JP5117803B2 - 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤 - Google Patents

染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤 Download PDF

Info

Publication number
JP5117803B2
JP5117803B2 JP2007237443A JP2007237443A JP5117803B2 JP 5117803 B2 JP5117803 B2 JP 5117803B2 JP 2007237443 A JP2007237443 A JP 2007237443A JP 2007237443 A JP2007237443 A JP 2007237443A JP 5117803 B2 JP5117803 B2 JP 5117803B2
Authority
JP
Japan
Prior art keywords
wastewater
treatment
decolorization
calcium chloride
enterococcus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007237443A
Other languages
English (en)
Other versions
JP2009066515A (ja
Inventor
英幸 山田
和久 辻本
理博 櫻井
紀英 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2007237443A priority Critical patent/JP5117803B2/ja
Publication of JP2009066515A publication Critical patent/JP2009066515A/ja
Application granted granted Critical
Publication of JP5117803B2 publication Critical patent/JP5117803B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、廃水の脱色処理方法、脱色処理装置およびそれに使用する脱色処理剤に関する。詳しくは、染料を含有する廃水の脱色処理方法、脱色処理装置およびそれに使用する脱色処理剤に関する。
現在、染料製造工場、繊維染色工場、紙・パルプ染色工場および食品加工場など、様々な業種の工場で染料を含む廃水(以下、着色廃水と称す)が発生している。この着色廃水は、着色原因成分として、直接染料、酸性染料、反応染料、カチオン染料、硫化染料および分散染料などの染料を含んでいる。
現在利用されているこれら各種染料においては、アゾ系の染料の割合が多く、全体の約70%を占めるといわれている。アゾ系の染料は、化学構造的に安定で分解され難い特徴があり、通常の活性汚泥法のみでは分解および脱色することが非常に困難である。そのため、着色廃水の脱色技術として、凝集沈澱法、活性炭吸着法、あるいはオゾンなどによる酸化分解処理方法を、単独または組合せて使用している。
凝集沈殿法は、無機凝集剤であるアルミニウム塩類(硫酸アルミニウム、アルミン酸ナトリウムおよび塩基性塩化アルミニウムなど)、鉄塩類(硫酸第1鉄、硫酸第2鉄および塩化第2鉄など)および有機高分子凝集剤(陰イオン性ポリマー、陽イオン性ポリマーおよび非イオン性ポリマーなど)を廃水に添加し、染料などの着色原因成分を凝集させて除去する手法である。
しかしながら、凝集沈澱法は、染料などの着色原因成分を含む泥状の二次廃棄物が大量に発生し、これらの廃棄物処理コストが高いという問題があった。また、この手段は水溶性が高く、凝集性の乏しい低分子の着色原因成分に対しては適用できないという問題がある。
活性炭吸着法では、通常、活性炭を充填した濾過装置で脱色を行うが、濾過装置の閉塞などが起こり易いという問題があり、運転の維持管理が煩雑な場合がある。また、使用後の活性炭を再生あるいは廃棄するために莫大なコストがかかるという問題がある。
また、オゾンによる酸化分解処理方法では、オゾン発生装置などの特殊設備の導入が必要な点や、電力消費量が多くランニングコストが高くなる点が問題であり、繊維染色工場からの廃水などの大量の着色廃水処理への適用は実現性が低いものであった。
したがって、前記の方法の多くは、処理コストが高いこと、運転および維持管理が煩雑であることなどに問題があり、依然として安価で効果の高い脱色処理方法が求められている。
そこで、前記化学的および物理的処理以外の方法として、微生物を用いた着色廃水の処理方法が検討されている。微生物処理は、スケールアップ時の処理コストが小さいという利点があると考えられている。
このような微生物を用いた処理方法の例として、染料を含む排水を硫酸還元細菌、硝化菌および、脱窒菌と接触させて、廃水の脱色及び脱窒を行う脱色装置に関するもの(特許文献1)、アゾ染料分解能を有するRhodopseudomonas属及び/又はRhodobacter sphaeroides種に属する微生物及びそれを用いたアゾ染料の分解に関するもの(特許文献2)、クレブシエラ(Klebsiella)属、フラボバクテリウム(Flavobacterium)属及びアエロモナス(Aeromonas)属から選ばれる1種又は2種以上の微生物を含有する染料の脱色剤及びこれを用いる脱色方法に関するもの(特許文献3)などがある。
しかし、これらの方法では、微生物の染料に対する特異性が高いために、様々な染料や着色成分を含む実際の廃水に対して汎用性が低いという問題があった。さらに、工場から排出される実際の着色廃水は、着色原因物質としての染料に加えて、生産現場で使用される製品原料、副産物、分散剤、可溶化剤、界面活性剤、均染剤、フィックス剤、サイズ剤、ソーピング剤などの加工剤を大量に含んでいる場合がある。これらの化合物は、微生物の生育を阻害することから、前述の方法では微生物の増殖を維持できず、十分な脱色効果が得られないという問題があった。
また、エンテロコッカス属の微生物を用いた廃水処理方法が特許文献4、5、6および7に記載されている。しかし、これらの方法は、生活排水の浄化を目的とするものであり、難分解性の染料に対しては十分な脱色効果が得られない場合がある。また、エンテロコッカス属の微生物を単独で使用した場合の着色廃水の脱色には、高濃度の菌を用いて長時間の処理が必要になり、そのため、処理上清中の懸濁物が多くなるという問題があった。
さらに、特許文献8には、シュードモナス属に属する微生物と塩化カルシウムとを着色液に添加して脱色させる方法が記載されている。しかし、この方法では、まずシュードモナス属の微生物が凝集能物質を生産するような培養条件を整える必要がある。すなわち、廃水に高濃度のグルコースや酵母エキスなどの微生物が利用可能な栄養分を添加しなければならず、結果的に廃水中の有機物濃度が高くなり、廃水処理の負荷が大きくなるという問題がある。
これらのことから、実際の工場廃水の処理に適した、低コストで脱色効果の高い処理方法が依然として強く望まれている。
特開2004−82107号公報 特開2002−45172号公報 特開2002−28691号公報 特開2000−51891号公報 特開2003−80290号公報 特開2003−334588号公報 特開2005−270735号公報 特開平6−277692号公報
本発明は、このような従来技術の問題点に鑑みなされたものであり、難分解性の着色原因物質を含む着色廃水を、低コストで簡便に脱色することが可能な脱色処理方法、脱色処理装置および脱色処理剤を提供することを目的とする。
すなわち、本発明は、処理槽に染料を含有する廃水を導入する工程、および、導入された廃水に塩化カルシウムとエンテロコッカス属に属する微生物とを添加する工程を含む染料を含有する廃水の脱色処理方法に関する。
前記処理槽内の廃水のpH6.0〜9.0とし、塩化カルシウム濃度0.003〜0.3重量%とすることが必要である。
前記処理槽内の廃水の微生物濃度乾燥重量で1000〜10000mg/Lとすることが必要である。
前記微生物が活性汚泥由来であり、前記廃水が微好気条件にあることが好ましい。
また、本発明は、処理槽に染料を含有する廃水を導入する手段、導入された廃水に塩化カルシウムをその濃度が0.003〜0.3重量%となるように、また、エンテロコッカス属に属する微生物をその濃度が乾燥重量で1000〜10000mg/Lとなるように添加する手段、該処理槽内の廃水のpHを6.0〜9.0に調整する手段、該処理槽内の廃水を微好気条件から好気条件に制御する手段、および、該処理槽内の廃水を導出する手段を備えた脱色廃水処理装置に関する。
さらにまた、本発明は、塩化カルシウムとエンテロコッカス属に属する微生物とを含む、染料を含有する廃水の脱色処理剤に関する。
本発明によれば、塩化カルシウムとエンテロコッカス属に属する微生物とを用いることにより、着色廃水を簡便に脱色することができ、安全、低コスト、かつ、処理上清の懸濁が少ないという実用性に優れた脱色処理方法、脱色処理装置および脱色処理剤を提供することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の脱色処理装置の実施形態の一つであって、処理槽に染料を含有する廃水を導入する手段、導入された廃水に塩化カルシウムとエンテロコッカス属に属する微生物とを添加する手段、該処理槽内の廃水のpHを調整する手段、該処理槽内の廃水を微好気条件から好気条件に制御する手段、および、該処理槽内の廃水を導出する手段を備えた脱色処理装置を示す模式図である。
図1において、符号1は廃水導入手段としての廃水供給管、符号2は処理槽、符号3は廃水導出手段としての処理水排出管である。また、pHを調整する手段として、pHを測定する測定器4、その値に応じて酸またはアルカリの投入量を制御する制御装置5、酸およびアルカリ貯蔵槽6および酸またはアルカリ供給管7を備えており、塩化カルシウムとエンテロコッカス属に属する微生物とを添加する手段として、微生物貯蔵槽8、微生物供給管9、塩化カルシウム貯蔵槽11および塩化カルシウム供給管12、さらに、微好気条件から好気条件制御手段として撹拌手段10または空気送り込み手段(図示せず)を備えている。
前記処理槽2は、塩化カルシウムとエンテロコッカス属に属する微生物との添加により脱色処理できるものであれば特に限定されない。例えば、常時撹拌や間欠撹拌をおこなう完全混合型、微生物固定化担体を投入した流動床型などを利用することができる。
また、本発明の脱色処理装置は、処理槽2の後段に、微生物と処理水とを分離するための固液分離手段として、沈殿槽、脱水機および濃縮機などを備えていてもよい。
さらに、本発明の脱色処理装置は、単独で使用するものであっても、従来の活性汚泥処理槽の前段または後段に設置して使用するものであってもよい。
本発明において、処理の対象となる廃水は、直接染料、酸性染料、反応染料、カチオン染料、硫化染料および分散染料などの染料を含んだ着色廃水であり、とくに限定されない。なかでも、着色廃水中の総有機炭素量(TOC)が100〜3000mg/Lの範囲であると、高い脱色効果を得ることができるため好ましい。総有機炭素量(TOC)が100mg/Lよりも低い場合には、微生物の栄養源が乏しいため、微生物の染料分解機能が活性化しないことがある。この場合は、微生物の栄養源となる有機物を着色廃水に添加して、TOC濃度を調整すれば、本発明の方法に適用することができる。一方、総有機炭素量(TOC)が3000mg/Lよりも高い場合は、生分解され易い有機物が被処理廃水中に高濃度で存在するため、染料分解以外の分解反応が優先され、十分な脱色効果が得られないことがある。また、汚泥の増加や代謝産物の蓄積、腐敗臭の発生などの二次的な水質汚濁の問題が生じる場合がある。
本発明で使用される塩化カルシウムおよびエンテロコッカス属に属する微生物の添加方法は、特に限定されず、あらかじめ混合してから着色廃水に添加してもよいし、それぞれ独立に着色廃水に添加してもよい。いずれの場合にも相乗的な脱色効果を得ることができる。
処理槽内の被処理着色廃水のpHは、6.0〜9.0に維持されていることが好ましい。この範囲外であると、微生物の活性が低下するため、十分な脱色効果が得られない場合がある。また、pHが9.0よりも高い廃水に塩化カルシウムを添加すると、水酸化物などの凝集体が形成される場合がある。とくに好ましくは、pH6.5〜8.5である。
本発明は、塩化カルシウムとエンテロコッカス属に属する微生物とを併用することが特徴である。塩化カルシウムとエンテロコッカス属の微生物とによる脱色機構の詳細は、まだ十分に解明されていない部分もあるが、カルシウムが細胞外層に作用し、染料吸着能力を高めるとともに、微生物由来の各種酵素を安定化する効果があり、微生物の脱色活性を相乗的に高めるものと考えられる。
塩化カルシウムは、海水など自然環境の中に広く存在し、毒性が少なく、比較的低コストの物質として知られている。
被処理着色廃水の塩化カルシウム濃度は、0.003〜0.3重量%であることが好ましく、より好ましくは0.005〜0.2重量%、さらに好ましくは0.01〜0.2重量%である。塩化カルシウム濃度がこの範囲であると、脱色効果を相乗的に高めることができる。濃度が0.003重量%より低いと、添加効果が不十分となり、微生物処理との相乗的な脱色効果が得られにくい傾向にある。濃度が0.3重量%をこえても、それ以上の添加効果は得られない傾向にあり、また、過剰なカルシウムが処理水中に残存するため、水質の悪化につながる場合がある。塩化カルシウムの着色廃水への添加量は、廃水の種類、着色の程度および処理廃水に求められる水質などに応じて、前記の濃度範囲内において適宜調整することができる。
本発明で使用される微生物は、エンテロコッカス属に属するものである。エンテロコッカス属は、一般的に高塩濃度の条件下や広いpH範囲で生育が可能であるため、廃水中での生育も良好で、塩化カルシウムを併用したときの脱色効果が優れている。
さらに、エンテロコッカス属に属する微生物を用いた場合、懸濁物質が少なく透明度の高い、水質の優れた脱色処理水が得られるという利点がある。エンテロコッカス属に属する微生物は一般的に運動性を有さない球菌という特徴があり、運動性を有するシュードモナス属や、他の形状の異なる微生物と比較して、微生物の沈降性に優れている。したがって、脱色処理後の処理水と微生物との分離が容易であり、例えば静置分離後の上澄みとして透明度の高い処理水を得ることができるため、実用性が極めて高い。
また、乳酸菌の一種として知られており、安全性が高く廃水処理に好適に用いることができる。前記微生物は、エンテロコッカス属に属するものであれば、とくに限定されるものではない。たとえば、エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・マロドラタス(Enterococcus malodoratus)、エンテロコッカス・アビウム(Enterococcus avium)などがあげられる。なかでも、低栄養条件下での増殖が優れる、エンテロコッカス・アビウムが好ましい。
本発明で使用されるエンテロコッカス属に属する微生物は、例えばエンテロコッカス・アビウム(Enterococcus avium)種として、NBRC100477、JCM 8722、ATCC 14025、DST0703、NCTC 9938等を挙げることができるが、これらに限定されるものではない。
また、前記微生物は、処理すべき廃水への適応力が高く、かつ周辺環境への悪影響の懸念が小さいという点で、活性汚泥由来であることが好ましい。
この微生物は、たとえば、繊維染色工場の廃水処理施設の活性汚泥から採取される。採取した活性汚泥を適宜希釈し、反応染料(C.I.Reactive Red 3)を0.03%含むSCD寒天培地(日水製薬社製)に塗布する。25℃で24時間培養後、脱色ハローを形成したコロニーから、脱色効果の高い微生物1種を単離することによって得られる。本発明者らが、常法に従って、単離した微生物の16SrDNA上流領域(約500bp)の塩基配列を解析し、BLASTによるデータベース検索による同定を行ったところ、本菌は、エンテロコッカス属の16SrDNAの塩基配列と高い相同性があることが判明し、エンテロコッカス属に属する微生物であると同定された。
本発明において、処理槽内の処理すべき廃水中には、エンテロコッカス属に属する微生物以外の微生物、例えば活性汚泥由来の微生物等が存在していても良く、この場合、複数種の微生物による相乗的な水質浄化機能が得られる。
さらに、本発明における微生物は、担体に担持させた状態で利用することができる。用いる担体は特に限定されないが、例えばセルロース、ポリエチレン、ポリプロピレン、ポリエステル、ポリスチレン、アクリル、ポリウレタン、炭素繊維、活性炭、ゼオライト、ポリビニルアルコールなどから成る繊維状構造体や多孔質体、ゲル状体などが挙げられる。
本発明で使用されるエンテロコッカス属に属する微生物の濃度は、乾燥重量で1000〜10000mg/Lであることが好ましく、より好ましくは、1000〜9000mg/Lであり、さらに好ましくは、2000〜8000mg/Lである。微生物濃度が1000mg/Lよりも小さい場合にも、脱色効果は得られるが、処理に長時間を有する場合がある。一方、10000mg/Lよりも大きい場合には、高い脱色効果が得られるが、脱色処理後の処理水と微生物との固液分離が困難になるため、廃水処理工程が複雑になる場合がある。
本発明で使用されるエンテロコッカス属に属する微生物と塩化カルシウムとの割合は、とくに限定されないが、エンテロコッカス属に属する微生物:塩化カルシウムが乾燥重量で、1:0.03〜1:3であると、相乗的に高い脱色効果が得られるため好ましい。
本発明の脱色処理剤は、エンテロコッカス属に属する微生物と塩化カルシウムとを前記の割合、すなわち、乾燥重量1:0.03〜1:3で含んでなることが好ましい。
その形態としては、粉体および懸濁液などがあげられる。
前記脱色処理剤には、その他、各種炭素源、タンパク質、ペプトン、酵母エキス、肉エキス、アミノ酸等の炭窒素源、リン酸カリウム、塩化ナトリウム、硫酸マグネシウム、硝酸ナトリウム、硫酸アンモニウム等の各種無機塩類など、一般的に微生物の活性化に必要とされる成分が含まれていてもよい。例えば、微生物に対する活性化効果が高く、かつ安価なものとして、可溶化汚泥や酵母エキスなどの微生物由来成分、米ぬかなどの穀物残渣などが含まれていてもよい。
本発明の脱色処理は、高い脱色効果が得られる点で、微好気条件から好気条件の範囲内で行うことが好ましい。
本発明における前記好気条件とは、酸化還元電位(ORP)が好ましくは300〜0mV、より好ましくは250〜50mVの範囲であり、曝気装置を用いるなど、積極的な通気撹拌を行う条件をいう。なお、酸化還元電位(ORP)は、一般的なORPメーター(Ag/AgCl電極)等で測定できる。
また、本発明における前記微好気条件とは、酸化還元電位(ORP)が好ましくは0〜−250mV、より好ましくは−30〜−200mVの範囲をいう。このような微好気条件は、微生物を添加した着色廃水を静置または緩やかに撹拌することで制御することができる。
酸化還元電位(ORP)が300mVをこえると、微生物の死骸や分解物が発生しやすく、処理水の水質が悪化する場合がある。逆に酸化還元電位(ORP)が−250mVより低いと、嫌気状態に近くなるため、脱色に必要な反応が効率的に進行し難くなるとともに、腐敗臭の発生などの問題が生じる場合がある。
なかでも、エアレーションポンプ等を用いた曝気が不要であるため、設備がコンパクトであり、ランニングコストを削減することができる点で、微好気条件で脱色処理を行うことが好ましい。
