JP5131956B2 - Thickener and method for producing the same - Google Patents

Thickener and method for producing the same Download PDF

Info

Publication number
JP5131956B2
JP5131956B2 JP2007006624A JP2007006624A JP5131956B2 JP 5131956 B2 JP5131956 B2 JP 5131956B2 JP 2007006624 A JP2007006624 A JP 2007006624A JP 2007006624 A JP2007006624 A JP 2007006624A JP 5131956 B2 JP5131956 B2 JP 5131956B2
Authority
JP
Japan
Prior art keywords
molecular weight
methacrylic resin
polymer
methyl methacrylate
average molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007006624A
Other languages
Japanese (ja)
Other versions
JP2008174574A (en
Inventor
和則 小沢
直樹 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007006624A priority Critical patent/JP5131956B2/en
Publication of JP2008174574A publication Critical patent/JP2008174574A/en
Application granted granted Critical
Publication of JP5131956B2 publication Critical patent/JP5131956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は従来の人工大理石の機械強度、耐久性を維持したまま、製造コストを削減させたシラップの増粘剤に関するものである。   The present invention relates to a thickener for syrup in which the manufacturing cost is reduced while maintaining the mechanical strength and durability of conventional artificial marble.

一般に、人工大理石はシラップにシリカや水酸化アルミニウムを添加して加熱重合して得られる。シラップとしてはメタクリル酸メチルにメタクリル樹脂を溶かした液を使用している。メタクリル樹脂は、シラップの粘度を高くして取り扱いを容易にする増粘剤として溶かされている。メタクリル樹脂の分子量が高いほど増粘効果が高い為、150,000〜200,000程度の高分子量の耐溶剤メタクリル樹脂グレードが採用されている場合が多い。しかし、メタクリル樹脂はメタクリル酸メチルに容易に溶けないため、熱を加えながら数時間かけて溶かしている。そのため、人工大理石の作成時間が長くなり、製造コストを押し上げている。従来の人工大理石の耐熱性や機械強度を維持しながら、製造コストの低いシラップが望まれている。   In general, artificial marble is obtained by heating and polymerizing silica or aluminum hydroxide to syrup. As syrup, a solution of methacrylic resin in methyl methacrylate is used. The methacrylic resin is dissolved as a thickener that increases the viscosity of syrup and facilitates handling. Since the thickening effect is higher as the molecular weight of the methacrylic resin is higher, a solvent-resistant methacrylic resin grade having a high molecular weight of about 150,000 to 200,000 is often employed. However, since the methacrylic resin is not easily dissolved in methyl methacrylate, it is dissolved over several hours while applying heat. For this reason, the production time of the artificial marble is increased, which increases the manufacturing cost. A syrup having a low production cost is desired while maintaining the heat resistance and mechanical strength of conventional artificial marble.

メタクリル樹脂の機械強度や成形性を改善する公知の方法として、低分子量のメタクリル樹脂で流動性を付与し、高分子量もしくは微架橋構造で機械強度を付与する方法が知られている。溶解特性は成形性が高いほど良好と考えられる為、成形性を溶解特性と同じ傾向の項目とした。(例えば、特許文献1、2、3参照)。   As a known method for improving the mechanical strength and moldability of a methacrylic resin, there is known a method of imparting fluidity with a low molecular weight methacrylic resin and imparting mechanical strength with a high molecular weight or a micro-crosslinked structure. Since the dissolution characteristics are considered to be better as the moldability is higher, the moldability was set as an item having the same tendency as the dissolution characteristics. (For example, see Patent Documents 1, 2, and 3).

特許文献1に記載のメタクリル樹脂は、分子量が少ないため、シラップ粘度が低くなってしまう。シラップ粘度を合わせるにはメタクリル樹脂の量を増やす必要があり、好ましくない。また、特許文献2に記載のメタクリル樹脂は、重合体(1)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率が、重合体(2)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率より多い。重合体(2)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率が少ないと、溶解特性が低下することが予想されるため、好ましくない。特許文献3に記載のメタクリル樹脂は、シラップにメタクリル樹脂を添加して作製するプリミックスの外観改善に関する特許で、シラップの増粘剤に関する特許ではない。また、シラップに溶かすメタクリル樹脂は一段での重合品であり、分子量分布が広くないため、好ましくない。
特開平1−22865号公報 特開2004−339442号公報 特開平9−111085号公報
Since the methacrylic resin described in Patent Document 1 has a low molecular weight, the syrup viscosity is low. To adjust the syrup viscosity, it is necessary to increase the amount of methacrylic resin, which is not preferable. Further, the methacrylic resin described in Patent Document 2 can be copolymerized with the methyl methacrylate of the polymer (2) so that the composition ratio of the other vinyl monomer copolymerizable with the methyl methacrylate of the polymer (1) can be copolymerized. More than the composition ratio of other vinyl monomers. When the composition ratio of the other vinyl monomer copolymerizable with methyl methacrylate of the polymer (2) is small, it is expected that the dissolution characteristics are lowered, which is not preferable. The methacrylic resin described in Patent Document 3 is a patent relating to the appearance improvement of a premix produced by adding a methacrylic resin to syrup, and is not a patent relating to a thickener for syrup. Further, methacrylic resin dissolved in syrup is not preferable because it is a one-stage polymerized product and has a wide molecular weight distribution.
JP-A-1-22865 JP 2004-339442 A JP-A-9-111085

本発明の課題は、メタクリル酸メチルに溶けやすく、かつシラップに所定の粘度を付与することができるメタクリル樹脂からなるシラップの増粘剤を提供することである。   The subject of this invention is providing the thickener of syrup which consists of a methacryl resin which is easy to melt | dissolve in methyl methacrylate and can provide predetermined | prescribed viscosity to syrup.

前記課題を解決するため、本発明者らは鋭意研究を重ねた結果、従来の人工大理石の機械強度、耐久性を維持したまま、製造コストを削減させる増粘剤およびその製造方法を見出した。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and as a result, found a thickener and a method for producing the same that reduce the production cost while maintaining the mechanical strength and durability of conventional artificial marble.

すなわち本発明の第一は、メタクリル酸メチル単量体単位99〜80wt%及び少なくとも1種のメタクリル酸メチルに共重合可能な他のビニル単量体単位1〜20wt%を含むメタクリル樹脂であって、該メタクリル樹脂のゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が100,000〜400,000であり、GPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分が該メタクリル樹脂成分に対し8〜30%含まれているメタクリル樹脂からなることを特徴とする増粘剤である。   That is, the first of the present invention is a methacrylic resin containing 99 to 80 wt% of methyl methacrylate monomer units and 1 to 20 wt% of other vinyl monomer units copolymerizable with at least one methyl methacrylate. The weight average molecular weight of the methacrylic resin measured by gel permeation chromatography (GPC) is 100,000 to 400,000, and the weight is 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve. It is a thickener comprising a methacrylic resin having an average molecular weight component of 8 to 30% based on the methacrylic resin component.

本発明の第二は、上記メタクリル樹脂の平均粒径が0.05〜0.5mmであるメタクリル樹脂であり、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量Mwと数平均分子量Mnが式(1)の関係であるメタクリル樹脂からなることを特徴とする前記第一に記載の増粘剤である。 Mw/Mn≧2.3・・・・・・・・・・(1)   The second of the present invention is a methacrylic resin having an average particle diameter of 0.05 to 0.5 mm, and the weight average molecular weight Mw and the number average molecular weight Mn measured by gel permeation chromatography (GPC). It consists of a methacryl resin which is the relationship of Formula (1), It is said 1st thickener characterized by the above-mentioned. Mw / Mn ≧ 2.3 (1)

本発明の第三は、上記メタクリル樹脂のGPC溶出曲線における累積エリア面積(%)が0〜2%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Mh(wt%)と累積エリア面積(%)が98〜100%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Ml(wt%)が式(2)の関係であるメタクリル樹脂からなることを特徴とする前記第一又は第二に記載の増粘剤である。
(Mh−0.8)≧Ml≧0・・・・・・・・・(2)
In the third aspect of the present invention, another vinyl unit copolymerizable with methyl methacrylate in a methacrylic resin having a weight average molecular weight component having a cumulative area (%) in the GPC elution curve of the methacrylic resin of 0 to 2%. Other vinyl monomers copolymerizable with methyl methacrylate in a methacrylic resin having a weight average molecular weight component having an average composition ratio Mh (wt%) of the monomer unit and a cumulative area area (%) of 98 to 100% The thickener according to the first or second aspect, wherein the average composition ratio Ml (wt%) of the unit is made of a methacrylic resin having the relationship of the formula (2).
(Mh−0.8) ≧ Ml ≧ 0 (2)

本発明の第四は、前記第一記載のメタクリル樹脂からなる増粘剤の製造方法であって、まずメタクリル酸メチル単量体70〜100wt%とメタクリル酸メチルに共重合可能な他のビニル単量体30〜0wt%を重合してゲルパーミエーションクロマトグラフィーで測定した重量平分均子量が10,000〜50,000である重合体(1)を該メタクリル樹脂全体に対し7〜30wt%となるように重合した後、重合体(1)の存在下で重合を継続して重量平均分子量が110,000〜600,000である重合体(2)を該メタクリル樹脂全体に対し93〜70wt%となるように重合することを特徴とするメタクリル樹脂からなる増粘剤の製造方法である。   A fourth aspect of the present invention is a method for producing a thickener comprising the methacrylic resin according to the first aspect, and first, 70 to 100 wt% of a methyl methacrylate monomer and another vinyl monomer copolymerizable with methyl methacrylate. Polymer (1) having a weight average weight of 10,000 to 50,000 measured by gel permeation chromatography after polymerizing 30 to 0 wt% of the polymer is 7 to 30 wt% based on the entire methacrylic resin. Then, the polymerization is continued in the presence of the polymer (1), and the polymer (2) having a weight average molecular weight of 110,000 to 600,000 is 93 to 70 wt% based on the entire methacrylic resin. It is a method for producing a thickener comprising a methacrylic resin, characterized by being polymerized so that

本発明の第五は、上記メタクリル樹脂の重量平均分子量が100,000〜400,000で、平均粒径が0.05〜0.5mmであるメタクリル樹脂からなることを特徴とする前記第四に記載の増粘剤の製造方法である。   According to a fifth aspect of the present invention, the methacrylic resin is composed of a methacrylic resin having a weight average molecular weight of 100,000 to 400,000 and an average particle diameter of 0.05 to 0.5 mm. It is a manufacturing method of the thickener of description.

本発明の第六は、上記重合体(1)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率Mal(wt%)と重合体(2)のメタクリル酸メチルに共重合可能な他のビニル単量体単位の組成比率Mah(wt%)が式(3)の関係を有するメタクリル樹脂からなることを特徴とする前記第四又は第五に記載の増粘剤の製造方法である。
(Mah−0.8)≧Mal≧0・・・・・・・・・・・・・・(3)
The sixth aspect of the present invention is copolymerizable with the composition ratio Mal (wt%) of another vinyl monomer copolymerizable with the methyl methacrylate of the polymer (1) and the methyl methacrylate of the polymer (2). The composition ratio Mah (wt%) of other vinyl monomer units is made of a methacrylic resin having the relationship of the formula (3). is there.
(Mah-0.8) ≧ Mal ≧ 0 (3)

本発明による増粘剤は、従来の人工大理石の機械強度、耐久性を維持したまま、メタクリル酸メチルへの溶解特性に優れ、短時間でシラップを製造することができ、シラップの生産性を向上することができる。   The thickener according to the present invention has excellent solubility in methyl methacrylate while maintaining the mechanical strength and durability of conventional artificial marble, and can produce syrup in a short time, improving syrup productivity. can do.

