JP5126845B2 - Semiconductor material and manufacturing method thereof - Google Patents

Semiconductor material and manufacturing method thereof Download PDF

Info

Publication number
JP5126845B2
JP5126845B2 JP2008225702A JP2008225702A JP5126845B2 JP 5126845 B2 JP5126845 B2 JP 5126845B2 JP 2008225702 A JP2008225702 A JP 2008225702A JP 2008225702 A JP2008225702 A JP 2008225702A JP 5126845 B2 JP5126845 B2 JP 5126845B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor
substrate
semiconductor material
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008225702A
Other languages
Japanese (ja)
Other versions
JP2010045319A (en
Inventor
正二郎 小松
豊裕 知京
裕平 佐藤
大輔 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008225702A priority Critical patent/JP5126845B2/en
Publication of JP2010045319A publication Critical patent/JP2010045319A/en
Application granted granted Critical
Publication of JP5126845B2 publication Critical patent/JP5126845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

本発明は、基板とその表面に形成した薄膜とからなる半導体特性を有する半導体材料とその製造方法に関する。   The present invention relates to a semiconductor material having semiconductor characteristics, which includes a substrate and a thin film formed on the surface thereof, and a method for manufacturing the same.

c−BNに代表されるsp−結合性BNは、超高硬度(ダイヤモンドに次ぐ)と耐高温性(高温耐火物として知られる)を併せ持ち、物理的化学的に最も頑強な物質である一方、ワイドバンドギャップ(5〜6eV相当)半導体としてもその可能性が期待されている。しかし、sp−結合性BNは超高温(数千℃)超高圧(数万気圧)で合成されるため、電子材料としての産業的な実用化が困難であった。一方その薄膜作製プロセスとしてスパッタ法やプラズマCVD法が知られているが、半導体特性を持つ材料の実現まで至っていないのが現状であった。 sp 3 -bonded BN, typified by c-BN, has both extremely high hardness (secondary to diamond) and high temperature resistance (known as high temperature refractory), and is the most physically and chemically robust substance. The possibility is also expected as a wide band gap (equivalent to 5 to 6 eV) semiconductor. However, since sp 3 -bonded BN is synthesized at an ultra-high temperature (several thousand degrees Celsius) and an ultra-high pressure (tens of thousands of atmospheric pressures), it has been difficult to put it into practical use as an electronic material. On the other hand, a sputtering method and a plasma CVD method are known as the thin film manufacturing process, but the present situation is that a material having semiconductor characteristics has not yet been realized.

本発明は、レーザなどの紫外光源を用いたプロセスによりsp−結合性BN多形(sp−結合性nH−BN;n=2以上の自然数)薄膜でかつ半導体特性を持つものを作製することを可能にする新たな手法、得られる材料、及びその電子デバイスへの応用に関するものである。 In the present invention, a sp 3 -bonded BN polymorph (sp 3 -bonded nH-BN; a natural number of n = 2 or more) thin film having semiconductor characteristics is manufactured by a process using an ultraviolet light source such as a laser. The present invention relates to a new technique that makes it possible, materials obtained, and applications to electronic devices.

発明1の半導体材料は、基板とその表面に形成した薄膜とからなる半導体特性を有する半導体材料であって、前記薄膜がBNはsp−結合性nH−BN(nは2以上の自然数)であり、前記基板を構成する材料が前記薄膜にドープされ、半導体化されていることを特徴とする。
The semiconductor material of the invention 1 is a semiconductor material having semiconductor characteristics comprising a substrate and a thin film formed on the surface thereof, wherein the thin film is sp 3 -bonding nH-BN (n is a natural number of 2 or more). Ah is, the material constituting the substrate is doped in the thin film, characterized in that it is a semiconductor of.

発明2は、発明1の半導体材料の製造方法であって、不活性ガスにNH ガスを混入したガス雰囲気中で、半導体基板にアモルファスBN薄膜が形成してある前駆体の薄膜方面に紫外光を照射して、前記薄膜をsp−結合性nH−BN(nは2以上の自然数)に変性することを特徴とする。
Invention 2 is a method for producing a semiconductor material according to Invention 1, and in the gas atmosphere in which NH 3 gas is mixed in an inert gas , ultraviolet light is applied to the thin film direction of the precursor in which the amorphous BN thin film is formed on the semiconductor substrate. The thin film is modified to sp 3 -bonding nH-BN (n is a natural number of 2 or more).

従来不可能であった、BN薄膜による半導体材料を実現することができた。   It was possible to realize a semiconductor material using a BN thin film, which was impossible in the past.

アモルファスBN薄膜の作製。
コーン・エミッターを有しないアモルファスBN薄膜を形成する従来周知の方法を用いることが可能である。代表例としては、プラズマCVD,熱CVD等により、ホウ素原料ガスとしてB、BCl等、窒素原料ガスとしてNH等を用いる。
基板としては、Siを用いると、下記するようにp型半導体BNが得られ、Cを含む材質(グラファイト、B4Cなど)等を用いると、n型半導体BNが得られる。ここで、BNはsp−結合性nH−BN(nは2以上の自然数)というBN高密度相の多形である。
基板上に作製された上記アモルファスBN薄膜を、光導入用光学窓を持つ合成チャンバーに設置し、チャンバー内雰囲気を不活性ガス(Arなど)、又は、不活性ガスにNHガスなどを混入したもので満たし、チャンバー外から光学窓を通して紫外光(代表的にはArFレーザ光:波長193nm)を薄膜表面に照射する。この際、NH等の窒素を含有するガスを推奨するのはBNの組成変化(Nが抜けやすい)を抑制する効果があるためである。又、これらの雰囲気は、プラズマ化することで、プロセス時間の短縮などの効果がある。図1は、以下の実施例を実施するために使用した装置の概略図である。
ガスプラズマとレーザ照射とは異なるタイミングで行われ、アモルファスBN薄膜を生成するときにガスプラズマを使用し、コーン・エミッターを生成するときにレーザ照射を行えるようにしてある。
そして、これらの操作を、チャンバー内から基板を出し入れしなくとも連続して順次行えるようにしてある。
なお、アモルファスBN薄膜とレーザ照射とを別個の装置で行うことを妨げるものではない。
Preparation of amorphous BN thin film.
It is possible to use a conventionally known method for forming an amorphous BN thin film having no cone emitter. As a typical example, B 2 H 6 , BCl 3 or the like is used as a boron source gas, and NH 3 or the like is used as a nitrogen source gas by plasma CVD, thermal CVD, or the like.
When Si is used as the substrate, a p-type semiconductor BN is obtained as described below, and when a material containing C (graphite, B4C, etc.) is used, an n-type semiconductor BN is obtained. Here, BN is a polymorph of a BN high-density phase called sp 3 -bonding nH-BN (n is a natural number of 2 or more).
The amorphous BN thin film prepared on the substrate was placed in a synthesis chamber having an optical window for light introduction, and the atmosphere in the chamber was mixed with an inert gas (Ar or the like), or NH 3 gas or the like was mixed into the inert gas. The thin film surface is irradiated with ultraviolet light (typically ArF laser light: wavelength 193 nm) through the optical window from outside the chamber. At this time, the reason why a gas containing nitrogen such as NH 3 is recommended is that it has an effect of suppressing a change in the composition of BN (N tends to escape). In addition, these atmospheres can be converted into plasma, thereby reducing the process time. FIG. 1 is a schematic diagram of the apparatus used to carry out the following examples.
Gas plasma and laser irradiation are performed at different timings. Gas plasma is used when an amorphous BN thin film is formed, and laser irradiation can be performed when a cone emitter is generated.
These operations can be performed successively and sequentially without taking in and out the substrate from the chamber.
In addition, it does not prevent performing an amorphous BN thin film and laser irradiation with a separate apparatus.

上記方法とは別に既知(特許文献1等)のレーザ・プラズマ複合化CVD法による薄膜によっても、十分なレーザ光のエネルギー密度(レーザ・フルエンス)の条件下では、前記手法と同様に、下記の特性の薄膜が得られた。   In addition to the above-described method, a known thin film by a laser / plasma composite CVD method (Patent Document 1 or the like) can be used under the conditions of sufficient energy density (laser fluence) of the laser beam in the same manner as the above method. A characteristic thin film was obtained.

以下の本発明を実証するための実験例を示す。
アモルファスBN薄膜の作成
本実施例では、表1に示す条件にてモルファスBN薄膜を得た。
Experimental examples for demonstrating the present invention will be shown below.
In preparing this embodiment of the amorphous BN films to give the A Amorphous BN thin film under the conditions shown in Table 1.


Lot No.1のAFM像図5に示す。 他のロットのアモルファスBN薄膜も同様な表面であった。

Lot No. An AFM image of 1 is shown in FIG . Other lots of amorphous BN thin films had similar surfaces.

薄膜改質
前記表1にて得られたモルファスBN薄膜を表2に示すようにして、薄膜の改質を行った。
The A Amorphous BN thin films obtained by thin film reforming Table 1 as shown in Table 2, was modified in the thin film.

表2−1の薄膜はp型の導電性を示すBN半導体であることが、熱起電力測定により判明した。
n型Si基板上に得られたp型BN薄膜は、pn接合を形成し、整流特性を示していることが判明した(図2)。
It was found by thermoelectromotive force measurement that the thin film in Table 2-1 was a BN semiconductor exhibiting p-type conductivity.
The p-type BN thin film obtained on the n-type Si substrate was found to form a pn junction and exhibit rectification characteristics (FIG. 2).

同じくSi基板上に得られたp型BN薄膜で表面にサブミクロンからミクロメータ程度のコーン状のモルフォロジーを示すもの(表2−2)を、探針をメタル・コートしたAFM(原子間力顕微鏡)によりその電流-電圧特性を測定したところ、負電圧領域では電流は流れにくく、正電圧(5〜6V)付近でスイッチ的に電流が流れるという特性が得られ、通常のpn接合による整流特性とは異なるナノドットなどの量子効果特性に近い(あるいは同等な)特性が得られた(図3、4,5,6)。   Similarly, a p-type BN thin film obtained on a Si substrate and showing a cone-like morphology of submicron to micrometer on the surface (Table 2-2), AFM (atomic force microscope) with a metal-coated probe ), The current-voltage characteristics were measured. As a result, it was found that the current hardly flows in the negative voltage region and that the current flows like a switch in the vicinity of the positive voltage (5 to 6 V). The characteristics similar to (or equivalent to) the quantum effect characteristics such as different nanodots were obtained (FIGS. 3, 4, 5, and 6).

前記表2−1、2に示すn型Si−p型BNによるpn接合に光照射した上で熱起電力電力測定、電流電圧特性の測定などをおこなったところ、十分な光起電力が生じており、太陽電池として使用できることが判明した。
前記表2−1、2に示す光起電力を有するpn接合を、n型GaNなどとのヘテロ接合として、あるいは、C等のドープによるn型BNと上記p型BNとのホモ接合として、ガラスなどの透明基板上に作製すれば、光透過性(透明な)太陽電池が作成でき、窓ガラスなどへの応用が可能になる。
When pn junctions with n-type Si-p-type BN shown in Tables 2-1 and 2 were irradiated with light, the measurement of thermoelectromotive force and current-voltage characteristics, etc. resulted in sufficient photovoltaic power. It has been found that it can be used as a solar cell.
As the pn junction having the photovoltaic power shown in Tables 2-1 and 2 as a heterojunction with n-type GaN or the like, or as a homojunction between n-type BN doped with C or the like and the p-type BN, glass If it is produced on a transparent substrate such as the above, a light transmissive (transparent) solar cell can be produced, and application to a window glass or the like becomes possible.

ファイア基板上に得られた薄膜もsp−結合性nH−BN(nは2以上の自然数)多形であった。これにより、薄膜は透明であることが判明した(図7)。したがって、各種ドーピング手法により、透明導電性BN半導体薄膜が作製できる。
サファイア基板上に作成した透明なsp−結合性nH−BN薄膜で、基板を回転しながら成長したため、図7に示すとおり円盤状に形成されている。又、レーザ光の不均一性を反映して、中心部分と、円盤周縁部分では透明性が落ちて、多少の着色が見られる。
A thin film obtained in the fire on board also sp 3 - binding nH-BN (n is a natural number of 2 or more) were polymorphic. This revealed that the thin film was transparent (FIG. 7). Therefore, a transparent conductive BN semiconductor thin film can be produced by various doping techniques.
Since the transparent sp 3 -bonding nH-BN thin film prepared on the sapphire substrate was grown while rotating the substrate, it was formed in a disk shape as shown in FIG. Further, reflecting the non-uniformity of the laser beam, the transparency is lowered at the central portion and the peripheral portion of the disk, and some coloring is observed.

上記pn接合に既存特許(3598381号)の紫外発光特性を組み合わせると、いわゆるエレクトロルミネッセンスによる紫外発光素子(ダイオード)が作成でき、225nmや300nm等の産業的な需要の大きい固体紫外光源が得られ、広大な応用領域がカバーできる。
導電性発現の解釈として、レーザ光が十分なエネルギー密度を持つ場合、基板材料自体が成長しつつあるBN薄膜とミキシングを生じてドーピングされることが考えられ、表2-1、2、3などの例では、シリコンがBNにドープされ、p型半導体化したことが考えられる。
Combining the above-mentioned pn junction with the ultraviolet light emission characteristics of the existing patent (3598381), an ultraviolet light emitting element (diode) by so-called electroluminescence can be created, and a solid ultraviolet light source having a large industrial demand such as 225 nm and 300 nm can be obtained. A vast application area can be covered.
As an interpretation of the expression of conductivity, when the laser beam has a sufficient energy density, it is considered that the substrate material itself is mixed with the growing BN thin film and doped, and Tables 2-1, 2, 3 etc. In this example, it can be considered that silicon is doped into BN to form a p-type semiconductor.

図9の薄膜合成条件は、下表に示すとおりである。

The thin film synthesis conditions in FIG. 9 are as shown in the table below.

図10の薄膜は、1インチN型Si(100)基板上に作成したBN薄膜に、銅メッシュを電極として接触させたものである。
その太陽電池能は、100Wの電球による光照射により測定した。その結果を図10に示す。ここで、実線は、光照射無しの場合、点線は光照射有りの場合で、Voc=0.17Vが確認できた。測定は、1MΩの抵抗を直列に入れて行っている。
このように、この半導体材料は太陽電池としての応用が可能である。
The thin film in FIG. 10 is obtained by bringing a copper mesh into contact with a BN thin film formed on a 1-inch N-type Si (100) substrate.
The solar cell performance was measured by light irradiation with a 100 W bulb. The results are shown in FIG. Here, the solid line indicates no light irradiation, the dotted line indicates the light irradiation, and Voc = 0.17V was confirmed. The measurement is performed by inserting a 1 MΩ resistor in series.
Thus, this semiconductor material can be applied as a solar cell.

本発明の実施に使用した装置の模式図。The schematic diagram of the apparatus used for implementation of this invention. 表2−1サンプルであるn型Si基板上にp型BN薄膜の電圧−電流特性を示すグラフ。Table 2-1. A graph showing voltage-current characteristics of a p-type BN thin film on an n-type Si substrate as a sample. 図5の2−4点でのメタルコートした探針を用いたAFM(原子間力顕微鏡)による試料表面でのI−V特性の測定結果を示すグラフ。(a)、(b)に示す。その表面形状と測定ポイントを(c)上に矢印で示す。(d)は(c)に対応する導電性のマッピングである。The graph which shows the measurement result of the IV characteristic in the sample surface by AFM (atomic force microscope) using the probe which carried out the metal coating at 2-4 points | pieces of FIG. Shown in (a), (b). The surface shape and measurement points are indicated by arrows on (c). (D) is a conductive mapping corresponding to (c). 図5の2−5点でのメタルコートした探針を用いたAFM(原子間力顕微鏡)による試料表面でのI−V特性の測定結果を示すグラフ。The graph which shows the measurement result of the IV characteristic in the sample surface by AFM (atomic force microscope) using the metal-coated probe in 2-5 points | pieces of FIG. 図3、4の測定点を示す試料のAFM像The AFM image of the sample which shows the measurement point of FIG. 図5に示す表面での導電性のマッピング。Conductivity mapping at the surface shown in FIG. サファイア基板上に作製された透明なsp−結合性nH−BN薄膜試料を示す写真。Fabricated on a sapphire substrate is transparent sp 3 - photograph showing the binding nH-BN thin film sample. 表1にて得られたモルファスBN薄膜を表2に示すようにして改質を行った結果得られた薄膜表面モルフォロジーを示す走査型電子顕微鏡イメージ。The scanning electron microscope image which shows the thin film surface morphology obtained as a result of modifying the morphous BN thin film obtained in Table 1 as shown in Table 2. n-Si(100)基板上にp型のsp3-結合性nH-BN(n=6,9,10の混合薄膜) を作成し、I-V測定の結果、整流効果があり、pnヘテロ接合が形成されていることが確認できた。ここでは、1kΩの抵抗を直列に入れて測定している。A p-type sp3-bonded nH-BN (n = 6, 9, 10 mixed thin film) was created on an n-Si (100) substrate, and as a result of IV measurement, there was a rectifying effect and a pn heterojunction was formed It has been confirmed that. Here, 1 kΩ resistance is put in series and measured. 図9と同様なヘテロpn接合の光起電力が確認できた。ここで、実線は、光照射無しの場合、点線は光照射有りの場合で、Voc=0.17Vが確認できた。測定は、1MΩの抵抗を直列に入れて行っている。このように、この半導体材料は太陽電池としての応用が可能である。The photovoltaic power of the hetero pn junction similar to FIG. 9 was confirmed. Here, the solid line indicates no light irradiation, the dotted line indicates the light irradiation, and Voc = 0.17V was confirmed. The measurement is performed by inserting a 1 MΩ resistor in series. Thus, this semiconductor material can be applied as a solar cell. 太陽電池に用いられるp型BN/n型Siヘテロダイオードの概念図Conceptual diagram of p-type BN / n-type Si hetero diode used in solar cells 作成されたヘテロダイオードの電流電圧特性。整流特性がきれいに出ている。又、白熱灯照射により、第三象限に十分な光励起電流が出ており、光センサーとして機能することも分かる。Current-voltage characteristics of the created hetero diode. The rectification characteristics are beautiful. In addition, it can be seen that the photoexcitation current is sufficient in the third quadrant due to the incandescent lamp irradiation, and it functions as an optical sensor. 作成された太陽電池の特性。30mW/cm2相当の白熱電球の光を照射した場合の発電の例。ここでは、約0.6mW/cm2程度の発電量で、おおよその発電効率は2%程度になる。これは接触抵抗の大きいアルミ箔電極を用いた試作一号機の段階としては前途有望な値である。Characteristics of the created solar cell. Examples of power generation when irradiated with light of 30 mW / cm 2 corresponds incandescent bulbs. Here, with a power generation amount of about 0.6 mW / cm 2 , the approximate power generation efficiency is about 2%. This is a promising value for the first prototype using an aluminum foil electrode with high contact resistance. 合成法を指し示すフローチャートFlow chart pointing to the synthesis method 合成条件を指し示すフローチャートFlow chart indicating synthesis conditions 図12を作成した測定データMeasurement data that created Fig. 12 図13を作成した測定データMeasurement data that created Fig. 13

Claims (2)

基板とその表面に形成した薄膜とからなる半導体特性を有する半導体材料であって、
前記薄膜がsp−結合性nH−BN(nは2以上の自然数)であり、
前記基板を構成する材料が前記薄膜にドープされ、半導体化されていることを特徴とする半導体材料
A semiconductor material having semiconductor characteristics comprising a substrate and a thin film formed on the surface thereof,
The thin film is sp 3 - binding nH-BN (n is a natural number of 2 or more) der is,
A semiconductor material characterized in that a material constituting the substrate is doped into the thin film to make a semiconductor .
請求項1に記載の半導体材料の製造方法であって、不活性ガスにNH ガスを混入したガス雰囲気中で、半導体基板にアモルファスBN薄膜が形成してある前駆体の薄膜方面に紫外光を照射して、前記薄膜をsp−結合性nH−BN(nは2以上の自然数)に変性することを特徴とする半導体材料の製造方法。
2. The method of manufacturing a semiconductor material according to claim 1 , wherein ultraviolet light is applied to a thin film direction of a precursor in which an amorphous BN thin film is formed on a semiconductor substrate in a gas atmosphere in which NH 3 gas is mixed in an inert gas. Irradiation to modify the thin film into sp 3 -bonding nH-BN (n is a natural number of 2 or more).
JP2008225702A 2008-03-26 2008-09-03 Semiconductor material and manufacturing method thereof Expired - Fee Related JP5126845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225702A JP5126845B2 (en) 2008-03-26 2008-09-03 Semiconductor material and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008081863 2008-03-26
JP2008081863 2008-03-26
JP2008186605 2008-07-18
JP2008186605 2008-07-18
JP2008225702A JP5126845B2 (en) 2008-03-26 2008-09-03 Semiconductor material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010045319A JP2010045319A (en) 2010-02-25
JP5126845B2 true JP5126845B2 (en) 2013-01-23

Family

ID=42016435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225702A Expired - Fee Related JP5126845B2 (en) 2008-03-26 2008-09-03 Semiconductor material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5126845B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170653B2 (en) * 2008-03-26 2013-03-27 独立行政法人物質・材料研究機構 Cone emitter formation method
EP2755227B1 (en) * 2011-09-05 2017-07-12 Nippon Telegraph And Telephone Corporation Nitride semiconductor structure and method of preparing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920203B2 (en) * 1996-06-25 1999-07-19 科学技術庁無機材質研究所長 Method for producing sp3-bonded boron nitride
JP3598381B2 (en) * 2002-07-02 2004-12-08 独立行政法人物質・材料研究機構 General formula; sp3-bonded boron nitride represented by BN, having a hexagonal 5H-type or 6H-type polymorphic structure, emitting light in the ultraviolet region, a method for producing the same, and a functional material using the same

Also Published As

Publication number Publication date
JP2010045319A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
Liu et al. Non-planar vertical photodetectors based on free standing two-dimensional SnS 2 nanosheets
JP4720426B2 (en) Solar cell using carbon nanotubes
Chen et al. Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes
Hersee et al. GaN nanowire light emitting diodes based on templated and scalable nanowire growth process
KR101217210B1 (en) Light emitting device and method for manufacturing the same
TW200807749A (en) Method for making a III-V family nitride semiconductor and a method for making a luminescent element
Chen et al. Superior B-doped SiC nanowire flexible field emitters: ultra-low turn-on fields and robust stabilities against harsh environments
Lin et al. Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates
CN109437124B (en) Method for synthesizing single-layer transition metal chalcogenide
Kathalingam et al. Fabrication and characterization of solution processed n-ZnO nanowire/p-Si heterojunction device
CN108807617A (en) The GaN base nano-pillar LED epitaxial wafer and preparation method thereof being grown in silicon/graphene compound substrate
Xing et al. Synthesis and electrical properties of ZnO nanowires
JP5126845B2 (en) Semiconductor material and manufacturing method thereof
CN109873048A (en) A kind of manufacturing method of the outer opto-electronic device of transparent violet
Li et al. UV photovoltaic cells fabricated utilizing GaN nanorod/Si heterostructures
CN103746056A (en) Wave length-adjustable light-emitting diode based on gallium-doped zinc oxide nanowire array and manufacturing method thereof
Sahu et al. Growth and application of ZnO nanostructures
CN108281539A (en) A kind of flexible LED light structure and production method based on graphene material
Yang et al. Randomly packed n-SnO2 nanorods/p-SiC heterojunction light-emitting diodes
KR100974626B1 (en) Semiconductor device having active nanorods array and manufacturing method thereof
CN108597988A (en) A kind of AlGaN base deep ultraviolet LED epitaxial wafer and preparation method thereof grown on a si substrate
Kathalingam et al. Annealing induced p-type conversion and substrate dependent effect of n-ZnO/p-Si heterostructure
Liu et al. Effect of thermal annealing on properties of amorphous GaN/p-Si heterojunctions
CN109830497A (en) A kind of list conductance layer ultraviolet photoelectron device
Weng et al. Laterally grown n-ZnO nanowire/p-GaN heterojunction light emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees