JP5126095B2 - Heating apparatus and heating method - Google Patents

Heating apparatus and heating method Download PDF

Info

Publication number
JP5126095B2
JP5126095B2 JP2009024910A JP2009024910A JP5126095B2 JP 5126095 B2 JP5126095 B2 JP 5126095B2 JP 2009024910 A JP2009024910 A JP 2009024910A JP 2009024910 A JP2009024910 A JP 2009024910A JP 5126095 B2 JP5126095 B2 JP 5126095B2
Authority
JP
Japan
Prior art keywords
heating
coil
temperature distribution
distribution control
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009024910A
Other languages
Japanese (ja)
Other versions
JP2009212506A (en
Inventor
潤 吉川
英介 森崎
洋克 小林
正幸 原島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2009024910A priority Critical patent/JP5126095B2/en
Publication of JP2009212506A publication Critical patent/JP2009212506A/en
Application granted granted Critical
Publication of JP5126095B2 publication Critical patent/JP5126095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、誘導加熱により加熱対象物を加熱する加熱装置及び加熱方法に関する。   The present invention relates to a heating apparatus and a heating method for heating an object to be heated by induction heating.

誘導加熱による加熱装置は、急速に且つ高温に加熱対象物を加熱できるという利点があることから様々な産業分野で利用されている。   A heating apparatus by induction heating is used in various industrial fields because it has an advantage that a heating object can be heated rapidly and to a high temperature.

この加熱装置は、加熱対象物をその内部に収容する処理容器と、高周波電源に接続され、その処理容器を囲うように形成されたコイルと、を備えており、前記コイルに高周波を供給すると、加熱対象物の周囲に誘導磁界が発生し、電磁誘導により加熱対象物表面に誘導電流が流れてジュール熱が発生して、当該加熱対象物が加熱される。   This heating device includes a processing container that houses a heating object therein, and a coil that is connected to a high-frequency power source and is formed so as to surround the processing container, and when a high frequency is supplied to the coil, An induction magnetic field is generated around the object to be heated, an induction current flows on the surface of the object to be heated by electromagnetic induction, Joule heat is generated, and the object to be heated is heated.

例えば半導体装置の製造プロセスにおいては、上述の誘導加熱を行う加熱装置に対して前記処理容器内に所定のガスを供給するガス供給手段及び処理容器内のガスを排気する排気手段が組み込まれた酸化装置、エッチング装置、成膜装置などが用いられる場合があり、これらの装置においては、基板保持部に保持された半導体ウエハ(以下ウエハという)に対して加熱処理を行いながら処理容器内にガスを供給すると共に処理容器内を排気することで、ウエハに夫々酸化処理、エッチング処理、成膜処理などが行われる。   For example, in the manufacturing process of a semiconductor device, an oxidation apparatus in which a gas supply means for supplying a predetermined gas into the processing container and an exhaust means for exhausting the gas in the processing container are incorporated in the heating apparatus that performs the induction heating described above. In some cases, an apparatus, an etching apparatus, a film forming apparatus, or the like is used. In these apparatuses, a gas is introduced into the processing container while performing heat treatment on a semiconductor wafer (hereinafter referred to as a wafer) held on a substrate holder. By supplying and exhausting the inside of the processing container, oxidation processing, etching processing, film formation processing, and the like are performed on the wafer, respectively.

例えばMOSトランジスタなどの半導体デバイスの製造工程において、SiとCとを主成分とするSiC膜を、同じくSiCにより構成されるウエハ上に当該ウエハの結晶方位と同じ結晶方位を有する単結晶として成長させる、いわゆるエピタキシャル成長により成膜する場合がある。この場合、加熱されたウエハに各種の成膜用のガスを供給して、その各成膜ガスからウエハの熱により生じた反応生成物を堆積させて成膜を行うが、その反応生成物を得るためにウエハを1600℃程度の高温で加熱しなければならないため、前記誘導加熱によりウエハを加熱する成膜装置を用いて処理を行うことが検討されている。   For example, in a manufacturing process of a semiconductor device such as a MOS transistor, a SiC film containing Si and C as main components is grown as a single crystal having the same crystal orientation as that of the wafer on a wafer that is also made of SiC. In some cases, the film is formed by so-called epitaxial growth. In this case, various film-forming gases are supplied to the heated wafer, and the reaction products generated by the heat of the wafer are deposited from the film-forming gases to form a film. In order to obtain the wafer, since the wafer must be heated at a high temperature of about 1600 ° C., it has been studied to perform processing using a film forming apparatus that heats the wafer by induction heating.

このSiC膜を成膜するための成膜装置においては、上記の温度にまでウエハを短い時間で加熱するために例えばウエハを保持する基板保持部を、ウエハの裏面全体を支持し、且つウエハ表面全体を覆うようなケース状に形成すると共にウエハを加熱する際に電磁誘導により当該基板保持部も加熱されるように構成し、その基板保持部からの輻射及び熱伝導によってウエハがさらに加熱されるように構成される場合がある。つまり、この場合は基板保持部もウエハと共に加熱対象物として構成されている。   In the film forming apparatus for forming the SiC film, in order to heat the wafer to the above temperature in a short time, for example, a substrate holding unit that holds the wafer is supported on the entire back surface of the wafer, and the wafer surface When the wafer is heated, the substrate holding part is also heated by electromagnetic induction when the wafer is heated, and the wafer is further heated by radiation and heat conduction from the substrate holding part. May be configured as follows. That is, in this case, the substrate holder is also configured as a heating object together with the wafer.

ところで、このような電磁誘導により加熱を行う加熱装置においては、加熱対象物に対するコイルの位置によってその加熱対象物の各部の周囲における磁界の強さが変化し、その温度分布が変化する。従って加熱対象物に対してコイルの長さが短すぎたり、位置が偏っていたりすると、加熱対象物は均一に加熱されなくなってしまう。   By the way, in such a heating apparatus that performs heating by electromagnetic induction, the strength of the magnetic field around each part of the heating object changes depending on the position of the coil with respect to the heating object, and the temperature distribution changes. Therefore, if the length of the coil is too short or the position is biased with respect to the object to be heated, the object to be heated will not be heated uniformly.

そこで、例えば加熱対象物全体を囲むようにコイルを形成し、加熱対象物の周囲全体に誘導磁界を形成することが考えられるが、その場合コイルの長さ方向に沿った加熱対象物の両端部が、その中央部に比べて発生する誘導磁界が強くなり、結果としてその両端部の電磁誘導が強く起こり、ジュール熱の発生量が大きくなる。また、電磁誘導により加熱対象物の表面に発生した誘導電流は、コイルの長さ方向に沿って一端側から他端側へ、他端側から一端側へとコイルを流れる電流の向きに従って流れるが、一端側から他端側へ移動するときの他端、他端側から一端側へ移動するときの一端において行き場をなくす。その結果として加熱対象物の前記両端部には誘導電流が蓄積され、ジュール熱が大きく発生するものと考えられている。   Therefore, for example, it is conceivable that a coil is formed so as to surround the entire heating object, and an induction magnetic field is formed around the entire heating object. In this case, both end portions of the heating object along the length direction of the coil are considered. However, the induced magnetic field generated is stronger than that in the central portion, and as a result, the electromagnetic induction at both end portions thereof occurs strongly, and the generation amount of Joule heat increases. In addition, the induced current generated on the surface of the object to be heated by electromagnetic induction flows according to the direction of the current flowing through the coil from one end side to the other end side and from the other end side to the one end side along the length direction of the coil. The destination is eliminated at the other end when moving from one end side to the other end side and at one end when moving from the other end side to the one end side. As a result, it is considered that induced current is accumulated at both ends of the heating object, and a large amount of Joule heat is generated.

このようなことから、誘導加熱を用いた加熱装置において加熱対象物を均一に加熱処理することは難しく、例えば前記成膜装置においては基板保持部の前記両端部と中央部とで温度分布が異なり、その結果としてウエハの各部ごとに、また複数のウエハが基板保持部に保持されている場合にはウエハごとに当該基板保持部から輻射される熱量及び伝導される熱量が異なるおそれがある。前記成膜装置においてこのようにウエハの各部及びウエハ間で温度がばらつくと、膜質の均一性が低下してしまうおそれがある。   For this reason, it is difficult to uniformly heat an object to be heated in a heating apparatus using induction heating. For example, in the film forming apparatus, the temperature distribution differs between the both end portions and the central portion of the substrate holding portion. As a result, there is a possibility that the amount of heat radiated from the substrate holding unit and the amount of conducted heat differ for each part of the wafer, and when a plurality of wafers are held by the substrate holding unit. In the film forming apparatus, if the temperature varies between the portions of the wafer and between the wafers in this way, the uniformity of the film quality may be deteriorated.