以下、本発明を詳細に説明する。本発明におけるシラップの増粘剤であるメタクリル樹脂は、メタクリル酸メチル単量体、および/又はメタクリル酸メチル単量体とメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される。   Hereinafter, the present invention will be described in detail. The methacrylic resin which is a thickener of syrup in the present invention is at least one of methyl methacrylate monomer and / or other vinyl monomer copolymerizable with methyl methacrylate monomer and methyl methacrylate. Composed.

メタクリル酸メチルのメタクリル樹脂における含有量は99〜80wt%が良い。99wt%より多いと耐熱性が必要以上に向上して溶解特性が悪くなり、好ましくない。また、80wt%より少ないと機械強度が低下する為、好ましくない。好ましくは、耐熱性と溶解特性から99〜85wt%が好ましい。さらに好ましくは93〜90wt%である。
メタクリル酸メチルと共重合可能な他のビニル単量体としては、
アルキル基の炭素数が2〜18のメタクリル酸アルキル、アルキル基の炭素数が1〜18のアクリル酸アルキル;
アクリル酸やメタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸及びそれらのアルキルエステル;
スチレン、α−メチルスチレン、ベンゼン環に置換基を有するスチレン等の芳香族ビニル化合物;
アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物;
無水マレイン酸、マレイミド、N−置換マレイミド等;
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;
ネオペンチルグリコールジ(メタ)アクリレート、ジ(メタ)アクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの;
トリメチロールプロパン、ペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの;
ジビニルベンゼン等の多官能モノマー等;
が挙げられ、これらは、単独或いは2種類以上を併用して用いることが出来る。これらの中でも、耐光性、熱安定性、耐熱性、流動性の観点から、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸2−エチルヘキシル等が好ましく用いられる。アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルが特に好ましくさらにはアクリル酸メチルが入手しやすく最も好ましい。
The content of methyl methacrylate in the methacrylic resin is preferably 99 to 80 wt%. If it is more than 99 wt%, the heat resistance is unnecessarily improved and the dissolution properties are deteriorated, which is not preferable. On the other hand, if it is less than 80 wt%, the mechanical strength decreases, which is not preferable. Preferably, 99 to 85 wt% is preferable from the viewpoint of heat resistance and dissolution characteristics. More preferably, it is 93-90 wt%.
As other vinyl monomers copolymerizable with methyl methacrylate,
Alkyl methacrylate having 2 to 18 carbon atoms in the alkyl group, alkyl acrylate having 1 to 18 carbon atoms in the alkyl group;
Α, β-unsaturated acids such as acrylic acid and methacrylic acid, unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid and itaconic acid, and alkyl esters thereof;
Aromatic vinyl compounds such as styrene, α-methylstyrene, styrene having a substituent on the benzene ring;
Vinyl cyanide compounds such as acrylonitrile and methacrylonitrile;
Maleic anhydride, maleimide, N-substituted maleimide and the like;
Ethylene glycol such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, etc. Esterified;
What esterified the hydroxyl group of two alcohols, such as neopentylglycol di (meth) acrylate and di (meth) acrylate, with acrylic acid or methacrylic acid;
Esterification of polyhydric alcohol derivatives such as trimethylolpropane and pentaerythritol with acrylic acid or methacrylic acid;
Polyfunctional monomers such as divinylbenzene;
These may be used alone or in combination of two or more. Among these, from the viewpoint of light resistance, thermal stability, heat resistance, and fluidity, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, sec-butyl acrylate, 2-acrylic acid 2- Ethylhexyl and the like are preferably used. Methyl acrylate, ethyl acrylate, and n-butyl acrylate are particularly preferred, and methyl acrylate is most preferred because it is readily available.

メタクリル酸メチルと共重合可能な他のビニル単量体は、溶解特性と耐熱性に影響を与える。その含有量は、メタクリル樹脂に対して1〜20wt%である。溶解特性の観点から1wt%以上が好ましい。また、機械強度の観点から20%以下が好ましい。より好ましくは1〜15wt%である。さらに好ましくは3〜10wt%である。   Other vinyl monomers that are copolymerizable with methyl methacrylate affect the dissolution properties and heat resistance. The content is 1 to 20 wt% with respect to the methacrylic resin. From the viewpoint of dissolution characteristics, 1 wt% or more is preferable. Moreover, 20% or less is preferable from the viewpoint of mechanical strength. More preferably, it is 1-15 wt%. More preferably, it is 3-10 wt%.

本発明の増粘剤であるメタクリル樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量は100000〜400000が好ましい。人工大理石の機械強度及び使用樹脂量の観点から100000以上が良い。100000以下ではシラップの粘度を高めるためにメタクリル樹脂の使用量が増えるため好ましくない。また重合の安定生産の観点から400000以下が好ましい。より好ましくは、150000〜300000である。   As for the methacryl resin which is a thickener of this invention, the weight average molecular weights measured by gel permeation chromatography (GPC) have preferable 100,000-400000. From the viewpoint of the mechanical strength of artificial marble and the amount of resin used, 100,000 or more is preferable. If it is 100,000 or less, the amount of methacrylic resin used is increased to increase the viscosity of syrup, which is not preferable. Moreover, 400000 or less is preferable from a viewpoint of the stable production of superposition | polymerization. More preferably, it is 150,000 to 300,000.

本発明の増粘剤であるメタクリル樹脂は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量Mwと数平均分子量Mnが式(1)を満たす事が好ましい。これはMw/Mn値が大きいほど分子量分布が広くなり、機械強度と溶解特性の両立に有利であるためである。より好ましくは3以上である。さらに好ましくは5以上である。   As for the methacrylic resin which is a thickener of this invention, it is preferable that the weight average molecular weight Mw and number average molecular weight Mn which measured by gel permeation chromatography (GPC) satisfy | fill Formula (1). This is because the larger the Mw / Mn value, the wider the molecular weight distribution, which is advantageous for achieving both mechanical strength and solubility characteristics. More preferably, it is 3 or more. More preferably, it is 5 or more.

Mw/Mn≧2.3・・・・・・・・・・・・・(1)
本発明で測定される重量平均分子量は、GPCで測定される。あらかじめ、単分散の重量平均分子量が既知である試薬として入手可能な標準メタクリル樹脂と、高分子量成分から溶出される分析ゲルカラムを用い、溶出時間と重量平均分子量から検量線を作成しておく。その検量線から各試料の分子量を測定することが出来る。
Mw / Mn ≧ 2.3 (1)
The weight average molecular weight measured in the present invention is measured by GPC. A standard curve is prepared in advance from the elution time and the weight average molecular weight using a standard methacrylic resin available as a reagent having a known monodispersed weight average molecular weight and an analytical gel column eluted from a high molecular weight component. The molecular weight of each sample can be measured from the calibration curve.

本発明においては、ピーク重量平均分子量(Mp)とは、GPC溶出曲線においてピークを示す、重量平均分子量を指す。GPC溶出曲線においてピークが複数存在する場合は、存在量が最も多い重量平均分子量が示すピークを指す。   In the present invention, the peak weight average molecular weight (Mp) refers to the weight average molecular weight showing a peak in the GPC elution curve. When there are a plurality of peaks in the GPC elution curve, the peak is indicated by the weight-average molecular weight having the largest abundance.

本発明の増粘剤であるメタクリル樹脂に存在するピーク重量平均分子量の1/5以下の重量平均分子量である成分は、樹脂の強度、溶解特性に関して重要である。1/5以下の重量平均分子量成分は可塑化効果を有する。この成分の存在量が、該メタクリル樹脂成分に対し8〜30%の範囲にあるときに溶解特性の向上効果が発揮する。溶解性の観点から8%以上である。一方、耐熱性や機械強度、環境試験におけるクラック、そりの点から30%以下である。より好ましくは10〜25wt%である。   The component having a weight average molecular weight of 1/5 or less of the peak weight average molecular weight present in the methacrylic resin which is the thickener of the present invention is important with respect to the strength and solubility characteristics of the resin. A weight average molecular weight component of 1/5 or less has a plasticizing effect. When the abundance of this component is in the range of 8 to 30% with respect to the methacrylic resin component, the effect of improving the dissolution characteristics is exhibited. From the viewpoint of solubility, it is 8% or more. On the other hand, it is 30% or less from the viewpoint of heat resistance, mechanical strength, cracks and warpage in environmental tests. More preferably, it is 10-25 wt%.

本発明におけるメタクリル酸メチル単量体に共重合可能な他のビニル単量体は得られるメタクリル樹脂の高分子量成分中の組成比率が低分子量成分中の組成比率に比べて大きいと、耐熱性や環境試験でのクラックやそりといった信頼性や機械強度を維持しながら溶解特性をより向上することができて好ましい。   When the composition ratio in the high molecular weight component of the methacrylic resin obtained is copolymerizable with the methyl methacrylate monomer in the present invention is larger than the composition ratio in the low molecular weight component, It is preferable because the melting characteristics can be further improved while maintaining reliability and mechanical strength such as cracks and warpage in environmental tests.

ここでGPC溶出曲線におけるエリア面積とは図1に示す斜線部分を指す。具体的な定め方は次のように行う。まず、GPC測定で得られた溶出時間とRI(示差屈折検出器)による検出強度から得られるGPC溶出曲線1に対し、測定機器により自動で引かれるベースライン2とGPC溶出曲線1が交わる点Aと点Bを定める。点Aは、溶出時間初期のGPC溶出曲線とベースラインとが交わる点である。点Bは、原則として重量平均分子量が500以上でベースラインとGPC溶出曲線が交わる位置とする。もし重量平均分子量が500以上の範囲で交わらなかった場合は重量平均分子量が500の溶出時間のRI検出強度値を点Bとする。点A、B間のGPC溶出曲線と線分ABで囲まれた斜線部分がGPC溶出曲線におけるエリアである。この面積が、GPC溶出曲線におけるエリア面積である。本願では高分子量成分から溶出されるカラムを用いるため、溶出時間初期に高分子量成分が観測され、溶出時間終期に低分子量成分が観測される。   Here, the area area in the GPC elution curve indicates the hatched portion shown in FIG. The specific method is as follows. First, the point A at which the baseline 2 automatically drawn by the measuring instrument and the GPC elution curve 1 intersect the GPC elution curve 1 obtained from the elution time obtained by the GPC measurement and the detection intensity by the RI (differential refraction detector). And point B is determined. Point A is a point where the GPC elution curve at the beginning of the elution time and the baseline intersect. Point B is a position where, as a general rule, the weight average molecular weight is 500 or more and the baseline and the GPC elution curve intersect. If the weight average molecular weight does not intersect within the range of 500 or more, the RI detection intensity value at the elution time when the weight average molecular weight is 500 is defined as point B. A hatched portion surrounded by the GPC elution curve between the points A and B and the line segment AB is an area in the GPC elution curve. This area is the area of the GPC elution curve. In this application, since a column eluted from a high molecular weight component is used, a high molecular weight component is observed at the beginning of the elution time, and a low molecular weight component is observed at the end of the elution time.

