JP5120063B2 - Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic - Google Patents

Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic Download PDF

Info

Publication number
JP5120063B2
JP5120063B2 JP2008136525A JP2008136525A JP5120063B2 JP 5120063 B2 JP5120063 B2 JP 5120063B2 JP 2008136525 A JP2008136525 A JP 2008136525A JP 2008136525 A JP2008136525 A JP 2008136525A JP 5120063 B2 JP5120063 B2 JP 5120063B2
Authority
JP
Japan
Prior art keywords
waste plastic
water
plastic
extruder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008136525A
Other languages
Japanese (ja)
Other versions
JP2009007561A (en
Inventor
正彦 梶岡
稔 浅沼
秀和 鶴田
義明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008136525A priority Critical patent/JP5120063B2/en
Publication of JP2009007561A publication Critical patent/JP2009007561A/en
Application granted granted Critical
Publication of JP5120063B2 publication Critical patent/JP5120063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

本発明は、一般廃棄物や産業廃棄物としてのプラスチック系廃棄物である廃プラスチックを高炉やスクラップ溶解炉等の竪型炉やセメントキルン炉等への吹き込み原料等に用いるための、廃プラスチック粉砕物の製造方法に関する。   The present invention is a waste plastic pulverization for using waste plastic, which is plastic waste as general waste or industrial waste, as a raw material blown into vertical furnaces such as blast furnaces and scrap melting furnaces, cement kiln furnaces, etc. The present invention relates to a method for manufacturing a product.

コークスや微粉炭の代替原料として利用するために、廃プラスチックを高炉等の竪型炉に羽口から吹き込む技術が知られている。使用済みプラスチックの粒状物を空気輸送して羽口から吹込むことで、使用済みプラスチックをコークス代替品として有効にリサイクル利用することが可能である(例えば、特許文献1参照。)。特許文献1によれば、炉のレースウエイ内における燃焼率を向上させるために、炉に吹き込むプラスチック粒状物の強度や粒径の制御が重要であり、粒径数mm程度の廃プラスチック粒状物が製造され、炉への吹き込みが行なわれている。   In order to use it as an alternative raw material for coke and pulverized coal, a technique for blowing waste plastic into a vertical furnace such as a blast furnace from a tuyere is known. It is possible to effectively recycle the used plastic as a coke substitute by transporting the used plastic granular material pneumatically and blowing it from the tuyere (see, for example, Patent Document 1). According to Patent Document 1, in order to improve the combustion rate in the raceway of the furnace, it is important to control the strength and particle size of the plastic particles blown into the furnace. Manufactured and blown into the furnace.

一方で、廃プラスチックの燃焼率をより一層向上させるために、廃プラスチックを微粉化する方法がある。廃プラスチックを微粉化することで、炉への吹込みが容易となり、廃プラスチックのリサイクル量を増やすことが可能となる。廃プラスチックを微粉化する技術として、廃プラスチックを押し出し機により加熱溶融後に冷却固化して固化体とし、該固化体を粉砕することを特徴とする廃プラスチックの処理方法が知られている(例えば、特許文献2参照。)。
特開2001−220589号公報 特開2006−241442号公報
On the other hand, in order to further improve the combustion rate of waste plastic, there is a method of pulverizing waste plastic. By pulverizing the waste plastic, it is easy to blow into the furnace, and the amount of waste plastic recycled can be increased. As a technique for pulverizing waste plastic, a method for treating waste plastic is known in which waste plastic is cooled and solidified by heating and melting with an extruder to form a solidified body, and the solidified body is pulverized (for example, (See Patent Document 2).
JP 2001-220589 A JP 2006-241442 A

特許文献2に記載の方法によれば、押し出し機を用いた廃プラスチックの溶融時に、廃プラスチックの脱塩素処理を行なうことが可能であり、粉砕物の製造を連続的に熱効率良く行ない、大量の廃プラスチックを処理して微粉化することができる。押し出し機からダイス等を用いて押出されたプラスチックは、直接水冷等あるいはスチールベルトクーラーのような間接冷却等の公知の方法を用いて冷却して固化させ、所定の長さに切断してペレット化し、製造したペレットを粗粉砕、微粉砕して粉砕物とすることで、炉吹込み原料が得られるとされている。   According to the method described in Patent Document 2, when waste plastic is melted using an extruder, it is possible to dechlorinate the waste plastic, and continuously produce the pulverized product with high thermal efficiency. Waste plastic can be processed and pulverized. The plastic extruded from the extruder using a die or the like is cooled and solidified using a known method such as direct water cooling or indirect cooling such as a steel belt cooler, cut into a predetermined length and pelletized. It is said that a furnace blowing raw material can be obtained by roughly pulverizing and finely pulverizing the produced pellets to obtain a pulverized product.