このようにコイルの長さ方向に沿った基板保持部の両端部と中央部とで温度が不均一になることを防ぐために、基板保持部に対するコイルの位置やコイルの巻き数などを調整することで、基板保持部の周囲の誘導磁界を制御し、基板保持部及びウエハ表面の各部における誘導電流の発生を制御することも考えられる。しかしこのようなコイルの調整は手間や時間がかかる。   Thus, in order to prevent the temperature from becoming uneven at both ends and the center of the substrate holding part along the length direction of the coil, the position of the coil relative to the substrate holding part, the number of turns of the coil, etc. are adjusted. Thus, it is conceivable to control the induction magnetic field around the substrate holding part and to control the generation of induced currents in the substrate holding part and each part of the wafer surface. However, such adjustment of the coil takes time and effort.

また、前記成膜装置においては、ウエハに供給される成膜ガスの種類、各ガスの流量及び処理空間の圧力などの処理条件を変更すると、その影響を受けて基板保持部の各部及びウエハの各部でそのガスによる冷却量が夫々異なる場合がある。従って、ウエハに均一に処理を行うためには、このような処理条件を変更するたびに同様にコイルの位置や巻き数などを調整する必要になるので実用的ではない。   In the film forming apparatus, when the processing conditions such as the type of film forming gas supplied to the wafer, the flow rate of each gas, and the pressure in the processing space are changed, each part of the substrate holding unit and the wafer The cooling amount by the gas may be different in each part. Therefore, in order to uniformly process the wafer, it is not practical because it is necessary to adjust the position and the number of turns of the coil in the same manner every time such processing conditions are changed.

特許文献1及び特許文献2にはエピタキシャル成長により成膜を行う方法について記載されているが、このような問題については記載されていない。   Patent Documents 1 and 2 describe a method of forming a film by epitaxial growth, but do not describe such a problem.

特開平9−232275JP-A-9-232275 特開2006−261307JP 2006-261307 A

本発明は、上述の課題を解決するためになされたものであり、誘導加熱により加熱対象物を加熱するにあたり、加熱対象物の温度分布を制御することができる加熱装置及び加熱方法を提供することである。   The present invention has been made to solve the above-described problems, and provides a heating device and a heating method capable of controlling the temperature distribution of a heating object when heating the heating object by induction heating. It is.

本発明の加熱装置は、加熱対象物をその内部に収容する処理容器と、
処理容器を囲むように設けられたコイルと、
前記コイルに高周波を供給し、加熱対象物の周囲に誘導磁界を形成して、電磁誘導により加熱対象物を誘導加熱するための高周波電源と、
コイルにより形成される前記誘導磁界中に設けられ、その周囲の誘導磁界を緩和して加熱対象物の温度分布を制御するための導体により構成される温度分布制御部材と、
を備え
前記温度分布制御部材は、コイルに対して任意の位置に移動することができるように構成されていることを特徴とする。
The heating device of the present invention includes a processing container for storing a heating object therein,
A coil provided to surround the processing vessel;
A high frequency power source for supplying high frequency to the coil, forming an induction magnetic field around the heating object, and induction heating the heating object by electromagnetic induction;
A temperature distribution control member which is provided in the induction magnetic field formed by a coil, and which is constituted by a conductor for relaxing the induction magnetic field around the induction magnetic field and controlling the temperature distribution of the heating object;
Equipped with a,
The temperature distribution control member is configured to be able to move to an arbitrary position with respect to the coil .

前記温度分布制御部材は、例えばコイルの長さ方向に沿って設けられる位置を移動することができる。また、前記温度分布制御部材は、当該コイルの一端側と他端側に当該コイルを挟むように夫々設けられていてもよく、さらに前記加熱対象物は、被処理体とその被処理体を支持すると共に当該被処理体を輻射または熱伝導により加熱するための保持部とにより構成されていてもよい。また前記加熱装置は、前記加熱対象物にガスを供給してガス処理を行うためのガス供給手段と、処理容器内を排気する排気手段とを備えていてもよい。
The temperature distribution control member can move the position provided along the length of the coil if e example. Further, the temperature distribution control member may be provided respectively so as to sandwich the coil at one end and the other end of the coil, further wherein the heating object is supported and the object thereof workpiece In addition, it may be configured by a holding unit for heating the object to be processed by radiation or heat conduction. Also, the heating device, a gas supply means for performing gas treatment gas being fed to the heating object may comprise an exhaust means for exhausting the inside of the processing vessel.

本発明の加熱方法は、処理容器を囲むように設けられたコイルと、
前記コイルに高周波を供給し、加熱対象物の周囲に誘導磁界を形成して、電磁誘導により加熱対象物を誘導加熱するための高周波電源と、を備えた加熱装置を用いた加熱方法において、
その周囲の誘導磁界を緩和して加熱対象物の温度分布を制御できるように前記コイルにより形成される前記誘導磁界中に温度分布制御部材が設けられた状態で前記加熱対象物を加熱する工程と、
前記温度分布制御部材を、コイルに対して任意の位置に移動させる工程と、
を含むことを特徴とする。
The heating method of the present invention includes a coil provided so as to surround a processing container,
In a heating method using a heating device that supplies a high frequency to the coil, forms an induction magnetic field around the object to be heated, and a high frequency power source for induction heating the object to be heated by electromagnetic induction,
Heating the heating object in the state in which the temperature distribution control member is disposed in said induced magnetic field formed by the coil to be able to control the temperature distribution of the object to be heated to relax the induced magnetic field surrounding ,
Moving the temperature distribution control member to an arbitrary position with respect to the coil;
It is characterized by including.

本発明によれば誘導加熱により加熱対象物を加熱するにあたり、コイルにより形成される前記誘導磁界中に導体により構成される温度分布制御部材を設けて、その周囲の誘導磁界を緩和することで加熱対象物の温度分布を制御することができるため、例えば加熱対象物の各部の温度が不均一になることが抑えられるために有効である。
特に、この温度分布制御部材をコイルまたは加熱対象物に対して任意の位置に移動できるように構成することで、加熱対象物の周囲の誘導磁界が変化するように当該加熱対象物の処理条件を変更した場合において、コイルの位置やコイルの巻き数などを調整することに比べて容易に加熱対象物の温度分布を制御することができる。
According to the present invention, when heating an object to be heated by induction heating, a temperature distribution control member constituted by a conductor is provided in the induction magnetic field formed by a coil, and heating is performed by relaxing the surrounding induction magnetic field. Since the temperature distribution of the object can be controlled, it is effective because, for example, the temperature of each part of the heating object can be suppressed from becoming non-uniform.
In particular, by configuring the temperature distribution control member so that it can be moved to an arbitrary position with respect to the coil or the heating object, the processing conditions for the heating object can be set so that the induction magnetic field around the heating object changes. In the case of changing, it is possible to easily control the temperature distribution of the heating object as compared with adjusting the position of the coil, the number of turns of the coil, and the like.

本発明の加熱装置の一例である成膜装置の概略構成図である。It is a schematic block diagram of the film-forming apparatus which is an example of the heating apparatus of this invention. 前記成膜装置の縦断側面図である。It is a vertical side view of the film-forming apparatus. 前記成膜装置の分解斜視図である。It is a disassembled perspective view of the said film-forming apparatus. 前記成膜装置の載置台の上面図である。It is a top view of the mounting base of the film forming apparatus. 前記成膜装置の横断平面図である。It is a cross-sectional top view of the said film-forming apparatus. 他の成膜装置の縦断側面図である。It is a vertical side view of another film-forming apparatus. 他の成膜装置の分解斜視図である。It is a disassembled perspective view of another film-forming apparatus. 他の成膜装置の縦断側面図である。It is a vertical side view of another film-forming apparatus. 前記成膜装置について行ったシミュレーションを示したグラフ図である。It is the graph which showed the simulation performed about the said film-forming apparatus. 前記シミュレーションにおける磁力線の分布を示した模式図である。It is the schematic diagram which showed distribution of the magnetic force line in the said simulation.

本発明の一実施の形態である成膜装置2についてその構成の概略を示した図1を参照しながら説明する。この成膜装置2は電磁誘導によりSiCからなるウエハWを加熱するための加熱装置の一例として構成されており、ウエハWを加熱しながら成膜用のガスを当該ウエハWに供給して、その表面に背景技術の欄で説明したエピタキシャル成長によりSiC膜を成膜する。   A film forming apparatus 2 according to an embodiment of the present invention will be described with reference to FIG. The film forming apparatus 2 is configured as an example of a heating apparatus for heating the wafer W made of SiC by electromagnetic induction. The film forming apparatus 2 supplies a film forming gas to the wafer W while heating the wafer W. A SiC film is formed on the surface by the epitaxial growth described in the background section.

成膜装置2は処理容器20と、処理容器20内に設けられた基板保持部4と、
処理容器20の周囲に設けられたコイル31及び温度分布制御部材32,33と、これら処理容器20、コイル31、温度分布制御部材32,33を囲うように設けられた筐体である外装部21とを備えている。
The film forming apparatus 2 includes a processing container 20, a substrate holding unit 4 provided in the processing container 20,
The coil 31 and the temperature distribution control members 32 and 33 provided around the processing container 20, and the exterior portion 21 that is a casing provided so as to surround the processing container 20, the coil 31, and the temperature distribution control members 32 and 33. And.