GPC溶出曲線におけるエリア面積の累積エリア面積(%)は、図1に示す点Aを累積エリア面積(%)の基準である0%とし、溶出時間の終期に向かい、各溶出時間に対応する検出強度が累積して、GPC溶出曲線におけるエリア面積が形成されるという見方をする。累積エリア面積の具体例を図2に示す。この図2において、ある溶出時間におけるベースライン上の点を点X,GPC溶出曲線上の点を点Yとする。曲線AYと、線分AX、線分XYで囲まれる面積の、GPC溶出曲線におけるエリア面積に対する割合を、ある溶出時間での累積エリア面積(%)の値とする。   The cumulative area area (%) of the area area in the GPC elution curve is point 0 shown in FIG. 1 being 0%, which is the standard for the cumulative area area (%), toward the end of the elution time, and detection corresponding to each elution time. The view is that the intensity accumulates and an area area in the GPC elution curve is formed. A specific example of the accumulated area area is shown in FIG. In FIG. 2, a point on the baseline at a certain elution time is a point X, and a point on the GPC elution curve is a point Y. The ratio of the area surrounded by the curve AY, the line segment AX, and the line segment XY to the area area in the GPC elution curve is the value of the accumulated area area (%) at a certain elution time.

累積エリア面積0〜2%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率をMh(wt%)とする。一方、累積エリア面積98〜100%、すなわち低分子量を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成率をMl(wt%)とする。累積エリア面積0〜2%、98〜100%の測定グラフ上での位置の概略図を図3に示す。   Let Mh (wt%) be the average composition ratio of other vinyl monomer units copolymerizable with methyl methacrylate in the methacrylic resin having a weight average molecular weight component in the cumulative area of 0 to 2%. On the other hand, the average composition ratio of other vinyl monomer units that can be copolymerized with methyl methacrylate in a methacrylic resin having a cumulative area of 98 to 100%, that is, a low molecular weight is defined as Ml (wt%). FIG. 3 shows a schematic diagram of positions on the measurement graph of the accumulated area area of 0 to 2% and 98 to 100%.

MhやMlの値はGPCから得られた溶出時間をもとにカラムのサイズに応じ数回もしくは数十回連続分取して、求めることが可能である。分取したサンプルの組成を既知の熱分解ガスクロ法により分析すればよい。   The values of Mh and Ml can be obtained by fractionating several times or several tens of times according to the column size based on the elution time obtained from GPC. The composition of the collected sample may be analyzed by a known pyrolysis gas chromatography method.

本発明におけるMh(wt%)とMl(wt%)には下記の式(2)の関係が成り立つことが好ましい。   It is preferable that the relationship of the following formula (2) is established between Mh (wt%) and Ml (wt%) in the present invention.

(Mh−0.8)≧Ml≧0・・・・・・・・・・・・・(2)
これは、低分子量成分より高分子量成分のほうが、メタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成が0.8wt%以上多いことを示す。低分子量成分には他のビニル単量体が必ずしも共重合していなくても良いことを示す。Mh(wt%)とMl(wt%)の差は溶解特性向上の効果のために0.8wt%以上が好ましい。より好ましくは1.0wt%以上であり、更に好ましくは、2.0wt%以上である。
(Mh−0.8) ≧ Ml ≧ 0 (2)
This indicates that the high molecular weight component has an average composition of 0.8 wt% or more of other vinyl monomer units copolymerizable with methyl methacrylate than the low molecular weight component. The low molecular weight component indicates that other vinyl monomers do not necessarily have to be copolymerized. The difference between Mh (wt%) and Ml (wt%) is preferably 0.8 wt% or more for the effect of improving dissolution characteristics. More preferably, it is 1.0 wt% or more, More preferably, it is 2.0 wt% or more.

すなわち、高分子量成分中のメタクリル樹脂のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成は、低分子量成分の平均組成より2wt%以上にすることで、耐熱性や環境試験におけるクラックやそりといった信頼性、機械強度を保持したまま、溶解特性の向上効果が得られるために好ましい。   That is, the average composition of other vinyl monomer units copolymerizable with methyl methacrylate of the methacrylic resin in the high molecular weight component is 2 wt% or more than the average composition of the low molecular weight component, so that the heat resistance and environmental test can be performed. It is preferable because the effect of improving the dissolution characteristics can be obtained while maintaining the reliability such as cracks and warpage and mechanical strength.

本発明におけるシラップの増粘剤であるメタクリル樹脂の重合方法としては、二段の懸濁重合あるいは乳化重合を用いる。二段の重合とは、通常の懸濁重合あるいは乳化重合の後、更にモノマー、開始剤、連鎖移動剤、等を投入して重合する方法である。重合体(1)と重合体(2)の組成を変えることで、重合体(1)と重合体(2)の両方の特性を併せ持った樹脂組成物を得る事が出来る。懸濁重合あるいは乳化重合は粉末状の樹脂ビーズが得られる為、人工大理石用途に有利である。他の重合方法では粉末状の樹脂ビーズが得られないため、好ましくない。重合方法としては、乳化重合より懸濁重合の方の重合時間が短い為、懸濁重合の方が好ましい。なお、懸濁重合あるいは乳化重合の粉末状樹脂ビーズをブレンドしたものは、高分子量樹脂ビーズの溶解特性が劣るため、好ましくない。   As a polymerization method of the methacrylic resin which is a thickener of syrup in the present invention, two-stage suspension polymerization or emulsion polymerization is used. The two-stage polymerization is a method in which a monomer, an initiator, a chain transfer agent, and the like are further added after normal suspension polymerization or emulsion polymerization. By changing the composition of the polymer (1) and the polymer (2), a resin composition having both the characteristics of the polymer (1) and the polymer (2) can be obtained. Suspension polymerization or emulsion polymerization is advantageous for artificial marble because powdery resin beads are obtained. Other polymerization methods are not preferable because powdery resin beads cannot be obtained. As the polymerization method, suspension polymerization is preferred because suspension polymerization is shorter than emulsion polymerization. A blend of suspension polymerization or emulsion polymerization powdered resin beads is not preferable because the solubility characteristics of the high molecular weight resin beads are poor.

本発明の増粘剤であるメタクリル樹脂は、二段の重合を用いる事が適正である。三段以上でも、二段重合と同等の特性を有するメタクリル樹脂を得る事が出来るが、重合時間が更に長くなるため、好ましくない。   It is appropriate to use a two-stage polymerization for the methacrylic resin which is the thickener of the present invention. Even with three or more stages, a methacrylic resin having the same properties as two-stage polymerization can be obtained, but this is not preferable because the polymerization time is further increased.

本発明の増粘剤であるメタクリル樹脂の組成は、メタクリル酸メチルに共重合可能な他のビニル単量体の含有量がメタクリル樹脂全体の1〜20wt%であれば、重合体(1)と重合体(2)それぞれの含有量が異なっていても構わない。また、重合体(1)にメタクリル酸メチルに共重合可能な他のビニル単量体を使用しなくても良い。   The composition of the methacrylic resin that is the thickener of the present invention is such that the content of the other vinyl monomer copolymerizable with methyl methacrylate is 1 to 20 wt% of the entire methacrylic resin, and the polymer (1) The contents of each of the polymers (2) may be different. Moreover, it is not necessary to use other vinyl monomers copolymerizable with methyl methacrylate in the polymer (1).

本発明の増粘剤であるメタクリル樹脂は、重合体(1)が低分子量であり、重合体(2)が高分子量であることが好ましい。より好ましくはその重合方法が重合体(1)を重合した後、重合体(1)の存在下で重合体(2)を重合して得る方法である。   As for the methacrylic resin which is a thickener of this invention, it is preferable that a polymer (1) is low molecular weight and a polymer (2) is high molecular weight. More preferably, the polymerization method is a method obtained by polymerizing the polymer (1) and then polymerizing the polymer (2) in the presence of the polymer (1).

本発明の増粘剤であるメタクリル樹脂において、重合体(1)はメタクリル酸メチル単量体70〜100wt%及びメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体30〜0wt%からなる重合体である。より好ましくはメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体20〜0wt%である。さらに好ましくはメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体15〜0wt%である。
本発明の増粘剤であるメタクリル樹脂において、重合体(1)の分子量はゲルパーミエーションクロマトグラフィーで測定した重量平分均子量として10000〜50000が好ましい。重量平均分子量が10000以下の場合、耐熱性が低下する為、10000以上が好ましい。またこの場合、重合体(1)の存在下で重合体(2)を重合する際に重合体(2)の分子量が連続性生産時に安定するため好ましい。溶解特性の点から50000以下が好ましい。より好ましくは20000〜40000であり、さらに好ましくは、20000〜30000である。
In the methacrylic resin which is the thickener of the present invention, the polymer (1) is composed of 70 to 100 wt% of methyl methacrylate monomer and at least one other vinyl monomer copolymerizable with methyl methacrylate. It is a polymer comprising 30 to 0 wt% of the monomer. More preferably, it is 20 to 0 wt% of a monomer composed of at least one other vinyl monomer copolymerizable with methyl methacrylate. More preferably, it is 15 to 0 wt% of a monomer composed of at least one other vinyl monomer copolymerizable with methyl methacrylate.
In the methacrylic resin which is the thickener of the present invention, the molecular weight of the polymer (1) is preferably 10,000 to 50,000 as the weight average weight measured by gel permeation chromatography. When the weight average molecular weight is 10,000 or less, the heat resistance is lowered, and therefore 10,000 or more is preferable. Moreover, in this case, when polymerizing the polymer (2) in the presence of the polymer (1), the molecular weight of the polymer (2) is preferable during continuous production. From the viewpoint of dissolution characteristics, 50000 or less is preferable. More preferably, it is 20000-40000, More preferably, it is 20000-30000.

本発明の増粘剤であるメタクリル樹脂において、重合体(2)はメタクリル酸メチル単量体70〜100wt%及びメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体0〜30wt%からなる重合体である。より好ましくは1〜80wt%である。
本発明の増粘剤であるメタクリル樹脂において、重合体(2)の分子量はゲルパーミエーションクロマトグラフィーで測定した重量平分均子量として110000〜600000が好ましい。機械強度やシラップ粘度の点から110000以上が好ましい。分子量を高く設定すると重合が急激に進みやすく、発熱してモノマーの突沸を発生しやすくなる。安定生産の点から600000以下が好ましい。より好ましくは150000〜500000である。さらに好ましくは180000〜400000である。
In the methacrylic resin which is a thickener of the present invention, the polymer (2) is composed of 70 to 100 wt% of methyl methacrylate monomer and at least one other vinyl monomer copolymerizable with methyl methacrylate. It is a polymer composed of 0 to 30 wt% of the monomer. More preferably, it is 1-80 wt%.
In the methacrylic resin which is the thickener of the present invention, the molecular weight of the polymer (2) is preferably 110000 to 600000 as the weight average weight measured by gel permeation chromatography. From the point of mechanical strength and syrup viscosity, 110000 or more is preferable. When the molecular weight is set high, the polymerization is likely to proceed rapidly, and heat is generated to easily cause bumping of the monomer. From the point of stable production, 600000 or less is preferable. More preferably, it is 150,000 to 500,000. More preferably, it is 180000-400000.

本発明の増粘剤であるメタクリル樹脂は、重合体(1)のメタクリル酸メチルに重合可能な他のビニル単量体単位の組成比率Mal(wt%)と重合体(2)のメタクリル酸メチルに重合可能な他のビニル単量体単位の組成比率Mah(wt%)には式(3)の関係が成り立つことが好ましい。   The methacrylic resin which is a thickener of the present invention is composed of a composition ratio Mal (wt%) of other vinyl monomer units polymerizable to methyl methacrylate of the polymer (1) and methyl methacrylate of the polymer (2). It is preferable that the relationship of the formula (3) is satisfied in the composition ratio Mah (wt%) of other vinyl monomer units that can be polymerized.

(Mah−0.8)≧Mal≧0・・・・・・・・・・・・・・(3)
ここでいう組成比率MalとMahは、重合体(1)及び重合体(2)のそれぞれを熱分解ガスクロ法によりその比率を決定することが可能である。それぞれを得るための仕込みで用いた組成比率はほぼ同等の値を示す。
(Mah-0.8) ≧ Mal ≧ 0 (3)
The composition ratios Mal and Mah here can determine the ratios of the polymer (1) and the polymer (2) by pyrolysis gas chromatography. The composition ratios used in the preparation for obtaining each of them show almost the same value.