しかし、上記において、押出されたプラスチックを水冷により冷却して固化させる方法を用いて廃プラスチックの微粉化処理を行なう場合、製造した固化体であるペレットの水分含有量が多くなる場合があることが分かった。水冷の際に表面に付着した水分であれば、振動篩い等を用いて水冷後のペレットの水切りを行なうことで対処できると考えられるが、ペレットの水切りを行なっても、ペレットの水分含有率が10〜20mass%の場合がある。このように水分含有量の高いペレットを用いて粉砕処理を行なうと、ホッパー等に投入された粉砕物は、水分により付着してホッパーの閉塞等が発生し、その後の処理が困難となる。   However, in the above, when the waste plastic is pulverized using a method of cooling and solidifying the extruded plastic by water cooling, the moisture content of the pellets that are the solidified product produced may increase. I understood. If water adheres to the surface during water cooling, it can be dealt with by draining the pellet after water cooling using a vibrating sieve, etc., but even if the pellet is drained, the moisture content of the pellet It may be 10-20 mass%. When the pulverization process is performed using pellets having a high water content, the pulverized material charged in the hopper or the like adheres to the water and causes the hopper to be clogged, making subsequent processing difficult.

したがって本発明の目的は、このような従来技術の課題を解決し、廃プラスチックを押し出し機により加熱溶融後に、水冷により冷却固化して固化体とし、該固化体を粉砕する際に、固化体の水分含有率を低くすることのできる廃プラスチック粉砕物の製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art, and after the waste plastic is heated and melted by an extruder, it is cooled and solidified by cooling with water to obtain a solidified body, and when the solidified body is pulverized, An object of the present invention is to provide a method for producing a waste plastic pulverized product capable of reducing the water content.

本発明者らは、廃プラスチックを加熱溶融する際の押し出し機の出口温度が水冷後の固化体の水分含有率に多大な影響を及ぼすことを見出し、本発明を完成した。本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)廃プラスチックを押し出し機により加熱溶融して脱塩素処理を行なった後に、冷却固化して固化体とし、該固化体を粉砕する際に、前記押し出し機から押し出された直後の廃プラスチック温度を290℃以下に制御し、直ちに水冷して固化体とすることを特徴とする廃プラスチック粉砕物の製造方法。
(2)押し出し機内で300℃以上に加熱することで脱塩素処理を行うことを特徴とする(1)に記載の廃プラスチック粉砕物の製造方法。
(3)廃プラスチックを押し出し機により加熱溶融して脱塩素処理を行ない、前記押し出し機から押し出された直後の廃プラスチック温度を290℃以下に制御し、直ちに水冷することを特徴とする廃プラスチック粉砕物製造用のペレットの製造方法。
The present inventors have found that the outlet temperature of the extruder when heat-melting waste plastic has a great influence on the water content of the solidified product after water cooling, and completed the present invention. The present invention has been made based on such findings, and the features thereof are as follows.
(1) The waste plastic is heated and melted by an extruder, dechlorinated, and then cooled and solidified to obtain a solidified body. When the solidified body is pulverized, the temperature of the waste plastic immediately after being extruded from the extruder Is controlled to 290 ° C. or less, and immediately cooled with water to obtain a solidified product.
(2) The method for producing a pulverized waste plastic according to (1), wherein the dechlorination treatment is performed by heating to 300 ° C. or higher in an extruder.
(3) Waste plastic pulverization characterized in that waste plastic is heated and melted by an extruder to dechlorinate, the temperature of waste plastic immediately after being extruded from the extruder is controlled to 290 ° C. or less, and immediately cooled with water. Manufacturing method of pellets for manufacturing products.

本発明によれば、水分含有率が5mass%以下の、水分含有率の低いプラスチック固化体が得られる。このため、その後の固化体の粉砕処理をスムーズに行なうことができ、廃プラスチック粉砕物の生産性が向上し、廃プラスチックのリサイクル利用を促進することができる。   According to the present invention, a solidified plastic body having a moisture content of 5 mass% or less and a low moisture content can be obtained. For this reason, the subsequent pulverization processing of the solidified body can be performed smoothly, the productivity of the pulverized waste plastic can be improved, and the recycling of the waste plastic can be promoted.

