa · s.

(B) 成分の高分子化合物としては下記のものを使用した。
・(B-1) 日本油脂(株)製、マープルーフG1005S[スチレン−グリシジルメタクリレート共重合体(グリシジルメタクリレートを4.3重量%含有)、重量平均分子量98000]
・(B-2) 日本油脂(株)製、マープルーフG1010S[スチレン−グリシジルメタクリレート共重合体(グリシジルメタクリレートを8.4重量%含有)、重量平均分子量92000]
・(B-3) 住友化学(株)製、Bondfast 2C[エチレン−グリシジルメタクリレート共重合体(グリシジルメタクリレートを6重量%含有)、メルトフローレート=3g/10分]
・(B-4) 住友化学(株)製、Bondfast E[エチレン−グリシジルメタクリレート共重合体(グリシジルメタクリレートを12重量%含有)、メルトフローレート=3g/10分]
・(B-5) アトフィナジャパン(株)製、LOTADAR AX8900[エチレン−マレイン酸変性グリシジルメタクリレート共重合体(グリシジルメタクリレートを8重量%、マレイン酸を25重量%含有)、メルトフローレート=6g/10分]
・(B'-1) (比較品)日本油脂(株)製、マープルーフG0130S[スチレン−グリシ
ジルメタクリレート共重合体(グリシジルメタクリレートを26.8重量%含有)、重量平均分子量10900]
実施例1〜2、参考例1〜3、比較例1〜3
上記(A) 、(B) 成分を表1に示す割合で二軸押出機((株)日本製鋼所製TEX30α型)を用いてシリンダー温度300℃にて溶融混練し、樹脂組成物のペレットを得て、射出成形に供し、評価した。試験片としては、ファナック社製Roboshot α−100iA成形機を用い、シリンダー温度300℃、金型温度80℃の条件で0.7mm厚の平板を成形した。
The following compounds were used as the polymer compound (B).
-(B-1) Nippon Oil & Fats Co., Ltd., Marproof G1005S [styrene-glycidyl methacrylate copolymer (containing 4.3% by weight of glycidyl methacrylate), weight average molecular weight 98000]
-(B-2) Nippon Oil & Fats Co., Ltd., Marproof G1010S [styrene-glycidyl methacrylate copolymer (containing 8.4% by weight of glycidyl methacrylate), weight average molecular weight 92000]
-(B-3) manufactured by Sumitomo Chemical Co., Ltd., Bondfast 2C [ethylene-glycidyl methacrylate copolymer (containing 6% by weight of glycidyl methacrylate), melt flow rate = 3 g / 10 min]
-(B-4) manufactured by Sumitomo Chemical Co., Ltd., Bondfast E [ethylene-glycidyl methacrylate copolymer (containing 12% by weight of glycidyl methacrylate), melt flow rate = 3 g / 10 min]
(B-5) LOTADAR AX8900 [ethylene-maleic acid-modified glycidyl methacrylate copolymer (containing 8% by weight of glycidyl methacrylate and 25% by weight of maleic acid)], melt flow rate = 6 g / 10 minutes]
・ (B'-1) (Comparative product) manufactured by NOF Corporation, Marproof G0130S [styrene-glycidyl methacrylate copolymer (containing 26.8% by weight of glycidyl methacrylate), weight average molecular weight 10900]
Examples 1-2, Reference Examples 1-3 , Comparative Examples 1-3
The above components (A) and (B) were melt kneaded at a cylinder temperature of 300 ° C. using a twin screw extruder (TEX30α type, manufactured by Nippon Steel Co., Ltd.) in the proportions shown in Table 1, and pellets of the resin composition were obtained. Obtained, subjected to injection molding and evaluated. As a test piece, a 0.7 mm thick flat plate was molded under the conditions of a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using a FANUC Roboshot α-100iA molding machine.

尚、特性値の評価に用いた測定法は以下の通りである。
[溶融粘度]
キャピラリー式レオメーター(東洋精機製キャピログラフ1B:ピストン径10mm)により、温度T1(樹脂の融点+20℃)、剪断速度1000sec-1の条件での見掛けの溶融粘度をISO 11443に準拠して測定した。測定には、内径1mm、長さ20mmのオリフィスを用いた。
[コア層厚み]
0.7mm厚の平板について、偏光顕微鏡写真観察により成形品全厚みに対するコア層厚みの比率(%)を評価した。
[打ち抜き試験]
オリエンテック製テンシロンUTA-50kN試験機で0.7mm厚の平板試験片を用いて打ち抜き試験を行った。先端直径16mmの半球状打ち抜き治具を用い、試験速度100mm/minで試験を行った。
[落錘試験]
固定した平板試験片中央部に、図3に示す先端が半球状(球直径;9mm)の治具をのせ、この治具の上に任意の重さの重錘を任意の高さから落下させ、試験片が破壊するかを確認した。
The measurement methods used for evaluating the characteristic values are as follows.
[Melt viscosity]
The apparent melt viscosity under conditions of a temperature T1 (melting point of the resin + 20 ° C.) and a shear rate of 1000 sec −1 was measured according to ISO 11443 using a capillary rheometer (Capillograph 1B manufactured by Toyo Seiki: piston diameter 10 mm). For the measurement, an orifice having an inner diameter of 1 mm and a length of 20 mm was used.
[Core layer thickness]
For a 0.7 mm thick flat plate, the ratio (%) of the core layer thickness to the total thickness of the molded product was evaluated by observation with a polarizing microscope photograph.
[Punching test]
A punch test was conducted using a 0.7 mm-thick flat plate test piece with an Orientec Tensilon UTA-50kN testing machine. The test was conducted at a test speed of 100 mm / min using a hemispherical punching jig having a tip diameter of 16 mm.
[Falling weight test]
A jig with a hemispherical tip (sphere diameter: 9 mm) as shown in FIG. 3 is placed on the center of the fixed flat plate test piece, and a weight of any weight is dropped from this height on this jig. It was confirmed whether the test piece was broken.

以下の計算式に基づき、50%破壊エネルギーを算出した。   Based on the following calculation formula, 50% fracture energy was calculated.

錘を落とす高さは1cm間隔で変化させ、50%の試験片が破壊する高さ(50%破壊高さ)を求めた。求められた50%破壊高さより下式により50%破壊エネルギーを求めた。   The height at which the weight was dropped was changed at 1 cm intervals, and the height at which 50% of the test pieces were broken (50% breaking height) was determined. The 50% fracture energy was calculated from the calculated 50% fracture height using the following formula.

50%破壊エネルギー(E/(J))=(錘の質量(kg))×(重力加速度(9.80665m/s2))×(50%破壊高さ(m))
結果を表1に示す。
50% fracture energy (E / (J)) = (mass of weight (kg)) x (gravity acceleration (9.80665m / s 2 )) x (50% fracture height (m))
The results are shown in Table 1.

比較例1の液晶性樹脂射出成形品の偏光顕微鏡写真である。2 is a polarizing micrograph of a liquid crystalline resin injection molded product of Comparative Example 1. 参考例1の液晶性樹脂射出成形品の偏光顕微鏡写真である。 2 is a polarizing micrograph of a liquid crystalline resin injection-molded product of Reference Example 1 . 落錘試験に用いた先端が半球状の治具を示す図である。It is a figure which shows the hemispherical jig | tool used for the falling weight test.

Claims (4)

(A)液晶性樹脂に対して
(B)液晶性樹脂と反応性を有する官能基を持つ重量平均分子量が12000以上あるいはJIS K7210に従って測定したメルトフローレートが10g/10分以下の高分子化合物を2〜15重量%配合し、ガラス繊維を含まない樹脂組成物を射出成形してなり、成形品全厚みに対する成形品のコア層厚みを28%以下とした液晶性樹脂成形品であって、
前記高分子化合物が、スチレンとα、β−不飽和酸のグリシジルエステルとの共重合体で、前記官能基としてエポキシ基を有しているものであり、
前記(A)液晶性樹脂の下記方法で測定した溶融粘度(η1)と前記(A)成分と前記(B)成分からなるときの樹脂組成物の下記方法で測定した溶融粘度(η2)との比(η2/η1)が2.04.0である、液晶性樹脂成形品。
(溶融粘度の測定方法)
液晶性樹脂の融点+20℃にて、内径1mm、長さ20mmのオリフィスを用い、剪断速度1000sec-1の条件のもと、ISO 11443に準拠して測定した。
(A) To a liquid crystalline resin (B) A polymer compound having a functional group having reactivity with the liquid crystalline resin and having a weight average molecular weight of 12000 or more or a melt flow rate measured in accordance with JIS K7210 of 10 g / 10 min or less 2 to 15% by weight, a liquid crystalline resin molded product obtained by injection molding a resin composition not containing glass fiber, wherein the core layer thickness of the molded product with respect to the total thickness of the molded product is 28% or less,
The polymer compound is a copolymer of styrene and a glycidyl ester of α, β-unsaturated acid, and has an epoxy group as the functional group,
(A) Melt viscosity (η 1 ) measured by the following method of the liquid crystalline resin, and melt viscosity (η 2 ) measured by the following method of the resin composition comprising the (A) component and the (B) component. The liquid crystalline resin molded product having a ratio (η 2 / η 1 ) of 2.0 to 4.0.
(Measuring method of melt viscosity)
Measurement was performed in accordance with ISO 11443 under the condition of a shear rate of 1000 sec −1 using an orifice having an inner diameter of 1 mm and a length of 20 mm at a melting point of the liquid crystalline resin + 20 ° C.
成形品全厚みに対する成形品のコア層厚みが23%以下である請求項1記載の液晶性樹脂成形品。   The liquid crystalline resin molded article according to claim 1, wherein the thickness of the core layer of the molded article is 23% or less with respect to the total thickness of the molded article. 前記α、β−不飽和酸のグリシジルエステルが、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル又はイタコン酸グリシジルエステルである、請求項1又は2記載の液晶性樹脂成形品。   The liquid crystalline resin molded article according to claim 1 or 2, wherein the glycidyl ester of α, β-unsaturated acid is glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, or glycidyl itaconate. 請求項1〜3のいずれか1項記載の液晶性樹脂成形品の製造方法であって、
前記樹脂組成物を射出成形し、成形品全厚みに対する成形品のコア層厚みを28%以下とすることを特徴とする面衝撃強度の改善された液晶性樹脂成形品の製造方法。
A method for producing a liquid crystalline resin molded product according to any one of claims 1 to 3,
A method for producing a liquid crystalline resin molded article with improved surface impact strength, wherein the resin composition is injection molded, and the core layer thickness of the molded article is 28% or less with respect to the total thickness of the molded article.
JP2006065645A 2006-03-10 2006-03-10 Liquid crystalline resin molded product and method for producing the same Active JP5132890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065645A JP5132890B2 (en) 2006-03-10 2006-03-10 Liquid crystalline resin molded product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065645A JP5132890B2 (en) 2006-03-10 2006-03-10 Liquid crystalline resin molded product and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007238851A JP2007238851A (en) 2007-09-20
JP5132890B2 true JP5132890B2 (en) 2013-01-30

Family

ID=38584699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065645A Active JP5132890B2 (en) 2006-03-10 2006-03-10 Liquid crystalline resin molded product and method for producing the same

Country Status (1)

Country Link
JP (1) JP5132890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722759B2 (en) 2019-03-20 2023-08-08 Ticona Llc Actuator assembly for a camera module
US11725106B2 (en) 2017-12-05 2023-08-15 Ticona Llc Aromatic polymer composition for use in a camera module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084925B2 (en) 2018-02-20 2021-08-10 Ticona Llc Thermally conductive polymer composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578556A (en) * 1991-09-18 1993-03-30 Mitsubishi Kasei Corp Thermoplastic resin composition and sealed electronic component molding
JP2723064B2 (en) * 1995-01-17 1998-03-09 東レ株式会社 Aromatic polyester composition
JPH07316402A (en) * 1995-01-17 1995-12-05 Toray Ind Inc Aromatic polyester composition
JP3650459B2 (en) * 1995-04-12 2005-05-18 住友化学株式会社 Liquid crystal polyester resin composition film and method for producing the same
JP4608342B2 (en) * 2004-03-10 2011-01-12 パナソニック電工株式会社 Resin molded product having low dielectric loss tangent and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725106B2 (en) 2017-12-05 2023-08-15 Ticona Llc Aromatic polymer composition for use in a camera module
US11722759B2 (en) 2019-03-20 2023-08-08 Ticona Llc Actuator assembly for a camera module

Also Published As

Publication number Publication date
JP2007238851A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP5107048B2 (en) Liquid crystalline resin composition for injection molding
JP4704046B2 (en) Extrusion molding resin composition and extrusion molding
JP5895567B2 (en) Inorganic reinforced thermoplastic polyester resin composition
JPWO2006025538A1 (en) Thermoplastic resin composition
CN110997820B (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using same
JP6545416B1 (en) Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using the same
KR20210035309A (en) Liquid crystal resin composition for ball bearing sliding wear member and ball bearing sliding wear member using the same
WO2008010259A1 (en) Polyamide composition
JP5132890B2 (en) Liquid crystalline resin molded product and method for producing the same
US20090137724A1 (en) Thermoplastic Resin Composition
JPH07304936A (en) Liquid-crystalline polyester resin composition
JP3045065B2 (en) Liquid crystalline polyester resin composition, production method thereof and molded article thereof
JP5360713B2 (en) Thermoplastic elastomer resin composition and molded article
JPWO2019172216A1 (en) Inorganic reinforced thermoplastic polyester resin composition
JPH06306261A (en) Liquid crystal polyester resin composition for blow molding or extrusion molding and molded article thereof
JP3399120B2 (en) Liquid crystal polyester resin composition
JPH0768438B2 (en) Aromatic polyester composition
JP4498810B2 (en) Liquid crystal resin composition
JP4869860B2 (en) Liquid crystalline resin composition for blow molding
JP2007204707A (en) Liquid crystalline resin composition for film
JPWO2019059125A1 (en) Inorganic reinforced thermoplastic polyester resin composition
CN116490572B (en) Liquid crystalline resin composition for ball bearing sliding wear member and ball bearing sliding wear member using same
JPH04292651A (en) Liquid crystalline polyester resin composition and molded product thereof
JP2934904B2 (en) Polyester resin composition
JP7278529B2 (en) Polybutylene terephthalate resin composition for molded article for welding polyester elastomer and composite molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250