Mah(wt%)とMal(wt%)との差は溶解特性の点から0.8wt%以上である。高分子量である重合体(2)にメタクリル酸メチルに共重合可能な他のビニル単量体が組成比率として多いほうが耐熱性や機械強度を維持しながら溶解特性の向上が図れるため好ましい。   The difference between Mah (wt%) and Mal (wt%) is 0.8 wt% or more from the viewpoint of dissolution characteristics. It is preferable that the polymer (2) having a high molecular weight has a larger proportion of other vinyl monomers copolymerizable with methyl methacrylate because the solubility characteristics can be improved while maintaining heat resistance and mechanical strength.

本発明の増粘剤であるメタクリル樹脂の平均粒径は0.05〜0.5mmであることが好ましい。溶解時間は粒径が小さいほど短くなるため、0.5mm以下が好ましい。ただし、粒径が小さすぎる場合は、取り扱い時に飛び散りやすくなり、0.05mm以上が好ましい。更に好ましくは平均粒径0.05〜0.4mmである。最も好ましくは平均粒径0.1〜0.4mmである。   The average particle diameter of the methacrylic resin that is the thickener of the present invention is preferably 0.05 to 0.5 mm. Since the dissolution time is shorter as the particle size is smaller, 0.5 mm or less is preferable. However, if the particle size is too small, it tends to scatter during handling, and 0.05 mm or more is preferable. More preferably, the average particle size is 0.05 to 0.4 mm. Most preferably, the average particle size is 0.1 to 0.4 mm.

本発明の増粘剤であるメタクリル樹脂を製造するための重合開始剤としては、フリーラジカル重合を用いる場合は、ジ−t−ブチルパーオキサイド、ラウリルパーオキサイド、ジラウロイルパーオキサイド、t−ブチルパーオキシ2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサンなどのパーオキサイド系や、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、1,1−アゾビス(1−シクロヘキサンカルボニトリル)などのアゾ系の一般的なラジカル重合開始剤を用いることができ、これらは単独でもあるいは2種類以上を併用しても良い。これらのラジカル開始剤と適当な還元剤とを組み合わせてレドックス系開始剤として実施しても良い。これらの開始剤は、単量体混合物に対して、0.001〜1wt%の範囲で用いるのが一般的である。   As a polymerization initiator for producing a methacrylic resin which is a thickener of the present invention, when using free radical polymerization, di-t-butyl peroxide, lauryl peroxide, dilauroyl peroxide, t-butyl peroxide are used. Peroxides such as oxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, Common azo-based radical polymerization initiators such as azobisisobutyronitrile, azobisisovaleronitrile, 1,1-azobis (1-cyclohexanecarbonitrile) can be used. You may use the above together. A combination of these radical initiators and an appropriate reducing agent may be used as a redox initiator. These initiators are generally used in the range of 0.001 to 1 wt% with respect to the monomer mixture.

本発明のシラップの増粘剤であるメタクリル樹脂の製造方法では、ラジカル重合法で製造する場合には、重合体(1)及び重合体(2)の分子量を調整するために、一般的に用いられている連鎖移動剤を使用できる。連鎖移動剤としては、例えばn−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、2−エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(チオグリコート)、ペンタエリスリトールテトラキス(チオグリコレート)などのメルカプタン類が好ましく用いられる。一般的に単量体混合物に対して、0.001〜1wt%の範囲で用いられる。重合体(1)と重合体(2)に用いられる連鎖移動剤は同じでも良いし異なっていても良い。重合体(1)と重合体(2)の連鎖移動剤の量は望む分子量に依存して決定される。   In the manufacturing method of the methacrylic resin which is the thickener of syrup of this invention, when manufacturing by radical polymerization method, in order to adjust the molecular weight of a polymer (1) and a polymer (2), it uses generally. Chain transfer agents that are used can be used. Examples of the chain transfer agent include n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate, ethylene glycol dithioglycolate, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate). Etc.) are preferably used. Generally, it is used in the range of 0.001 to 1 wt% with respect to the monomer mixture. The chain transfer agents used for the polymer (1) and the polymer (2) may be the same or different. The amount of chain transfer agent of polymer (1) and polymer (2) is determined depending on the desired molecular weight.

本発明の増粘剤であるメタクリル樹脂は、従来の人工大理石の機械強度、耐久性を損なうことなく、作製時間を短縮させたものである。シラップの生産性を向上させると共に、メタクリル樹脂の使用量を減らすことで生産コストを下げることが可能で、人工大理石用途に好適である。   The methacrylic resin, which is the thickener of the present invention, has a shorter production time without impairing the mechanical strength and durability of conventional artificial marble. While improving the productivity of syrup, it is possible to reduce the production cost by reducing the amount of methacrylic resin used, which is suitable for artificial marble applications.

本発明の増粘剤であるメタクリル樹脂は、人工大理石のシラップ用途の他、塗料や接着剤などの増粘剤用途にも使用できる。   The methacrylic resin, which is the thickener of the present invention, can be used for thickeners such as paints and adhesives as well as for artificial marble syrup.

以下の実施例、比較例を用いて更に具体的に説明する。
<原料>
用いた原料は下記のものである。 メタクリル酸メチル:旭化成ケミカルズ製(重合禁止剤として中外貿易製2,4−ジメチル−6−t−ブチルフェノール(2,4-di-methyl-6-tert-butylphenol)を2.5ppm添加されているもの)
アクリル酸メチル:三菱化学製(重合禁止剤として川口化学工業製4−メトキシフェノール(4−methoxyphenol)が14ppm添加されているもの)
n−オクチルメルカプタン(n-octylmercaptan):アルケマ製
ラウロイルパーオキサイド(lauroyl peroxide):日本油脂製
第3リン酸カルシウム(calcium phosphate):日本化学工業製、懸濁剤として使用
炭酸カルシウム(calcium calbonate):白石工業製、懸濁剤として使用
ラウリル硫酸ナトリウム(sodium lauryl sulfate):和光純薬製、懸濁助剤として使用
This will be described more specifically with reference to the following examples and comparative examples.
<Raw material>
The raw materials used are as follows. Methyl methacrylate: manufactured by Asahi Kasei Chemicals (2.5 ppm of 2,4-di-6-tert-butylphenol) is added as a polymerization inhibitor )
Methyl acrylate: manufactured by Mitsubishi Chemical (added with 14 ppm of 4-methoxyphenol manufactured by Kawaguchi Chemical Industry as a polymerization inhibitor)
n-octylmercaptan (N-octylmercaptan): Arkema Lauroyl peroxide: Nippon Oil & Fats Tricalcium phosphate: Nippon Kagaku Kogyo Co., Ltd., used as a suspending agent Calcium carbonate: Shiraishi Made as a suspension agent Sodium lauryl sulfate: Wako Pure Chemical Industries, used as a suspension aid

[I.樹脂の重合]
1.樹脂の重合
以下に樹脂の製造方法を示す。 配合量は表1に、単量体の仕込み組成と重合体の比率、各重合体の重量平均分子量の測定結果、を表2に示す。
(樹脂1)
10Lのガラス製反応器に重合体(1)の原料を、表1に示す配合量を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し重合反応を実質終了して重合体(1)を得た。この重合体(1)をサンプリングし、GPCで重合平均分子量を測定した。 その後、前記重合体(1)を含む重合系を60分間、80℃を維持し、次に重合体(2)の原料を、表1に示す配合量反応器に投入し、引き続き80℃で120分懸濁重合し、続いて92℃に1℃/minの速度で昇温した後、60分熟成し、重合反応を実質終了した。次に50℃まで冷却して懸濁剤を溶解させるために20wt%硫酸を投入し、洗浄脱水乾燥処理し、メタクリル樹脂ビーズを得た。このメタクリル樹脂ビーズの重合平均分子量をGPCで測定し、重合体(1)のGPC溶出曲線を元に、重合体(1)が含まれている比率をかけて、メタクリル樹脂ビーズのGPC溶出曲線から、重合体(1)のGPC部分を除去し、重合体(2)の重量平均分子量を求めた
[I. Polymerization of resin]
1. Polymerization of resin The method for producing the resin is shown below. The blending amounts are shown in Table 1, and the charged composition of the monomer and the ratio of the polymers, and the measurement results of the weight average molecular weight of each polymer are shown in Table 2.
(Resin 1)
Into a 10 L glass reactor, the raw materials for the polymer (1) were added in the amounts shown in Table 1, stirred and mixed, and the polymerization reaction was substantially terminated by suspension polymerization at a reaction temperature of 80 ° C. for 150 minutes. Thus, a polymer (1) was obtained. This polymer (1) was sampled and the polymerization average molecular weight was measured by GPC. Thereafter, the polymerization system containing the polymer (1) was maintained at 80 ° C. for 60 minutes, and then the raw material of the polymer (2) was charged into the compounding amount reactor shown in Table 1, and subsequently at 80 ° C. for 120 minutes. The suspension was subjected to suspension polymerization, subsequently heated to 92 ° C. at a rate of 1 ° C./min, and then aged for 60 minutes to substantially complete the polymerization reaction. Next, in order to cool to 50 ° C. and dissolve the suspending agent, 20 wt% sulfuric acid was added, washed and dehydrated and dried to obtain methacrylic resin beads. The polymerization average molecular weight of the methacrylic resin beads is measured by GPC, and based on the GPC elution curve of the polymer (1), the ratio of the polymer (1) is multiplied to obtain the GPC elution curve of the methacrylic resin beads. The GPC portion of the polymer (1) was removed, and the weight average molecular weight of the polymer (2) was determined.