図2は、外装部21内の各部を示した縦断側面図であり、図3は外装部21の側壁と外装部21内の各部の分解斜視図である。これらの図も参照しながら成膜装置2を構成する各部について説明すると、処理容器20は例えば長さ方向の両端が開口した円筒形の容器として構成されており、電磁誘導により当該処理容器20内のウエハWを効率よく加熱するにあたり、例えば石英などの誘電損失(誘電率)が小さい材料を用いて構成される。   FIG. 2 is a vertical side view showing each part in the exterior part 21, and FIG. 3 is an exploded perspective view of the side wall of the exterior part 21 and each part in the exterior part 21. The components constituting the film forming apparatus 2 will be described with reference to these drawings. The processing container 20 is configured as, for example, a cylindrical container having both ends opened in the length direction, and the inside of the processing container 20 by electromagnetic induction. In order to efficiently heat the wafer W, a material having a small dielectric loss (dielectric constant) such as quartz is used.

処理容器20内に設けられた基板保持部4は、被処理体であるウエハWを保持する役割を有すると共に誘導加熱によって加熱されて、ウエハWに熱を輻射及び伝導して当該ウエハWを加熱する役割を有しており、この成膜装置2ではウエハW及び基板保持部4が電磁誘導による加熱対象物となっている。基板保持部4は、ウエハWが載置される略円盤形状の水平な載置台41と、長さ方向の両端が開口した扁平な方形のケース体42と、ウエハWを保持する搬送板40とにより構成されており、ケース体42により載置台41が囲まれ、載置台41の周囲は後述の成膜ガスが供給される処理空間Sとして構成されている。搬送板40は略円盤状に構成されており、装置の外部の不図示の搬送機構により、複数枚例えば8枚のSiCからなるウエハWが載置された状態で載置台41上に搬送される。図4に示すようにウエハWはこの搬送板40を介して載置台41上に水平に保持される。   The substrate holding unit 4 provided in the processing container 20 has a role of holding the wafer W that is an object to be processed and is heated by induction heating to radiate and conduct heat to the wafer W to heat the wafer W. In this film forming apparatus 2, the wafer W and the substrate holding unit 4 are objects to be heated by electromagnetic induction. The substrate holding unit 4 includes a substantially disk-shaped horizontal mounting table 41 on which the wafer W is mounted, a flat rectangular case body 42 having both ends opened in the length direction, and a transfer plate 40 that holds the wafer W. The mounting table 41 is surrounded by the case body 42, and the periphery of the mounting table 41 is configured as a processing space S to which a film forming gas described later is supplied. The transfer plate 40 is configured in a substantially disk shape, and is transferred onto the mounting table 41 in a state where a plurality of, for example, eight SiC wafers W are mounted by a transfer mechanism (not shown) outside the apparatus. . As shown in FIG. 4, the wafer W is held horizontally on the mounting table 41 via the transfer plate 40.

この基板保持部4は例えばバルク材料と呼ばれる程度に密度が大きく、導体であり安定で純度の高いカーボン(グラファイト)により構成されており、誘導加熱によって加熱され、輻射及び熱伝導によりウエハWを加熱できるようになっている。   The substrate holding part 4 is made of carbon (graphite) having a high density, for example, called a bulk material, being a conductor and being stable and having high purity, heated by induction heating, and heating the wafer W by radiation and heat conduction. It can be done.

基板保持部4を構成する載置台41の中心には厚さ方向に孔41aが穿設されており、孔41aには軸部43が挿入されている。軸部43の一端はフランジ部44として構成され、載置台41上に露出しており、また軸部43の他端は例えば後述する断熱材46及び断熱材保持体47の外側へと突き抜け、駆動部45に接続されている。   A hole 41a is formed in the thickness direction in the center of the mounting table 41 constituting the substrate holding part 4, and a shaft part 43 is inserted into the hole 41a. One end of the shaft portion 43 is configured as a flange portion 44 and is exposed on the mounting table 41, and the other end of the shaft portion 43 penetrates to the outside of a heat insulating material 46 and a heat insulating material holding body 47, which will be described later, and is driven Connected to the unit 45.

前記フランジ部44は駆動部45を介して昇降し、搬送板40の中心に設けられた受け渡し用の孔40aに嵌入することで、前記搬送機構との間で搬送板40を受け渡すことができるようになっている。また軸部43は駆動部45を介して鉛直軸回りに回転自在に構成されており、図2に示したフランジ部44が下降した状態では当該フランジ部44は載置台41に嵌合し、軸部43の回転に従って載置台41が搬送板40を保持した状態で鉛直軸回りに回転するように構成されている。図中49は処理容器20内の気密性を確保するためのシール材である。   The flange portion 44 is moved up and down via the drive portion 45 and fitted into a delivery hole 40a provided at the center of the transport plate 40, so that the transport plate 40 can be transferred to and from the transport mechanism. It is like that. The shaft portion 43 is configured to be rotatable around a vertical axis via a drive portion 45. When the flange portion 44 shown in FIG. 2 is lowered, the flange portion 44 is fitted to the mounting table 41, and the shaft portion is The mounting table 41 is configured to rotate around the vertical axis while holding the transport plate 40 according to the rotation of the unit 43. In the figure, reference numeral 49 denotes a sealing material for ensuring airtightness in the processing container 20.

図3には示していないが、基板保持部4のケース体42の周囲には断熱材46が設けられており、また断熱材46を覆うように当該断熱材46を保持する断熱材保持体47が設けられている。断熱材46は前記基板保持部4と同様に例えばカーボンにより構成されるが、基板保持部4と異なり絶縁体として構成されており、そのカーボンは高い断熱性を得るために密度が小さく、その空隙率が上記の基板保持部4を構成するバルク材料に比べて大きい。断熱材46、基板保持部4の表面は各々材料の保護とパーティクルの発生の抑制を目的として、夫々断熱材46の構成材料よりも密度の高いカーボン膜、SiC膜でコーティングされている。   Although not shown in FIG. 3, a heat insulating material 46 is provided around the case body 42 of the substrate holding unit 4, and a heat insulating material holding body 47 that holds the heat insulating material 46 so as to cover the heat insulating material 46. Is provided. The heat insulating material 46 is made of, for example, carbon like the substrate holding portion 4. However, unlike the substrate holding portion 4, the heat insulating material 46 is constituted as an insulator, and the carbon has a low density in order to obtain high heat insulating properties, and its voids. The rate is larger than that of the bulk material constituting the substrate holder 4 described above. The surfaces of the heat insulating material 46 and the substrate holder 4 are coated with a carbon film and a SiC film, respectively, having a higher density than the constituent materials of the heat insulating material 46 for the purpose of protecting the material and suppressing the generation of particles.

断熱材保持体47は例えば石英により構成されており、断熱材保持体47と処理容器20との間は処理容器20の温度上昇を抑えるための断熱空間Rとして構成されている。後述するようにこの断熱空間Rは処理空間Sから区画された空間として構成されており、後述するように冷却用のArガスが当該断熱空間Rを流通する。断熱材保持体47は、柱状の支持部48,48により処理容器20の底面に支持されている。   The heat insulating material holding body 47 is made of, for example, quartz, and a heat insulating space R for suppressing a temperature rise of the processing container 20 is formed between the heat insulating material holding body 47 and the processing container 20. As will be described later, the heat insulating space R is configured as a space partitioned from the processing space S, and Ar gas for cooling flows through the heat insulating space R as described later. The heat insulating material holding body 47 is supported on the bottom surface of the processing container 20 by columnar support portions 48 and 48.

外装部21の互いに対向する側面には成膜ガスの供給口22、成膜ガスの排気口25及び冷却ガスの排気口26が夫々形成されており、処理容器20内には、そのガス供給口22と前記基板保持部4の処理空間Sとを接続するガス供給路23及び当該処理空間Sと前記排気口25とを接続するガス排気路24が形成されている。ガス供給路23は、搬送板40の搬送路を兼ねている。   A film forming gas supply port 22, a film forming gas exhaust port 25, and a cooling gas exhaust port 26 are formed on the side surfaces of the exterior portion 21 that face each other, and the gas supply port is provided in the processing container 20. A gas supply path 23 that connects 22 and the processing space S of the substrate holder 4 and a gas exhaust path 24 that connects the processing space S and the exhaust port 25 are formed. The gas supply path 23 also serves as a transport path for the transport plate 40.

