JP2007145882A - Multistage-polymerized methacrylic resin polymer - Google Patents

Multistage-polymerized methacrylic resin polymer Download PDF

Info

Publication number
JP2007145882A
JP2007145882A JP2005337992A JP2005337992A JP2007145882A JP 2007145882 A JP2007145882 A JP 2007145882A JP 2005337992 A JP2005337992 A JP 2005337992A JP 2005337992 A JP2005337992 A JP 2005337992A JP 2007145882 A JP2007145882 A JP 2007145882A
Authority
JP
Japan
Prior art keywords
copolymer
molecular weight
average molecular
weight
methacrylic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005337992A
Other languages
Japanese (ja)
Inventor
Naoki Azuma
直樹 東
Kohei Okumura
耕平 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005337992A priority Critical patent/JP2007145882A/en
Publication of JP2007145882A publication Critical patent/JP2007145882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multistage-polymerized methacrylic resin polymer that retains external appearances of a molded article and exhibits enhanced flow properties on injection molding and enhanced moldability in fabrication such as extrusion molding, blow molding, vacuum forming, pressure forming or stretch molding while suffering from no reduction in mechanical strength. <P>SOLUTION: The multistage-polymerized methacrylic resin polymer is a copolymer comprised of 70-99.5 wt.% of a methyl methacrylate monomer and 0.5-30 wt.% of a monomer composed of at least one other vinyl monomer copolymerizable with methyl methacrylate that is obtained by polymerizing a copolymer (A) having a weight-average molecular weight of 5,000-180,000 as measured by the gel permeation chromatography and subsequently polymerizing a copolymer (B) having a weight-average molecular weight of 80,000-800,000 in the presence of the copolymer (A) and has an average particle size of 0.1-0.5 mm. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、成形品の外観を維持し、射出成形における流動特性の向上や、押出し成形や、ブロー成形や、真空、圧空成形、延伸成形等の二次加工における成形性を向上しながら、一方で機械強度を低下させることの無い多段重合のメタクリル系樹脂重合体に関する。   The present invention maintains the appearance of a molded product, improves flow characteristics in injection molding, and improves moldability in secondary processing such as extrusion molding, blow molding, vacuum, pressure molding, and stretch molding. It is related with the methacrylic resin polymer of multistage polymerization which does not reduce mechanical strength.

メタクリル系樹脂は、透明樹脂として他のプラスチック透明樹脂よりその高い光透過率、耐候性、高い剛性に特徴があり、車両用部品、照明器具、建築用材料、看板、絵画や、表示装置の窓や銘板等広い用途で用いられている。   Methacrylic resin is characterized by its higher light transmittance, weather resistance, and higher rigidity than other plastic transparent resins as a transparent resin, and is used for vehicle parts, lighting equipment, building materials, signboards, paintings, and windows for display devices. It is used in a wide range of applications such as nameplates.

近年、それらの成形品については、非常に成形性、加工性が難しいものが増えており、例えば射出成形の場合、大型化、薄肉化に基づき、流動性が悪い場合、射出圧力が高くなり、成形できなかったり、成形歪が大きくなるという問題が生じる。このため、射出圧力を低くすることができる高流動性樹脂が望まれている。一方で、その外観や、耐溶剤性等の機械強度や耐熱性については、低下しないことが望まれている。   In recent years, for those molded products, those having extremely difficult moldability and workability have increased.For example, in the case of injection molding, when the fluidity is poor based on the enlargement and thinning, the injection pressure becomes high, There arises a problem that molding cannot be performed or molding distortion increases. For this reason, a high fluidity resin capable of lowering the injection pressure is desired. On the other hand, it is desired that the appearance, mechanical strength such as solvent resistance, and heat resistance do not decrease.

これまで、一般的にメタクリル系樹脂の機械強度や加工性を改善する公知の方法として、低分子量のメタクリル系樹脂で流動性を付与し、高分子量もしくは微架橋構造で機械強度を付与し、その混合状態で加工性を付与する、高分子量もしくは低分子量のメタクリル系樹脂を溶融混合したり、分岐構造を用いて分子量分布を拡大する技術が報告されている(例えば、特許文献1、2参照)。   Conventionally, as a known method for improving the mechanical strength and processability of methacrylic resins, fluidity is imparted with a low molecular weight methacrylic resin, and mechanical strength is imparted with a high molecular weight or a micro-crosslinked structure. Techniques have been reported in which high molecular weight or low molecular weight methacrylic resins that impart processability in a mixed state are melt-mixed or molecular weight distribution is expanded using a branched structure (for example, see Patent Documents 1 and 2). .

しかし、この方法では、分子量の異なるメタクリル系樹脂は、その粘度が異なることから押出し機、射出成形機の中で均一に溶融混合することが出来ず、分子量の高いメタクリル系樹脂が部分的に分散不良が存在し、表面外観が悪くなる不具合が生じる。また、多官能モノマーを用いた、微架橋による方法は、多官能モノマーの制御が非常に難しく、多すぎると、混合均一性が低下し、成形品の外観が低下する。少なすぎると効果がない。   However, with this method, methacrylic resins having different molecular weights cannot be uniformly melt-mixed in an extruder or injection molding machine because of their different viscosities, and methacrylic resins having a high molecular weight are partially dispersed. There is a defect in which defects exist and the surface appearance deteriorates. Further, in the method using micro-crosslinking using a polyfunctional monomer, it is very difficult to control the polyfunctional monomer, and when it is too much, the mixing uniformity is lowered and the appearance of the molded product is lowered. Too little will have no effect.

そのような問題を改善するために、多段重合により、分子量の異なるメタクリル系樹脂を得る技術がある。   In order to improve such a problem, there is a technique for obtaining methacrylic resins having different molecular weights by multistage polymerization.

しかし、内層を外層より高分子量にした場合には、加工したときに、内層の高分子量が分散することが出来ない(特許文献3、4参照)。また、内層を外層より低分子量にしても、メタクリル酸メチルの比率が低い場合、耐熱性や、透過性が低下する(特許文献5参照)。   However, when the inner layer has a higher molecular weight than the outer layer, the high molecular weight of the inner layer cannot be dispersed when processed (see Patent Documents 3 and 4). Moreover, even if the inner layer has a lower molecular weight than the outer layer, if the ratio of methyl methacrylate is low, heat resistance and permeability are reduced (see Patent Document 5).

特公平1−22865号公報Japanese Patent Publication No. 1-2865 特開平9−207196号公報Japanese Patent Laid-Open No. 9-207196 特開平6−41387号公報JP-A-6-41387 特開平7−196882号公報JP-A-7-196882 特開平3−37255号公報JP-A-3-37255

このように、本発明は、成形品の外観を維持し、射出成形における流動特性の向上や、押出し成形や、ブロー成形や、真空、圧空成形、延伸成形等の二次加工における成形性を向上しながら、一方で機械強度を低下することの無い多段重合のメタクリル系樹脂重合体に関する。   As described above, the present invention maintains the appearance of the molded product, improves flow characteristics in injection molding, and improves moldability in secondary processing such as extrusion molding, blow molding, vacuum, pressure molding, and stretch molding. On the other hand, the present invention relates to a methacrylic resin polymer of multi-stage polymerization that does not reduce mechanical strength.

これらの問題を解決するために鋭意研究を重ねた結果、一段目と二段目の分子量、分子量差がある範囲にあり、一段目と二段目の重量比率がその分子量差に応じて適正化した、多段重合のメタクリル系樹脂重合体とすることで、成形品の外観を維持したまま、射出成形におけるの流動特性の向上や、押出し成形や、ブロー成形や、真空、圧空成形等二次加工における成形性を向上しながら、機械強度を向上することを見出した。   As a result of earnest research to solve these problems, the molecular weight and molecular weight difference between the first and second stages are within a certain range, and the weight ratio of the first and second stages is optimized according to the molecular weight difference. By using a multi-stage polymerization methacrylic resin polymer, the flow characteristics in injection molding are improved while maintaining the appearance of the molded product, and extrusion, blow molding, secondary processing such as vacuum and pressure molding, etc. It has been found that the mechanical strength is improved while improving the formability of the steel.