(樹脂2、3、9、15、16、22)
表1に示す配合で、樹脂1と同様にして重合を行い、メタクリル樹脂ビーズを得た。
(樹脂4)
60Lの反応器に重合体(1)の原料を、表1に示す配合量を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し重合反応を実質終了して重合体(1)を得た。この重合体(1)をサンプリングし、GPCで重合平均分子量を測定した。
その後、前記重合体(1)を含む重合系を60分間、80℃を維持し、次に重合体(2)の原料を、表1に示す配合量反応器に投入し、引き続き80℃で90分懸濁重合し、続いて92℃に1℃/minの速度で昇温した後、60分熟成し、重合反応を実質終了した。次に50℃まで冷却して懸濁剤を溶解させるために20wt%硫酸を投入し、洗浄脱水乾燥処理し、メタクリル樹脂ビーズを得た。このメタクリル樹脂ビーズの重合平均分子量をGPCで測定し、重合体(1)のGPC溶出曲線を元に、重合体(1)が含まれている比率をかけて、メタクリル樹脂ビーズのGPC溶出曲線から、重合体(1)のGPC部分を除去し、重合体(2)の重量平均分子量を求めた。
(樹脂5〜8、13、14、17、18、20、21、23、24)
表1に示す配合で、樹脂4と同様にして重合を行い、メタクリル樹脂ビーズを得た。
(樹脂10)
60Lの反応器に重合体(1)の原料を、表1に示す配合量を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し続いて92℃に1℃/minの速度で昇温した後、60分熟成し、重合反応を実質終了した。次に50℃まで冷却して懸濁剤を溶解させるために20wt%硫酸を投入し、洗浄脱水乾燥処理し、メタクリル樹脂ビーズを得た。このメタクリル樹脂ビーズをサンプリングし、GPCで重合平均分子量を測定した。
(樹脂11、12)
表1に示す配合で、樹脂10と同様にして重合を行い、メタクリル樹脂ビーズを得た。
(Resin 2, 3, 9, 15, 16, 22)
Polymerization was carried out in the same manner as Resin 1 with the formulation shown in Table 1, to obtain methacrylic resin beads.
(Resin 4)
Into a 60 L reactor, the raw materials of the polymer (1) were charged with the blending amounts shown in Table 1 and mixed with stirring. Suspension polymerization was carried out at a reactor reaction temperature of 80 ° C. for 150 minutes. Combined (1) was obtained. This polymer (1) was sampled and the polymerization average molecular weight was measured by GPC.
Thereafter, the polymerization system containing the polymer (1) was maintained at 80 ° C. for 60 minutes, and then the raw material of the polymer (2) was charged into the blending amount reactor shown in Table 1, and subsequently at 90 ° C. The suspension was subjected to suspension polymerization, subsequently heated to 92 ° C. at a rate of 1 ° C./min, and then aged for 60 minutes to substantially complete the polymerization reaction. Next, in order to cool to 50 ° C. and dissolve the suspending agent, 20 wt% sulfuric acid was added, washed and dehydrated and dried to obtain methacrylic resin beads. The polymerization average molecular weight of the methacrylic resin beads is measured by GPC, and based on the GPC elution curve of the polymer (1), the ratio of the polymer (1) is multiplied to obtain the GPC elution curve of the methacrylic resin beads. The GPC portion of the polymer (1) was removed, and the weight average molecular weight of the polymer (2) was determined.
(Resin 5-8, 13, 14, 17, 18, 20, 21, 23, 24)
Polymerization was carried out in the same manner as Resin 4 with the formulation shown in Table 1, to obtain methacrylic resin beads.
(Resin 10)
The raw material of the polymer (1) was put into a 60 L reactor and the mixing amount shown in Table 1 was added and stirred and mixed. Suspension polymerization was carried out at 80 ° C. for 150 minutes, followed by 92 ° C. at 1 ° C. / After raising the temperature at a rate of min, the mixture was aged for 60 minutes to substantially complete the polymerization reaction. Next, in order to cool to 50 ° C. and dissolve the suspending agent, 20 wt% sulfuric acid was added, washed and dehydrated and dried to obtain methacrylic resin beads. The methacrylic resin beads were sampled and the polymerization average molecular weight was measured by GPC.
(Resin 11, 12)
Polymerization was carried out in the same manner as Resin 10 with the formulation shown in Table 1, to obtain methacrylic resin beads.

[II.樹脂の分子量、組成の測定]
2.メタクリル樹脂の重量平均分子量の測定
測定装置:日本分析工業製ゲルパーミエーションクロマトグラフィー(LC−908)
カラム:JAIGEL−4H 1本及びJAIGEL−2H 2本、直列接続
本カラムでは、高分子量が早く溶出し、低分子量は溶出する時間が遅い。
検出器:RI(示差屈折)検出器
検出感度:2.4μV/sec
サンプル:0.450gのメタクリル樹脂のクロロホルム15ml溶液
注入量:3ml
展開溶媒:クロロホルム、流速3.3ml/min
上記の条件で、メタクリル樹脂の溶出時間に対する、RI検出強度を測定した。GPC溶出曲線におけるエリア面積と、検量線を基にメタクリル樹脂の平均分子量を求めた。
[II. Measurement of resin molecular weight and composition]
2. Measuring and measuring apparatus for weight average molecular weight of methacrylic resin: Gel Permeation Chromatography (LC-908) manufactured by Nippon Analytical Industry
Column: 1 JAIGEL-4H and 2 JAIGEL-2H in series connection In this column, the high molecular weight elutes early, and the low molecular weight elutes slowly.
Detector: RI (differential refraction) detector Detection sensitivity: 2.4μV / sec
Sample: 0.450 g of methacrylic resin in chloroform 15 ml Injection amount: 3 ml
Developing solvent: chloroform, flow rate 3.3 ml / min
Under the above conditions, the RI detection intensity with respect to the elution time of the methacrylic resin was measured. The average molecular weight of the methacrylic resin was determined based on the area area in the GPC elution curve and the calibration curve.

検量線用標準サンプルとして、単分散の重量平均分子量が既知で分子量が異なる以下の10種のメタクリル樹脂(EasiCal PM-1 Polymer Laboratories製)を用いた。 重量平均分子量
標準試料1 1,900,000
標準試料2 790,000
標準試料3 281,700
標準試料4 144,000
標準試料5 59,800
標準試料6 28,900
標準試料7 13,300
標準試料8 5,720
標準試料9 1,936
標準試料10 1,020
重合体(1)と重合体(2)が混合している場合には、あらかじめ重合体(1)単独のGPC溶出曲線を測定し重量平均分子量を求めておき、重合体(1)が存在している比率(本願では仕込み比率を用いた)を重合体(1)のGPC溶出曲線に乗じ、溶出時間における検出強度を重合体(1)と重合体(2)が混合しているGPC溶出曲線から引くことで、重合体(2)単独のGPC溶出曲線が得られる。これから重合体(2)の重量平均分子量を求めた。
The following 10 methacrylic resins (manufactured by EasiCal PM-1 Polymer Laboratories) having different molecular weights and known monodispersed weight average molecular weights were used as standard samples for calibration curves. Weight average molecular weight
Standard sample 1 1,900,000
Standard sample 2 790,000
Standard sample 3 281,700
Standard sample 4 144,000
Standard sample 5 59,800
Standard sample 6 28,900
Standard sample 7 13,300
Standard sample 8 5,720
Standard sample 9 1,936
Standard sample 10 1,020
When the polymer (1) and the polymer (2) are mixed, the GPC elution curve of the polymer (1) alone is measured in advance to determine the weight average molecular weight, and the polymer (1) is present. The GPC elution curve in which the polymer (1) and the polymer (2) are mixed by multiplying the GPC elution curve of the polymer (1) by the ratio (the charge ratio was used in the present application) and the detection intensity at the elution time. By subtracting from GPC, a GPC elution curve of the polymer (2) alone is obtained. From this, the weight average molecular weight of the polymer (2) was determined.

また、GPC溶出曲線でのピーク重量平均分子量(Mp)をGPC溶出曲線と検量線から求める。 Mpの1/5以下の重量平均分子量成分の含有量は次のように求める。   Further, the peak weight average molecular weight (Mp) in the GPC elution curve is determined from the GPC elution curve and the calibration curve. The content of a weight average molecular weight component of 1/5 or less of Mp is determined as follows.

まず、メタクリル樹脂のGPC溶出曲線におけるエリア面積を求める。GPC溶出曲線におけるエリア面積とは図1に示す斜線部分を指す。具体的な定め方は次のように行う。まず、GPC測定で得られた溶出時間とRI(示差屈折検出器)による検出強度から得られるGPC溶出曲線に対し、測定機器で得られる自動で引かれるベースラインを引いてGPC溶出曲線と交わる点Aと点Bを定める。点Aは、溶出時間初期のGPC溶出曲線とベースラインとが交わる点である。点Bは、原則として重量平均分子量が500以上でベースラインと溶出曲線が交わる位置とする。もし交わらなかった場合は重量平均分子量が500での溶出時間のRI検出強度の値を点Bとする。点A、B間のGPC溶出曲線とベースラインで囲まれた斜線部分がGPC溶出曲線におけるエリアである。この面積が、GPC溶出曲線におけるエリア面積である。本願では高分子量成分から溶出されるカラムを用いるため、溶出時間初期(点A側)に高分子量成分が観測され、溶出時間終期(点B側)に低分子量成分が観測される。   First, the area area in the GPC elution curve of methacrylic resin is obtained. The area area in the GPC elution curve indicates the hatched portion shown in FIG. The specific method is as follows. First, the GPC elution curve obtained from the GPC elution curve obtained from the GPC measurement and the detection intensity by RI (differential refraction detector) is crossed with the GPC elution curve by subtracting the automatically drawn baseline obtained by the measuring instrument. Define A and point B. Point A is a point where the GPC elution curve at the beginning of the elution time and the baseline intersect. Point B is a position where, as a general rule, the weight average molecular weight is 500 or more and the base line and the elution curve intersect. If they do not intersect, point B is the RI detection intensity value of the elution time when the weight average molecular weight is 500. The hatched portion surrounded by the GPC elution curve and the base line between points A and B is the area in the GPC elution curve. This area is the area of the GPC elution curve. In the present application, since a column eluted from a high molecular weight component is used, a high molecular weight component is observed at the beginning of the elution time (point A side), and a low molecular weight component is observed at the end of the elution time (point B side).

GPC溶出曲線におけるエリア面積を、Mpの1/5の重量平均分子量に対応する溶出時間で分割し、Mpの1/5以下の重量平均分子量成分に対応するGPC溶出曲線におけるエリア面積を求める。その面積と、GPC溶出曲線におけるエリア面積の比から、Mpの1/5以下の重量平均分子量の比率を求めた。
3.メタクリル樹脂の組成分析
メタクリル樹脂の組成分析は、熱分解ガスクロマトグラフィー及び質量分析方法で行った。
The area area in the GPC elution curve is divided by the elution time corresponding to the weight average molecular weight of 1/5 of Mp, and the area area in the GPC elution curve corresponding to the weight average molecular weight component of 1/5 or less of Mp is obtained. From the ratio of the area and the area of the GPC elution curve, the ratio of the weight average molecular weight of 1/5 or less of Mp was determined.
3. Composition analysis of methacrylic resin The composition analysis of methacrylic resin was performed by pyrolysis gas chromatography and mass spectrometry.

熱分解装置:FRONTIER LAB製Py−2020D
カラム:DB−1(長さ30m、内径0.25mm、液相厚0.25μm)
カラム温度プログラム:40℃で5min保持後、50℃/minの速度で320℃まで昇温した後、320℃を4.4分保持
熱分解炉温度:550℃
カラム注入口温度:320℃
ガスクロマトグラフィー:Agilent製GC6890
キャリアー:純窒素、流速1.0ml/min
注入法:スプリット法(スプリット比1/200)
検出器:日本電子製質量分析装置Automass Sun
検出方法:電子衝撃イオン化法(イオン源温度:240℃、インターフェース温度:320℃)
サンプル:メタクリル樹脂0.1gのクロロホルム10cc溶液を10μl
Pyrolysis device: PY-2020D made by FRONTIER LAB
Column: DB-1 (length 30 m, inner diameter 0.25 mm, liquid phase thickness 0.25 μm)
Column temperature program: held at 40 ° C. for 5 minutes, then heated to 320 ° C. at a rate of 50 ° C./min, then held at 320 ° C. for 4.4 minutes Pyrolysis furnace temperature: 550 °
Column inlet temperature: 320 ° C
Gas chromatography: Agilent GC6890
Carrier: pure nitrogen, flow rate 1.0 ml / min
Injection method: Split method (split ratio 1/200)
Detector: JEOL mass spectrometer Automass Sun
Detection method: Electron impact ionization method (ion source temperature: 240 ° C., interface temperature: 320 ° C.)
Sample: 10 μl of 10 g chloroform solution of 0.1 g methacrylic resin