本発明では、廃プラスチックを押し出し機を用いて加熱溶融後に冷却固化して固化体とし、該固化体を粉砕してプラスチック粉砕物を製造する。加熱溶融することで、廃プラスチックの脱塩素処理を行なうことができる。廃プラスチックとは、使用済みプラスチックであり、通常複数種類のプラスチックの混合状態からなるものである。また押し出し機とは、シリンダー内に押し出しスクリューを有し、プラスチックを加熱しながらシリンダー内移送することで溶融混練する装置である。押し出し機のスクリューは任意の数のものを用いることができるが、処理効率の点からは2本以上のスクリューを有する押し出し機を用いることが望ましい。加熱溶融されたプラスチックは水冷により冷却固化する。冷却固化された固化体を、粉砕機を用いて粉砕し、廃プラスチックの粉砕物を得る。図1を用いて、このような廃プラスチックの粉砕処理システムの一実施形態を説明する。   In the present invention, waste plastic is cooled and solidified by heating and melting using an extruder to obtain a solidified body, and the solidified body is pulverized to produce a pulverized plastic. Waste plastic can be dechlorinated by heating and melting. Waste plastics are used plastics and usually consist of a mixture of a plurality of types of plastics. The extruder is an apparatus having an extrusion screw in a cylinder and melt-kneading by transferring the plastic into the cylinder while heating. Although any number of screws can be used for the extruder, it is desirable to use an extruder having two or more screws from the viewpoint of processing efficiency. The heat-melted plastic is cooled and solidified by water cooling. The solidified body that has been cooled and solidified is pulverized using a pulverizer to obtain a pulverized product of waste plastic. An embodiment of such a waste plastic crushing system will be described with reference to FIG.

図1において、廃プラスチック1は、予め磁選、風選等を用いた異物除去と水による洗浄等を行ない、プラスチック以外の異物を可能な限り除去した後に、第一の押し出し機2に投入する。廃プラスチック1は、予め所定の形状に破砕処理することが望ましく、後述するダイス6の異物によるつまりを防止するため、ダイス径以下に破砕することが望ましい。第一の押し出し機2により廃プラスチック1を200℃程度で加熱し、脱水しながら溶融混練する。水分は第一の押し出し機2のシリンダーに適宜排気口を設けて除去すればよい。第一の押し出し機2から押出された溶融廃プラスチックは、引き続いて第二の押し出し機3で300℃以上、好ましくは350℃程度で加熱され、脱塩素処理を行いながら溶融混練される。第二の押し出し機3内での加熱により発生する塩化水素ガス等の発生ガスは、ベント部4を通じてガス処理系5に送られて、処理される。ガス処理系5においては、燃焼処理や、塩酸、タール回収等の処理を行うことができる。第二の押し出し機3からダイス6を用いて押出されたプラスチックは所定の長さに切断して水槽7により水中で冷却して固化させ、ペレット化する。製造したペレットを振動篩い8を用いて水切り後、第一の粉砕機9で粗粉砕して、粉砕物をホッパー10に装入し、さらに第二の粉砕機11で微粉砕する。このようにして得られた粉砕物を、既設の微粉炭吹込み装置等を用いて高炉12に吹込み、炉吹込み原料とする。   In FIG. 1, waste plastic 1 is subjected to foreign matter removal using magnetic separation, wind separation, etc. and washed with water in advance to remove foreign matter other than plastic as much as possible, and then is put into the first extruder 2. The waste plastic 1 is desirably crushed into a predetermined shape in advance, and is preferably crushed to a die diameter or less in order to prevent clogging due to foreign matter in the die 6 described later. The waste plastic 1 is heated at about 200 ° C. by the first extruder 2 and melt kneaded while dehydrating. The moisture may be removed by providing an appropriate exhaust port in the cylinder of the first extruder 2. The molten waste plastic extruded from the first extruder 2 is subsequently heated by the second extruder 3 at 300 ° C. or higher, preferably about 350 ° C., and melt-kneaded while performing a dechlorination treatment. Generated gas such as hydrogen chloride gas generated by heating in the second extruder 3 is sent to the gas processing system 5 through the vent 4 and processed. In the gas treatment system 5, a treatment such as a combustion treatment, hydrochloric acid, tar recovery or the like can be performed. The plastic extruded from the second extruder 3 using a die 6 is cut into a predetermined length, cooled in water in a water tank 7 to be solidified, and pelletized. The produced pellets are drained using a vibrating sieve 8, coarsely pulverized by a first pulverizer 9, the pulverized product is charged into a hopper 10, and further finely pulverized by a second pulverizer 11. The pulverized material thus obtained is blown into the blast furnace 12 using an existing pulverized coal blowing device or the like to obtain a furnace blowing raw material.