排気口25,26には排気管27,28の一端が夫々接続されており、排気管27,28の他端は例えば圧力調整手段である可変バルブV1,V2を介して合流し、真空ポンプなどにより構成される排気手段29に接続されている。成膜装置2は処理空間S及び断熱空間Rの圧力を検出する不図示の圧力検出手段を備えており、検出された圧力に基づいて後述の制御部10が可変バルブV1,V2の開度を制御して、これら処理空間S、断熱空間Rの圧力を夫々所定の圧力に制御する。   One ends of exhaust pipes 27 and 28 are connected to the exhaust ports 25 and 26, respectively, and the other ends of the exhaust pipes 27 and 28 are joined via variable valves V1 and V2, which are pressure adjusting means, for example, a vacuum pump or the like. It is connected to the exhaust means 29 comprised by these. The film forming apparatus 2 includes pressure detection means (not shown) that detects the pressure in the processing space S and the heat insulation space R, and the control unit 10 described later controls the opening of the variable valves V1 and V2 based on the detected pressure. By controlling, the pressures of the processing space S and the heat insulating space R are respectively controlled to predetermined pressures.

ガス供給口22の上流側は不図示の区画された通路に連絡しており、この通路の上流側には開閉手段が設けられている。前記不図示の搬送機構と載置台41との間で搬送板40の受け渡しが行われる場合を除いて、この開閉手段により前記通路の上流側は閉じられ、処理空間Sが気密になる。また、前記通路にはガス供給管55Aの一端が接続されたガス供給機構が設けられ、このガス供給機構はガス供給口22に向けて横方向に、後述する成膜ガスを吐出する。そして、ガス供給口22に吐出された成膜ガスは、図中矢印で示すようにガス供給路23を介して載置台41に載置された各ウエハW全体に平行に供給され、ガス排気路24を通り排気口25から排気される。   The upstream side of the gas supply port 22 communicates with a partitioned passage (not shown), and an opening / closing means is provided on the upstream side of the passage. Except for the case where the transfer plate 40 is transferred between the transfer mechanism (not shown) and the mounting table 41, the upstream side of the passage is closed by the opening / closing means, and the processing space S becomes airtight. The passage is provided with a gas supply mechanism to which one end of a gas supply pipe 55A is connected. The gas supply mechanism discharges a film forming gas, which will be described later, toward the gas supply port 22 in the lateral direction. The film forming gas discharged to the gas supply port 22 is supplied in parallel to the entire wafer W mounted on the mounting table 41 via the gas supply path 23 as shown by the arrows in the figure, and the gas exhaust path 24 is exhausted from the exhaust port 25.

図1に示すようにガスノズル供給管55Aの他端は分岐し、分岐した各管はマスフローコントローラやバルブなどにより構成されるガス供給機器群56Aを介して、SiHガス、Cガス、Hガス、TMA(トリメチルアルミニウム)ガス、Nガスが夫々貯留されたガス供給源57A,57B,57C,57D,57Eに夫々接続されている。これらガス供給源57A〜57Eに貯留されているガスはウエハW表面にSiC膜を成膜するための成膜ガスであり、前記TMAガス及びN2ガスはSiC膜の電気的特性を調整するために任意に供給される。 As shown in FIG. 1, the other end of the gas nozzle supply pipe 55A is branched, and each of the branched pipes is supplied with SiH 4 gas, C 3 H 8 gas, via a gas supply device group 56A composed of a mass flow controller, a valve and the like. These are connected to gas supply sources 57A, 57B, 57C, 57D, and 57E in which H 2 gas, TMA (trimethylaluminum) gas, and N 2 gas are stored, respectively. The gas stored in these gas supply sources 57A to 57E is a film forming gas for forming a SiC film on the surface of the wafer W, and the TMA gas and the N2 gas are used for adjusting the electrical characteristics of the SiC film. Optionally supplied.

また、ガス供給口22が設けられた外装部21の側面には、冷却ガスノズル54Bが設けられており、冷却ガスノズル54Bには冷却ガス供給管55Bの一端が接続されている。冷却ガス供給管55Bの他端は、マスフローコントローラやバルブなどにより構成されるガス供給機器群56Bを介して、冷却ガスであるArガスが貯留されたガス供給源57Fに接続されている。各ガス供給機器群56A,56Bは、制御部10からの制御信号を受けて処理空間S及び断熱空間Rへの各ガスの給断を制御する。   In addition, a cooling gas nozzle 54B is provided on the side surface of the exterior portion 21 provided with the gas supply port 22, and one end of a cooling gas supply pipe 55B is connected to the cooling gas nozzle 54B. The other end of the cooling gas supply pipe 55B is connected to a gas supply source 57F in which Ar gas as a cooling gas is stored via a gas supply device group 56B configured by a mass flow controller, a valve, and the like. Each gas supply device group 56A, 56B receives a control signal from the control unit 10 and controls supply / disconnection of each gas to the processing space S and the heat insulation space R.

処理容器20を囲むコイル31は当該処理容器20の長さ方向に沿って基板保持部4全体を囲むように設けられており、コイル31には図1に示すように高周波電源34が接続されている。そして、高周波電源34からコイル31に高周波が供給されると、基板保持部4の周囲全体に誘導磁界が形成されるようになっている。   A coil 31 surrounding the processing container 20 is provided so as to surround the entire substrate holding unit 4 along the length direction of the processing container 20, and a high frequency power source 34 is connected to the coil 31 as shown in FIG. 1. Yes. When a high frequency is supplied from the high frequency power supply 34 to the coil 31, an induction magnetic field is formed around the entire periphery of the substrate holding unit 4.

コイル31の長さ方向の両側にはコイル31を挟むと共に処理容器20を囲むように導体例えば銅により構成された角型のループ状の2つの温度分布制御部材32,33が設けられている。各温度分布制御部材32,33は、コイル31により形成される誘導磁界中に置かれ、各々例えば図2に示すように棒状の絶縁体である支持部材35を介して鉛直に処理容器20に固定されている。例えば支持部材35は、処理容器20から取り外し可能且つ処理容器20の長さ方向に沿った任意の位置に取り付け可能に構成されており、成膜装置2の横断平面を示した図5に矢印で示すように各温度分布制御部材32,33は、コイル31の各端部と外装部21との間において処理容器20の長さ方向に沿ってその位置を任意に移動することができる。ただし、温度分布制御部材32,33はコイル31からの電流が流れると後述の役割を果たせないので、コイル31から離れた位置に設けられる。なお、温度分布制御部材32,33の位置を固定するのはこのような支持部材35を用いることに限られない。   On both sides of the coil 31 in the length direction, two temperature distribution control members 32 and 33 each having a square loop shape made of a conductor such as copper are provided so as to sandwich the coil 31 and surround the processing vessel 20. Each of the temperature distribution control members 32 and 33 is placed in an induction magnetic field formed by the coil 31, and is fixed to the processing vessel 20 vertically via a support member 35 that is a rod-like insulator, for example, as shown in FIG. Has been. For example, the support member 35 is configured to be detachable from the processing container 20 and attachable to an arbitrary position along the length direction of the processing container 20. The support member 35 is indicated by an arrow in FIG. As shown, each temperature distribution control member 32, 33 can arbitrarily move its position along the length direction of the processing container 20 between each end portion of the coil 31 and the exterior portion 21. However, since the temperature distribution control members 32 and 33 cannot play the role described later when the current from the coil 31 flows, the temperature distribution control members 32 and 33 are provided at positions away from the coil 31. Note that fixing the positions of the temperature distribution control members 32 and 33 is not limited to using such a support member 35.

背景技術の欄で説明したようにコイル31で基板保持部4全体を囲う場合、温度分布制御部材32,33を設けないとすると、後述する各ステップを実施して電磁誘導によりウエハW及び基板保持部4の加熱を行ったときに、コイル31の長さ方向に沿った基板保持部4のガス供給口22側に向かう端部の周囲、ガス排気口25側に向かう端部の周囲にはこれらの端部間における中央部の周囲よりも強い誘導磁界が発生する。しかし、温度分布制御部材32,33が上述のコイル31と外装部21との間の任意の位置に設けられることで、基板保持部4のガス供給口22側の端部の周囲及びガス排気口25側の端部の周囲に発生する誘導磁界を夫々弱め、基板保持部4のこれら各端部における電磁誘導を緩和し、その各端部における誘導電流の発生を抑えると共に誘導電流の蓄積を抑えて発熱を抑えることができる。   As described in the background art section, when the substrate 31 is entirely surrounded by the coil 31, if the temperature distribution control members 32 and 33 are not provided, the steps described below are performed and the wafer W and the substrate are held by electromagnetic induction. When the part 4 is heated, these are around the end of the substrate holding part 4 toward the gas supply port 22 side and the end of the substrate holding part 4 toward the gas exhaust port 25 along the length direction of the coil 31. An induction magnetic field stronger than the periphery of the central portion between the end portions of the two is generated. However, by providing the temperature distribution control members 32 and 33 at an arbitrary position between the coil 31 and the exterior part 21, the periphery of the end part of the substrate holding part 4 on the gas supply port 22 side and the gas exhaust port are provided. The induction magnetic field generated around the end on the 25th side is weakened, the electromagnetic induction at each end of the substrate holding part 4 is relaxed, the generation of the induction current at each end is suppressed, and the accumulation of the induction current is suppressed. Heat can be suppressed.