以下、実施例により本発明を詳細に説明するが、本発明は実施例によって何ら制限されるものではない。
モデル着色廃水に対する脱色効果
<染料を含むモデル着色廃水の調製>
SCD液体培地(日水製薬社製)10ml、水90ml、反応染料(C.I.Reactive Red 3)を0.03ml添加したものを、モデル着色廃水とした。この廃水のpHは、6.8であった。
実施例1
前記モデル着色廃水100mlに、塩化カルシウム0.05gおよび、乾燥重量換算で0.2gのエンテロコッカス・アビウム(NBRC100477、独立行政法人 製品評価技術基盤機構から購入)を添加した。エンテロコッカス・アビウムの菌体は、あらかじめSCD液体培地で培養後、遠心分離により集菌したものを用いた。菌体の乾燥重量は、集菌した菌体の一部を用い、赤外線水分計FD−610(株式会社ケット科学研究所)を使用して105℃の乾燥条件により求めた。
調製した着色廃水を処理槽(200mlのプラスチック広口ビン)に入れて静置することにより微好気条件とし、25℃で24時間の脱色処理を行った。
実施例2
前記モデル着色廃水100mlに、塩化カルシウム0.2g、および乾燥重量換算で0.2gのエンテロコッカス・アビウム(NBRC100477)を添加して、実施例1と同様に脱色処理を行った。
実施例3
前記モデル着色廃水100mlに、塩化カルシウム0.05g、および乾燥重量換算で0.6gのエンテロコッカス・アビウム(NBRC100477)を添加して、実施例1と同様に脱色処理を行った。
実施例4
前記モデル着色廃水100mlに、塩化カルシウム0.2g、および乾燥重量換算で0.6gのエンテロコッカス・アビウム(NBRC100477)を添加して、実施例1と同様に脱色処理を行った。
比較例1
塩化カルシウムおよびエンテロコッカス属に属する微生物を含まないモデル着色廃水を、処理槽(200mlのプラスチック広口ビン)に入れて25℃で24時間静置した。
比較例2
前記モデル着色廃水100mlに、塩化カルシウム0.2gのみを添加して、実施例1と同様に脱色処理を行った。
比較例3
前記モデル着色廃水100mlに、乾燥重量換算で0.6gのエンテロコッカス・アビウム(NBRC100477)のみを添加して、実施例1と同様に脱色処理を行った。
比較例4
前記モデル着色廃水100mlに、塩化カルシウム0.2g、および乾燥重量換算で0.6gのクレブシエラ属の微生物(NBRC13277)を添加し、実施例1と同様に脱色処理を行った。前記クレブシエラ属の微生物は、あらかじめSCD液体培地で培養後、遠心分離により集菌したものを用いた。
比較例5
前記モデル着色廃水100mlに、塩化カルシウム0.2g、および乾燥重量換算で0.6gのシュードモナス属の微生物(NBRC13275)を添加し、実施例1と同様に脱色処理を行った。前記シュードモナス属の微生物は、あらかじめSCD液体培地で培養後、遠心分離により集菌したものを用いた。
繊維染色工場の実廃水に対する脱色効果
<廃水サンプルの調製>
繊維染色工場から分散染料、反応染料、界面活性剤、糊剤等を含む着色廃水を採取した。本着色廃水の総有機炭素量および総窒素量をTOC計((株)島津製作所製)により測定した結果、総有機炭素量は295mg/L、総窒素量は、69mg/Lであった。前記着色廃水に硫酸を添加してpHを7.8に調整し、以下の脱色試験に用いた。
実施例5
前記の繊維染色工場から採取した着色廃水100mlに、0.2gの塩化カルシウムを添加した。さらに、乾燥重量換算で0.6gの前記のエンテロコッカス・アビウム(NBRC100477、独立行政法人 製品評価技術基盤機構から購入)を添加した。続いて該廃水を、処理槽(200mlのプラスチック広口ビン)に入れて静置することにより微好気条件とし、25℃で16時間の脱色処理を行った。
比較例6
前記の繊維染色工場から採取した着色廃水100mlに、塩化カルシウムおよびエンテロコッカス属に属する微生物を添加することなく、実施例5と同様に25℃で16時間の脱色処理を行った。
比較例7
前記の繊維染色工場から採取した着色廃水100mlに、0.2gの塩化カルシウムのみを添加し、実施例5と同様に25℃で16時間の脱色処理を行った。
比較例8
前記の繊維染色工場から採取した着色廃水100mlに、乾燥重量換算で0.6gのエンテロコッカス・アビウムを(NBRC100477)添加し、実施例5と同様に25℃で16時間の脱色処理を行った。
比較例9
前記の繊維染色工場から採取した着色廃水100mlに、0.2gの塩化カルシウムおよび、乾燥重量換算で0.6gのシュードモナス属に属する微生物(Pseudomonas aeruginosa:NBRC13275)を添加し、実施例5と同様に25℃で16時間の脱色処理を行った。
<脱色効果の評価>
着色廃水における着色度の指標として、着色廃水の可視光領域(350nm〜700nm)の吸光度を1nm間隔で測定し、その積算値(以下、積算吸光度と表記)を求めた。さらに、以下の式から、脱色率(%)を算出した。吸光度の測定には、各着色廃水をポアサイズ0.45μmのフィルターでろ過したものを用いた。なお、吸光度の測定および積算吸光度の算出には、UV−2450((株)島津製作所製)を用いた。