図1のシステムを用いて廃プラスチックの処理を行なう際に、ペレットの水分含有量が多いと、振動篩い8で水切り処理を行なっても、ペレットを第一の粉砕機9で粗粉砕した粗粉砕物をホッパーに装入すると、その水分により粗粉砕物がホッパーに付着、あるいは粗粉砕物同士が付着して、ホッパーが閉塞してしまう。   When the waste plastic is processed using the system of FIG. 1, if the pellets have a high moisture content, the pellets are roughly pulverized by the first pulverizer 9 even if the draining process is performed by the vibrating sieve 8. When an object is charged into the hopper, the coarsely pulverized product adheres to the hopper or the coarsely pulverized product adheres to the hopper due to the moisture.

本発明者らは、ペレットの水分含有量を減らすために、このような水分含有量の高いペレットが製造されるメカニズムについて検討した。水冷後のペレットを調べたところ、内部に孔の形成が認められ、孔の中には水が浸入していた。この孔は、溶融プラスチックの固化収縮時に形成される真空ボイドが成長したものとも思われるが、プラスチックの成形収縮率が高々数体積%であり、含水率が10〜20mass%の高さであることから考えると、含水の原因は真空ボイドに由来するだけであると考えるのは現実的ではない。また、異なる押し出し機を用いて製造を行なうと、上記のような含水ペレットは製造されない場合があり、理屈に合わない。そこで、ペレット内部の孔は、押し出し機内で発生したガスが抜けきれずに形成される気泡による孔であると推定した。押し出し機内の冷却過程で発生したガスが抜けきれずに気泡が形成されると、水冷のために水中に滞留した際、わずかな亀裂を通じて負圧の空隙部分に水が吸い込まれ、これによりペレット内に水が浸入すると考えられる。   In order to reduce the moisture content of the pellets, the present inventors have studied the mechanism by which such pellets with a high moisture content are produced. When the pellets after water cooling were examined, formation of pores was observed inside, and water had entered the pores. This hole is thought to be a vacuum void formed during solidification shrinkage of the molten plastic, but the molding shrinkage of the plastic is at most several volume%, and the moisture content is as high as 10 to 20 mass%. Therefore, it is not realistic to think that the cause of moisture is only due to vacuum voids. Moreover, when it manufactures using a different extruder, the above water-containing pellets may not be manufactured, and it does not fit reason. Therefore, it was estimated that the holes in the pellet were holes due to bubbles formed without allowing the gas generated in the extruder to escape. If gas generated during the cooling process in the extruder cannot be completely removed and bubbles are formed, water stays in the water due to water cooling, and water is sucked into the negative pressure gap through a slight crack. It is thought that water will invade the water.

そこで、押し出し機内での温度設定を変更して、気泡の発生を制御する方法を検討した。第二の押し出し機3の中央部分は、廃プラスチックの脱塩素を行なうために、300℃以上とする必要があるが、この部分で発生したガスはベント部4を通じて排気されて排出される。溶融プラスチックがベント部を通過後にガスが発生すると、ベント部に逆流しきれないガスは排出されずに、残留して気泡を形成する可能性がある。したがって、第二の押し出し機3の出口付近の温度を下げ、プラスチックの熱分解反応を抑制することで、ガスの発生を抑えられると考え、以下の実験を行なった。   Therefore, a method for controlling the generation of bubbles by changing the temperature setting in the extruder was studied. The central portion of the second extruder 3 needs to be 300 ° C. or higher in order to dechlorinate waste plastic, but the gas generated in this portion is exhausted through the vent portion 4 and discharged. If the gas is generated after the molten plastic passes through the vent portion, the gas that cannot flow back to the vent portion is not discharged but may remain to form bubbles. Therefore, the following experiment was conducted on the assumption that the generation of gas can be suppressed by lowering the temperature near the outlet of the second extruder 3 and suppressing the thermal decomposition reaction of the plastic.