サンプルを熱分解装置用白金試料カップに採取し、150℃で2時間真空乾燥後、試料カップを熱分解炉に入れ、上記条件でサンプルの組成分析を行った。メタクリル酸メチル及びアクリル酸メチルのトータルイオンクロマトグラフィー(TIC)上のピーク面積と以下の標準サンプルの検量線を元にメタクリル樹脂の組成比を求めた。
検量線用標準サンプルの作成:メタクリル酸メチル,アクリル酸メチルの割合が(メタクリル酸メチル/アクリル酸メチル)=(100%/0%)、(98%/2%)、(94%/6%)、(90%/10%)(80%/20%)の合計5種の溶液各50gにラウロイルパーオキサイド0.25%、n−オクチルメルカプタン0.25%添加した。この各混合溶液を100ccのガラスアンプル瓶にいれて、空気を窒素に置換して封じた。そのガラスアンプル瓶を80℃の水槽に3時間、その後150℃のオーブンに2時間入れた。室温まで冷却後、ガラスを砕いて中のメタクリル樹脂を取り出し、組成分析を行った。検量線用標準サンプルの測定によって得られた(アクリル酸メチルの面積値)/(メタクリル酸メチルの面積値+アクリル酸メチルの面積値)及びアクリル酸メチルの仕込み比率とのグラフを検量線として用いた。
A sample was collected in a platinum sample cup for a thermal decomposition apparatus, vacuum-dried at 150 ° C. for 2 hours, and then the sample cup was placed in a thermal decomposition furnace, and composition analysis of the sample was performed under the above conditions. The composition ratio of the methacrylic resin was determined based on the peak area on total ion chromatography (TIC) of methyl methacrylate and methyl acrylate and the calibration curve of the following standard sample.
Preparation of standard sample for calibration curve: The ratio of methyl methacrylate and methyl acrylate is (methyl methacrylate / methyl acrylate) = (100% / 0%), (98% / 2%), (94% / 6% ), (90% / 10%) (80% / 20%) were added to 50 g of each of the five solutions in total, 0.25% lauroyl peroxide and 0.25% n-octyl mercaptan. Each of these mixed solutions was put into a 100 cc glass ampule bottle, and the air was replaced with nitrogen and sealed. The glass ampoule bottle was placed in an 80 ° C. water bath for 3 hours and then in an oven at 150 ° C. for 2 hours. After cooling to room temperature, the glass was crushed and the methacrylic resin inside was taken out and subjected to composition analysis. A graph of (methyl acrylate area value) / (methyl methacrylate area value + methyl acrylate area value) and methyl acrylate charge ratio obtained by measurement of a standard sample for a calibration curve is used as a calibration curve. It was.

4.メタクリル樹脂の高分子量成分及び低分子量成分におけるメタクリル酸メチルに共重合可能なビニル単量体の組成比率の測定
本測定では累積エリア面積0〜2%である分子量成分と、98〜100%である分子量成分の組成分析を行う。GPC溶出曲線におけるエリア面積の累積エリア面積(%)は、図1に示す点Aを累積エリア面積(%)の基準である0%とし、溶出時間の終期に向かい、各溶出時間に対応する検出強度が累積して、GPC溶出曲線におけるエリア面積が形成されるという見方をする。累積エリア面積の具体例を図2に示す。この図2において、ある溶出時間におけるベースライン上の点を点X,GPC溶出曲線上の点を点Yとする。曲線AXと、線分AB、線分XYで囲まれる面積の、GPC溶出曲線におけるエリア面積に対する割合を、ある溶出時間での累積エリア面積(%)の値とする。 累積エリア面積0〜2%である分子量成分と、98〜100%である分子量成分を、対応する溶出時間を基にカラムから分取して、その組成分析を行った。測定と、各成分の分取は、2.と同様の装置、条件で行った。
分取を2回行い、分取したサンプルのうち10μlを3.で用いた熱分解ガスクロ分析及び質量分析方法の熱分解装置用白金試料カップに採取し、100℃の真空乾燥機に40分乾燥した。3.と同様の条件で分取した累積エリア面積に対応するメタクリル樹脂の組成を求めた。
4). Measurement of composition ratio of vinyl monomer copolymerizable with methyl methacrylate in high molecular weight component and low molecular weight component of methacrylic resin In this measurement, the molecular weight component has a cumulative area of 0-2% and 98-100% Perform composition analysis of molecular weight components. The cumulative area area (%) of the area area in the GPC elution curve is point 0 shown in FIG. 1 being 0%, which is the standard for the cumulative area area (%), toward the end of the elution time, and detection corresponding to each elution time. The view is that the intensity accumulates and an area area in the GPC elution curve is formed. A specific example of the accumulated area area is shown in FIG. In FIG. 2, a point on the baseline at a certain elution time is a point X, and a point on the GPC elution curve is a point Y. The ratio of the area enclosed by the curve AX, the line segment AB, and the line segment XY to the area area in the GPC elution curve is the value of the accumulated area area (%) at a certain elution time. A molecular weight component having a cumulative area of 0 to 2% and a molecular weight component being 98 to 100% were separated from the column based on the corresponding elution time, and the composition analysis was performed. Measurement and fractionation of each component are as follows. The same apparatus and conditions were used.
Perform two fractions and 10 μl of the fractioned sample is 3. The sample was collected in a platinum sample cup for a pyrolysis apparatus of the pyrolysis gas chromatography analysis and mass spectrometry method used in the above, and dried in a vacuum dryer at 100 ° C. for 40 minutes. 3. The composition of the methacrylic resin corresponding to the accumulated area area fractionated under the same conditions as above was determined.

[III.樹脂ビーズの特性測定]
5.粒径測定
篩を使用して樹脂ビーズの粒径分布測定及び分級処理を実施した。篩の目の大きさは上から、0.5mm、0.425mm、0.355mm、0.3mm、0.25mm、0.15mmで一番下に受け皿を設置して振とう機で振動させて分離した。
6.溶解試験
スターラー付きウォーターバスに水を入れ、45℃に加熱する。110ccネジ口瓶(直径50mm)にメタクリル系樹脂16g、メタクリル酸メチル単量体64g(メタクリル系樹脂20wt%の場合)と回転子を入れ、ネジ口瓶の蓋を閉める。ウォーターバスにネジ口瓶を入れ、スターラーを回転させたら測定開始。瓶中のメタクリル系樹脂組成物がメタクリル酸メチルに溶けるまでの時間を測定する。
7.シラップの粘度測定
測定機器はB型粘度計、ロータはSB2号を使用する。6.の方法で作製したシラップを室温(23±3℃)まで撹拌しながら冷却する。シラップ液を40cc測定管に量り取る。測定管を粘度計に設置して粘度測定を開始。ロータの回転数60rpmで粘度を測定する。(60rpmで測定範囲を越えた場合は回転数を落として測定する)ロータの回転数6rpmの粘度も併せて測定し、粘度の数値を比較して精度を見極める。
8.ペレタイズ
重合で得られたメタクリル樹脂ビーズについて2軸押出機を用い、樹脂温度240℃〜250℃で押出してペレットを得た。
9.VICAT軟化温度の測定
成形機:30tプレス成形機
試験片:厚み4mm
測定条件:ISO 306 B50に準拠
上記条件でVICAT軟化温度を求めた。
[III. Measurement of characteristics of resin beads]
5. Particle size measurement The particle size distribution of the resin beads was measured and classified using a sieve. The size of the mesh of the sieve is 0.5mm, 0.425mm, 0.355mm, 0.3mm, 0.25mm, 0.15mm from the top, and put a saucer at the bottom and vibrate with a shaker. separated.
6). Dissolution test Place water in a water bath with a stirrer and heat to 45 ° C. A 110 cc screw bottle (diameter 50 mm) is charged with 16 g of methacrylic resin, 64 g of methyl methacrylate monomer (in the case of 20 wt% methacrylic resin) and a rotor, and the lid of the screw bottle is closed. Put the screw bottle in the water bath and start the measurement after rotating the stirrer. The time until the methacrylic resin composition in the bottle is dissolved in methyl methacrylate is measured.
7). Viscosity measurement of syrup A B-type viscometer is used as a measuring instrument and SB2 is used as a rotor. 6). The syrup prepared by the method is cooled to room temperature (23 ± 3 ° C.) with stirring. Weigh syrup solution into a 40 cc measuring tube. Viscosity measurement is started by installing a measuring tube on the viscometer. Viscosity is measured at a rotor speed of 60 rpm. (When the measurement range is exceeded at 60 rpm, the rotational speed is decreased.) The viscosity at the rotational speed of the rotor of 6 rpm is also measured, and the numerical value of the viscosity is compared to determine the accuracy.
8). The methacrylic resin beads obtained by pelletizing polymerization were extruded at a resin temperature of 240 ° C. to 250 ° C. using a twin screw extruder to obtain pellets.
9. Measurement of VICAT softening temperature Molding machine: 30t press molding machine Test piece: 4mm thickness
Measurement conditions: conforming to ISO 306 B50 The VICAT softening temperature was determined under the above conditions.

[実施例1〜13、比較例1〜9]
従来、シラップの増粘剤として比較例1の樹脂14がよく用いられている。シラップの組成は、メタクリル酸メチル単量体が80wt%、樹脂14が20wt%で、シラップの粘度は約400mPa・sである。従来の人工大理石の機械強度、耐久性を維持したまま、製造コストを削減させたシラップについて開発した。
(耐熱性)
メタクリル樹脂の耐熱性は、メタクリル酸メチルに共重合可能な他のビニル単量体の量が少ないほど、高くなる傾向にある。(VICAT軟化温度比較:比較例1が105℃、比較例2が110℃)増粘剤であるメタクリル樹脂の耐熱性が人工大理石製品に影響する可能性がある。したがって、より耐熱性の高い方が好ましいと考えられる。
また、比較例1,2から耐熱性が高いほど、溶解時間が長くなると考えられる。比較例2、実施例7から本発明の増粘剤は同程度の耐熱性でも溶解性が向上していると考えられる。
(粒径測定)
表4に篩による粒径分布を示す。10Lビーカー品の方が全体的な粒径が小さくなっている。
(樹脂濃度と溶液粘度)
表5に樹脂濃度と溶液粘度の結果を示す。従来のシラップは、20wt%の比較例1の樹脂14をメタクリル酸メチル80wt%に投入し、平均45℃で攪拌しながら溶かしていることが多い。粘度は温度約23℃で約400mPa・sである。他の樹脂のいくつかを20wt%の濃度で溶かしたが、樹脂によって粘度が異なることが分かった。分子量と比較すると、分子量が高いほど、シラップの粘度が高くなっている。そこで分子量を基準に樹脂の濃度を設定した。
[Examples 1 to 13, Comparative Examples 1 to 9]
Conventionally, the resin 14 of Comparative Example 1 is often used as a syrup thickener. The composition of syrup is 80 wt% methyl methacrylate monomer and 20 wt% resin 14, and the viscosity of syrup is about 400 mPa · s. We have developed a syrup that reduces manufacturing costs while maintaining the mechanical strength and durability of conventional artificial marble.
(Heat-resistant)
The heat resistance of the methacrylic resin tends to increase as the amount of other vinyl monomers copolymerizable with methyl methacrylate decreases. (VICAT softening temperature comparison: Comparative Example 1 is 105 ° C., Comparative Example 2 is 110 ° C.) The heat resistance of the methacrylic resin that is a thickener may affect the artificial marble product. Therefore, it is considered that higher heat resistance is preferable.
Moreover, it is considered from Comparative Examples 1 and 2 that the higher the heat resistance, the longer the dissolution time. From Comparative Example 2 and Example 7, it is considered that the thickener of the present invention has improved solubility even with the same degree of heat resistance.
(Particle size measurement)
Table 4 shows the particle size distribution by the sieve. The 10 L beaker product has a smaller overall particle size.
(Resin concentration and solution viscosity)
Table 5 shows the results of resin concentration and solution viscosity. In conventional syrup, 20 wt% of the resin 14 of Comparative Example 1 is often added to 80 wt% of methyl methacrylate and dissolved while stirring at an average of 45 ° C. The viscosity is about 400 mPa · s at a temperature of about 23 ° C. Some of the other resins were dissolved at a concentration of 20 wt%, but it was found that the viscosity varies depending on the resin. Compared with the molecular weight, the higher the molecular weight, the higher the viscosity of the syrup. Therefore, the concentration of the resin was set based on the molecular weight.

分子量 90000付近:樹脂濃度26wt%
分子量110000付近:樹脂濃度24wt%
分子量145000付近:樹脂濃度22wt%
分子量195000付近:樹脂濃度20wt%
分子量235000付近:樹脂濃度18.5wt%
分子量260000付近:樹脂濃度18wt%
分子量400000付近:樹脂濃度15wt%
(重合方法による影響)
比較例1〜3は従来から一般的に行われている一回の重合で作製した樹脂である。実施例1〜10は2回の懸濁重合を行って作製した樹脂である。アクリル酸メチルの量と分子量の近い樹脂を比較するといずれも実施例の方の溶解時間が短い。よって、一回重合品より二回重合品の方の溶解特性が優れていると考えられる。
(溶解時間比較)
表4にシラップ粘度を一定にした時の各粒径による溶解時間を示す。粒径が小さいほど溶解時間が短い。本発明の目的のひとつとして溶解時間の短縮があげられる。従来品の溶解時間より短縮したい。そこで溶解時間の目標値として従来品の溶解時間から10分以上短縮する事とした。実施例1〜10はいずれも目的の溶解特性を達成している。そこで、実施例と比較例との比較で溶解特性の評価を行った。
(メタクリル酸メチルに共重合可能な他のビニル単量体量と溶解時間)
表4において、アクリル酸メチル0.5wt%の比較例4の溶解時間は比較例1の溶解時間より長い。アクリル酸メチル1.2wt%の実施例7の溶解時間は比較例1の溶解時間より10分以上短い。したがって、アクリル酸メチルの量が約1wt%以上で目的の溶解時間になると考えられる。
(分子量と溶解時間)
表4において分子量の高い比較例6は目的の溶解特性を達成していない。比較例5は分子量が少なく、人工大理石の強度低下が考えられる。実施例3、9はいずれも目的の溶解特性を達成している。目的の溶解特性を達成するための分子量の設定値は約110000〜400000と考えられる。
(Mw/Mn比較)
重合体(1)と重合体(2)の分子量の差が大きいほど、Mw/Mnが大きくなっている。これは分子量の分布が広くなっていることを示していると考えられる。Mw/Mnが2.5の実施例4の溶解性は目的を達成している。Mw/Mnが2.2の実施例12は目的を達成していない。よって、Mw/Mnとしては2.3以上が好ましい。
(Mp比較)
重合体(1)と重合体(2)の分子量の差が大きいほど、分子量の分布が広くなり、GPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分量が多くなると考えられる。比較例7のGPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分量は7.6で、比較例7の溶解性は目的を達成していない。実施例5のGPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分量は1.8で、目的の溶解性を達成している。
また、GPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分量が30%より増えた場合、比較例8のように低分子量の割合が増えて機械強度の低下が懸念される。
以上より、GPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分量は8〜30%が好ましい。
(MhとMlの比較)
メタクリル樹脂のGPC溶出曲線における累積エリア面積(%)が0〜2%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Mh(wt%)と累積エリア面積(%)が98〜100%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Ml(wt%)とする。
表3において、MhとMlの量がほぼ同じ実施例11とMhの方が多い実施例10を比較すると、実施例10の方の溶解性が高い。
実施例7はMh−Mlが0.9%であり、MhとMlの差は0.8以上が好ましいと考えられる。

(MahとMal)
重合体(1)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率をMal(wt%)、重合体(2)のメタクリル酸メチルに共重合可能な他のビニル単量体単位の組成比率をMah(wt%)とする。
MhとMlの場合と同様で、高分子量であるMahの量が多い方と溶解性が高いと考えられる。実施例7、10、11より、MahとMalの差は0.8以上が好ましいと考えられる。(重合体(1)の分子量)
重合体(1)の分子量を7000に設定した実施例12はVICAT軟化温度が102℃で、アクリル酸メチル量が同じ実施例3の105℃より温度が低下している。分子量も低めで人工大理石とした時の物性特性の低下が懸念される。60000に設定した比較例9は溶解特性が目的に達していない。したがって、重合体(1)の分子量の範囲は10000〜50000が好ましいと考えられる。
(重合体(2)の分子量)
重合体(2)の分子量を100000に設定した比較例5は全体の分子量が8.1万で樹脂の使用量が3割程度増える。700000に設定した比較例6は溶解特性が目的に達していない。重合体(2)の分子量の範囲は110000〜60000が好ましいと考えられる。
(重合体(1)と重合体(2)の比率)
表4において、重合体(1)の比率を5wt%に設定した比較例7と、35wt%に設定した比較例8は共に目的の溶解特性の達していない。重合体(1)の比率を10wt%に設定した実施例5と、27%に設定した実施例6は共に目的の溶解特性に達している。したがって、重合体(1)の比率は7〜30wt%が良いと考えられる。
(重合体(1)の分子量を高分子量にした場合)
実施例13は重合体(1)の分子量を高く設定した場合である。一回重合品である比較例3と同程度の溶解特性で、二回重合の効果を得られていない。したがって、重合体(1)の分子量を低く設定する方が好ましいと考えられる。
(樹脂の粒径)
表においていずれの樹脂も平均粒径が0.05〜0.5mmの範囲に入っている。
Molecular weight around 90000: Resin concentration 26wt%
Molecular weight around 110000: Resin concentration 24wt%
Molecular weight around 145000: Resin concentration 22wt%
Molecular weight around 195000: Resin concentration 20wt%
Molecular weight around 235,000: Resin concentration 18.5 wt%
Molecular weight around 260000: Resin concentration 18wt%
Molecular weight around 400,000: Resin concentration 15wt%
(Effect of polymerization method)
Comparative Examples 1 to 3 are resins prepared by a single polymerization that has been conventionally performed. Examples 1 to 10 are resins prepared by performing suspension polymerization twice. Comparing the amount of methyl acrylate with a resin having a similar molecular weight, the dissolution time of the examples is shorter. Therefore, it is considered that the twice-polymerized product has better solubility characteristics than the once-polymerized product.
(Dissolution time comparison)
Table 4 shows the dissolution time for each particle size when the syrup viscosity is kept constant. The smaller the particle size, the shorter the dissolution time. One of the objects of the present invention is to shorten the dissolution time. I want to shorten the melting time of the conventional product. Therefore, it was decided to shorten the melting time target value by 10 minutes or more from the melting time of the conventional product. Examples 1-10 all achieve the desired dissolution characteristics. Therefore, the dissolution characteristics were evaluated by comparing the examples and comparative examples.
(Amount of other vinyl monomers copolymerizable with methyl methacrylate and dissolution time)
In Table 4, the dissolution time of Comparative Example 4 with 0.5 wt% methyl acrylate is longer than the dissolution time of Comparative Example 1. The dissolution time of Example 7 with 1.2 wt% methyl acrylate is shorter than the dissolution time of Comparative Example 1 by 10 minutes or more. Therefore, it is considered that the target dissolution time is reached when the amount of methyl acrylate is about 1 wt% or more.
(Molecular weight and dissolution time)
In Table 4, Comparative Example 6 having a high molecular weight does not achieve the desired dissolution characteristics. In Comparative Example 5, the molecular weight is small, and the strength of the artificial marble can be reduced. Examples 3 and 9 both achieve the desired dissolution characteristics. The set value of the molecular weight for achieving the desired dissolution property is considered to be about 110000-400000.
(Mw / Mn comparison)
Mw / Mn increases as the difference in molecular weight between the polymer (1) and the polymer (2) increases. This is considered to indicate that the molecular weight distribution is widened. The solubility of Example 4 with Mw / Mn of 2.5 achieves the goal. Example 12 with Mw / Mn of 2.2 does not achieve the objective. Therefore, Mw / Mn is preferably 2.3 or more.
(Mp comparison)
The greater the difference in molecular weight between the polymer (1) and the polymer (2), the wider the molecular weight distribution, and the weight average molecular weight component amount that is 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve. Is expected to increase. The weight average molecular weight component amount of 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve of Comparative Example 7 is 7.6, and the solubility of Comparative Example 7 does not achieve the purpose. The weight average molecular weight component amount of 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve of Example 5 is 1.8, and the target solubility is achieved.
In addition, when the weight average molecular weight component amount of 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve is increased from 30%, the ratio of the low molecular weight is increased as in Comparative Example 8, and the mechanical strength is increased. There is concern about the decline.
As mentioned above, 8-30% of the weight average molecular weight component amount of 1/5 or less of the peak weight average molecular weight (Mp) obtained from a GPC elution curve is preferable.
(Comparison of Mh and Ml)
Average composition ratio Mh of other vinyl monomer units copolymerizable with methyl methacrylate in methacrylic resin having a weight average molecular weight component having a cumulative area (%) in the GPC elution curve of methacrylic resin of 0 to 2%. (Wt%) and the average composition ratio Ml (wt) of other vinyl monomer units copolymerizable with methyl methacrylate in a methacrylic resin having a weight average molecular weight component having a cumulative area area (%) of 98 to 100% %).
In Table 3, when comparing Example 11 having almost the same amounts of Mh and Ml and Example 10 having more Mh, the solubility of Example 10 is higher.
In Example 7, Mh-Ml is 0.9%, and it is considered that the difference between Mh and Ml is preferably 0.8 or more.

(Mah and Mal)
The composition ratio of the other vinyl monomer copolymerizable with the methyl methacrylate of the polymer (1) is Mal (wt%), and the other vinyl monomer copolymerizable with the methyl methacrylate of the polymer (2). The composition ratio of the unit is Mah (wt%).
As in the case of Mh and Ml, the higher the amount of high molecular weight Mah, the higher the solubility. From Examples 7, 10, and 11, it is considered that the difference between Mah and Mal is preferably 0.8 or more. (Molecular weight of polymer (1))
In Example 12 in which the molecular weight of the polymer (1) was set to 7000, the VICAT softening temperature was 102 ° C., and the temperature was lower than 105 ° C. in Example 3 where the amount of methyl acrylate was the same. There is concern that the physical properties of the artificial marble may be lowered when the molecular weight is low. In Comparative Example 9 set to 60000, the dissolution characteristics do not reach the purpose. Therefore, it is considered that the molecular weight range of the polymer (1) is preferably 10,000 to 50,000.
(Molecular weight of polymer (2))
In Comparative Example 5 in which the molecular weight of the polymer (2) is set to 100,000, the total molecular weight is 81,000 and the amount of resin used is increased by about 30%. In Comparative Example 6 set to 700,000, the dissolution characteristics do not reach the purpose. It is considered that the molecular weight range of the polymer (2) is preferably 110000 to 60000.
(Ratio of polymer (1) to polymer (2))
In Table 4, Comparative Example 7 in which the ratio of the polymer (1) is set to 5 wt% and Comparative Example 8 in which the ratio of polymer (1) is set to 35 wt% do not reach the intended dissolution characteristics. Example 5 in which the ratio of the polymer (1) was set to 10 wt% and Example 6 in which the ratio was set to 27% both achieved the desired dissolution characteristics. Therefore, it is considered that the ratio of the polymer (1) is preferably 7 to 30 wt%.
(When the molecular weight of the polymer (1) is high)
Example 13 is a case where the molecular weight of the polymer (1) is set high. The effect of double polymerization is not obtained with the same dissolution characteristics as those of Comparative Example 3 which is a single polymerization product. Therefore, it is considered preferable to set the molecular weight of the polymer (1) low.
(Particle size of resin)
In the table, all resins have an average particle size in the range of 0.05 to 0.5 mm.

Figure 0005131956
Figure 0005131956

Figure 0005131956
Figure 0005131956

Figure 0005131956
Figure 0005131956

Figure 0005131956
Figure 0005131956

Figure 0005131956
Figure 0005131956

本発明の増粘剤は、従来の人工大理石の機械強度、耐久性を損なうことなく、シラップの作製時間の短縮化を実現するものである。シラップの生産性を向上させると共に、メタクリル樹脂の使用量を減らすことで生産コストを下げることが可能で、シラップ増粘剤用途に好適である。   The thickener of the present invention realizes shortening of syrup production time without impairing the mechanical strength and durability of conventional artificial marble. While improving the productivity of syrup, it is possible to reduce the production cost by reducing the amount of methacrylic resin used, which is suitable for syrup thickener applications.

本発明におけるメタクリル樹脂のGPCエリアに関する説明図である。 グラフの縦軸はRI検出強度(mV)、グラフの横軸の下部は溶出時間(min.)、上部はGPCエリア面積全体に対する、累積エリア面積(%)を示す。It is explanatory drawing regarding the GPC area of the methacryl resin in this invention. The vertical axis of the graph shows RI detection intensity (mV), the lower part of the horizontal axis of the graph shows elution time (min.), And the upper part shows the cumulative area area (%) relative to the entire GPC area area. 累積エリア面積の一例を示した図である。It is the figure which showed an example of the accumulation area area. GPC溶出曲線測定グラフ上での、累積エリア面積0〜2%と、累積エリア面積98〜100%の位置を示す概略図である。It is the schematic which shows the position of 0-2% of accumulation area areas, and 98-100% of accumulation area areas on a GPC elution curve measurement graph.

符号の説明Explanation of symbols

1.溶出曲線
2.ベースライン
1. Elution curve Base line

Claims (6)

メタクリル酸メチル単量体単位99〜80wt%及び少なくとも1種のメタクリル酸メチルに共重合可能な他のビニル単量体単位1〜20wt%を含むメタクリル樹脂であって、該メタクリル樹脂のゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量が100,000〜400,000であり、GPC溶出曲線から得られるピーク重量平均分子量(Mp)の1/5以下の重量平均分子量成分が該メタクリル樹脂成分に対し8〜30%含まれているメタクリル樹脂からなることを特徴とする増粘剤。 A methacrylic resin comprising 99 to 80 wt% of methyl methacrylate monomer units and 1 to 20 wt% of other vinyl monomer units copolymerizable with at least one methyl methacrylate, the gel permeation of the methacrylic resin The weight average molecular weight measured by chromatography (GPC) is 100,000 to 400,000, and the methacrylic resin component is 1/5 or less of the peak weight average molecular weight (Mp) obtained from the GPC elution curve. A thickener comprising 8 to 30% methacrylic resin. 上記メタクリル樹脂の平均粒径が0.05〜0.5mmであるメタクリル樹脂であり、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量Mwと数平均分子量Mnが式(1)の関係であるメタクリル樹脂からなることを特徴とする請求項1記載の増粘剤。
Mw/Mn≧2.3・・・・・・・・・・・・・(1)
The methacrylic resin has an average particle diameter of 0.05 to 0.5 mm, and the weight average molecular weight Mw and the number average molecular weight Mn measured by gel permeation chromatography (GPC) are in the relationship of the formula (1). 2. The thickener according to claim 1, comprising a methacrylic resin.
Mw / Mn ≧ 2.3 (1)
上記メタクリル樹脂のGPC溶出曲線における累積エリア面積(%)が0〜2%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Mh(wt%)と累積エリア面積(%)が98〜100%にある重量平均分子量成分を有するメタクリル樹脂中のメタクリル酸メチルに共重合可能な他のビニル単量体単位の平均組成比率Ml(wt%)が式(2)の関係であるメタクリル樹脂からなることを特徴とする請求項1又は2記載の増粘剤。
(Mh−0.8)≧Ml≧0・・・・・・・・・・・・・(2)
Average composition ratio of other vinyl monomer units copolymerizable with methyl methacrylate in the methacrylic resin in the methacrylic resin having a weight-average molecular weight component having a cumulative area (%) in the GPC elution curve of the methacrylic resin of 0 to 2%. Average composition ratio Ml of other vinyl monomer units copolymerizable with methyl methacrylate in a methacrylic resin having a weight average molecular weight component with Mh (wt%) and a cumulative area area (%) of 98 to 100% The thickener according to claim 1 or 2, wherein the thickener is a methacrylic resin having the relationship of the formula (2).
(Mh−0.8) ≧ Ml ≧ 0 (2)
請求項1記載のメタクリル樹脂からなる増粘剤の製造方法であって、まずメタクリル酸メチル単量体70〜100wt%とメタクリル酸メチルに共重合可能な他のビニル単量体30〜0wt%を重合してゲルパーミエーションクロマトグラフィーで測定した重量平分均子量が10,000〜50,000である重合体(1)を該メタクリル樹脂全体に対し7〜30wt%となるように重合した後、重合体(1)の存在下で重合を継続して重量平均分子量が110,000〜600,000である重合体(2)を該メタクリル樹脂全体に対し93〜70wt%となるように重合することを特徴とするメタクリル樹脂からなる増粘剤の製造方法。 It is a manufacturing method of the thickener which consists of a methacryl resin of Claim 1, Comprising: First, 70-100 wt% of methyl methacrylate monomers and 30-0 wt% of other vinyl monomers copolymerizable to methyl methacrylate are added. After polymerizing and polymerizing the polymer (1) having a weight average weight of 10,000 to 50,000 measured by gel permeation chromatography so as to be 7 to 30 wt% based on the entire methacrylic resin, The polymerization is continued in the presence of the polymer (1), and the polymer (2) having a weight average molecular weight of 110,000 to 600,000 is polymerized to 93 to 70 wt% with respect to the entire methacrylic resin. A method for producing a thickener comprising a methacrylic resin. 上記メタクリル樹脂の重量平均分子量が100,000〜400,000で、平均粒径が0.05〜0.5mmであるメタクリル樹脂からなることを特徴とする請求項4記載の増粘剤の製造方法。 5. The method for producing a thickener according to claim 4, wherein the methacrylic resin comprises a methacrylic resin having a weight average molecular weight of 100,000 to 400,000 and an average particle diameter of 0.05 to 0.5 mm. . 上記重合体(1)のメタクリル酸メチルに共重合可能な他のビニル単量体の組成比率Mal(wt%)と重合体(2)のメタクリル酸メチルに共重合可能な他のビニル単量体単位の組成比率Mah(wt%)が式(3)の関係を有するメタクリル樹脂からなることを特徴とする請求項4又は5記載の増粘剤の製造方法。
(Mah−0.8)≧Mal≧0・・・・・・・・・・・・・・(3)
Composition ratio Mal (wt%) of other vinyl monomer copolymerizable with methyl methacrylate of polymer (1) and other vinyl monomer copolymerizable with methyl methacrylate of polymer (2) The method for producing a thickener according to claim 4 or 5, wherein the unit composition ratio Mah (wt%) is made of a methacrylic resin having a relationship of the formula (3).
(Mah-0.8) ≧ Mal ≧ 0 (3)
JP2007006624A 2007-01-16 2007-01-16 Thickener and method for producing the same Active JP5131956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007006624A JP5131956B2 (en) 2007-01-16 2007-01-16 Thickener and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007006624A JP5131956B2 (en) 2007-01-16 2007-01-16 Thickener and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008174574A JP2008174574A (en) 2008-07-31
JP5131956B2 true JP5131956B2 (en) 2013-01-30

Family

ID=39701833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007006624A Active JP5131956B2 (en) 2007-01-16 2007-01-16 Thickener and method for producing the same

Country Status (1)

Country Link
JP (1) JP5131956B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5840355B2 (en) * 2009-10-22 2016-01-06 旭化成ケミカルズ株式会社 Acrylic resin and molded body
JP5763335B2 (en) * 2009-12-25 2015-08-12 旭化成ケミカルズ株式会社 Injection molded body, method for producing methacrylic resin for melt molding used for molding injection molded body, methacrylic resin composition for injection molding
JP5615163B2 (en) * 2009-12-25 2014-10-29 旭化成ケミカルズ株式会社 Acrylic resin production method
JP5642979B2 (en) * 2010-02-16 2014-12-17 旭化成ケミカルズ株式会社 Methacrylic resin composition
JP7413143B2 (en) 2019-07-18 2024-01-15 旭化成株式会社 thickener

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1155992A (en) * 1979-09-17 1983-10-25 Jean Dupre Thickening agent for aqueous compositions
JPS5834876A (en) * 1981-08-26 1983-03-01 Nippon Zeon Co Ltd Acrylic adhesive composition
JPS60231715A (en) * 1984-04-12 1985-11-18 Dainippon Ink & Chem Inc High-gel, particulate polymer and its production
CN1259975A (en) * 1997-05-14 2000-07-12 三菱丽阳株式会社 (Meth) acrylic resin composition for thermoset injection molding, process for preparing same, and process for producing moldings of same
JP3504215B2 (en) * 1999-05-19 2004-03-08 三菱レイヨン株式会社 Processing aid, vinyl chloride resin composition using the same, and method for producing molded article using the same
JP4519421B2 (en) * 2003-05-19 2010-08-04 旭化成ケミカルズ株式会社 Resin composition and vehicle lamp lens using the same
JP5026671B2 (en) * 2005-01-14 2012-09-12 三菱レイヨン株式会社 Acrylic resin composition and vehicle member containing the composition
FR2892306A1 (en) * 2005-10-21 2007-04-27 Oreal COSMETIC COMPOSITION COMPRISING A STATISTICAL POLYMER WITH A LINEAR MAIN CHAIN OF ETHYLENE NATURE

Also Published As

Publication number Publication date
JP2008174574A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
EP1953177B1 (en) Methacrylic resin and method for producing same
RU2418828C2 (en) Acrylic mixtures
JP5674325B2 (en) Molded product obtained using methacrylic resin composition
JP5131956B2 (en) Thickener and method for producing the same
JP7123471B2 (en) Thermoplastic resin composition
JPH11152387A (en) Styrenic resin composition having chemical resistance and heat resistance
CN106800619A (en) A kind of polymethyl methacrylate and preparation method thereof
BR112017003999B1 (en) MOLDING COMPOSITION AND MOLDED ARTICLE
JP5247314B2 (en) Methacrylic resin composition
JP2012111860A (en) Methacrylic resin composition for vehicle member
TWI824583B (en) Tackifier and adhesive compositions
JP2004339442A (en) Resin composition and lamp lens for vehicle produced by using the same
CN102964506B (en) Nano zinc dioxide impact-resistant modified acrylate polymer and preparation method thereof
CN102964507B (en) Nano ceria impact resistant modified acrylate polymer and preparation method thereof
JP2021066878A (en) Processing aid and resin composition
JP4890344B2 (en) Lens array
JP5510869B2 (en) Impact modifier for thermoplastic polyester resin and thermoplastic polyester resin composition containing the same
CN102964510B (en) Nano alumina impact resistant modified acrylate polymer and preparation method thereof
CN117460803A (en) Tackifier and adhesive composition
JP2007145882A (en) Multistage-polymerized methacrylic resin polymer
CN102964509B (en) Nano titania impact resistant modified acrylate polymer and preparation method thereof
JP2013049873A (en) Methacrylic resin composition
CN102964511B (en) Nano barium sulfate impact resistant modified acrylate polymer and preparation method thereof
EP4206295A1 (en) Thickener for cyanoacrylate adhesive
JP2013100561A (en) Methacrylic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5131956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350