脱色率(%)=((A−A)/A)×100
:脱色処理前の着色廃水の積算吸光度
:脱色処理後の着色廃水の積算吸光度
<脱色処理後の上清の濁度評価>
脱色処理後の廃水の上清を採取し、波長610nmにおける吸光度(上清の濁度)を測定した。吸光度が低いほど、汚濁の原因となる懸濁物質が少なく、処理後の廃水の水質がよい。
モデル廃水に対する脱色効果
塩化カルシウムおよび微生物の両方を添加しない場合(比較例1)および、塩化カルシウムのみを添加した場合(比較例2)には、脱色効果が得られなかった。また、エンテロコッカス属に属する微生物のみを添加した場合(比較例3)は、脱色率は約68%であったが、実施例には及ばなかった。
また、塩化カルシウムおよび、エンテロコッカス属以外の微生物を添加した比較例4および比較例5では、70%に近い脱色率が得られたものもあるが、処理廃水の上清の濁度が非常に高く、処理水の水質が劣っていた。
一方、塩化カルシウムとエンテロコッカス属に属する微生物を着色廃水に添加し、静置による微好気条件で脱色処理を行った実施例1〜4では、いずれの場合にも相乗的に高い脱色効果を得ることができ、脱色率は70%以上であった。さらに、廃水の上清の濁度は、実施例ではいずれも0.7以下になっていた。
したがって実施例は、着色廃水に対する脱色効果が高く、且つ懸濁物質が少ない処理水を得られるものである。
Figure 0005117803
繊維染色工場の実廃水に対する脱色効果
塩化カルシウムと微生物の両方を添加しない場合(比較例6)および、塩化カルシウムのみを添加した場合(比較例7)には、脱色効果が得られなかった。また、エンテロコッカス属に属する微生物のみを添加した場合(比較例8)は、脱色率は約63%であったが、実施例には及ばなかった。
また、塩化カルシウムおよび、エンテロコッカス属以外の微生物を添加した比較例9では、約70%の脱色率が得られたものの、処理廃水の上清の濁度が5.0と非常に高く、処理水の水質が劣っており実用性が低かった。
一方、実施例5では、塩化カルシウムとエンテロコッカス属に属する微生物を着色廃水に添加し、75%の高い脱色率を得た。さらに、このときの廃水の上清の濁度は、0.9であり、懸濁物質の少ない、水質のよい処理水を得ることができた。
さらに、実施例5、比較例6、7および8の処理廃水の吸収スペクトル測定結果を図3に示した。実施例5の処理廃水では、可視光領域の吸光度が大幅に低下していることが確認され、実廃水の脱色に極めて有効性が高いことが確認された。
Figure 0005117803
<エンテロコッカス属に属する微生物の単離と解析>
繊維染色工場の廃水処理施設の活性汚泥を採取して適宜希釈し、反応染料(C.I.Reactive Red 3)を0.03%含むSCD寒天培地(日水製薬社製)に塗布した。25℃で24時間培養後、脱色ハローを形成したコロニーから、脱色効果の高い微生物1種を単離した。常法に従って、単離した微生物の16SrDNA上流領域(約500bp)の塩基配列を解析し、BLASTによるデータベース検索による同定を行った。その結果、本菌は、エンテロコッカス属の16SrDNAの塩基配列と高い相同性があることが判明し、エンテロコッカス属に属する微生物であると同定された。
この活性汚泥から単離したエンテロコッカス属の微生物を用いて、実施例1〜5と同様の評価を行ったところ、モデル着色廃水および繊維染色工場の実廃水のいずれに対しても、市販のエンテロコッカス・アビウム(NBRC100477)と同様に、高い脱色効果を示すことが確認された。
本発明の脱色処理装置の一実施形態を示す模式図である。 本発明のエンテロコッカス属に属する微生物の16SrDNAの上流領域約500bpの塩基配列データを示している。 実施例5、比較例6、7および8の処理廃水の吸収スペクトル測定結果を示すグラフである。
符号の説明
1 廃水供給管
2 処理槽
3 処理水排出管
4 pH測定器
5 酸またはアルカリの投入量制御装置
6 酸またはアルカリ貯蔵槽
7 酸またはアルカリ供給管
8 微生物貯留槽
9 微生物供給管
10 撹拌手段
11 塩化カルシウム貯蔵槽
12 塩化カルシウム供給管

Claims (3)

  1. 処理槽に染料を含有する廃水を導入する工程、および、導入された廃水に塩化カルシウムとエンテロコッカス属に属する微生物とを添加する工程を含み、廃水のpHが6.0〜9.0であり、塩化カルシウム濃度が0.003〜0.3重量%であり、該微生物の濃度が、乾燥重量で1000〜10000mg/Lである、染料を含有する廃水の脱色処理方法。
  2. 前記エンテロコッカス属に属する微生物が活性汚泥由来であり、前記廃水が微好気条件にある請求項記載の脱色処理方法。
  3. 処理槽に染料を含有する廃水を導入する手段、導入された廃水に塩化カルシウムをその濃度が0.003〜0.3重量%となるように、また、エンテロコッカス属に属する微生物をその濃度が乾燥重量で1000〜10000mg/Lとなるように添加する手段、該処理槽内の廃水のpHを6.0〜9.0に調整する手段、該処理槽内の廃水を微好気条件から好気条件に制御する手段、および、該処理槽内の廃水を導出する手段を備えた脱色廃水処理装置。
JP2007237443A 2007-09-13 2007-09-13 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤 Active JP5117803B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237443A JP5117803B2 (ja) 2007-09-13 2007-09-13 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237443A JP5117803B2 (ja) 2007-09-13 2007-09-13 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤

Publications (2)

Publication Number Publication Date
JP2009066515A JP2009066515A (ja) 2009-04-02
JP5117803B2 true JP5117803B2 (ja) 2013-01-16

Family

ID=40603344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237443A Active JP5117803B2 (ja) 2007-09-13 2007-09-13 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤

Country Status (1)

Country Link
JP (1) JP5117803B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4536158B1 (ja) * 2010-04-15 2010-09-01 三木理研工業株式会社 着色廃水処理方法及び当該方法に使用する着色廃水処理装置
JP2016214175A (ja) * 2015-05-22 2016-12-22 オルガノ株式会社 水処理装置および水処理方法
CN110684687B (zh) * 2019-10-21 2023-05-12 汕头大学 一株粪肠球菌st5及其在偶氮染料降解中的应用
CN114275969B (zh) * 2021-12-24 2023-04-07 上海市建工设计研究总院有限公司 一种抗生素污水的处理方法
CN115369053B (zh) * 2022-04-25 2023-12-15 湖北大学 一种偶氮染料降解菌及其应用
CN116409909B (zh) * 2023-06-09 2023-08-18 深圳永清水务有限责任公司 一种用于处理化验或检测产生的废水的装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126596A (ja) * 1986-11-14 1988-05-30 Agency Of Ind Science & Technol 微生物による可溶性色素の脱色方法
JP4093345B2 (ja) * 2002-05-17 2008-06-04 日本化薬株式会社 着色廃水の処理方法

Also Published As

Publication number Publication date
JP2009066515A (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
Kurade et al. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium
Ulson et al. Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment
Lim et al. Use of Chlorella vulgaris for bioremediation of textile wastewater
Przystaś et al. Biological removal of azo and triphenylmethane dyes and toxicity of process by-products
Koupaie et al. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines
Rasool et al. Simultaneous removal of COD and Direct Red 80 in a mixed anaerobic sulfate-reducing bacteria culture
Gnanapragasam et al. Bio-kinetic analysis on treatment of textile dye wastewater using anaerobic batch reactor
Geed et al. Development of adsorption-biodegradation hybrid process for removal of methylene blue from wastewater
JP5117803B2 (ja) 染料を含有する廃水の脱色処理方法、脱色処理装置および脱色処理剤
Sudha et al. Prospective assessment of the Enterobacter aerogenes PP002 in decolorization and degradation of azo dyes DB 71 and DG 28
Sarioglu et al. The removal of CI Basic Red 46 in a mixed methanogenic anaerobic culture
Brahmbhatt et al. The role of algae in bioremediation of textile effluent
Dalecka et al. Removal of total phosphorus, ammonia nitrogen and organic carbon from non-sterile municipal wastewater with Trametes versicolor and Aspergillus luchuensis
Hanis et al. Bacterial Degradation of Azo Dye Congo Red by Bacillus sp.
Rajamohan et al. Kinetic modeling of dye effluent biodegradation by Pseudomonas stutzeri
Hu et al. Integration of ozone with co-immobilized microalgae-activated sludge bacterial symbiosis for efficient on-site treatment of meat processing wastewater
Jafari et al. Reactive dyes (R. Blue 19 and R. Red 120) removal by a natural coagulant: Moringa oleifera.
Othman et al. Advanced membrane technology for textile wastewater treatment
Hossain et al. Biological treatment of textile wastewater by total aerobic mixed bacteria and comparison with chemical fenton process
Ong et al. Comparative study on the biodegradation of mixed remazol dyes wastewater between integrated anaerobic/aerobic and aerobic sequencing batch reactors
Rumky et al. Environmental treatment of dyes: methyl orange decolorization using hog plum peel and mix-bacterial strains
Sarioglu et al. Removal of Maxilon Yellow GL in a mixed methanogenic anaerobic culture
Henciya et al. Decolorization of textile dye effluent by marine cyanobacterium Lyngbya sp. BDU 9001 with coir pith
Khellaf et al. Biostimulation to improve the dye biodegradation of organic dyes by activated sludge
CN107758869A (zh) 一种用微生物絮凝剂处理制革废水的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Ref document number: 5117803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250