第一の押し出し機2の加熱温度を180℃、第二の押し出し機3の脱塩素温度を335℃、第二の押し出し機3の出口付近の、ベント部4の無い部分(冷却部)の設定温度を160〜240℃で変化させた。尚、押し出し機のシリンダー内の溶融プラスチックの温度はシリンダーの外壁付近と中心部とで異なっており、また直接測定することが困難であるため、変化させた冷却部の温度はシリンダー外壁部分の設定温度である。   The heating temperature of the first extruder 2 is 180 ° C., the dechlorination temperature of the second extruder 3 is 335 ° C., and the portion without the vent portion 4 (cooling portion) near the outlet of the second extruder 3 is set. The temperature was varied from 160-240 ° C. The temperature of the molten plastic in the cylinder of the extruder is different between the outer wall and the center of the cylinder, and it is difficult to measure directly. Temperature.

ダイス6から押出された溶融プラスチックは、直ちにカッターで所定の長さに切断し、水中冷却(10℃)、湯中冷却(70℃)の2種類の冷却速度で水冷を行ないペレット化して、含水ペレットの割合を測定した。含水ペレットの割合は、製造されたペレットから任意に10個程度を選択して切断し、水分の流出が認められたものを含水ペレットと判定することで求めた。また、ダイスから押し出された直後の溶融プラスチック中央部に直接温度計を差し込み、温度(押し出しプラスチック温度)を測定した。結果を図2、図3に示す。   The molten plastic extruded from the die 6 is immediately cut into a predetermined length with a cutter, pelletized by water cooling at two cooling rates of cooling in water (10 ° C.) and cooling in hot water (70 ° C.). The proportion of pellets was measured. The ratio of the water-containing pellets was determined by arbitrarily selecting about 10 pieces from the manufactured pellets and cutting them, and determining that water outflow was recognized as water-containing pellets. Further, a thermometer was directly inserted into the center of the molten plastic immediately after being extruded from the die, and the temperature (extruded plastic temperature) was measured. The results are shown in FIGS.

図2は、冷却部設定温度と含水ペレットの割合の関係を示しており、図中の実線は実操業上重要な、バラツキの上限を表わしている。図2によれば、冷却部設定温度が220℃を超えると含水ペレットの割合が増え始め、冷却部設定温度が240℃(押し出しプラスチック温度290℃)で含水ペレットの割合が増加し、冷却部設定温度が260℃(押し出しプラスチック温度295℃)で含水ペレットの割合が急激に増加することが分かる。また、湯中冷却よりも水中冷却の方が含水ペレットの割合が少なく、急速に冷却して熱分解反応を早く終了させることが好ましいと考えられる。   FIG. 2 shows the relationship between the cooling section set temperature and the ratio of the water-containing pellets, and the solid line in the figure represents the upper limit of variation that is important in actual operation. According to FIG. 2, when the cooling part set temperature exceeds 220 ° C., the ratio of the water-containing pellets starts to increase, and when the cooling part setting temperature is 240 ° C. (extruded plastic temperature 290 ° C.), the ratio of the water-containing pellets increases. It can be seen that when the temperature is 260 ° C. (extruded plastic temperature 295 ° C.), the ratio of the water-containing pellets increases rapidly. In addition, it is considered that water-cooled pellets have a smaller proportion of water-containing pellets than water-cooled water, and it is preferable to quickly cool and terminate the thermal decomposition reaction earlier.

図4に、冷却部設定温度160℃(水中冷却)で製造したペレットの断面写真を、図5に冷却部設定温度240℃(水中冷却)で製造したペレットの断面写真を示す。図4のペレットは中心部に小さな孔が見られるものの、それ以外の部分は緻密で断面が滑らかであり、孔の中に水は含まれていなかった。一方図5のペレットは中心部に大きな孔が見られ、断面も粗く、孔の中に水を多量に含むものであった。   FIG. 4 shows a cross-sectional photograph of a pellet produced at a cooling part set temperature of 160 ° C. (cooling in water), and FIG. 5 shows a cross-sectional picture of a pellet produced at a cooling part set temperature of 240 ° C. (cooling in water). Although the pellet of FIG. 4 had a small hole in the center, the other part was dense and the cross-section was smooth, and water was not contained in the hole. On the other hand, the pellet of FIG. 5 had a large hole in the center, a rough cross section, and a large amount of water in the hole.