また、背景技術の欄で説明したように、例えば処理容器20内の圧力、各成膜ガス及び冷却ガスの流量、処理容器20内に供給するガスの種類などの処理条件を変更すると、処理容器20内のガス流の変化の影響を受けて基板保持部4の各部でそのガス流による冷却量が夫々変動することがある。その結果として、基板保持部4の前記両端部と中央部との温度分布が夫々変化し、ウエハWへの成膜処理の均一性が低下する場合がある。しかし、温度分布制御部材32,33からの距離に応じて誘導磁界の緩和される量は異なることから、上記のようにウエハWの各処理条件を変更した場合に、成膜装置2のユーザはコイル31に対して夫々温度分布制御部材32,33の位置を調整することにより、基板保持部4の前記両端部の周囲の磁界の強さを夫々制御し、その発熱量を制御することで、当該ウエハWに均一な処理を行うことができる。   Further, as described in the background art section, if the processing conditions such as the pressure in the processing container 20, the flow rates of the respective deposition gas and cooling gas, the type of gas supplied into the processing container 20 are changed, the processing container The amount of cooling due to the gas flow may vary in each part of the substrate holding unit 4 due to the influence of the change in the gas flow within the substrate 20. As a result, the temperature distribution between the both end portions and the central portion of the substrate holding portion 4 may change, and the uniformity of the film forming process on the wafer W may be reduced. However, since the amount of relaxation of the induced magnetic field differs depending on the distance from the temperature distribution control members 32 and 33, the user of the film forming apparatus 2 can change the processing conditions of the wafer W as described above. By adjusting the positions of the temperature distribution control members 32 and 33 with respect to the coil 31, respectively, the strength of the magnetic field around the both ends of the substrate holding unit 4 is controlled, and the amount of heat generated is controlled. Uniform processing can be performed on the wafer W.

この成膜装置2には例えばコンピュータからなる制御部10が設けられている。この制御部10はプログラム、メモリ、CPUからなるデータ処理部などを備えており、前記プログラムには制御部10から成膜装置2の各部に制御信号を送り、後述のステップを実施し、ウエハWに成膜処理を行うことができるようになっている。また、例えばメモリには処理圧力、処理時間、ガス流量、電力値などの処理パラメータの値が書き込まれる領域を備えており、CPUがプログラムの各命令を実行する際これらの処理パラメータが読み出され、そのパラメータ値に応じた制御信号がこの成膜装置2の各部位に送られることになる。このプログラム(処理パラメータの入力操作や表示に関するプログラムも含む)は、記憶媒体例えばフレキシブルディスク、コンパクトディスク、MO(光磁気ディスク)などの記憶部11に格納されて制御部10にインストールされる。   The film forming apparatus 2 is provided with a control unit 10 composed of, for example, a computer. The control unit 10 includes a data processing unit such as a program, a memory, and a CPU. The control unit 10 sends control signals to the respective units of the film forming apparatus 2 from the control unit 10 to execute the steps described below, and the wafer W The film forming process can be performed. In addition, for example, the memory has an area in which processing parameter values such as processing pressure, processing time, gas flow rate, and power value are written, and these processing parameters are read when the CPU executes each instruction of the program. A control signal corresponding to the parameter value is sent to each part of the film forming apparatus 2. This program (including programs related to processing parameter input operations and display) is stored in the storage unit 11 such as a storage medium such as a flexible disk, a compact disk, or an MO (magneto-optical disk) and installed in the control unit 10.

この成膜装置2を用いてウエハWに処理を行う手順について説明する。先ず成膜装置2のユーザは、成膜処理を行うにあたり処理時のウエハWの加熱温度、成膜時の処理空間Sの圧力、断熱空間Rの圧力及び各ガスの流量などの処理条件を決定する(ステップ1)。続いて、不図示の搬送機構が処理の均一性を確認するための試験用ウエハがウエハWの代わりに載置された搬送板40をケース体42へ搬入し、フランジ部44を介してその搬送板40が載置台41に受け渡されて載置された後、駆動部45が載置台41を介して搬送板40を鉛直軸回りに回転させる(ステップ2)。然る後、断熱空間RにArガスを、処理空間Sに各種の成膜ガスを夫々決定した処理条件に応じた流量で供給すると共に処理空間S、断熱空間Rを夫々真空引きして、前記処理条件に応じた任意の圧力にする(ステップ3)。   A procedure for processing the wafer W using the film forming apparatus 2 will be described. First, the user of the film forming apparatus 2 determines processing conditions such as the heating temperature of the wafer W during processing, the pressure of the processing space S during film forming, the pressure of the heat insulating space R, and the flow rate of each gas when performing the film forming process. (Step 1). Subsequently, a transfer plate 40 on which a test wafer for confirming processing uniformity by a transfer mechanism (not shown) is placed instead of the wafer W is loaded into the case body 42, and the transfer plate 40 is transferred via the flange portion 44. After the plate 40 is transferred to and placed on the mounting table 41, the driving unit 45 rotates the transport plate 40 around the vertical axis via the mounting table 41 (step 2). Thereafter, Ar gas is supplied to the heat insulating space R, and various film forming gases are supplied to the processing space S at flow rates corresponding to the determined processing conditions, and the processing space S and the heat insulating space R are evacuated, respectively. An arbitrary pressure is set according to the processing conditions (step 3).

然る後、高周波電源33をオンにし、決定したウエハWの加熱温度に応じてコイル31に任意の電力値の高周波を供給して、電磁誘導により試験用ウエハ及び基板保持部4を加熱する。高周波を供給してから所定の時間経過後、高周波電源33をオフにすると共に成膜ガスの供給を停止し、その後搬送板40の回転が停止して、前記搬送機構が搬送板40を成膜装置2から搬出する。ユーザは試験用ウエハの処理状態を確認し、その確認した結果に応じて温度分布制御部材32,33の位置を夫々調整する(ステップ4)。   Thereafter, the high frequency power supply 33 is turned on, a high frequency having an arbitrary power value is supplied to the coil 31 in accordance with the determined heating temperature of the wafer W, and the test wafer and the substrate holder 4 are heated by electromagnetic induction. After a predetermined time has passed since the high frequency was supplied, the high frequency power supply 33 was turned off and the film forming gas supply was stopped. Thereafter, the rotation of the transfer plate 40 was stopped, and the transfer mechanism formed the transfer plate 40 into a film. Unload from the device 2. The user confirms the processing state of the test wafer and adjusts the positions of the temperature distribution control members 32 and 33 according to the confirmed result (step 4).

その後、ユーザはステップ2からステップ4までのサイクルを繰り返し行い、各試験用のウエハ間及び試験用のウエハの面内に均一な処理が行われたら、ウエハWが載置された搬送板40を試験用ウエハが載置された搬送板40と同様の経路で載置台41に受け渡し、駆動部45により載置台41に載置された搬送板40が鉛直軸回りに回転する(ステップ5)。   Thereafter, the user repeats the cycle from step 2 to step 4, and when uniform processing is performed between the test wafers and in the plane of the test wafer, the transfer plate 40 on which the wafer W is placed is moved. The transfer plate 40 is transferred to the mounting table 41 through the same path as the transfer plate 40 on which the test wafer is mounted, and the transfer plate 40 mounted on the mounting table 41 is rotated around the vertical axis by the drive unit 45 (step 5).

続いて断熱空間RにArガスを、処理空間Sに各種の成膜ガスを夫々予め決定前記処理条件の流量で供給すると共に処理空間S、断熱空間Rを夫々真空引きして、処理条件の圧力にする。成膜ガスの流量は一例としてSiHガスが100〜500sccm、Cガスが50〜250sccm、Hガスが50〜150sccm、Nガスが50〜1000sccmである(ステップ6)。 Subsequently, Ar gas is supplied to the heat insulating space R, and various film forming gases are supplied to the processing space S at predetermined flow rates, and the processing space S and the heat insulating space R are evacuated, respectively. To. For example, the flow rate of the film forming gas is 100 to 500 sccm for SiH 4 gas, 50 to 250 sccm for C 3 H 8 gas, 50 to 150 sccm for H 2 gas, and 50 to 1000 sccm for N 2 gas (step 6).

然る後、高周波電源34をオンにし、コイル31に高周波を供給して、基板保持部4の周囲に誘導磁界を発生させ、電磁誘導によりウエハW表面及び基板保持部4表面に誘導電流を発生させる(ステップ7)。このとき、上述のように基板保持部4のコイルの長さ方向における両端部周囲の誘導磁界は、温度分布制御部材32,33により、それら温度分布制御部材32,33を設けない場合に比べて弱められており、その基板保持部4の両端部に発生する誘導電流は、温度分布制御部材32,33を設けない場合に比べて抑えられる。   Thereafter, the high frequency power supply 34 is turned on, a high frequency is supplied to the coil 31, an induced magnetic field is generated around the substrate holding unit 4, and an induced current is generated on the surface of the wafer W and the substrate holding unit 4 by electromagnetic induction. (Step 7). At this time, as described above, the induction magnetic field around both ends in the length direction of the coil of the substrate holding portion 4 is compared with the case where the temperature distribution control members 32 and 33 are not provided by the temperature distribution control members 32 and 33. The induced current that is weakened and is generated at both ends of the substrate holding portion 4 is suppressed as compared with the case where the temperature distribution control members 32 and 33 are not provided.

そして発生した誘導電流により基板保持部4表面にジュール熱が発生するが、前記基板保持部4の両端部の発熱が弱められることで、各ウエハWはこの基板保持部4から熱伝導及び熱輻射を受けて高い均一性を持って加熱され、さらにウエハW自体に発生したジュール熱により1200℃以上例えば1550℃〜1600℃にその温度が上昇する。そしてウエハWに供給された成膜ガスが加熱され、反応生成物が生成し、その反応生成物がウエハ表面に堆積して、ウエハW表面にSiC膜が形成される。高周波電源34をオンにしてから所定の時間経過後、高周波電源34をオフにすると共に成膜ガスの供給を停止した後、搬送機構により搬送板40を成膜装置2から取り出す。その後、ウエハWに対する各種の処理条件を変更して成膜処理を行う場合は再度ステップ1から順に各ステップを実施する。   Joule heat is generated on the surface of the substrate holding part 4 due to the generated induced current. Since the heat generation at both ends of the substrate holding part 4 is weakened, each wafer W is heated and radiated from the substrate holding part 4. And heated with high uniformity, and the temperature rises to 1200 ° C. or higher, for example, 1550 ° C. to 1600 ° C. due to Joule heat generated in the wafer W itself. Then, the deposition gas supplied to the wafer W is heated to generate a reaction product, and the reaction product is deposited on the wafer surface, so that an SiC film is formed on the wafer W surface. After a predetermined time has passed since the high-frequency power supply 34 was turned on, the high-frequency power supply 34 was turned off and the supply of the film forming gas was stopped. Then, the transport plate 40 was taken out of the film forming apparatus 2 by the transport mechanism. Thereafter, when the film forming process is performed by changing various processing conditions for the wafer W, the respective steps are performed again from step 1 again.

この成膜装置2によれば、コイル31の長さ方向に沿った基板保持部4の両端部周囲における誘導磁界を緩和する温度分布制御部材32,33を設けているので、その基板保持部4の両端部が過度に発熱することが抑えられる結果として、各ウエハW及びウエハWの面内の各部への熱伝導及び輻射のばらつきが大きくなることが抑えられる。従って、各ウエハW及びウエハWの面内の各部の温度が不均一になることが抑えられるため、ウエハWに形成されるSiC膜の膜質が不均一になることが抑えられる。その結果として歩留まりの低下が抑えられる。   According to the film forming apparatus 2, the temperature distribution control members 32 and 33 that relieve the induction magnetic field around both ends of the substrate holding unit 4 along the length direction of the coil 31 are provided. As a result of suppressing excessive heat generation at both end portions of the wafer W, it is possible to suppress the variation in thermal conduction and radiation to each wafer W and each portion of the wafer W in the plane. Therefore, the temperature of each wafer W and each part in the surface of the wafer W can be suppressed from being non-uniform, so that the quality of the SiC film formed on the wafer W can be suppressed from being non-uniform. As a result, a decrease in yield is suppressed.

また、基板保持部4の周囲に形成される誘導磁界が変化するように処理条件を変更した場合やウエハWや基板保持部に供給されるガス流の影響を受けてこれら各部の温度が変化するように処理条件を変更した場合において、コイル31の位置やコイル31の巻数(本数)を調整しなくても、温度分布制御部材32,33のコイル31に対する取り付け位置を調整することで基板保持部4の温度分布を容易に制御できるため、ウエハWを均一に加熱するための成膜装置2のユーザの負荷が軽減される。   Further, when the processing conditions are changed so that the induction magnetic field formed around the substrate holding unit 4 changes, or the temperature of each part changes due to the influence of the gas flow supplied to the wafer W or the substrate holding unit. When the processing conditions are changed as described above, the substrate holding unit can be adjusted by adjusting the attachment positions of the temperature distribution control members 32 and 33 with respect to the coil 31 without adjusting the position of the coil 31 and the number of turns (number) of the coil 31. Since the temperature distribution of 4 can be easily controlled, the burden on the user of the film forming apparatus 2 for uniformly heating the wafer W is reduced.

温度分布制御部材32,33の材質としては銅に限られず、SUS(ステンレス鋼)や他の導体を用いてもよい。また、温度分布制御部材32,33は図6に示すようにコイル31の外側においてその位置を調整でき、基板保持部4のガス供給側の端部と、排気側の端部との周囲の誘導磁界を緩和することができるように構成されていてもよい。なお、このように温度分布制御部材32,33を構成した場合、図中鎖線で示すように基板保持部4の内側領域に固定することができるようになっていてもよいが、その場合、コイル31におけるその温度分布制御部材32,33が置かれた位置よりも外側部分については基板保持部4の周囲に誘導磁界を形成しなくなってしまうので、装置の大型化を防ぐために上記のように温度分布制御部材32,33はコイル31の長さ方向の端部に設けた方が好ましい。   The material of the temperature distribution control members 32 and 33 is not limited to copper, and SUS (stainless steel) or other conductors may be used. Further, the positions of the temperature distribution control members 32 and 33 can be adjusted outside the coil 31 as shown in FIG. 6, and induction around the gas supply side end and the exhaust side end of the substrate holding unit 4 is performed. You may be comprised so that a magnetic field can be relieve | moderated. In addition, when the temperature distribution control members 32 and 33 are configured in this manner, the temperature distribution control members 32 and 33 may be fixed to the inner region of the substrate holding portion 4 as indicated by a chain line in the figure. Since the induction magnetic field is not formed around the substrate holding portion 4 in the portion outside the position where the temperature distribution control members 32 and 33 are placed in 31, the temperature is reduced as described above in order to prevent the apparatus from becoming large. The distribution control members 32 and 33 are preferably provided at the end of the coil 31 in the length direction.

またコイル31により形成される誘導磁界を緩和し、基板保持部4の温度分布を制御することができれば温度分布制御部材の形状としてはループ状に限られず、例えば図7に示すように板状の温度分布制御部材61,62を構成してもよく、また球状や他の形状であってもよい。図中63及び64は成膜ガスの流路であり、65及び66は冷却ガスの流路である。温度分布制御部材は処理容器20内に設けてもよいが、処理容器20内の誘導磁界が乱れて基板保持部4の温度分布の均一性が低下するおそれがあることから、処理容器20の外に設けることが好ましい。   Further, if the induction magnetic field formed by the coil 31 can be relaxed and the temperature distribution of the substrate holding unit 4 can be controlled, the shape of the temperature distribution control member is not limited to the loop shape. For example, as shown in FIG. The temperature distribution control members 61 and 62 may be configured, and may be spherical or other shapes. In the figure, reference numerals 63 and 64 denote film forming gas flow paths, and reference numerals 65 and 66 denote cooling gas flow paths. Although the temperature distribution control member may be provided in the processing container 20, since the induction magnetic field in the processing container 20 may be disturbed and the uniformity of the temperature distribution of the substrate holding unit 4 may be reduced, It is preferable to provide in.

また、ウエハWに成膜ガスを供給する成膜装置の例について説明したが、例えばウエハWに成膜ガスを供給する代わりにその表面を酸化するための酸化ガスを供給すると共にウエハWを誘導加熱により加熱して酸化処理を行う酸化装置として構成してもよく、その場合も上記の温度分布制御部材を設けることで均一な加熱処理を行うことができる結果として、各ウエハW及びウエハWの面内で均一性の高い酸化処理を行うことができる。また、ウエハWにエッチングガスを供給すると共にウエハWを誘導加熱により加熱し、且つそのエッチングガスに高周波を供給してプラズマ化してエッチングを行うエッチング装置として構成してもよく、その場合も上記の温度分布制御部材を設けることで均一性の高い加熱処理を行うことができる結果として、各ウエハW及びウエハWの面内で均一性の高いエッチング処理を行うことができる。また、被処理体にこのようにガスを供給したり、処理容器内のガスの排気を行わない加熱装置として構成してもよく、上述の温度分布制御部材は誘導加熱により加熱対象物の加熱を行ういかなる加熱装置にも適用することができる。また、加熱対象物もウエハに限られない。また、加熱対象物を均一に加熱すること以外にも、加熱対象物の特定の部位を強く加熱する場合にこのような温度分布制御部材を設けて加熱対象物の周囲の磁界を制御することが有効である。   Further, an example of a film forming apparatus that supplies a film forming gas to the wafer W has been described. For example, instead of supplying a film forming gas to the wafer W, an oxidizing gas for oxidizing the surface thereof is supplied and the wafer W is guided. It may be configured as an oxidation apparatus that performs an oxidation process by heating, and in that case as well, as a result of being able to perform a uniform heat process by providing the above temperature distribution control member, Oxidation treatment with high uniformity can be performed in the plane. In addition, the etching gas may be configured to supply the etching gas to the wafer W, heat the wafer W by induction heating, and supply a high frequency to the etching gas to form plasma to perform etching. By providing the temperature distribution control member, heat treatment with high uniformity can be performed. As a result, etching processing with high uniformity can be performed within each wafer W and the surface of the wafer W. Further, it may be configured as a heating device that does not supply the gas to the object to be processed or exhaust the gas in the processing container, and the temperature distribution control member described above heats the object to be heated by induction heating. It can be applied to any heating device that performs. Also, the object to be heated is not limited to a wafer. In addition to heating the heating object uniformly, such a temperature distribution control member may be provided to control the magnetic field around the heating object when strongly heating a specific part of the heating object. It is valid.

また、上記の成膜装置2においては温度分布制御部材32,33の位置をコイルの長さ方向に沿って移動させてウエハWに均一な処理を行っているが、コイルの長さ方向に直交する方向やコイルの長さ方向に対して斜め方向にその位置を動かして誘導磁界を制御してもよい。例えば上述の成膜装置2のようにコイルが横方向に沿って伸び、そのコイルで囲まれた処理容器で加熱対象物として高さが大きいものを加熱処理する場合は、温度分布制御部材を上下に移動して加熱対象物の周囲の上下方向の誘導磁界の分布を制御し、加熱対象物の上下方向の温度分布を制御してもよい。   In the film forming apparatus 2 described above, the temperature distribution control members 32 and 33 are moved along the length direction of the coil to perform uniform processing on the wafer W, but are orthogonal to the length direction of the coil. The induced magnetic field may be controlled by moving the position in an oblique direction with respect to the direction of movement or the length direction of the coil. For example, in the case where the coil extends in the horizontal direction as in the above-described film forming apparatus 2 and a heat treatment object having a large height is heated in the processing vessel surrounded by the coil, the temperature distribution control member is moved up and down. It is possible to control the distribution of the induction magnetic field in the vertical direction around the object to be heated to control the temperature distribution in the vertical direction of the object to be heated.

上述の実施形態においては基板保持部4がウエハWと共に電磁誘導により加熱される加熱対象物として構成されているが、基板保持部4が電磁誘導により加熱されず、ウエハWのみが電磁誘導により加熱されるようにしてもよい。この場合も上記実施形態と同様に、ウエハWの面内の各部及び各ウエハWでの発熱が均一になるように温度制御部材32,33の位置を調整して処理を行う。   In the above-described embodiment, the substrate holding unit 4 is configured as a heating object heated by electromagnetic induction together with the wafer W. However, the substrate holding unit 4 is not heated by electromagnetic induction, and only the wafer W is heated by electromagnetic induction. You may be made to do. Also in this case, similarly to the above-described embodiment, the processing is performed by adjusting the positions of the temperature control members 32 and 33 so that the heat generation in each part of the wafer W and in each wafer W is uniform.

また、図8には、基板保持部4の長さ方向において排気口25側にコイルが設けられていない例について示した。この例においては基板保持部4の排気口25側には誘導磁界が形成されず、その発熱が抑えられるため、基板保持部4はガス供給口22側の端部のみが過度に発熱するおそれがあるので、その発熱を抑えるための温度分布制御部材32のみが設けられ、温度分布制御部材33が設けられていない。このように温度分布制御部材の数は一つのみであってもよい。この例においては載置台41が回転することで各ウエハWが電磁誘導により加熱される基板保持部4のガス供給口22側へ移動できるので、各ウエハWに均一な処理が行われるが、上述の実施形態のように基板保持部4全体を電磁誘導により加熱した方がより均一性高く処理を行うことができるので好ましい。   FIG. 8 shows an example in which no coil is provided on the exhaust port 25 side in the length direction of the substrate holding portion 4. In this example, an induction magnetic field is not formed on the exhaust port 25 side of the substrate holding unit 4 and the heat generation thereof is suppressed. Therefore, the substrate holding unit 4 may be excessively heated only at the end on the gas supply port 22 side. Therefore, only the temperature distribution control member 32 for suppressing the heat generation is provided, and the temperature distribution control member 33 is not provided. Thus, the number of temperature distribution control members may be only one. In this example, since the mounting table 41 is rotated, each wafer W can be moved to the gas supply port 22 side of the substrate holding unit 4 heated by electromagnetic induction, so that uniform processing is performed on each wafer W. It is preferable to heat the entire substrate holding part 4 by electromagnetic induction as in the embodiment because processing can be performed with higher uniformity.

続いて上記の成膜装置2に関して行ったシミュレーションについて説明する。図9(a)に示すように前記成膜装置2の基板保持部4、コイル31及び銅からなる温度分布制御部材32をシミュレーションにより設定し、また基板保持部4においてコイルの長さ方向に沿って温度分布制御部材32に近い側から遠い側に向かい夫々発熱量の測定位置P1〜P5を等間隔に設定した。そしてコイル31に高周波を供給したときのこれら測定位置P1〜P5及びこれら各測定位置間の発熱分布について調べた。また、温度分布制御部材32の材質を銅からSUSにして同様に発熱分布を調べた。   Next, a simulation performed on the film forming apparatus 2 will be described. As shown in FIG. 9A, the temperature distribution control member 32 made of the substrate holding portion 4, the coil 31, and the copper of the film forming apparatus 2 is set by simulation, and the substrate holding portion 4 extends along the length direction of the coil. Then, the measurement positions P1 to P5 of the calorific value are set at equal intervals from the side closer to the temperature distribution control member 32 to the side farther from the side. Then, the measurement positions P1 to P5 when a high frequency was supplied to the coil 31 and the heat generation distribution between these measurement positions were examined. In addition, the heat distribution was similarly examined by changing the material of the temperature distribution control member 32 from copper to SUS.

図9(b)は、温度分布制御部材32が銅の場合の上記シミュレーションの結果を示したグラフである。図示はしていないが温度分布制御部材32がSUSの場合も銅の場合と略同じ結果になった。コイルの長さ方向を左右方向と呼ぶことにすると、図9(a)に示すように基板保持部4は左右対称に構成され、コイルの左右の中心に設けられている。従って温度分布制御部材32が設けられていない場合に発熱分布のグラフは左右対称となると考えられるが、シミュレーションの結果、図9(b)のグラフに示すように温度分布制御部材32に近い測定位置P1〜P3付近で発熱量は略均一であるが、そこから測定位置P5に向かうにつれて発熱量は次第に大きくなっている。この結果から温度分布制御部材を設けることで基板保持部4の温度が抑えられるが、温度分布制御部材からの距離に応じてその抑えられる温度は変化し、温度分布制御部材から離れた位置では当該温度分布制御部材の作用が弱くなることが分かる。   FIG. 9B is a graph showing the results of the simulation when the temperature distribution control member 32 is copper. Although not shown, when the temperature distribution control member 32 is SUS, the result is substantially the same as that of copper. When the length direction of the coil is referred to as the left-right direction, as shown in FIG. 9A, the substrate holding part 4 is configured symmetrically and provided at the center of the left and right of the coil. Accordingly, when the temperature distribution control member 32 is not provided, the graph of the heat generation distribution is considered to be symmetrical. However, as a result of the simulation, the measurement position close to the temperature distribution control member 32 as shown in the graph of FIG. The amount of heat generation is substantially uniform in the vicinity of P1 to P3, but the amount of heat generation gradually increases toward the measurement position P5 from there. From this result, the temperature of the substrate holder 4 can be suppressed by providing the temperature distribution control member. However, the temperature to be suppressed changes according to the distance from the temperature distribution control member, and at a position away from the temperature distribution control member, It turns out that the effect | action of a temperature distribution control member becomes weak.

続いてシミュレーションにより設定された基板保持部4、コイル31及び温度分布制御部材32について、コイル31に高周波を供給したときの磁場及び磁力線の分布について調べた。図10は、その磁力線について鎖線で簡略的に示したものである。基板保持部4のコイル31の長さ方向において温度分布制御部材32が設けられた側の端部周辺と、温度分布制御部材32が設けられない側の端部周辺とでは磁力線の分布が異なっており、これらの端部周辺を比較すると、温度分布制御部材32が設けられた側においては基板保持部4の端部周辺に磁力線が集中することが抑えられている。また磁場については図示していないが、温度分布制御部材32が設けられた側の端部周辺の磁場は反対側の端部周辺の磁場に比べて弱かった。   Subsequently, with respect to the substrate holding unit 4, the coil 31, and the temperature distribution control member 32 set by simulation, the distribution of the magnetic field and the lines of magnetic force when a high frequency was supplied to the coil 31 was examined. FIG. 10 simply shows the lines of magnetic force with chain lines. In the length direction of the coil 31 of the substrate holding part 4, the distribution of magnetic lines of force differs between the vicinity of the end on the side where the temperature distribution control member 32 is provided and the vicinity of the end on the side where the temperature distribution control member 32 is not provided. Compared with the periphery of these end portions, the lines of magnetic force around the end portion of the substrate holding portion 4 are suppressed from being concentrated on the side where the temperature distribution control member 32 is provided. Although the magnetic field is not shown, the magnetic field around the end portion on the side where the temperature distribution control member 32 is provided was weaker than the magnetic field around the opposite end portion.

このシミュレーションから温度分布制御部材32により周囲の電磁誘導が緩和されることが示された。基板保持部4の左右の端部付近では上記のように磁力線の分布は大きく異なるが、基板保持部4の中央部に向かうにつれてその磁力線の分布は略左右対称となっている。また図示していないが、磁場についても基板保持部4の左右の端部ではその大きさの差が大きいが、中央に向かうにつれて均一になっている。このことから温度分布制御部材32の誘導磁界を緩和する効果は、その温度分布制御部材32の位置に応じて変化することが分かる。   From this simulation, it was shown that the surrounding electromagnetic induction is relaxed by the temperature distribution control member 32. In the vicinity of the left and right ends of the substrate holding part 4, the distribution of the magnetic lines of force is greatly different as described above, but the distribution of the magnetic lines of force becomes substantially symmetrical in the direction toward the center of the substrate holding part 4. Although not shown, the magnetic field also has a large difference in magnitude at the left and right ends of the substrate holder 4, but becomes uniform toward the center. From this, it can be seen that the effect of relaxing the induction magnetic field of the temperature distribution control member 32 changes according to the position of the temperature distribution control member 32.

W 半導体ウエハ
2 成膜装置
20 処理容器
31 コイル
32,33 温度分布制御部材
34 高周波電源
4 基板保持部
40 搬送板
41 載置台
42 ケース体
W Semiconductor wafer 2 Deposition apparatus 20 Processing container 31 Coils 32, 33 Temperature distribution control member 34 High frequency power supply 4 Substrate holding part 40 Transport plate 41 Mounting table 42 Case body

Claims (6)

加熱対象物をその内部に収容する処理容器と、
処理容器を囲むように設けられたコイルと、
前記コイルに高周波を供給し、加熱対象物の周囲に誘導磁界を形成して、電磁誘導により加熱対象物を誘導加熱するための高周波電源と、
コイルにより形成される前記誘導磁界中に設けられ、その周囲の誘導磁界を緩和して加熱対象物の温度分布を制御するための導体により構成される温度分布制御部材と、
を備え
前記温度分布制御部材は、コイルに対して任意の位置に移動することができるように構成されていることを特徴とする加熱装置。
A processing container for storing the object to be heated therein;
A coil provided to surround the processing vessel;
A high frequency power source for supplying high frequency to the coil, forming an induction magnetic field around the heating object, and induction heating the heating object by electromagnetic induction;
A temperature distribution control member which is provided in the induction magnetic field formed by a coil, and which is constituted by a conductor for relaxing the induction magnetic field around the induction magnetic field and controlling the temperature distribution of the heating object;
Equipped with a,
The said temperature distribution control member is comprised so that it can move to arbitrary positions with respect to a coil, The heating apparatus characterized by the above-mentioned.
前記温度分布制御部材は、コイルの長さ方向に沿って設けられる位置を移動することができることを特徴とする請求項記載の加熱装置。 The temperature distribution control member, the heating device according to claim 1, wherein the can move the position provided along the length of the coil. 前記温度分布制御部材は、当該コイルの一端側と他端側に当該コイルを挟むように夫々設けられることを特徴とする請求項1または2に記載の加熱装置。 The temperature distribution control member, the heating device according to claim 1 or 2, characterized in that provided respectively so as to sandwich the coil at one end and the other end of the coil. 前記加熱対象物は、被処理体とその被処理体を支持すると共に当該被処理体を輻射または熱伝導により加熱するための保持部とにより構成されることを特徴とする請求項1ないしのいずれか一に記載の加熱装置。 The heating object, of claims 1 to 3, characterized in that it is constituted by a holding portion for heating by radiation or thermal conduction of the object to be processed to support the and the object thereof workpiece The heating apparatus as described in any one. 前記加熱対象物にガスを供給してガス処理を行うためのガス供給手段と、処理容器内を排気する排気手段とを備えたことを特徴とする請求項1ないしのいずれか一に記載の加熱装置。 Wherein a gas supply means for performing gas treatment gas being fed to the heating object, according to any one of claims 1 to 4, characterized in that an exhaust means for exhausting the interior of the processing vessel Heating device. 加熱対象物をその内部に収容する処理容器と、
処理容器を囲むように設けられたコイルと、
前記コイルに高周波を供給し、加熱対象物の周囲に誘導磁界を形成して、電磁誘導により加熱対象物を誘導加熱するための高周波電源と、を備えた加熱装置を用いた加熱方法において、
その周囲の誘導磁界を緩和して加熱対象物の温度分布を制御できるように前記コイルにより形成される前記誘導磁界中に温度分布制御部材が設けられた状態で前記加熱対象物を加熱する工程と、
前記温度分布制御部材を、コイルに対して任意の位置に移動させる工程と、
を含むことを特徴とする加熱方法。
A processing container for storing the object to be heated therein;
A coil provided to surround the processing vessel;
In a heating method using a heating device that supplies a high frequency to the coil, forms an induction magnetic field around the object to be heated, and a high frequency power source for induction heating the object to be heated by electromagnetic induction,
Heating the heating object in the state in which the temperature distribution control member is disposed in said induced magnetic field formed by the coil to be able to control the temperature distribution of the object to be heated to relax the induced magnetic field surrounding ,
Moving the temperature distribution control member to an arbitrary position with respect to the coil;
The heating method characterized by including .
JP2009024910A 2008-02-05 2009-02-05 Heating apparatus and heating method Active JP5126095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009024910A JP5126095B2 (en) 2008-02-05 2009-02-05 Heating apparatus and heating method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008025620 2008-02-05
JP2008025620 2008-02-05
JP2009024910A JP5126095B2 (en) 2008-02-05 2009-02-05 Heating apparatus and heating method

Publications (2)

Publication Number Publication Date
JP2009212506A JP2009212506A (en) 2009-09-17
JP5126095B2 true JP5126095B2 (en) 2013-01-23

Family

ID=41185304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009024910A Active JP5126095B2 (en) 2008-02-05 2009-02-05 Heating apparatus and heating method

Country Status (1)

Country Link
JP (1) JP5126095B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529634B2 (en) * 2010-06-10 2014-06-25 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and substrate manufacturing method
JP5732284B2 (en) * 2010-08-27 2015-06-10 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
JP6393161B2 (en) * 2014-11-21 2018-09-19 東京エレクトロン株式会社 Deposition equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6896738B2 (en) * 2001-10-30 2005-05-24 Cree, Inc. Induction heating devices and methods for controllably heating an article
JP2007042324A (en) * 2005-08-01 2007-02-15 Mitsui Eng & Shipbuild Co Ltd Induction heating method and induction heating device

Also Published As

Publication number Publication date
JP2009212506A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US8658951B2 (en) Heat treatment apparatus
KR101102678B1 (en) Heat treatment apparatus
US20060207725A1 (en) Substrate mounting table, substrate processing apparatus and substrate processing method
JP2008172168A (en) Plasma treatment apparatus, plasma treatment method, and storage medium
US10550491B2 (en) Film-forming apparatus
WO2011125703A1 (en) Plasma nitridization method
TW200847243A (en) Apparatus and method for forming film
TW201528378A (en) Heat treatment apparatus and heat treatment method
JP5126095B2 (en) Heating apparatus and heating method
CN108754453B (en) Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
WO2015114977A1 (en) Substrate processing device
JP5068846B2 (en) Film forming apparatus and film forming method
WO2013145932A1 (en) Heating mechanism, film-forming device, and film-forming method
JP6022785B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2011151055A (en) Method for measuring temperature, and substrate processing apparatus
US10689759B2 (en) Film forming apparatus
WO2011013633A1 (en) Planar antenna member and plasma processing device equipped with same
JP2009224455A (en) Flat antenna member and plasma processing device with the same
KR20140057575A (en) Heat treatment device
JP2015221930A (en) Substrate processing apparatus
WO2023008295A1 (en) Method for producing group iii-nitride semiconductor
WO2009122790A1 (en) Substrate processing apparatus and substrate processing method
JP5728565B2 (en) Plasma processing apparatus and slow wave plate used therefor
JP2009152233A (en) Semiconductor fabrication equipment
TW202435664A (en) Plasma treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250