すなわち、請求項1に係る発明は、メタクリル酸メチル単量体70〜99.5wt%及びメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体0.5〜30wt%からなる共重合体であって、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が0.5万〜18万である共重合体(A)を重合した後、共重合体(A)の存在下で重量平均分子量が8万〜80万である共重合体(B)を重合して得られるメタクリル系樹脂重合体であり、平均粒子径が0.1mm〜0.5mmで、かつ、下記(1)〜(3)を満足することを特徴とする多段重合のメタクリル系樹脂重合体である。
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≧1万・・・(1)
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≦20万のとき、(共重合体(A)の重量比):(共重合体(B)の重量比)=5:95〜50:50・・・(2)
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)>20万のとき、(共重合体(A)の重量比):(共重合体(B)の重量比)=20:80〜80:20・・・(3)
That is, the invention according to claim 1 is a monomer comprising 0.1 to 99.5 wt% of methyl methacrylate monomer and at least one other vinyl monomer copolymerizable with methyl methacrylate. After copolymerizing a copolymer (A) having a weight average molecular weight of 50,000 to 180,000 as measured by gel permeation chromatography, ) And a methacrylic resin polymer obtained by polymerizing the copolymer (B) having a weight average molecular weight of 80,000 to 800,000, and having an average particle diameter of 0.1 mm to 0.5 mm, and A methacrylic resin polymer of multistage polymerization satisfying the following (1) to (3).
(Weight average molecular weight of copolymer (B)) − (Weight average molecular weight of copolymer (A)) ≧ 10,000 (1)
(Weight average molecular weight of copolymer (B)) − (weight average molecular weight of copolymer (A)) ≦ 200,000 (weight ratio of copolymer (A)): (copolymer (B) Weight ratio) = 5: 95 to 50:50 (2)
(Weight average molecular weight of copolymer (B))-(weight average molecular weight of copolymer (A))> 200,000 (weight ratio of copolymer (A)): (copolymer (B) Weight ratio) = 20: 80 to 80:20 (3)

また請求項2に係る発明は、懸濁重合法もしくは乳化重合法による2段重合で得られることを特徴とする請求項1に記載の多段重合のメタクリル系樹脂重合体である。   The invention according to claim 2 is the methacrylic resin polymer of multistage polymerization according to claim 1, which is obtained by two-stage polymerization by suspension polymerization or emulsion polymerization.

本発明の多段重合のメタクリル系樹脂重合体では、成形品の外観を維持することができ、射出成形における流動特性の向上をはかることができ、さらに、押出し成形、ブロー成形、真空、圧空成形、延伸成形等の二次加工における成形性を向上しながら、一方で機械強度を低下させることがない。   In the multistage polymerization methacrylic resin polymer of the present invention, the appearance of the molded product can be maintained, the flow characteristics in injection molding can be improved, and extrusion molding, blow molding, vacuum, pressure molding, While improving the formability in secondary processing such as stretch molding, it does not reduce the mechanical strength.

以下、本発明をさらに詳細に説明する。本発明における共重合体(A)及び共重合体(B)の組成は、メタクリル酸メチル単量体が70〜99.5wt%含まれる。70wt%より少ないと耐熱性や光学性能が不十分であり、99.5wt%以上では熱安定性が不十分である。特に好ましくは、85〜99wt%である。   Hereinafter, the present invention will be described in more detail. The composition of the copolymer (A) and the copolymer (B) in the present invention includes 70 to 99.5 wt% of methyl methacrylate monomer. If it is less than 70 wt%, heat resistance and optical performance are insufficient, and if it is 99.5 wt% or more, thermal stability is insufficient. Especially preferably, it is 85-99 wt%.

また、共重合体(A)を100wt%としたときの共重合体(A)を構成するメタクリル酸メチル単体量の重量百分率と共重合体(B)を100wt%としたときの共重合体(B)を構成するメタクリル酸メチル単量体の重量百分率の差が15wt%以内が好ましい。15wt%以内とすることにより、共重合体(A)と共重合体(B)の屈折率が近くなり、得られたメタクリル系樹脂重合体の光学特性が維持できて好ましい。より好ましくは、10wt%以内である。   Further, the weight percentage of the amount of methyl methacrylate alone constituting the copolymer (A) when the copolymer (A) is 100 wt% and the copolymer when the copolymer (B) is 100 wt% ( The difference in weight percentage of the methyl methacrylate monomer constituting B) is preferably within 15 wt%. By making it within 15 wt%, the refractive index of the copolymer (A) and the copolymer (B) becomes close, and the optical properties of the obtained methacrylic resin polymer can be maintained, which is preferable. More preferably, it is within 10 wt%.

本発明における共重合体(A)及び共重合体(B)に用いられるメタクリル酸メチルと共重合可能な他のビニル単量体としては、アルキル基の数が2〜18のアルキルメタクリレート、アルキル基の炭素数が2〜18のアルキルアクリレートの他、アクリル酸やメタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸及びそれらのアルキルエステル、スチレン、α−メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のシアン化ビニル化合物、無水マレイン酸、マレイミド、N−置換マレイミド等、また、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコール又はそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの:ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジメタクリレート等の2個のアルコールの水酸基をアクリル酸又はメタクリル酸でエステル化したもの:トリメチロールプロパン、ペンタエリスリトール等の多価アルコール誘導体をアクリル酸又はメタクリル酸でエステル化したもの:ジビニルベンゼン等の多官能モノマー等が挙げられ、これらは、単独或いは2種類以上を併用して用いることが出来る。これらの中でも、耐光性、熱安定性、耐熱性、流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく用いられ、メチルアクリレート、エチルアクリレート、n−ブチルアクリレートが特に好ましい。   Examples of the other vinyl monomer copolymerizable with methyl methacrylate used in the copolymer (A) and the copolymer (B) in the present invention include alkyl methacrylates having 2 to 18 alkyl groups and alkyl groups. In addition to alkyl acrylates having 2 to 18 carbon atoms, α, β-unsaturated acids such as acrylic acid and methacrylic acid, unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid and itaconic acid, and alkyls thereof. Aromatic vinyl compounds such as esters, styrene, α-methylstyrene, and nucleus-substituted styrene, vinyl cyanide compounds such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, etc., and ethylene glycol di (meth ) Acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate Rate, ethylene glycol such as tetraethylene glycol di (meth) acrylate, or the oligomers of both end hydroxyl groups esterified with acrylic acid or methacrylic acid: two such as neopentyl glycol di (meth) acrylate and hexanediol dimethacrylate Ester of hydroxyl group of acrylic acid with acrylic acid or methacrylic acid: ester of polyhydric alcohol derivative such as trimethylolpropane or pentaerythritol with acrylic acid or methacrylic acid: polyfunctional monomer such as divinylbenzene These can be used alone or in combination of two or more. Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferably used from the viewpoints of light resistance, heat stability, heat resistance, and fluidity. , Methyl acrylate, ethyl acrylate, and n-butyl acrylate are particularly preferable.

本発明で得られる多段重合のメタクリル系樹脂重合体の平均粒子径は、0.1mm〜0.5mmである。0.1mmより小さいと粉体状態となり、空気中に浮遊してしまうために、取り扱い性や、吸い込みにより人体に悪影響が生じるため好ましくない。0.5mmより大きいと、二段目の高分子量の共重合体(B)の分散性が低下するため好ましくない。平均粒子径は、JIS−Z8801に基づくふるいを用いて分級測定し、重量50wt%の粒子を計算することにより得られる。その形状は、特に制限は無いが、略球状であるほうが取り扱いと均一性が良く好ましい。   The average particle diameter of the multistage polymerization methacrylic resin polymer obtained in the present invention is 0.1 mm to 0.5 mm. If it is smaller than 0.1 mm, it will be in a powder state and will float in the air. If it is larger than 0.5 mm, the dispersibility of the second-stage high-molecular-weight copolymer (B) is lowered, which is not preferable. The average particle diameter can be obtained by classification using a sieve based on JIS-Z8801 and calculating particles having a weight of 50 wt%. The shape is not particularly limited, but a substantially spherical shape is preferable because of good handling and uniformity.

本発明における共重合体(A)の重量平均分子量は、0.5万〜18万が良く、共重合体(B)の重量平均分子量は8万〜80万が良い。また、共重合体(A)が一段目で、共重合体(B)が二段目であり、
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≧1万・・・(1)
である。共重合(A)が共重合(B)より低分子量であることが本発明においては非常に重要であり、共重合(A)が高分子量であると、とたんに溶融混合時の均一性が落ちて成形品の外観不良が発生する。共重合体(A)は流動性に起因する部分であり、共重合体(B)は機械強度に起因する部分であり、共重合体(A)と共重合体(B)との混合状態が、加工性に起因する。共重合体(A)と共重合体(B)の重合平均分子量差が1万以下であると、効果が無い。好ましくは重合平均分子量差が5万以上であり、さらに好ましくは重合平均分子量差が7万以上である。また、共重合体(A)の重量平均分子量が0.5万より小さい共重合体(A)は、安定して重合することが出来ず好ましくない。また、18万より大きいと、流動性が大幅に低下するため好ましくない。より好ましくは1万〜15万であり、さらに好ましくは2万〜12万である。また、共重合体(B)の重量平均分子量が8万より小さいと機械強度が低下し良くない。一方で80万より大きいと、溶融分散性が得られず、また、重合時の安定性を取ることが難しいために良くない。さらに好ましくは9万〜50万であり、さらに好ましくは10万〜40万である。
The weight average molecular weight of the copolymer (A) in the present invention is preferably from 50,000 to 180,000, and the weight average molecular weight of the copolymer (B) is preferably from 80,000 to 800,000. In addition, the copolymer (A) is the first stage, the copolymer (B) is the second stage,
(Weight average molecular weight of copolymer (B)) − (Weight average molecular weight of copolymer (A)) ≧ 10,000 (1)
It is. It is very important in the present invention that the copolymerization (A) has a lower molecular weight than the copolymerization (B). If the copolymerization (A) has a high molecular weight, the homogeneity at the time of melt-mixing will soon be increased. It will fall and a defective appearance of the molded product will occur. The copolymer (A) is a part resulting from fluidity, the copolymer (B) is a part resulting from mechanical strength, and the mixed state of the copolymer (A) and the copolymer (B) is Due to workability. When the difference in polymerization average molecular weight between the copolymer (A) and the copolymer (B) is 10,000 or less, there is no effect. The polymerization average molecular weight difference is preferably 50,000 or more, and more preferably the polymerization average molecular weight difference is 70,000 or more. Further, the copolymer (A) having a weight average molecular weight of less than 50,000 is not preferable because it cannot be stably polymerized. On the other hand, if it is larger than 180,000, the fluidity is greatly lowered, which is not preferable. More preferably, it is 10,000-150,000, More preferably, it is 20,000-120,000. On the other hand, if the weight average molecular weight of the copolymer (B) is less than 80,000, the mechanical strength is not good. On the other hand, if it exceeds 800,000, melt dispersibility cannot be obtained, and it is not good because it is difficult to obtain stability during polymerization. More preferably, it is 90,000-500,000, More preferably, it is 100,000-400,000.

本発明で測定される重量平均分子量は、ゲルパーミエーションクロマトグラフィーで測定される。あらかじめ、分子量分布が狭く、分子量が既知で試薬として入手可能な標準メタクリル系樹脂を用いて、溶出時間と分子量から検量線を作成し、その検量線から各試料の分子量を測定することが出来る。   The weight average molecular weight measured in the present invention is measured by gel permeation chromatography. Using a standard methacrylic resin that has a narrow molecular weight distribution and a known molecular weight and is available as a reagent in advance, a calibration curve can be created from the elution time and molecular weight, and the molecular weight of each sample can be measured from the calibration curve.

共重合体(A)の単量体の組成及び重量平均分子量範囲内及び共重合体(B)の単量体の組成及び重量平均分子量範囲内にある共重合体は、それぞれ1つであっても複数であっても良い。複数の場合例えば、共重合体(A)の組成及び重量平均分子量範囲にある共重合体が2つ以上存在する場合、組成は、平均した単量体組成が共重合体(A)の組成であり、平均した重量平均分子量が共重合体(A)の重量平均分子量である。共重合体(B)の場合も同様である。   Copolymer (A) monomer composition and weight average molecular weight range and copolymer (B) monomer composition and weight average molecular weight range are one copolymer each, May be plural. In the case of a plurality of, for example, when there are two or more copolymers in the composition and weight average molecular weight range of the copolymer (A), the average monomer composition is the composition of the copolymer (A). Yes, the average weight average molecular weight is the weight average molecular weight of the copolymer (A). The same applies to the copolymer (B).

本発明における、共重合体(A)および共重合体(B)の重量比率は、重量平均分子量差により決定される。   In the present invention, the weight ratio of the copolymer (A) and the copolymer (B) is determined by the weight average molecular weight difference.

(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≦20万のとき(共重合体(A)の重量比):(共重合体(B)の重量比)=5:95〜50:50・・・(2)
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)>20万のとき(共重合体(A)の重量比):(共重合体(B)の重量比)=20:80〜80:20・・・(3)
(Weight average molecular weight of copolymer (B)) − (Weight average molecular weight of copolymer (A)) ≦ 200,000 (weight ratio of copolymer (A)): (copolymer (B) (Weight ratio) = 5: 95-50: 50 (2)
(Weight average molecular weight of copolymer (B))-(Weight average molecular weight of copolymer (A))> 200,000 (weight ratio of copolymer (A)): (copolymer (B) (Weight ratio) = 20: 80 to 80:20 (3)

共重合体(B)と共重合体(A)の重量平均分子量差が20万以下の場合には共重合体(A)の重量比率は5wt%〜50wt%であり、共重合体(B)が95wt%〜50wt%である。共重合体(A)が5wt%より少ないと混合比として少ないため効果がない。共重合体(B)が50wt%より少ないと、機械強度低くなり良くない。より好ましくは(共重合体(A)の重量比):(共重合体(B)の重量比)が10:90〜50:50であり、さらに好ましくは、10:90〜40:60である。   When the difference in weight average molecular weight between the copolymer (B) and the copolymer (A) is 200,000 or less, the weight ratio of the copolymer (A) is 5 wt% to 50 wt%, and the copolymer (B) Is 95 wt% to 50 wt%. If the copolymer (A) is less than 5 wt%, the mixing ratio is small, so there is no effect. When the copolymer (B) is less than 50 wt%, the mechanical strength is lowered, which is not good. More preferably, (weight ratio of copolymer (A)) :( weight ratio of copolymer (B)) is 10:90 to 50:50, more preferably 10:90 to 40:60. .