以上のことから、押し出された溶融プラスチックの温度、または第二の押し出し機の冷却部温度がペレットの含水率に大きく影響することが分かる。すなわち、押し出し機内での脱塩素処理後は、押し出し可能な程度にできるだけ溶融プラスチック温度を低下させ、プラスチックの熱分解によるガスの発生を抑えて、速やかに冷却することが好ましい。押し出されたプラスチックの温度は120℃程度まで低下させることができるが、この温度では押し出し機のスクリューモーター負荷が大きくなるため、通常は250℃以上の押し出しプラスチック温度で押し出しを行なうことが好ましい。   From the above, it can be seen that the temperature of the extruded molten plastic or the temperature of the cooling section of the second extruder greatly affects the moisture content of the pellets. That is, after the dechlorination treatment in the extruder, it is preferable that the molten plastic temperature is lowered as much as possible to the extent that it can be extruded, and the generation of gas due to the thermal decomposition of the plastic is suppressed and the cooling is performed quickly. Although the temperature of the extruded plastic can be lowered to about 120 ° C., since the screw motor load of the extruder increases at this temperature, it is usually preferable to perform extrusion at an extruded plastic temperature of 250 ° C. or higher.

図3に示すように、冷却部設定温度と押し出された直後の押し出しプラスチック温度とは正の相関があるので、どちらかの温度を用いて熱分解によるガスの発生を抑えればよい。本発明では、押し出された直後の押し出しプラスチック温度を290℃以下として押し出し機から押し出すことが必要なので、冷却部設定温度によって制御する場合は、図3のような関係を予め測定して求めておく。なお、押し出された直後の押し出しプラスチック温度を280℃以下とすることが好ましい。   As shown in FIG. 3, there is a positive correlation between the set temperature of the cooling section and the temperature of the extruded plastic immediately after being extruded, so that either temperature may be used to suppress the generation of gas due to thermal decomposition. In the present invention, since it is necessary to extrude from the extruder by setting the temperature of the extruded plastic immediately after extrusion to 290 ° C. or lower, when controlling by the cooling section set temperature, the relationship as shown in FIG. 3 is measured in advance. . The extruded plastic temperature immediately after extrusion is preferably 280 ° C. or less.

図1と同様の設備を用いて、廃プラスチックの粉砕処理を行なった。脱塩素処理を行なう第二の押し出し機3のシリンダー部においては、図6に示すように、C1〜C5に5分割して温度制御を行ない、それぞれ昇温部(C1)、フルベント部(C2〜C4)、冷却部(C5)とした。   The waste plastic was pulverized using the same equipment as in FIG. In the cylinder part of the second extruder 3 that performs the dechlorination treatment, as shown in FIG. 6, the temperature is controlled by being divided into five parts C1 to C5, and the temperature raising part (C1) and the full vent part (C2 to C2), respectively. C4) and a cooling part (C5).

使用した廃プラスチックは一般家庭からの廃棄物であり、複数種類のプラスチックと異物とが混合された状態で、ポリエチレン32mass%、ポリプロピレン31mass%、ポリスチレン22mass%、その他(紙など)15mass%であった。異物を除去して洗浄し、フィルム状のものを選別して粒径約20mmに破砕して処理に用いた。塩素含有量は異物除去後で2.4mass%であった。   The waste plastic used was waste from ordinary households, and in the state where a plurality of types of plastic and foreign materials were mixed, it was 32 mass% polyethylene, 31 mass% polypropylene, 22 mass% polystyrene, and 15 mass% other (paper, etc.). . Foreign matter was removed and washed, and a film-like material was selected and crushed to a particle size of about 20 mm and used for processing. The chlorine content was 2.4 mass% after removing foreign matter.

これを用いて、第一の押出し機2での加熱温度を180℃、第二の押出し機での加熱温度を、C1で310℃、C2〜C4で345℃、C5で180℃として脱塩素処理を行ない、溶融混練した廃プラスチックをダイスから押し出した後ホットカッターで切断して水中に落下させ、直径約20mm、長さ約20mmの円筒形のペレットを製造した。廃プラスチックの処理量は、600kg/時間とした。   Using this, the heating temperature in the first extruder 2 is 180 ° C., the heating temperature in the second extruder is 310 ° C. for C1, 345 ° C. for C2 to C4, and 180 ° C. for C5. The melted and kneaded waste plastic was extruded from a die, cut with a hot cutter and dropped into water to produce cylindrical pellets having a diameter of about 20 mm and a length of about 20 mm. The processing amount of waste plastic was 600 kg / hour.

押し出し機3出口におけるプラスチックの温度は268〜270℃であった。製造されたペレットを20個切断して目視にて内部観察を行なったが、含水ペレットは発生しなかった。眼開き12mmのスクリーン付ハンマーミル(粗粉砕機)で粗粉砕した後の水分の含有量を測定したところ、0.5〜1.5mass%であり、その後微粉砕処理を行なった際に、ホッパーや配管に詰まりは全く発生せず、順調に微粉砕プラスチックを製造することができた。   The temperature of the plastic at the outlet of the extruder 3 was 268 to 270 ° C. Although 20 manufactured pellets were cut and observed internally, no water-containing pellets were generated. When the water content after coarse pulverization with a hammer mill (coarse pulverizer) with a 12 mm eye opening was measured, it was 0.5 to 1.5 mass%. The pipes were not clogged at all, and finely pulverized plastics were successfully produced.

次に、比較例として、上記と同様にして、第二の押出し機のC5の加熱温度(設定温度)を220℃にしてペレットを製造した。   Next, as a comparative example, in the same manner as described above, the heating temperature (set temperature) of C5 of the second extruder was set to 220 ° C. to produce pellets.

押し出し機3出口におけるプラスチックの温度は290℃であった。製造されたペレットを切断して内部を調べたところ、20個の内10個は水分を含有しており、粗破砕後の水分は8〜18mass%であった。その後微粉砕処理を行なったが、ホッパーや配管が詰まり、処理の継続が困難であった。   The temperature of the plastic at the exit of the extruder 3 was 290 ° C. When the produced pellet was cut and the inside was examined, 10 out of 20 contained water, and the water after coarse crushing was 8 to 18 mass%. Thereafter, pulverization was performed, but the hopper and piping were clogged, making it difficult to continue the processing.

廃プラスチックの粉砕処理システムの一実施形態の概略図。1 is a schematic view of an embodiment of a waste plastic crushing system. 含水ペレットの割合と冷却部設定温度の関係を示すグラフ。The graph which shows the relationship between the ratio of a water-containing pellet and cooling part preset temperature. 押し出しプラスチック温度と冷却部設定温度の関係を示すグラフ。The graph which shows the relationship between extrusion plastic temperature and cooling part preset temperature. 冷却部設定温度160℃で製造したペレットの断面写真。The cross-sectional photograph of the pellet manufactured at the cooling part preset temperature of 160 degreeC. 冷却部設定温度240℃で製造したペレットの断面写真。The cross-sectional photograph of the pellet manufactured at the cooling part preset temperature of 240 degreeC. 第二の押し出し機のシリンダー部の概略図。Schematic of the cylinder part of a 2nd extruder.

符号の説明Explanation of symbols

1 廃プラスチック
2 第一の押し出し機
3 第二の押し出し機
4 ベント部
5 ガス処理系
6 ダイス
7 水槽
8 振動篩い
9 第一の粉砕機
10 ホッパー
11 第二の粉砕機
12 高炉
DESCRIPTION OF SYMBOLS 1 Waste plastic 2 1st extruder 3 2nd extruder 4 Vent part 5 Gas processing system 6 Dies 7 Water tank 8 Vibrating sieve 9 First crusher 10 Hopper 11 Second crusher 12 Blast furnace

Claims (2)