一方、本発明における共重合体(B)と共重合体(A)の重量平均分子量差が20万より大きい場合には、粘度差が大きくなるため、均一分散性がその重量比率により変わってくる。共重合体(A)の重量比率は20wt%〜80wt%であり、共重合体(B)が80wt%〜20wt%である。共重合体(A)もしくは共重合体(B)が20wt%より少ないと、どちらの場合も共重合体(B)の分散性が低下してしまい、成形品に外観不良が発生し良くない。好ましくは(共重合体(A)の重量比):(共重合体(B)の重量比)が10:90〜90:10であり。より好ましくは30:70〜70:30である。   On the other hand, when the weight average molecular weight difference between the copolymer (B) and the copolymer (A) in the present invention is larger than 200,000, the viscosity difference increases, and the uniform dispersibility varies depending on the weight ratio. . The weight ratio of the copolymer (A) is 20 wt% to 80 wt%, and the copolymer (B) is 80 wt% to 20 wt%. If the copolymer (A) or the copolymer (B) is less than 20 wt%, the dispersibility of the copolymer (B) is lowered in both cases, and the appearance defect is not good in the molded product. Preferably, (weight ratio of copolymer (A)) :( weight ratio of copolymer (B)) is 10:90 to 90:10. More preferably, it is 30: 70-70: 30.

本発明における多段重合のメタクリル系樹脂重合体の製造方法としては、特に制限は無く、具体的には、   The method for producing a methacrylic resin polymer for multistage polymerization in the present invention is not particularly limited, and specifically,

1.あらかじめ共重合体(A)を重合しておき、残りの共重合体(B)を重合するための規定量の単量体にすでに得られた規定量の共重合体(A)を添加混合し、その後重合反応を行うことによって、それぞれの比率、分子量を制御して、製造する方法。 1. Copolymer (A) is polymerized in advance, and the specified amount of copolymer (A) already obtained is added to and mixed with the specified amount of monomer for polymerizing the remaining copolymer (B). Then, by carrying out a polymerization reaction, the ratio and molecular weight of each are controlled to produce.

2.あらかじめ共重合体(A)を重合した後、共重合体(B)の原料組成混合物を一度にもしくは逐次追添することによって、製造する方法。
が挙げられる。
2. A method for producing by copolymerizing the copolymer (A) in advance and then adding the raw material composition mixture of the copolymer (B) at once or sequentially.
Is mentioned.

特に好ましくは、2.の方法が共重合体(A)と共重合体(B)のそれぞれの組成を制御しやすく、安定に多層構造が得られるため好ましくそのための重合方法としては、懸濁重合法もしくは乳化重合法のいずれかが好ましい。   Particularly preferably, This method is preferable because the respective compositions of the copolymer (A) and the copolymer (B) can be easily controlled, and a multilayer structure can be stably obtained. As a polymerization method therefor, a suspension polymerization method or an emulsion polymerization method can be used. Either is preferred.

本発明における共重合体(A)及び共重合体(B)を製造するための重合開始剤としては、フリーラジカル重合を用いる場合は、ジ−t−ブチルパーオキサイド、ジラウロイルパーオキサイド、t−ブチルパーオキシ2−エチルヘキサノエート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサンなどのパーオキサイド系や、アゾビスイソブチロニトリル、アゾビスイソバレロニトリル、1,1−アゾビス(1−シクロヘキサンカルボニトリル)などのアゾ系の一般的なラジカル重合開始剤を用いることができ、これらは単独でもあるいは2種類以上を併用しても良い。これらのラジカル開始剤と適当な還元剤とを組み合わせてレドックス系開始剤として実施しても良い。これらの開始剤は、単量体混合物に対して、0.001〜1wt%の範囲で用いるのが一般的である。   As a polymerization initiator for producing the copolymer (A) and the copolymer (B) in the present invention, when using free radical polymerization, di-t-butyl peroxide, dilauroyl peroxide, t- Peroxides such as butyl peroxy 2-ethylhexanoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane And general azo-based radical polymerization initiators such as azobisisobutyronitrile, azobisisovaleronitrile, 1,1-azobis (1-cyclohexanecarbonitrile) can be used, either alone or Two or more types may be used in combination. A combination of these radical initiators and an appropriate reducing agent may be used as a redox initiator. These initiators are generally used in the range of 0.001 to 1 wt% with respect to the monomer mixture.

本発明における共重合体(A)及び共重合体(B)の分子量を調整するために、ラジカル重合法で製造する場合には一般的に用いられている連鎖移動剤を使用できる。連鎖移動剤としては、例えばn−ブチルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、2−エチルヘキシルチオグリコレート、エチレングリコールジチオグリコレート、トリメチロールプロパントリス(チオグリコート)、ペンタエリスリトールテトラキス(チオグリコレート)などのメルカプタン類が好ましく用いられる。一般的に単量体混合物に対して、0.001〜1wt%の範囲で用いるのが一般的である。   In order to adjust the molecular weight of the copolymer (A) and the copolymer (B) in the present invention, a chain transfer agent that is generally used can be used in the case of producing by radical polymerization. Examples of the chain transfer agent include n-butyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, 2-ethylhexyl thioglycolate, ethylene glycol dithioglycolate, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate). Etc.) are preferably used. Generally, it is generally used in the range of 0.001 to 1 wt% with respect to the monomer mixture.

本発明における多段重合のメタクリル系樹脂重合体を得るために、必要に応じて染料、顔料、ヒンダードフェノール系やリン酸塩等の熱安定剤、ベンゾトリアゾール系、2−ヒドロキシベンゾフェノン系、サリチル酸フェニルエステル系などの紫外線吸収剤、フタル酸エステル系、脂肪酸エステル系、トリメリット酸エステル系、リン酸エステル系、ポリエステル系などの可塑剤、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸のモノ、ジ、またはトリグリセリド系などの離型剤、高級脂肪酸エステル、ポリオレフィン系などの滑剤、ポリエーテル系、ポリエーテルエステル系、ポリエーテルエステルアミド系、アルキルスルフォン酸塩、アルキルベンゼンスルフォン酸塩などの帯電防止剤、リン系、リン/塩素系、リン/臭素系などの難燃剤、反射光のぎらつきを防止するためにメタクリル酸メチル/スチレン共重合体ビーズなどの有機系光拡散剤、硫酸バリウム、酸化チタン、炭酸カルシウム、タルクなどの無機系光拡散剤、補強剤として多段重合で得られるアクリル系ゴム等を使用しても良い。これらの添加剤を配合するときには、公知の方法で実施しうる。例えば、単量体混合物にあらかじめ添加剤を溶解しておき重合する方法が用いられる。   In order to obtain a methacrylic resin polymer of multistage polymerization in the present invention, a dye, pigment, heat stabilizer such as hindered phenol or phosphate, benzotriazole, 2-hydroxybenzophenone, phenyl salicylate as necessary UV absorbers such as ester, plasticizers such as phthalate ester, fatty acid ester, trimellitic acid ester, phosphate ester, and polyester, higher fatty acid, higher fatty acid ester, higher fatty acid mono, di, or Release agents such as triglycerides, lubricants such as higher fatty acid esters and polyolefins, antistatic agents such as polyethers, polyetheresters, polyetheresteramides, alkylsulfonates, alkylbenzenesulfonates, phosphorus Flame retardants such as phosphorus / chlorine and phosphorus / bromine In order to prevent glare of reflected light, organic light diffusing agents such as methyl methacrylate / styrene copolymer beads, inorganic light diffusing agents such as barium sulfate, titanium oxide, calcium carbonate, talc, etc. An acrylic rubber or the like obtained by polymerization may be used. When these additives are blended, it can be carried out by a known method. For example, a method in which an additive is dissolved in a monomer mixture in advance and polymerized is used.

本発明における多段重合のメタクリル系樹脂重合体は、単独又は、さらに他の樹脂と混合して用いても良い。混合する場合には、ブレンドして、押出し機、射出成形機等で、加熱溶融混合しても良いし、押出し機で、加熱溶融混合したペレットを用いても良い。先に挙げた添化剤をこのときにブレンドして混合しても良い。   The multistage polymerization methacrylic resin polymer in the present invention may be used alone or in combination with another resin. In the case of mixing, the mixture may be blended and heated and melted and mixed with an extruder, an injection molding machine or the like, or the pellets heated and mixed with an extruder may be used. The additives mentioned above may be blended and mixed at this time.

本発明で得られるメタクリル系樹脂重合体はそのままで射出成形や押出し成形等の成型加工に用いても良いし、一度ペレット等の形状に変形してから使用しても良い。また、組成の異なる本発明のメタクリル系樹脂重合体を複数種組み合わせても良いし、既存のメタクリル系樹脂と組み合わせても良い。組み合わせ方法としては、ブレンドして用いても良いし、一度押出し機でコンパウンドしてペレタイズをしても良い。   The methacrylic resin polymer obtained in the present invention may be used as it is for molding processing such as injection molding or extrusion molding, or may be used after being transformed into a shape such as pellets. Further, a plurality of methacrylic resin polymers of the present invention having different compositions may be combined, or may be combined with an existing methacrylic resin. As a combination method, they may be used after blending or may be compounded once by an extruder and pelletized.

以下に実施例、比較例を用いて本発明をさらに具体的に説明する。単位で部で表示しているところは、重量部を表す。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. The unit displayed in parts represents parts by weight.

1.メタクリル系樹脂の重量平均分子量の測定
トーソー株式会社製ゲルパーミエーションクロマトグラフィー(HLC−8120+8020)カラムに東ソー製TSKスーパーHH−M(2本)+スーパーH2500(1本)を直列に並び検出器をRIで行い、測定試料は、0.02gのメタクリル系樹脂を20ccのTHF溶媒に溶解し、注入量10ml、展開流量0.3ml/minで溶出時間と、強度を測定した。ジーエルサイエンス製の単分散の重量平均分子量が既知なメタクリル系樹脂を標準試料とした検量線を元に重量平均分子量を求めた。混合物の重量平均分子量の測定は、どれか単体の重量平均分子量を元に混合物の重量平均分子量から引くことで、混合物の残りの単体の重量平均分子量及び比率を求めることにした。
1. Measurement of weight average molecular weight of methacrylic resin Tosoh Corporation gel permeation chromatography (HLC-8120 + 8020) column and Tosoh TSK Super HH-M (2) + Super H2500 (1) are arranged in series. Performed by RI, 0.02 g of methacrylic resin was dissolved in 20 cc of a THF solvent, and the elution time and strength were measured at an injection amount of 10 ml and a development flow rate of 0.3 ml / min. The weight average molecular weight was determined based on a calibration curve using a methacrylic resin having a known monodispersed weight average molecular weight made by GL Science as a standard sample. The weight average molecular weight of the mixture was determined by subtracting the weight average molecular weight of any single substance from the weight average molecular weight of the mixture to obtain the weight average molecular weight and the ratio of the remaining simple substance of the mixture.

2.平均粒子径の測定
JIS−Z8801に基づく、ふるい東京スクリーン製JTS−200−45−33(目開き500μm),34(目開き425μm),35(目開き355μm),36(目開き300μm),37(目開き250μm),38(目開き150μm)61(受け皿)を用いて古いわけ試験機TSK B−1を用いて振動力MAXにて10分間ふるいを行ったときの平均粒子径の測定値を用いて、50wt%の粒子径を測定し平均粒子径を求めた。
2. Measurement of average particle diameter JTS-200-45-33 (aperture 500 μm), 34 (aperture 425 μm), 35 (aperture 355 μm), 36 (aperture 300 μm), 37, based on JIS-Z8801 (Apertures 250 μm), 38 (apertures 150 μm) 61 (catch pan) is old and the average particle size measured when sieving with vibration force MAX for 10 minutes using tester TSK B-1 The particle diameter of 50 wt% was measured to determine the average particle diameter.

3.メルトフローレートの測定
東洋精機製メルトインデクサF−B01を用いて、ISO 1133 cond13の条件に従って、230℃、荷重3.8kgの条件下メルトフローレートを測定した。
3. Measurement of Melt Flow Rate Using a Toyo Seiki melt indexer F-B01, the melt flow rate was measured under conditions of 230 ° C. and a load of 3.8 kg according to the conditions of ISO 1133 cond 13.

4.射出成形時の射出圧力の評価
名機製作所製ダイナメルターM−70成形機を用いてバレル温度230℃において、ASTM1号ダンベル試験金型を用いて金型温度55℃にてダンベル試験片を作製し、30cc/secの速度で圧力はショートショットポイントまで充填できるまで圧力を上げていきその射出圧力+20MPaで保圧を10sec行い成形品を作成するとともに、ショートショットポイント時の最大射出圧力を測定した。
4). Evaluation of injection pressure during injection molding A dumbbell test piece was prepared at a mold temperature of 55 ° C using a ASTM-1 dumbbell test mold at a barrel temperature of 230 ° C using a Dynamelter M-70 molding machine manufactured by Meiki Seisakusho. The pressure was increased at a speed of 30 cc / sec until the short shot point could be filled, and a molded product was prepared by holding pressure at the injection pressure +20 MPa for 10 sec, and the maximum injection pressure at the short shot point was measured.

5.成形品外観の評価
4.で得られたダンベル試験片において、蛍光灯の映りこむ形状が変形、乱反射するかどうかを10本において外観を検査し、問題ある本数を記録した。
5. 3. Evaluation of appearance of molded product In the dumbbell test piece obtained in the above, the appearance was inspected to determine whether the shape reflected by the fluorescent lamp was deformed or irregularly reflected, and the number of problems was recorded.

6.延伸加工性の評価
4.で得られたダンベル試験片を用いて、150℃の環境下で、試験片表面温度を150℃まで加熱した後ダンベルを100mm/secの速度で1軸延伸を行ない、延伸可能倍率を測定した。
6). 3. Evaluation of stretch processability Using the dumbbell test piece obtained in Step 1, the test piece surface temperature was heated to 150 ° C. in an environment of 150 ° C., and then the dumbbell was uniaxially stretched at a speed of 100 mm / sec, and the stretchable magnification was measured.

7.耐溶剤性試験の評価
カンチレバー法により評価した。カンチレバー法とは、前述の4.で得られたダンベル試験片よりチャック部分を切り取り127mm長さ×12.7mm幅×3.2mm厚みサイズの試験片を切り出し、図1に示す条件の固定冶具1を用いて前記試験片2をセットし、2mm径の凧糸5を用いて2kgの分銅3を用いて荷重をかけ、エタノールを染み込ませたろ紙4を図1に示すように支点部分において、試験片2の破断する時間を測定した。
7). Evaluation of solvent resistance test It evaluated by the cantilever method. The cantilever method is the aforementioned 4. The test piece 2 was cut out from the dumbbell test piece obtained in Step 1, and the test piece 2 having a length of 127 mm × 12.7 mm width × 3.2 mm thickness was cut out, and the test piece 2 was set using the fixing jig 1 under the conditions shown in FIG. Then, a load was applied using a 2 kg weight 3 using a 2 mm diameter thread 5 and the time when the test piece 2 broke at the fulcrum portion of the filter paper 4 soaked with ethanol was measured as shown in FIG. .

[参考例1](共重合体(A)のみのアクリル樹脂の重合)
60Lの反応器にメタクリル酸メチル98wt%及びアクリル酸メチル2wt%の比率でこれらの合計を100部と、ラウリルパ−オキサイド0.25部、n−オクチルメルカプタン0.17部、脱イオン水200部、三リン酸カルシウム0.5部、炭酸カルシウム0.3部、ラウリル硫酸ナトリウム0.003部を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し、続いて92℃で60分熟成し、重合反応を実質終了し、次に50℃まで冷却して鉱酸を投入し、洗浄脱水乾燥処理し、ビーズ状メタクリル系樹脂を得た。このビーズ状ポリマーをゲルパーミエーションクロマトグラフィーで測定し、表1にある参考例1の樹脂を得た。
[Reference Example 1] (Acrylic resin polymerization of copolymer (A) only)
In a 60 L reactor, 100 parts of these in a ratio of 98 wt% methyl methacrylate and 2 wt% methyl acrylate, 0.25 parts lauryl peroxide, 0.17 parts n-octyl mercaptan, 200 parts deionized water, 0.5 parts of calcium triphosphate, 0.3 part of calcium carbonate and 0.003 part of sodium lauryl sulfate are added and mixed by stirring. Suspension polymerization is carried out at a reaction temperature of 80 ° C. for 150 minutes, followed by 60 at 92 ° C. After completion of the polymerization reaction, the polymerization reaction was substantially completed, and then cooled to 50 ° C., a mineral acid was added, washed, dehydrated and dried to obtain a bead-like methacrylic resin. The bead polymer was measured by gel permeation chromatography to obtain the resin of Reference Example 1 shown in Table 1.

[実施例1]
60Lの反応器に一段目としてメタクリル酸メチル94wt%及びアクリル酸メチル6wt%の比率でこれらの合計を70部と、ラウリルパーオキサイド0.175部、n−オクチルメルカプタン0.193部(以上が共重合体(A)の原料)、脱イオン水200部、三リン酸カルシウム0.5部、炭酸カルシウム0.3部、ラウリル硫酸ナトリウム0.003部を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し、重合物を少量を抜き取った。ゲルパーミエーションクロマトグラフィーで測定し、重量平均分子量10万の共重合体(A)であることを確認した。その60分後に二段目である共重合体(B)の原料であるメタクリル酸メチル94wt%及びアクリル酸メチル6wt%の比率でこれらの合計を30部と、ラウリルパ−オキサイド0.006部、n−オクチルメルカプタン0.012部を反応器に投入し、引き続き80℃で90分懸濁重合し、続いて92℃で60分熟成し、重合反応を実質終了し、次に50℃まで冷却して鉱酸を投入し、洗浄脱水乾燥処理し、ビーズ状メタクリル系樹脂を得た。このビーズ状ポリマーをゲルパーミエーションクロマトグラフィーで測定し、表1の結果の通り、先の共重合体(A)の重量平均分子量の結果を用いて計算し、重量平均分子量が10万で比率が72wt%の共重合体(A)と重量平均分子量が46万で比率が28wt%の共重合体(B)であることを確認した。
[Example 1]
As a first stage in a 60 L reactor, a total of 70 parts, methyl acrylate 6 wt%, and a total of 70 parts, lauryl peroxide 0.175 parts, n-octyl mercaptan 0.193 parts Polymer (A) raw material), 200 parts of deionized water, 0.5 part of calcium triphosphate, 0.3 part of calcium carbonate and 0.003 part of sodium lauryl sulfate are added and mixed with stirring. The reaction temperature of the reactor is 80. Suspension polymerization was carried out at 150 ° C. for 150 minutes, and a small amount of the polymer was taken out. It was measured by gel permeation chromatography and confirmed to be a copolymer (A) having a weight average molecular weight of 100,000. 60 minutes after that, 30 parts of these were in a ratio of 94 wt% of methyl methacrylate and 6 wt% of methyl acrylate, which are raw materials for the second stage copolymer (B), 0.006 parts of lauryl peroxide, n -0.012 part of octyl mercaptan is charged into the reactor, followed by suspension polymerization at 80 ° C for 90 minutes, followed by aging at 92 ° C for 60 minutes to complete the polymerization reaction, and then cooling to 50 ° C. Mineral acid was added, washed and dehydrated and dried to obtain a bead-like methacrylic resin. This bead-like polymer was measured by gel permeation chromatography, and as shown in Table 1, calculated using the results of the weight average molecular weight of the previous copolymer (A), the weight average molecular weight was 100,000 and the ratio was It was confirmed that the copolymer (A) was 72 wt% and the copolymer (B) had a weight average molecular weight of 460,000 and a ratio of 28 wt%.

[実施例2、3]
表1にある単量体の組成比率で、実施例2では、共重合体(A)の単量体を82部かつ原料のn−オクチルメルカプタンの量を0.29部、共重合体(B)の単量体を18部かつ原料のn−オクチルメルカプタンの量を0.009部とし、実施例3では、共重合体(A)の単量体を22部、n−オクチルメルカプタンの量を0.176部、共重合体(B)の単量体を78部、n−オクチルメルカプタンの量を0.105部とする以外は実施例1と同様にして、表1にある実施例2、3のメタクリル系樹脂重合体を得た。
[Examples 2 and 3]
In Example 2, in the composition ratio of the monomers shown in Table 1, in Example 2, the monomer of the copolymer (A) was 82 parts, the amount of the raw material n-octyl mercaptan was 0.29 parts, and the copolymer (B ) Monomer and the amount of raw material n-octyl mercaptan is 0.009 parts, and in Example 3, the copolymer (A) monomer is 22 parts, and the amount of n-octyl mercaptan is Example 2 in Table 1 in the same manner as in Example 1, except that 0.176 part, the copolymer (B) monomer was 78 parts, and the amount of n-octyl mercaptan was 0.105 part. 3 methacrylic resin polymer was obtained.

[比較例1]
表1にある単量体の組成比率で、実施例1において、共重合体(A)と共重合体(B)の投入順を逆にすることで、表1にある比較例1のメタクリル系樹脂重合体を得た。
[Comparative Example 1]
With the composition ratio of the monomers in Table 1, in Example 1, the order of introduction of the copolymer (A) and the copolymer (B) was reversed, so that the methacrylic group in Comparative Example 1 in Table 1 was used. A resin polymer was obtained.

[比較例2]
表1にある単量体の組成比率で、共重合体(A)の単量体を17部かつ原料のn−オクチルメルカプタンの量を0.193部、共重合体(B)の単量体を83部かつ原料のNn−オクチルメルカプタンの量を0.012部とする以外は実施例1と同様にして、表1にある比較例2のメタクリル系樹脂重合体を得た。
[Comparative Example 2]
In the composition ratio of the monomers shown in Table 1, 17 parts of the monomer of the copolymer (A) and 0.193 parts of the raw material n-octyl mercaptan, the monomer of the copolymer (B) And a methacrylic resin polymer of Comparative Example 2 in Table 1 was obtained in the same manner as in Example 1, except that the amount of Nn-octyl mercaptan as a raw material was 0.012 part.

[比較例3]
表1にある単量体の組成比率で、実施例1において三リン酸カルシウムを0.25部、炭酸カルシウム0.15部、ラウリル硫酸ナトリウム0.0015部とする以外は実施例1と同様にして、表1にある比較例3のメタクリル系樹脂重合体を得た。
[Comparative Example 3]
In the same manner as in Example 1 except that the composition ratio of the monomers shown in Table 1 is 0.25 part of calcium triphosphate, 0.15 part of calcium carbonate, and 0.0015 part of sodium lauryl sulfate in Example 1. A methacrylic resin polymer of Comparative Example 3 in Table 1 was obtained.

[比較例4]
表1にある単量体の組成比率で、参考例1のn−オクチルメルカプタンの量を0.275部とする以外は参考例1と同様にして重量平均分子量が10万共重合体(A)となるメタクリル系樹脂重合体を得た。次に60Lの反応器にメタクリル酸メチル94wt%及びアクリル酸メチル6wt%の比率でこれらの合計を100部と、ラウリルパ−オキサイド0.25部、n−オクチルメルカプタン0.04部、脱イオン水200部、三リン酸カルシウム0.5部、炭酸カルシウム0.3部、ラウリル硫酸ナトリウム0.003部を投入し攪拌混合し、反応器の反応温度を80℃で150分懸濁重合し、続いて92℃で60分熟成し、重合反応を実質終了し、次に50℃まで冷却して鉱酸を投入し、洗浄脱水乾燥処理し、ビーズ状メタクリル系樹脂を得た。このビーズ状ポリマーをゲルパーミエーションクロマトグラフィーで測定し、表1にある重量平均分子量が46万の共重合体(B)となるメタクリル系樹脂重合体を得た。これらを、共重合体(A)を28wt%、共重合体(B)を72wt%の比率でタンブラーで混合し表1にある比較例4のメタクリル系樹脂組成物を得た。
[Comparative Example 4]
A copolymer having a weight average molecular weight of 100,000 (A) in the same manner as in Reference Example 1 except that the amount of n-octyl mercaptan in Reference Example 1 is 0.275 parts with the composition ratio of the monomers in Table 1. A methacrylic resin polymer was obtained. Next, in a 60 L reactor, a total of 100 parts in a ratio of 94 wt% methyl methacrylate and 6 wt% methyl acrylate, 0.25 parts lauryl peroxide, 0.04 parts n-octyl mercaptan, 200 deionized water 200 Part, 0.5 part of calcium triphosphate, 0.3 part of calcium carbonate and 0.003 part of sodium lauryl sulfate were added and mixed by stirring, followed by suspension polymerization at a reaction temperature of 80 ° C. for 150 minutes, followed by 92 ° C. The mixture was aged for 60 minutes to substantially complete the polymerization reaction, then cooled to 50 ° C., charged with mineral acid, washed and dehydrated and dried to obtain a bead-like methacrylic resin. This bead-shaped polymer was measured by gel permeation chromatography to obtain a methacrylic resin polymer as a copolymer (B) having a weight average molecular weight of 460,000 shown in Table 1. These were mixed by a tumbler at a ratio of 28 wt% of the copolymer (A) and 72 wt% of the copolymer (B) to obtain a methacrylic resin composition of Comparative Example 4 shown in Table 1.

[実施例4]
表1にある単量体の組成比率で、実施例1において共重合体(A)の単量体を10部かつ原料のn−オクチルメルカプタンの量を0.53部、共重合体(B)の単量体を90部かつ原料のn−オクチルメルカプタンの量を0.113部とし、あとは実施例1と同様にして表1にある実施例4のメタクリル系樹脂重合体を得た。
[Example 4]
In the composition ratio of the monomers shown in Table 1, 10 parts of the copolymer (A) monomer and 0.53 parts of the raw material n-octyl mercaptan in Example 1 were prepared. The methacrylic resin polymer of Example 4 shown in Table 1 was obtained in the same manner as in Example 1 except that 90 parts of the monomer and the amount of raw material n-octyl mercaptan were 0.113 parts.

[比較例5]
表1にある単量体の組成比率で、参考例1において原料のn−オクチルメルカプタンの量を0.45部とする以外は参考例1と同様にして、表1にある比較例5の樹脂を得た。
[Comparative Example 5]
Resin of Comparative Example 5 in Table 1 in the same manner as in Reference Example 1 except that the composition ratio of the monomers in Table 1 and the amount of n-octyl mercaptan as a raw material in Reference Example 1 is 0.45 parts. Got.

Figure 2007145882
Figure 2007145882

参考例1、実施例1〜3、比較例1〜4、実施例4、比較例5で得られたメタクリル系樹脂の平均粒子径を求めた。その結果を表2に示す。   The average particle diameter of the methacrylic resin obtained in Reference Example 1, Examples 1 to 3, Comparative Examples 1 to 4, Example 4, and Comparative Example 5 was determined. The results are shown in Table 2.

その後、各メタクリル系樹脂重合体を30mmφ単軸押出し機にて、250℃の条件で押出し、ペレタイズを行い、射出成形を行うためのペレットをそれぞれ作製した。これらのペレットを用いて射出成形を行い、ダンベル試験片を作製し、射出圧力、成形品の外観、延伸加工性、耐溶剤性を評価した。その結果を表2に示す。   Thereafter, each methacrylic resin polymer was extruded with a 30 mmφ single-screw extruder at 250 ° C., pelletized, and pellets for injection molding were produced. These pellets were used for injection molding to produce dumbbell test pieces, and the injection pressure, appearance of the molded product, stretch workability, and solvent resistance were evaluated. The results are shown in Table 2.

Figure 2007145882
Figure 2007145882

参考例1のアクリル樹脂に対して、異なる重量平均分子量を持つ実施例1〜3、比較例1〜4のメタクリル系樹脂は、メルトフローレートが同じもしくはそれより低くても、射出圧力は同じかもしくは低下しても成形することが可能であり、成形時に歪が残ることがない。また、延伸加工性では参考例1では、320%までしか延伸することが出来ずそれ以上では破断してしまうが、いずれも500%以上延伸しても破断することが無かった。   Whether the methacrylic resins of Examples 1 to 3 and Comparative Examples 1 to 4 having different weight average molecular weights with respect to the acrylic resin of Reference Example 1 have the same or lower melt flow rate but the same injection pressure. Alternatively, molding can be performed even when the thickness is lowered, and no distortion remains during molding. Further, in the stretch processability, in Reference Example 1, it was possible to stretch only up to 320%, and it broke at more than that, but none of them broke even when stretched at 500% or more.

また、耐溶剤性でも、参考例1が80秒で試験片が破断したのに対し、実施例、比較例ともに同等以上の耐久性があった。しかし、実施例1〜3ともに成形品の外観に不良が全く無かったのに対し、比較例1では、共重合体(A)の分子量が共重合体(B)の分子量より大きいため、溶融分散していない小さな塊が成形品表面に多量に発生していて成形品の外観がすべて問題あった。   In addition, regarding the solvent resistance, the test piece in Reference Example 1 was broken in 80 seconds, whereas both the Examples and Comparative Examples had equivalent or higher durability. However, in Examples 1 to 3, there was no defect in the appearance of the molded product, whereas in Comparative Example 1, the molecular weight of the copolymer (A) was larger than the molecular weight of the copolymer (B). A large amount of small lumps were generated on the surface of the molded product, and the appearance of the molded product was all problematic.

比較例2では、共重合体(A)と共重合体(B)との重量平均分子量差が30万に対し、共重合体(A)と共重合体(B)の比率が15:85であったために、溶融分散していない小さな塊が成形品表面に多量に発生していて成形品の外観すべてに問題があった。   In Comparative Example 2, the weight average molecular weight difference between the copolymer (A) and the copolymer (B) is 300,000, while the ratio of the copolymer (A) and the copolymer (B) is 15:85. As a result, a large amount of small lumps not melt-dispersed occurred on the surface of the molded product, and there was a problem in the overall appearance of the molded product.

比較例3では平均粒子径が0.7mmと大きいため、得られたビーズ状メタクリル系樹脂重合体が充分に溶融しきれず、成形品に溶融分散していない小さな塊が成形品表面に多量に発生していて成形品外観がすべて問題あった。   In Comparative Example 3, since the average particle diameter is as large as 0.7 mm, the obtained bead-like methacrylic resin polymer cannot be sufficiently melted, and a large amount of small lumps not melted and dispersed in the molded product are generated on the surface of the molded product. The appearance of the molded products was all problematic.

比較例4では、共重合体(A)と共重合体(B)をブレンドして混合したが、共重合体(A)と共重合体(B)とが充分に均一溶融しきれず、やはり溶融分散していない小さな塊が成形品表面に多量に発生していて成形品の外観すべてに問題があった。   In Comparative Example 4, the copolymer (A) and the copolymer (B) were blended and mixed. However, the copolymer (A) and the copolymer (B) could not be sufficiently uniformly melted, and also melted. There was a problem with all the appearance of the molded product because a large amount of undispersed lumps were generated on the surface of the molded product.

また、実施例4と比較例5はいずれも同じメルトフローレートであるが、異なる平均分子量の共重合体(A)と共重合体(B)による実施例4の方が低い射出圧力で成形することが出来た。   Further, Example 4 and Comparative Example 5 both have the same melt flow rate, but Example 4 using copolymer (A) and copolymer (B) having different average molecular weights is molded at a lower injection pressure. I was able to.

本発明の多段重合のメタクリル系樹脂重合体を用いることにより、外観品質が非常に重要な、携帯電話、液晶モニター、液晶テレビ等の表示(装置)窓や、液晶表示で用いられる導光板、表示装置の前面板や絵画等の額や、外光を取り入れる窓、表示用看板、カーポートの屋根等のエクステリア、展示品の棚等のシート、照明器具のカバーやグローブ等、圧空成形、真空成形、ブロー成形等の2次加工を有する成形品や、テールランプやヘッドランプ等車両用光学部品等において外観品質を維持しながら、成形性を向上し、一方で機械強度を低下することの無い成形品を提供することが可能となる。   By using the multi-stage polymerization methacrylic resin polymer of the present invention, appearance quality is very important, display (device) windows for mobile phones, liquid crystal monitors, liquid crystal televisions, etc., light guide plates used in liquid crystal displays, displays Forehead of equipment, paintings, forehead, windows for taking in external light, display signs, exteriors of carport roofs, sheets of display shelves, covers for lighting fixtures, gloves, etc. Molded products that have secondary processing such as blow molding, and molded products that improve moldability while maintaining the appearance quality in taillights, headlamps, and other optical components for vehicles, while not reducing mechanical strength Can be provided.

本実施例及び比較例及び参考例で用いたカンチレバー法の概略図である。It is the schematic of the cantilever method used by the present Example, the comparative example, and the reference example.

符号の説明Explanation of symbols

1 固定冶具
2 試験片
3 2kgの分銅
4 エタノールを染み込ませたろ紙
5 凧糸
DESCRIPTION OF SYMBOLS 1 Fixed jig 2 Test piece 3 Weight of 2 kg 4 Filter paper soaked with ethanol 5 Thread

Claims (2)

メタクリル酸メチル単量体70〜99.5wt%及びメタクリル酸メチルに共重合可能な他のビニル単量体の少なくとも1種で構成される単量体0.5〜30wt%からなる共重合体であって、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が0.5万〜18万である共重合体(A)を重合した後、共重合体(A)の存在下で重量平均分子量が8万〜80万である共重合体(B)を重合して得られるメタクリル系樹脂重合体であり、平均粒子径が0.1mm〜0.5mmで、かつ、下記(1)〜(3)を満足することを特徴とする多段重合のメタクリル系樹脂重合体。
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≧1万・・・(1)
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)≦20万のとき(共重合体(A)の重量比):(共重合体(B)の重量比)=5:95〜50:50・・・(2)
(共重合体(B)の重量平均分子量)−(共重合体(A)の重量平均分子量)>20万のとき(共重合体(A)の重量比):(共重合体(B)の重量比)=20:80〜80:20・・・(3)
A copolymer composed of 70 to 99.5 wt% of methyl methacrylate monomer and 0.5 to 30 wt% of monomer composed of at least one other vinyl monomer copolymerizable with methyl methacrylate. Then, after polymerizing the copolymer (A) having a weight average molecular weight of 50,000 to 180,000 measured by gel permeation chromatography, the weight average molecular weight is 8 in the presence of the copolymer (A). It is a methacrylic resin polymer obtained by polymerizing a copolymer (B) of 10,000 to 800,000, the average particle diameter is 0.1 mm to 0.5 mm, and the following (1) to (3) A methacrylic resin polymer of multistage polymerization characterized by being satisfied.
(Weight average molecular weight of copolymer (B)) − (Weight average molecular weight of copolymer (A)) ≧ 10,000 (1)
(Weight average molecular weight of copolymer (B)) − (Weight average molecular weight of copolymer (A)) ≦ 200,000 (weight ratio of copolymer (A)): (copolymer (B) (Weight ratio) = 5: 95-50: 50 (2)
(Weight average molecular weight of copolymer (B))-(Weight average molecular weight of copolymer (A))> 200,000 (weight ratio of copolymer (A)): (copolymer (B) (Weight ratio) = 20: 80 to 80:20 (3)
懸濁重合法もしくは乳化重合法による2段重合で得られることを特徴とする請求項1に記載の多段重合のメタクリル系樹脂重合体。   The methacrylic resin polymer for multistage polymerization according to claim 1, which is obtained by two-stage polymerization by suspension polymerization or emulsion polymerization.
JP2005337992A 2005-11-24 2005-11-24 Multistage-polymerized methacrylic resin polymer Pending JP2007145882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337992A JP2007145882A (en) 2005-11-24 2005-11-24 Multistage-polymerized methacrylic resin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337992A JP2007145882A (en) 2005-11-24 2005-11-24 Multistage-polymerized methacrylic resin polymer

Publications (1)

Publication Number Publication Date
JP2007145882A true JP2007145882A (en) 2007-06-14

Family

ID=38207687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337992A Pending JP2007145882A (en) 2005-11-24 2005-11-24 Multistage-polymerized methacrylic resin polymer

Country Status (1)

Country Link
JP (1) JP2007145882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964690B2 (en) 2005-11-24 2011-06-21 Asahi Kasei Chemicals Corporation Methacrylic resin and process for producing thererof
JP2015108161A (en) * 2009-10-22 2015-06-11 旭化成ケミカルズ株式会社 Acrylic resin and molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964690B2 (en) 2005-11-24 2011-06-21 Asahi Kasei Chemicals Corporation Methacrylic resin and process for producing thererof
JP2015108161A (en) * 2009-10-22 2015-06-11 旭化成ケミカルズ株式会社 Acrylic resin and molded body

Similar Documents

Publication Publication Date Title
JP5671492B2 (en) Methacrylic resin and method for producing the same
JP5763721B2 (en) Branched acrylic copolymer with excellent refractive index and method for producing the same
CN102115568B (en) Transparent thermoplastic resin composition with improved impact strength and melt flow index
JP6202805B2 (en) Film containing methacrylic resin
JP5968368B2 (en) Methacrylic resin for injection molding
JP6359080B2 (en) Impact-processed PMMA with improved optical properties
JP2007291230A (en) Light guide plate
EP3613807B1 (en) Thermoplastic resin composition
JP5674325B2 (en) Molded product obtained using methacrylic resin composition
JP2012087251A (en) Impact-resistive acrylic resin composition, molded body, and vehicular member
JP3642919B2 (en) Impact modifier and thermoplastic polymer composition containing the same
JP2007145882A (en) Multistage-polymerized methacrylic resin polymer
JP5324023B2 (en) Display window protection sheet
KR101651719B1 (en) Light diffusing composition and light diffusing resin composition comprising thereof
JP4890344B2 (en) Lens array
JP6326530B2 (en) Film containing methacrylic resin
JP2006124608A (en) Methacrylic resin composition for extruded sheet and method for producing its extruded sheet
KR101436080B1 (en) Thermoplastic Resin Composition Having Good Thermal Stability
KR101676023B1 (en) High melt flow polymethylmethacrtylate resin composition and articles thereof
CN116096544A (en) Methacrylic resin composition and molded article
KR101717442B1 (en) Cross-linked methacrylate copolymer for polycarbonate, polycarbonate composition
JP2019173011A (en) Methacrylic resin composition, and molded body thereof
JPH1067907A (en) Resin composition and production thereof
KR20200046696A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20080130

Free format text: JAPANESE INTERMEDIATE CODE: A7422