廃プラスチックが投入される入口と、出口とを有し、更に、前記出口側に冷却部とを有する押し出し機内で300℃以上に加熱することで、前記廃プラスチックを加熱溶融して脱塩素処理を行ない、
前記脱塩素処理の後に、前記出口から押し出された直後の廃プラスチック温度を20℃以下となるように、前記冷却部の温度を制御し、
前記出口から押し出された直後の廃プラスチックを直ちに水中で水冷して固化体とし、該固化体を粉砕することを特徴とする廃プラスチック粉砕物の製造方法。
An inlet waste plastic is introduced, and an outlet, further, by heating to 300 ° C. or higher in an extruder having a cooling portion to said outlet, heated and melted to dechlorination of the waste plastics the line stomach,
After the dechlorination, waste plastics temperature immediately after extruded from said outlet so as to be 2 8 0 ° C. or less, and controlling the temperature of the cooling section,
Manufacturing method of waste plastics pulverized material, characterized in that water cooled immediately in water waste plastics immediately after extruded from the outlet and solid material, pulverizing the solid embodying.
廃プラスチックが投入される入口と、出口とを有し、更に、前記出口側に冷却部とを有する押し出し機内で300℃以上に加熱することで、前記廃プラスチックを加熱溶融して脱塩素処理を行ない、
前記脱塩素処理の後に、前記出口から押し出された直後の廃プラスチック温度を20℃以下となるように、前記冷却部の温度を制御し、
前記出口から押し出された直後の廃プラスチックを直ちに水中で水冷することを特徴とする廃プラスチック粉砕物製造用のペレットの製造方法。
An inlet waste plastic is introduced, and an outlet, further, by heating to 300 ° C. or higher in an extruder having a cooling portion to said outlet, heated and melted to dechlorination of the waste plastics Do
After the dechlorination, waste plastics temperature immediately after extruded from said outlet so as to be 2 8 0 ° C. or less, and controlling the temperature of the cooling section,
A method for producing pellets for producing a pulverized waste plastic, wherein the waste plastic immediately after being extruded from the outlet is immediately cooled in water.
JP2008136525A 2007-05-25 2008-05-26 Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic Expired - Fee Related JP5120063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136525A JP5120063B2 (en) 2007-05-25 2008-05-26 Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007138568 2007-05-25
JP2007138568 2007-05-25
JP2008136525A JP5120063B2 (en) 2007-05-25 2008-05-26 Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic

Publications (2)

Publication Number Publication Date
JP2009007561A JP2009007561A (en) 2009-01-15
JP5120063B2 true JP5120063B2 (en) 2013-01-16

Family

ID=40322952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136525A Expired - Fee Related JP5120063B2 (en) 2007-05-25 2008-05-26 Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic

Country Status (1)

Country Link
JP (1) JP5120063B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917576B2 (en) * 2003-10-08 2007-05-23 株式会社日本製鋼所 Volume reduction granulation method and apparatus for waste plastic
JP2006241442A (en) * 2005-02-01 2006-09-14 Jfe Steel Kk Process for treatment of waste plastics
JP4469352B2 (en) * 2005-04-28 2010-05-26 新日本製鐵株式会社 Waste plastic molding method
JP5446061B2 (en) * 2005-08-29 2014-03-19 Jfeスチール株式会社 Method for producing fine powder of mixed plastic, method for operating blast furnace, and method for treating waste plastic

Also Published As

Publication number Publication date
JP2009007561A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
KR20020042716A (en) Molded lump and production method therefor
JP5692321B2 (en) Method for producing fine powder of mixed plastic, fine powder of mixed plastic, fine powder of waste plastic, method of operating blast furnace, and method of processing waste plastic
JP2007092133A (en) Method for treating scrap and/or sludge containing copper and noble metal
TWI312309B (en) A method for forming waste plastic and a method for thermal cracking thereof
WO2005037510A2 (en) Method of recycling waste plastic and method of molding
JP4775485B2 (en) Method for producing waste plastic crushed material and solid fuel or ore reducing material
JP2015189023A (en) Production method of waste plastic pulverized material
JP5446061B2 (en) Method for producing fine powder of mixed plastic, method for operating blast furnace, and method for treating waste plastic
JP5120063B2 (en) Method for producing pulverized waste plastic and method for producing pellets for producing pulverized waste plastic
CN113891945A (en) Process for producing polymer product
JP2006241442A (en) Process for treatment of waste plastics
US7407688B2 (en) Process for recycling waste FRP
JP5652441B2 (en) Blowing synthetic resin into blast furnace
JP5535744B2 (en) Method for producing resin composition
JP4807112B2 (en) Blowing synthetic resin into blast furnace
JP5774075B2 (en) Method for producing resin composition
JP5272362B2 (en) Waste plastic grinding method
JP2009068088A (en) Method for injecting synthetic resin material into blast furnace
JP3734224B1 (en) Coarse granule roll crusher
JP7173425B1 (en) Granular solidified slag manufacturing method and manufacturing equipment
JP3940257B2 (en) Method of injecting synthetic resin material fuel in metallurgical furnace, synthetic resin material fuel for producing pig iron and method of producing pig iron in blast furnace using the same
WO2022270480A1 (en) Granular solidified slag manufacturing method and manufacturing facility
JP2011011508A (en) Method and apparatus for pulverizing, mixing and granulating by using twin screw extruder
JP4064167B2 (en) Processing method of synthetic resin
JP2006056267A (en) Molding process of discarded plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120307

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees