JP5117281B2 - Photosensitive heat resistant resin composition - Google Patents

Photosensitive heat resistant resin composition Download PDF

Info

Publication number
JP5117281B2
JP5117281B2 JP2008134960A JP2008134960A JP5117281B2 JP 5117281 B2 JP5117281 B2 JP 5117281B2 JP 2008134960 A JP2008134960 A JP 2008134960A JP 2008134960 A JP2008134960 A JP 2008134960A JP 5117281 B2 JP5117281 B2 JP 5117281B2
Authority
JP
Japan
Prior art keywords
resin composition
photosensitive resin
film
mass
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134960A
Other languages
Japanese (ja)
Other versions
JP2009282344A (en
Inventor
充 上田
勝久 溝口
章彦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Asahi Kasei E Materials Corp
Original Assignee
Tokyo Institute of Technology NUC
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Asahi Kasei E Materials Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2008134960A priority Critical patent/JP5117281B2/en
Publication of JP2009282344A publication Critical patent/JP2009282344A/en
Application granted granted Critical
Publication of JP5117281B2 publication Critical patent/JP5117281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は感光性樹脂組成物に関するものであり、露光・露光後加熱・現像のプロセスにより得られるレリーフパターンを有する半導体装置にも関する。   The present invention relates to a photosensitive resin composition, and also relates to a semiconductor device having a relief pattern obtained by a process of exposure / post-exposure heating / development.

半導体デバイスの微細化、高性能化の進歩は著しいものがあるが、その性能を十分発揮させるために必要な技術がパッケージ技術である。例えば極めて多数の取り出し電極を有しかつ高い動作周波数で駆動するロジック半導体の多くは半導体チップ表面に直接バンプと呼ばれる電極を形成するフリップチップと呼ばれるパッケージ形態に加工される。その場合チップ内の電極の配置とプリント配線板に接続するための電極の配置は異なる事が多いため配線を引き直す事が行われる。これを再配線と呼ぶがこの上下の配線の間(層間)には絶縁膜を形成させる事が必要である。
もう一つの高性能なパッケージの例として、ボールグリッドアレイ(BGA)やチップサイズパッケージ(CSP)を挙げる事ができる。この場合にはパッケージ基板と呼ばれる非常に微細な配線を多層にした基板の上に半導体チップを実装し、基板の裏面にはんだボールを装着してパッケージとする。このパッケージ基板にも層間絶縁膜が使用される。
There are significant advances in miniaturization and high performance of semiconductor devices, but the technology required to fully exhibit the performance is package technology. For example, many logic semiconductors having a very large number of extraction electrodes and driven at a high operating frequency are processed into a package form called a flip chip in which electrodes called bumps are directly formed on the surface of the semiconductor chip. In that case, since the arrangement of the electrodes in the chip and the arrangement of the electrodes for connecting to the printed wiring board are often different, the wiring is redrawn. This is called rewiring, but it is necessary to form an insulating film between the upper and lower wirings (interlayer).
Another example of a high-performance package is a ball grid array (BGA) or a chip size package (CSP). In this case, a semiconductor chip is mounted on a substrate called a package substrate in which very fine wirings are multilayered, and solder balls are mounted on the back surface of the substrate to form a package. An interlayer insulating film is also used for this package substrate.

さらに、近年マルチチップパッケージ(MCP)とかスタックドCSPと呼ばれる積層型の高密度パッケージが広く使われるようになってきた。ここでは、複数のチップがダイアタッチフィルム(DAF)と呼ばれる接着性フィルムを用いて積層され、各チップの周辺に並んでいる電極パッドとパッケージ基板の間はワイヤボンド方式で接続される。一部のメモリーでは電極パッドはチップの中央部に並んでいるものがあり、この場合は再配線を行いチップ周辺にワイヤボンドするためにパッドを形成し、MCPを作成する。ここでも層間絶縁膜を用いて上下の配線層を隔離する。
また、半導体チップの表面にはチップを保護するためにバッファコートと呼ばれる表面保護膜が形成される事が多い。
Further, in recent years, a stacked high-density package called a multichip package (MCP) or a stacked CSP has been widely used. Here, a plurality of chips are stacked using an adhesive film called a die attach film (DAF), and the electrode pads arranged around each chip and the package substrate are connected by a wire bond method. In some memories, the electrode pads are arranged in the center of the chip. In this case, rewiring is performed and pads are formed in order to wire bond around the chip to create an MCP. Again, the upper and lower wiring layers are isolated using an interlayer insulating film.
In many cases, a surface protective film called a buffer coat is formed on the surface of the semiconductor chip to protect the chip.

これらのパッケージを構成する層間絶縁膜や表面保護膜の次世代の用途においては次に述べる多くの特性が要求される。第一には、パッケージをプリント配線板に搭載する場合のはんだリフロープロセスに耐えるために耐熱性が必要となる。第二の要求は機械物性である。パッケージは色々な材料を組みあわせて作りこまれ、それぞれの材料の熱膨張率は異なる。樹脂封止をする際には高熱がかかり、冷える過程で熱膨張率の違いに由来する応力が発生する。また出来上がったパッケージはヒートショックテストとかヒートサイクルテストと呼ばれる苛酷な試験を課する。これはパッケージの温度を繰り返し変えることによりパッケージ内部に熱応力を発生させ、半導体およびパッケージがそれに耐える事を確認する事で信頼性を保証するというものである。この試験に耐えるには絶縁膜や表面保護膜は十分な機械物性を有する事が求められる。第三には高速の信号を効率的に伝送するために絶縁膜の誘電率や誘電正接(tanδ)が小さい事が望ましい。第四の要求としては感光性を有する事である。層間絶縁膜においては垂直方向の接続個所であるビアを形成することが必要であるが、加工サイズはますます微細となりフォトリソグラフィー法で形成する事が望ましい。これらの要求を満足する材料としては感光性ポリイミドや感光性ポリベンズオキサゾールが広く使われている(非特許文献1、2)。   In the next-generation applications of interlayer insulating films and surface protective films constituting these packages, many characteristics described below are required. First, heat resistance is required to withstand the solder reflow process when the package is mounted on a printed wiring board. The second requirement is mechanical properties. The package is made by combining various materials, and the thermal expansion coefficient of each material is different. When resin sealing is performed, high heat is applied, and stress derived from the difference in coefficient of thermal expansion occurs in the process of cooling. The finished package imposes severe tests called heat shock tests or heat cycle tests. This means that thermal stress is generated inside the package by repeatedly changing the temperature of the package, and reliability is assured by confirming that the semiconductor and the package can withstand it. In order to withstand this test, the insulating film and the surface protective film are required to have sufficient mechanical properties. Third, in order to efficiently transmit a high-speed signal, it is desirable that the dielectric constant and dielectric loss tangent (tan δ) of the insulating film be small. The fourth requirement is to have photosensitivity. In the interlayer insulating film, it is necessary to form a via which is a connecting portion in the vertical direction. However, the processing size becomes finer and it is desirable to form by a photolithography method. Photosensitive polyimide and photosensitive polybenzoxazole are widely used as materials that satisfy these requirements (Non-patent Documents 1 and 2).

また、感光性ポリイミドや感光性ポリベンズオキサゾールは微細加工を行った後、350℃付近の温度で熱硬化させる事で耐熱性高分子に変換しているが、近年この熱処理温度を低下する必要性が生じてきた。その背景としては不揮発性メモリー等のデバイスは高温で熱処理を行うと半導体自体が動作不良を起こす場合がある。また、MCPにおいては、パッケージの厚みの制約から半導体ウエハーを100μm以下まで薄膜化するが、この時バッファーコートの熱処理温度が高温であると熱応力に起因するウエハーの反りが大きくなり取り扱えないという問題もある。従って、第五には低温で熱処理を完了できることが望ましい。   In addition, photosensitive polyimide and photosensitive polybenzoxazole are converted into heat-resistant polymers by thermosetting at a temperature of around 350 ° C after fine processing. In recent years, it is necessary to lower the heat treatment temperature. Has arisen. As the background, when a device such as a nonvolatile memory is heat-treated at a high temperature, the semiconductor itself may malfunction. In addition, in MCP, a semiconductor wafer is thinned to 100 μm or less due to package thickness restrictions. At this time, if the heat treatment temperature of the buffer coat is high, the wafer warp due to thermal stress becomes large and cannot be handled. There is also. Therefore, fifthly, it is desirable that the heat treatment can be completed at a low temperature.

そこで、これらの問題を解決するべく、ポリマー、架橋剤、光酸発生剤の組み合わせからなる感光性組成物に関して、既にいくつかの例が提案されている。例えば、特許文献1ではフェノール性水酸基を側鎖置換基に有する可溶性ポリイミドに架橋剤と光酸発生剤を添加した感光性ポリイミドが開示されている。また、特許文献2にはジアミノポリシロキサンおよびカルボキシル基含有ジアミンと2,5−ジオキソテトラヒドロフリル基を一方の酸無水物基とするジカルボン酸無水物との共重合体からなるポリイミドに光架橋剤および光酸発生剤を混合した感光性組成物が開示されている。特許文献3では特定の構造を有する可溶性ポリイミドに酸触媒下該ポリイミドと反応可能な架橋剤および活性光線に対して分解して酸を発生する感光剤と増感剤からなるネガ型感光性組成物を開示している。   In order to solve these problems, some examples have already been proposed regarding the photosensitive composition comprising a combination of a polymer, a crosslinking agent and a photoacid generator. For example, Patent Document 1 discloses a photosensitive polyimide obtained by adding a crosslinking agent and a photoacid generator to a soluble polyimide having a phenolic hydroxyl group as a side chain substituent. Patent Document 2 discloses a photocrosslinking agent for a polyimide comprising a copolymer of diaminopolysiloxane and a carboxyl group-containing diamine and a dicarboxylic acid anhydride having a 2,5-dioxotetrahydrofuryl group as one acid anhydride group. And a photosensitive composition in which a photoacid generator is mixed. In Patent Document 3, a negative photosensitive composition comprising a soluble polyimide having a specific structure, a crosslinking agent capable of reacting with the polyimide under an acid catalyst, and a photosensitizer that decomposes with actinic rays to generate an acid and a sensitizer. Is disclosed.

しかし、感光性ポリイミドや感光性ポリベンズオキサゾールは、ポリイミドやポリベンズオキサゾールの前駆体ポリマーと感光性成分の混合物からなるネガ型感光性組成物をフォトリソグラフィーを利用して画像形成したあと、熱処理により安定な耐熱性構造に変換するという原理であり、時には光感度や解像度といった画像形成上の要求と最終物性にトレードオフの関係が生じてしまう事もある。また、機械物性や誘電率も次世代用途には不十分な場合もある。さらに、熱硬化温度を下げると耐熱性樹脂本来の物性が十分発揮できないという問題もある。確かにポリイミド樹脂はそれ自体は最高の耐熱性を有するエンジニアリングプラスチックであるが、多くの溶剤に不溶である事から感光性組成物のベースポリマーにはならず、そこで、特許文献1〜3のようにポリイミド本来の特性を若干犠牲にして溶剤に可溶な構造に変換している。
また、感光性樹脂としてポリエーテルスルホンを用いたものとしては特許文献4を挙げることができる。特許文献4ではエポキシ樹脂にその3〜50%の範囲でポリエーテルスルホンを加え、光酸発生剤と有機フィラーを添加した組成物を開示している。ここで光酸発生剤は露光でエポキシ樹脂を硬化させるものであり、ポリエーテルスルホンも助剤として加えられているにすぎない。
However, photosensitive polyimide and photosensitive polybenzoxazole are formed by image-forming a negative photosensitive composition comprising a mixture of a polyimide or polybenzoxazole precursor polymer and a photosensitive component using photolithography, followed by heat treatment. The principle is to convert to a stable heat-resistant structure, and sometimes there is a trade-off relationship between the final physical properties and the requirements for image formation such as photosensitivity and resolution. In addition, mechanical properties and dielectric constant may be insufficient for next-generation applications. Furthermore, there is also a problem that if the thermosetting temperature is lowered, the original physical properties of the heat resistant resin cannot be exhibited sufficiently. Certainly, the polyimide resin itself is an engineering plastic having the highest heat resistance. However, since it is insoluble in many solvents, it does not become a base polymer for a photosensitive composition. Furthermore, the structure is soluble in a solvent at the expense of some of the original characteristics of polyimide.
Further, Patent Document 4 can be cited as one using polyethersulfone as the photosensitive resin. Patent Document 4 discloses a composition in which polyethersulfone is added to an epoxy resin in the range of 3 to 50%, and a photoacid generator and an organic filler are added. Here, the photoacid generator cures the epoxy resin by exposure, and polyethersulfone is only added as an auxiliary agent.

特開平10−316751号公報Japanese Patent Laid-Open No. 10-316751 特開2000−034347号公報JP 2000-034347 A 特開2003−207892号公報JP 2003-207892 A 特開平11−143073号公報Japanese Patent Laid-Open No. 11-143073 上田充、「感光性ポリイミド」、日本写真学会誌、日本写真学会、2003年06巻、4号、p367−375Mitsue Ueda, “Photosensitive Polyimide”, Journal of the Japan Society of Photography, Japan Society of Photography, 2003, 06, 4, p367-375 池田章彦、水野晶好、「初歩から学ぶ感光性樹脂」、工業調査会、2002年4月10日、p125−142Akihiko Ikeda, Akiyoshi Mizuno, "Photosensitive resin learned from the beginning", Industrial Research Committee, April 10, 2002, p125-142

本発明は、現像性、感度、及び解像度といった感光性に優れた感光性樹脂組成物、並びに、耐熱性に優れる、つまり高いガラス転移温度を有するレリーフパターンを提供することを目的とする。   An object of this invention is to provide the photosensitive resin composition excellent in photosensitivity, such as developability, a sensitivity, and the resolution, and the relief pattern which is excellent in heat resistance, ie, has a high glass transition temperature.

本発明者らは、これらの背景を踏まえ鋭意検討の結果、特に架橋基や反応性基を樹脂自体に導入することなく、耐熱性を有するエンジニアリングプラスチックであるポリエーテルスルホンに添加物を加えるだけで活性光線の露光さらに加熱する事により架橋反応を誘起し、その後現像する事により耐熱性を有する薄膜パターンを形成出来る感光性樹脂組成物を提供するに至った。
ここでは、画像形成後に加熱して耐熱性を有するポリマー構造に変換する方式ではなく、耐熱性や機械物性に優れたエンジニアリングプラスチックを樹脂として用いるため、用いるポリマーの選択により絶縁膜の物性を自由に設計できるという利点を有している。電気特性も優れたポリエーテルスルホンをベースとするので、画像形成されたデバイス用絶縁膜を得る事ができる。
As a result of intensive studies based on these backgrounds, the present inventors have only added additives to polyethersulfone, which is a heat-resistant engineering plastic, without particularly introducing a crosslinking group or reactive group into the resin itself. Exposure to actinic light and further heating to induce a crosslinking reaction, followed by development has provided a photosensitive resin composition capable of forming a heat-resistant thin film pattern.
Here, it is not a method of converting to a heat-resistant polymer structure by heating after image formation, but because engineering plastics with excellent heat resistance and mechanical properties are used as the resin, the physical properties of the insulating film can be freely selected by selecting the polymer to be used It has the advantage that it can be designed. Since it is based on polyethersulfone having excellent electrical characteristics, an image-formed insulating film for a device can be obtained.

すなわち、本発明は、以下の通りである。
1.(A)下記一般式(I)で示されるポリエーテルスルホン100質量部に対して、(B)酸触媒の存在下、架橋反応を起こすCHOR基(ここで、Rは炭素数1〜4のアルキル基を示す。)を有する架橋剤2〜40質量部、(C)ナフタレン核またはアントラセン核を有する光酸発生剤2〜20質量部を含むことを特徴とする感光性樹脂組成物。
(式中、mは0または1、nは10〜400の整数、Arは炭素数6〜18の芳香族基である。)
That is, the present invention is as follows.
1. (A) With respect to 100 parts by mass of polyethersulfone represented by the following general formula (I), (B) a CH 2 OR group that causes a crosslinking reaction in the presence of an acid catalyst (where R is a carbon number of 1 to 4). A photosensitive resin composition comprising 2 to 40 parts by mass of a crosslinking agent having 2 to 20 parts by mass of a photoacid generator having a naphthalene nucleus or an anthracene nucleus.
(In the formula, m is 0 or 1, n is an integer of 10 to 400, and Ar is an aromatic group having 6 to 18 carbon atoms.)

2.上記(A)ポリエーテルスルホンが、上記一般式(I)の式中、mが1、Arがビフェニル基であることを特徴とする上記1に記載の感光性樹脂組成物。
3.上記(B)架橋剤が、酸触媒の存在下、架橋反応を起こすCHOCH基を有することを特徴とする上記1又は2に記載の感光性樹脂組成物。
4.(1)上記1〜3のいずれか一項に記載の感光性樹脂組成物からなる感光性樹脂層を基板上に形成し、(2)活性光線で露光し、(3)80〜190℃で加熱し、(4)現像する、ことを特徴とする、硬化レリーフパターンの製造方法。
5.上記4に記載の製造方法により得られたレリーフパターンを有してなる半導体装置。
2. 2. The photosensitive resin composition as described in 1 above, wherein (A) the polyethersulfone is represented by formula (I) wherein m is 1 and Ar is a biphenyl group.
3. 3. The photosensitive resin composition as described in 1 or 2 above, wherein the crosslinking agent (B) has a CH 2 OCH 3 group that causes a crosslinking reaction in the presence of an acid catalyst.
4). (1) A photosensitive resin layer comprising the photosensitive resin composition according to any one of the above 1 to 3 is formed on a substrate, (2) exposed with actinic rays, and (3) at 80 to 190 ° C. A method for producing a cured relief pattern, characterized by heating and (4) developing.
5. A semiconductor device having a relief pattern obtained by the manufacturing method described in 4 above.

本発明の感光性樹脂組成物は、現像性、感度、及び解像度といった感光性に優れた効果を有する。また、本発明のレリーフパターンは耐熱性に優れた効果を発揮する。   The photosensitive resin composition of this invention has the effect excellent in photosensitivity, such as developability, a sensitivity, and the resolution. Moreover, the relief pattern of the present invention exhibits an effect excellent in heat resistance.

本発明の感光性樹脂組成物を構成する各成分について、以下具体的に説明する。
(A)ポリエーテルスルホン
ポリエーテルスルホンとしては、下記一般式(I)で示されるものが、形成される画像パターンの電気特性、耐熱性が良好で好ましい
(式中、mは0または1、nは10〜400の整数、Arは炭素数6〜18の芳香族基である。)
Each component which comprises the photosensitive resin composition of this invention is demonstrated concretely below.
(A) Polyethersulfone As the polyethersulfone, those represented by the following general formula (I) are preferable because the electric characteristics and heat resistance of the formed image pattern are good.
(In the formula, m is 0 or 1, n is an integer of 10 to 400, and Ar is an aromatic group having 6 to 18 carbon atoms.)

さらには、nは20〜200の整数が好ましい。またArとしては下記の構造のものが好ましい。
Furthermore, n is preferably an integer of 20 to 200. Ar preferably has the following structure.

好ましいポリスルホンとしては、繰り返し単位が下記一般式(II)及び(III)で示されるものであり、特に下記一般式(III)で示されるものがもっとも好ましい。 これを以下PEESとも記す。
Preferred polysulfones are those whose repeating units are represented by the following general formulas (II) and (III), and those represented by the following general formula (III) are most preferred. This is also referred to as PEES below.

ポリエーテルスルホンは、「エンジニアリングポリマー」化学工業日報社、1996のp268に開示があるように、公知の方法によって合成することができる。 Polyethersulfone can be synthesized by a known method as disclosed in “Engineering Polymer”, Chemical Industry Daily, p268 of 1996.

(B)酸触媒の存在下、架橋反応を起こすCHOR基を有する架橋剤
(B)架橋剤は、酸触媒の存在下、架橋反応を起こすCHOR基を有する化合物である。(B)架橋剤としては、下記化合物からなる群より選ばれる少なくとも一種の化合物が好ましい。
(B) Crosslinking agent having a CH 2 OR group that causes a crosslinking reaction in the presence of an acid catalyst (B) The crosslinking agent is a compound having a CH 2 OR group that causes a crosslinking reaction in the presence of an acid catalyst. (B) The crosslinking agent is preferably at least one compound selected from the group consisting of the following compounds.

下記一般式に示されるベンゼン核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a benzene nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるナフタレン核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a naphthalene nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるアントラセン核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having an anthracene nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるジフェニル核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a diphenyl nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるジフェニルメチレン核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a diphenylmethylene nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるジフェニルエーテル核を有する化合物、
(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a diphenyl ether nucleus represented by the following general formula:
(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

下記一般式に示されるトリアジン核を有する化合物が好ましい。

(式中、Rは炭素数1〜4のアルキル基である。)
A compound having a triazine nucleus represented by the following general formula is preferred.

(In the formula, R is an alkyl group having 1 to 4 carbon atoms.)

上記架橋剤の中でも、Rがメチル基であるものが好ましい。
中でも、下記化学式で記載されるCHOR が一つの化合物中に4基置換された架橋剤が好ましい。
その中でも特に4,4’−メチレンビス[2,6−ビス(メトキシメチル)フェノール](以下、MBMPとも記す。)が好ましい。
Among the crosslinking agents, those in which R is a methyl group are preferable.
Among them, a crosslinking agent in which CH 2 OR described by the following chemical formula is substituted in one compound in four groups is preferable.
Among these, 4,4′-methylenebis [2,6-bis (methoxymethyl) phenol] (hereinafter also referred to as MBMP) is particularly preferable.

ここで、酸触媒の存在下、架橋反応を起こすCHOR基を有する架橋剤の量は(A)ポリエーテルスルホン100質量部に対して、2〜40質量部が好ましく、より好ましくは4〜30質量部である。酸触媒の存在下、架橋反応を起こすCHOR基を有する架橋剤の量が(A)ポリエーテルスルホン100質量部に対して2質量部以上であると画像形成性が良好で、40質量部以下であると熱処理で得られたフィルムの特性が良好である。 Here, the amount of the crosslinking agent having a CH 2 OR group that causes a crosslinking reaction in the presence of an acid catalyst is preferably 2 to 40 parts by mass, more preferably 4 to 100 parts by mass with respect to 100 parts by mass of (A) polyethersulfone. 30 parts by mass. When the amount of the crosslinking agent having a CH 2 OR group causing a crosslinking reaction in the presence of an acid catalyst is 2 parts by mass or more with respect to 100 parts by mass of the polyethersulfone (A), the image forming property is good, and 40 parts by mass. The characteristics of the film obtained by the heat treatment are good when it is below.

(C)ナフタレン核またはアントラセン核を有する光酸発生剤
(C)光酸発生剤としては、紫外線等の活性光線の照射により酸が発生するものを指し、中でも、熱処理後の耐熱性が求められるのでナフタレン核もしくはアントラセン核を有するものが用いられる。ナフタレン核を有する光酸発生剤としては下記式で表される化合物が挙げられる。
(C) Photoacid generator having a naphthalene nucleus or anthracene nucleus (C) As a photoacid generator, an acid is generated by irradiation with actinic rays such as ultraviolet rays, and heat resistance after heat treatment is particularly required. Therefore, those having a naphthalene nucleus or an anthracene nucleus are used. Examples of the photoacid generator having a naphthalene nucleus include compounds represented by the following formula.

また、アントラセン核を有する光酸発生剤としては下記化合物が挙げられる。
Examples of the photoacid generator having an anthracene nucleus include the following compounds.

(C)光酸発生剤の量は、(A)ポリエーテルスルホン100質量部に対して2〜20質量部が好ましく、より好ましくは3〜16質量部である。ここでナフタレン核またはアントラセン核を有する光酸発生剤の量が(A)ポリエーテルスルホン100質量部に対して2質量部以上であると光感度が良好で、20質量部以下であると熱硬化した後のフィルムの物性が良好である。   (C) As for the quantity of a photo-acid generator, 2-20 mass parts is preferable with respect to 100 mass parts of (A) polyether sulfone, More preferably, it is 3-16 mass parts. Here, when the amount of the photoacid generator having a naphthalene nucleus or an anthracene nucleus is 2 parts by mass or more with respect to 100 parts by mass of (A) polyethersulfone, the photosensitivity is good, and when it is 20 parts by mass or less, thermosetting is performed. The physical properties of the film after being good.

(D)溶媒
感光性樹脂組成物に、(D)溶媒を添加してワニス状にし、感光性樹脂組成物溶液として使用することが好ましい。溶媒としては、有機溶媒が用いられる。具体的には、ジメチルスルホキシド、N,N−ジメチルホルムアミド(以下DMFとも記す)、ジメチルアセトアミド(以下DMAcとも記す)N−メチルピロリドン等の非プロトン性極性溶媒、ニトロベンゼン さらにジクロロメタン、テトラクロロエタン、クロロホルム等の塩素化炭化水素、シクロペンタノン、シクロヘキサノン等のケトンが挙げられる。
(D)溶媒を加える場合の添加量は、(A)ポリエーテルスルホン100質量部に対して100〜4000質量部が好ましく、より好ましくは200〜2000質量部である。溶媒の添加量が100質量部以上であると溶解性が良好であり、4000質量部以下であると厚膜も含め膜形成性が良好である。
(D) Solvent
It is preferable to add the solvent (D) to the photosensitive resin composition to form a varnish and use it as a photosensitive resin composition solution. An organic solvent is used as the solvent. Specifically, aprotic polar solvents such as dimethyl sulfoxide, N, N-dimethylformamide (hereinafter also referred to as DMF), dimethylacetamide (hereinafter also referred to as DMAc) N-methylpyrrolidone, nitrobenzene, dichloromethane, tetrachloroethane, chloroform, etc. And ketones such as cyclopentanone and cyclohexanone.
(D) As for the addition amount in the case of adding a solvent, 100-4000 mass parts is preferable with respect to 100 mass parts of (A) polyethersulfone, More preferably, it is 200-2000 mass parts. When the amount of the solvent added is 100 parts by mass or more, the solubility is good, and when it is 4000 parts by mass or less, the film forming property including the thick film is good.

(E)その他の成分
感光性樹脂組成物には、必要に応じて、以下の種々の化合物を添加する事ができる。
感度向上のため増感剤を加えることができる。増感剤としては次にものが挙げられる。増感剤の添加量は、(A)ポリエーテルスルホン100質量部に対し0.1〜10質量部が推奨される。
(E) Other components The following various compounds can be added to the photosensitive resin composition as needed.
A sensitizer can be added to improve sensitivity. Examples of the sensitizer include the following. As for the addition amount of a sensitizer, 0.1-10 mass parts is recommended with respect to 100 mass parts of (A) polyethersulfone.

界面活性剤としては、ポリプロピレングリコール、もしくはポリオキシエチレンラウリルエーテル等のポリグリコール類、またはその誘導体からなる非イオン系界面活性剤があげられる。また、フロラード(登録商標)(住友3M社製)、メガファック(登録商標)(大日本インキ化学工業社製)、またはルミフロン(登録商標)((旭硝子社製)等のフッ素系界面活性剤が挙げられる。さらに、KP341(信越化学工業社製:商品名)、DBE(チッソ社製:商品名)、またはグラノール(共栄社化学社製:商品名)等の有機シロキサン界面活性剤が挙げられる。該界面活性剤の添加により、塗布時のウエハーエッジでの塗膜の不均一塗布現象をより発生しにくくすることができる。
界面活性剤を加える場合の添加量は、(A)ポリエーテルスルホン100質量部に対し、0〜10質量部が好ましく、0.01〜1質量部がより好ましい。添加量が10質量部以内であれば、熱硬化後の膜の耐熱性が良好である。
接着助剤としては、アルキルイミダゾリン、酪酸、アルキル酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t−ブチルノボラック、エポキシポリマー、およびシランカップリング剤が挙げられる。
Examples of the surfactant include polypropylene glycol, polyglycols such as polyoxyethylene lauryl ether, and nonionic surfactants composed of derivatives thereof. Fluorosurfactants such as Fluorard (registered trademark) (manufactured by Sumitomo 3M), MegaFac (registered trademark) (manufactured by Dainippon Ink & Chemicals, Inc.), or Lumiflon (registered trademark) (manufactured by Asahi Glass Co., Ltd.) Furthermore, organic siloxane surfactants such as KP341 (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name), DBE (manufactured by Chisso Corporation: trade name), or granol (manufactured by Kyoeisha Chemical Co., Ltd .: trade name) are listed. By adding the surfactant, it is possible to make it more difficult for the non-uniform coating phenomenon of the coating film on the wafer edge during coating to occur.
The addition amount when adding the surfactant is preferably 0 to 10 parts by mass and more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the (A) polyethersulfone. If the addition amount is within 10 parts by mass, the heat resistance of the film after thermosetting is good.
Adhesion aids include alkyl imidazolines, butyric acid, alkyl acids, polyhydroxystyrene, polyvinyl methyl ether, t-butyl novolac, epoxy polymers, and silane coupling agents.

シランカップリング剤の具体的な好ましい例としては、3−メタクリロキシプロピルトリアルコキシシラン、3−メタクリロキシプロピルジアルコキシアルキルシラン、3−グリシドキシプロピルトリアルコキシシラン、3−グリシドキシプロピルジアルコキシアルキルシラン、3−アミノプロピルトリアルコキシシラン又は3−アミノプロピルジアルコキシアルキルシランと、酸無水物又は酸二無水物の反応物、3−アミノプロピルトリアルコキシシラン又は3−アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基やウレア基に変換したものが挙げられる。この際のアルキル基としてはメチル基、エチル基、ブチル基などが、酸無水物としてはマレイン酸無水物、フタル酸無水物などが、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが、ウレタン基としてはt−ブトキシカルボニルアミノ基などが、ウレア基としてはフェニルアミノカルボニルアミノ基などが挙げられる。
接着助剤を加える場合の添加量は、(A)ポリエーテルスルホン100質量部に対し、0〜30質量部が好ましく、0.1〜10質量部がより好ましい。添加量が30質量部以下であれば、熱硬化後の膜の耐熱性が良好である。
Specific preferred examples of the silane coupling agent include 3-methacryloxypropyltrialkoxysilane, 3-methacryloxypropyl dialkoxyalkylsilane, 3-glycidoxypropyltrialkoxysilane, 3-glycidoxypropyl dialkoxy. Reaction of alkylsilane, 3-aminopropyltrialkoxysilane or 3-aminopropyl dialkoxyalkylsilane with acid anhydride or acid dianhydride, 3-aminopropyltrialkoxysilane or 3-aminopropyl dialkoxyalkylsilane The thing which converted the amino group into the urethane group and the urea group is mentioned. In this case, the alkyl group includes a methyl group, an ethyl group, a butyl group, the acid anhydride includes maleic anhydride, phthalic anhydride, the acid dianhydride includes pyromellitic dianhydride, 3, 3 ', 4,4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, etc., urethane group is t-butoxycarbonylamino group, urea group is phenylaminocarbonylamino Group and the like.
The addition amount in the case of adding an adhesion assistant is preferably 0 to 30 parts by mass and more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of (A) polyethersulfone. If the addition amount is 30 parts by mass or less, the heat resistance of the film after thermosetting is good.

<レリーフパターン、及び半導体装置の製造方法>
次に、レリーフパターンの製造方法について、以下具体的に説明する。
(1)感光性樹脂組成物からなる感光性樹脂層を基板上に形成する工程(第一の工程)。
上述の感光性樹脂組成物溶液を、例えばシリコンウエハー、セラミック基板、アルミ基板等の基板に、スピンコーターを用いた回転塗布、又はダイコーター、バーコーター、ワイヤコーターもしくはロールコーター等のコータ−により最終硬化膜の膜厚が0.1〜20μmとなるように塗布して、感光性樹脂層とする。もしくは、インクジェットノズルやディスペンサーを用いて、所定の場所に塗布することも可能である。これをオーブンやホットプレートを用いて50〜140℃で乾燥して溶媒を除去する。これをプリベークと呼ぶ。
<Relief pattern and semiconductor device manufacturing method>
Next, a method for manufacturing a relief pattern will be specifically described below.
(1) A step of forming a photosensitive resin layer made of a photosensitive resin composition on a substrate (first step).
The above photosensitive resin composition solution is finally applied to a substrate such as a silicon wafer, a ceramic substrate, or an aluminum substrate by spin coating using a spin coater, or a coater such as a die coater, bar coater, wire coater, or roll coater. It apply | coats so that the film thickness of a cured film may be set to 0.1-20 micrometers, and it is set as the photosensitive resin layer. Or it is also possible to apply | coat to a predetermined place using an inkjet nozzle or a dispenser. This is dried at 50 to 140 ° C. using an oven or a hot plate to remove the solvent. This is called pre-baking.

(2)活性光線で露光する工程(第二の工程)。
続いて、感光性樹脂層をマスクを介して活性光線により露光する。具体的には、コンタクトアライナーやステッパーを用いて化学線による露光を行うか、光線、電子線またはイオン線を直接照射する。活性光線としては、g線、h線、i線、KrFレーザーを用いることもできる。
(2) A step of exposing with actinic rays (second step).
Subsequently, the photosensitive resin layer is exposed with actinic rays through a mask. Specifically, exposure with actinic radiation is performed using a contact aligner or a stepper, or light, electron beam, or ion beam is directly irradiated. As the actinic ray, g-line, h-line, i-line, or KrF laser can also be used.

(3)80〜190℃で加熱する工程(第三の工程)。
第三の加熱する工程は、加熱手段として、例えばホットプレート、赤外線、電磁誘導等を利用できるが、加わる温度と時間の制御の精度からポットプレート上で80〜190℃の温度で1〜20分加熱を行う事が推奨される。
この第三の工程はPEB(Post Exposure Bake)と呼ばれ、条件を選ぶことにより最終的に良好なパターンを形成させることができる。良好なパターンを得るためには露光部と未露光部の現像液への溶解速度に差をつけることが必須である。
それを実現するための条件を見出す方法について述べる。上記の第一の工程に従ってウェハー上に感光性組成物の膜を形成させた後、ウェハー表面にまで達する傷をつける。次にその傷の一部が隠れるようにウェハーの半分を遮光シートで覆う。次にこのシートをマスクとみなして第二の工程に従い露光を行う。次にある温度である時間PEBを行う。
次に以下に述べる第四の工程に従い、該シートを剥離し、未露光部の膜がちょうど除去されるまで現像を行う。それに要した時間と、傷を横切って表面段差計で測定した現像前の膜厚から未露光部の現像速度を求める。
次に露光部の膜厚を測定し露光部の膜厚が減る速度を求める。ここで露光部に対する未露光部の現像速度の差を求め その値が大きくなる条件を見つけることが出来る。
このウェハーを細かく活断し、露光量、PEBの時間や温度を変えたサンプルを作成し上記の現像速度の差が大きくなる条件を見出す手法が推奨される。
(3) A step of heating at 80 to 190 ° C. (third step).
In the third heating step, for example, a hot plate, infrared rays, electromagnetic induction, or the like can be used as a heating means. However, from the accuracy of temperature and time control applied, the pot plate has a temperature of 80 to 190 ° C. for 1 to 20 minutes. It is recommended to heat.
This third step is called PEB (Post Exposure Bake), and finally a good pattern can be formed by selecting conditions. In order to obtain a good pattern, it is essential to make a difference in the dissolution rate of the exposed area and the unexposed area in the developer.
A method for finding the conditions for realizing this will be described. After the film of the photosensitive composition is formed on the wafer according to the first step, a scratch reaching the wafer surface is made. Next, a half of the wafer is covered with a light shielding sheet so that a part of the scratch is hidden. Next, this sheet is regarded as a mask and exposure is performed according to the second step. Next, PEB is performed for a certain temperature.
Next, according to a fourth step described below, the sheet is peeled off, and development is performed until the film in the unexposed area is just removed. The development speed of the unexposed area is obtained from the time required for the development and the film thickness before development measured by a surface level meter across the scratch.
Next, the film thickness of the exposed area is measured to determine the speed at which the film thickness of the exposed area decreases. Here, the development speed difference between the exposed area and the unexposed area is obtained, and the condition for increasing the value can be found.
A method is recommended in which the wafer is finely cut, samples with different exposure amounts, PEB times and temperatures are prepared, and the above conditions for increasing the development speed are found.

(4)現像する工程(第四の工程)
第四の工程として、未露光部を有機溶媒で溶出または除去する。引き続き、好ましくはリンス液によるリンスを行うことで所望のレリーフパターンを得る。現像方法としてはスプレー、パドル、ディップ、または超音波等の方式が可能である。
感光性樹脂組成物からなる感光性樹脂層を現像するために用いられる現像液は、既に述べたポリエーテルスルホンの溶媒(上記(D)溶媒)から選ばれる。
その後、任意に、現像によって形成したレリーフパターンをリンス液により洗浄を行い、現像液を除去してもよい。リンス液としては、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等を単独または混合して用いる。
(4) Developing step (fourth step)
As a fourth step, the unexposed portion is eluted or removed with an organic solvent. Subsequently, a desired relief pattern is obtained preferably by rinsing with a rinsing liquid. As a developing method, a spray, paddle, dip, or ultrasonic method can be used.
The developer used for developing the photosensitive resin layer made of the photosensitive resin composition is selected from the polyethersulfone solvents (the (D) solvent described above).
Thereafter, optionally, the relief pattern formed by development may be washed with a rinse solution to remove the developer. As the rinsing liquid, methanol, ethanol, isopropanol, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether or the like is used alone or in combination.

なお、熱重量減少温度を上げる等の目的で得られたレリーフパターンを加熱処理する事も出来る。加熱装置としては、オーブン炉、ホットプレート、縦型炉、ベルトコンベアー炉、圧力オーブン等を使用する事ができ、加熱方法としては、熱風、赤外線、電磁誘導による加熱等が推奨される。温度は200〜450℃が好ましく、250〜400℃がさらに好ましい。加熱時間は15分〜8時間が好ましく、1〜4時間がさらに好ましい。雰囲気は窒素、アルゴン等不活性ガス中が好ましい。
半導体装置は、レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、あるいはバンプ構造を有する装置の保護膜として、公知の半導体装置の製造方法と組み合わせることで製造することができる。
また、本発明の感光性樹脂組成物は、多層回路の層間絶縁、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、または液晶配向膜等の用途にも有用である。
In addition, the relief pattern obtained for the purpose of increasing the thermogravimetric decrease temperature can be heat-treated. As a heating device, an oven furnace, a hot plate, a vertical furnace, a belt conveyor furnace, a pressure oven, or the like can be used. As a heating method, heating by hot air, infrared rays, electromagnetic induction, or the like is recommended. The temperature is preferably 200 to 450 ° C, more preferably 250 to 400 ° C. The heating time is preferably 15 minutes to 8 hours, more preferably 1 to 4 hours. The atmosphere is preferably in an inert gas such as nitrogen or argon.
A semiconductor device combines a relief pattern with a known manufacturing method of a semiconductor device as a surface protective film, an interlayer insulating film, a rewiring insulating film, a protective film for a flip chip device, or a protective film for a device having a bump structure. Can be manufactured.
The photosensitive resin composition of the present invention is also useful for applications such as interlayer insulation of multilayer circuits, cover coating of flexible copper-clad plates, solder resist films, or liquid crystal alignment films.

本発明を合成例、実施例、比較例、及び参考例に基づいて更に具体的に説明する。
[合成例1]
(架橋剤の合成)
以下の手順に従って架橋剤を合成した。
(i)4,4’−メチレンビス[2,6−ビス(ヒドロキシメチル)フェノール](以下、「MBHP」とも記す)の合成:36gの37質量%ホルムアルデヒド水溶液、2.2gのナトリウムヒドロキシド、及び水30mlの混合物の入った200ml容量の三角フラスコに11.0gのビスフェノールFを加え、室温で24時間撹拌した。反応混合物を酢酸エチルで抽出し、抽出液を硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別後減圧下ロータリーエバポレータを用いて濃縮し、カラムクロマトグラフィー(シリカゲルカラム、展開液:ヘキサン/酢酸エチル)で生成物を単離した。得られた生成物をヘキサン/プロパノールを用いて再結晶し白色の固体を得た。
The present invention will be described more specifically based on synthesis examples, examples, comparative examples, and reference examples.
[Synthesis Example 1]
(Synthesis of crosslinking agent)
A crosslinking agent was synthesized according to the following procedure.
(I) Synthesis of 4,4′-methylenebis [2,6-bis (hydroxymethyl) phenol] (hereinafter also referred to as “MBHP”): 36 g of 37 mass% aqueous formaldehyde solution, 2.2 g of sodium hydroxide, and 11.0 g of bisphenol F was added to a 200 ml Erlenmeyer flask containing a mixture of 30 ml of water, and stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate, and the extract was dried over magnesium sulfate. Magnesium sulfate was filtered off and concentrated using a rotary evaporator under reduced pressure, and the product was isolated by column chromatography (silica gel column, developing solution: hexane / ethyl acetate). The obtained product was recrystallized using hexane / propanol to obtain a white solid.

(ii)4,4’−メチレンビス[2,6−ビス(メトキシメチル)フェノール](以下、「MBMP」とも記す)の合成:撹拌機、温度計、及び還流コンデンサーを備えた1リットル容量の三口フラスコに500mlのメタノールと1.75gの濃硫酸を加え、そこに前記(i)で合成した5.0gのMBHPを加え均一溶液とした。次に60℃で20時間撹拌を続けた。
その後、得られた反応混合液をロータリーエバポレータを用い、常温でメタノールを減圧除去した。次に塩化メチレンを用い分液ロートで生成物を抽出した。有機層を1%の炭酸水素ナトリウム水溶液に続いて水で洗浄し無水硫酸マグネシウムで乾燥した。硫酸マグネシウムを濾別後、減圧下ロータリーエバポレータを用いて有機層を濃縮した。この濃縮液をカラムクロマトグラフィーにより分離精製し乾燥して高純度の生成物を得た。展開液としては3/2(容量)のヘキサン/酢酸エチル混合液を用いた。収量は5.11gであった(収率87%)。融点は36.5〜37.5℃であった。生成物の赤外吸収スペクトル(cm−1;KBr法):1083、1222、1485、1608、2827、2989、3355.プロトンNMRケミカルシフト(300MHz、CDCl溶液;ppm):3.42(12H,s)、3.78(2H,s)、4.55(8H,s)、6.92(4H,s)、7.67(2H,s)。C13NMRケミカルシフト(75MHz、CDCl溶液;ppm)40.59、58.75、72.35、123.93、129.22、132.89、136.16、152.94元素分析値:C;66.90%、H;7.47% 計算値(C2128):C;67.00%、H;7.50%。以上の分析から生成物はMBMPと確認された。
(Ii) Synthesis of 4,4′-methylenebis [2,6-bis (methoxymethyl) phenol] (hereinafter also referred to as “MBMP”): 3 liters of 1 liter equipped with a stirrer, a thermometer, and a reflux condenser 500 ml of methanol and 1.75 g of concentrated sulfuric acid were added to the flask, and 5.0 g of MBHP synthesized in the above (i) was added thereto to obtain a homogeneous solution. Next, stirring was continued at 60 ° C. for 20 hours.
Thereafter, methanol was removed under reduced pressure from the resulting reaction mixture at room temperature using a rotary evaporator. The product was then extracted with a separatory funnel using methylene chloride. The organic layer was washed with 1% aqueous sodium hydrogen carbonate solution followed by water and dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, the organic layer was concentrated using a rotary evaporator under reduced pressure. This concentrated solution was separated and purified by column chromatography and dried to obtain a highly pure product. As a developing solution, a 3/2 (volume) hexane / ethyl acetate mixed solution was used. The yield was 5.11 g (87% yield). The melting point was 36.5-37.5 ° C. Infrared absorption spectrum of the product (cm −1 ; KBr method): 1083, 1222, 1485, 1608, 2827, 2989, 3355. Proton NMR chemical shift (300 MHz, CDCl 3 solution; ppm): 3.42 (12H, s), 3.78 (2H, s), 4.55 (8H, s), 6.92 (4H, s), 7.67 (2H, s). C 13 NMR chemical shift (75 MHz, CDCl 3 solution; ppm) 40.59, 58.75, 72.35, 123.93, 129.22, 132.89, 136.16, 152.94 Elemental analysis value: C ; 66.90%, H; 7.47% calculated (C 21 H 28 O 6) : C; 67.00%, H; 7.50%. From the above analysis, the product was identified as MBMP.

[実施例1]
(感光性樹脂組成物の調整と現像性の評価1)
20ml容量のガラス製サンプルビンにシクロペンタノン8.00gとPEES(以下で説明するポリエーテルスルホン)1.60g、合成例2で調製したMBMP0.30g、下記式で示されるジフェニルヨードニウム−9,10−ジメトキシアントラセン−2−スルフォナート(以下、「DIAS」とも記す)(東洋合成株式会社製)0.10gを加え、サンプルビンをミックスローター(アズワン株式会社製 MR−5)を用いて均一になるまで回転しネガ型感光性組成物を調整した。この混合物をスピンコーター(ミカサ社製 1H−D7)にて2枚の8インチシリコンウエハーに8000rpmの回転数で30秒スピン塗布し、ホットプレートにて空気中で80℃、60秒間プリベークを行い厚み2.2μmの塗膜を形成した。超高圧水銀灯にフィルターを掛けて365nmのi線のみを取り出し300mJ/cmの露光量で塗膜の半分を遮光したウエハーに露光した。このウエハーをそれぞれの片に露光部と遮光部が含まれるように分割し、ホットプレートを用い各ウエハー片を130〜180℃の各種の温度でそれぞれ3分間PEBを行った。次に、各ウエハー片を室温でDMAcに2秒間浸漬した。図1に示すように、縦軸にDissolution rate(膜の溶解速度)、横軸にPEB temperatureをとり、各露光部と遮光部が含まれるウエハー片の現像前後の厚みを測定し膜の溶解速度を計算しPEBの温度に対してプロットした(□が露光無し、◆が露光あり)。その結果、160〜180℃の範囲でPEBを行えば、未露光部と露光部の溶解速度の比率は10000倍以上である事が確認できた。
[Example 1]
(Adjustment of photosensitive resin composition and evaluation of developability 1)
In a 20 ml glass sample bottle, 8.00 g of cyclopentanone and 1.60 g of PEES (polyethersulfone described below), 0.30 g of MBMP prepared in Synthesis Example 2, diphenyliodonium-9,10 represented by the following formula -Dimethoxyanthracene-2-sulfonate (hereinafter also referred to as "DIAS") (Toyo Gosei Co., Ltd.) 0.10 g is added, and the sample bottle is made uniform using a mix rotor (As One Co., Ltd. MR-5) It rotated and adjusted the negative photosensitive composition. This mixture was spin-coated on two 8-inch silicon wafers with a spin coater (1H-D7 manufactured by Mikasa Co., Ltd.) at a rotation speed of 8000 rpm for 30 seconds, and prebaked in air at 80 ° C. for 60 seconds in a thickness. A 2.2 μm coating film was formed. A filter was applied to the ultra high pressure mercury lamp, and only 365 nm i-line was taken out and exposed to a wafer in which half of the coating film was shielded from light with an exposure amount of 300 mJ / cm 2 . The wafer was divided so that the exposed portion and the light shielding portion were included in each piece, and each wafer piece was subjected to PEB at various temperatures of 130 to 180 ° C. for 3 minutes using a hot plate. Next, each wafer piece was immersed in DMAc for 2 seconds at room temperature. As shown in FIG. 1, the vertical axis is the Dissolution rate and the horizontal axis is the PEB temperature, and the thickness before and after the development of the wafer piece including each exposure part and the light-shielding part is measured to determine the film dissolution rate. Was calculated and plotted against the temperature of the PEB (□ indicates no exposure and ◆ indicates exposure). As a result, when PEB was performed in the range of 160 to 180 ° C., it was confirmed that the ratio of the dissolution rate between the unexposed area and the exposed area was 10,000 times or more.

なお、ここで用いたPEESはSIGMA−Aldrich Co.Ltd.社から購入した。
分子量をゲルパーミエーションクロマトグラフィー(装置:JASCO co−2006 カラム:TOSOH TSK gel GMHHR−M)を用い、DMFを展開液として測定したところ、数平均分子量、重量平均分子量はそれぞれ、34,700、60,700であった。このポリエーテルスルホンの繰り返し構造は以下の式(III)である。
The PEES used here is SIGMA-Aldrich Co. Ltd .. Purchased from the company.
The molecular weight was measured using gel permeation chromatography (apparatus: JASCO co-2006 column: TOSOH TSK gel GMH HR- M) using DMF as a developing solution. The number average molecular weight and the weight average molecular weight were 34,700, 60,700. The repeating structure of this polyethersulfone is represented by the following formula (III).

[実施例2]
(感光性樹脂組成物の調整と現像性の評価2)
PPESを1.70g、MBMPを0.20g、DIASを0.10g用いた以外は実施例1と同様な操作でウェハー上に塗膜を形成した。
PEB温度は160℃とし、時間を0〜20分の各種条件で実施例1と同様にPEBを実施した。
露光量は300mJ/cmの現像時間は2秒とし、実施例1と同様に溶解速度を測定した。その結果を図2に示す(縦軸にDissolution rate(膜の溶解速度)、横軸にPEB timeをとった。□が露光無し、◆が露光あり)。その結果、12〜20分間のPEBで未露光部と露光部の溶解速度の比率は約9800倍となる事が確認できた。
また、同様の実験を170℃のPEB温度で行った結果を図3に示す。3〜20分間のPEBで未露光部と露光部の溶解速度の比率は約12000倍となる事が確認できた。
[Example 2]
(Adjustment of photosensitive resin composition and evaluation of developability 2)
A coating film was formed on the wafer in the same manner as in Example 1 except that 1.70 g of PPES, 0.20 g of MBMP and 0.10 g of DIAS were used.
The PEB temperature was 160 ° C., and PEB was performed in the same manner as in Example 1 under various conditions for 0 to 20 minutes.
The exposure amount was 300 mJ / cm 2, the development time was 2 seconds, and the dissolution rate was measured in the same manner as in Example 1. The results are shown in FIG. 2 (Dissolution rate on the vertical axis and PEB time on the horizontal axis. □ indicates no exposure and ◆ indicates exposure). As a result, it was confirmed that the ratio of the dissolution rate between the unexposed area and the exposed area was about 9800 times with PEB for 12 to 20 minutes.
Moreover, the result of having conducted the same experiment at 170 degreeC PEB temperature is shown in FIG. It was confirmed that the ratio of the dissolution rate between the unexposed area and the exposed area was about 12000 times after 3 to 20 minutes of PEB.

[実施例3]
(感光性樹脂組成物の調整と現像性の評価3)
PEESを1.60g、MBMPを0.30g、DIASを0.10g用いた以外は実施例1と同様な操作でウェハー上に塗膜を形成した。
170℃で3分間PEBを実施し、露光量は300mJ/cmの現像時間は2秒とし、実施例1と同様に溶解速度を測定した。その結果を図3に示す。未露光部と露光部の溶解速度の比率は約12000倍となる事が確認できた。
[Example 3]
(Adjustment of photosensitive resin composition and evaluation of developability 3)
A coating film was formed on the wafer in the same manner as in Example 1 except that 1.60 g of PEES, 0.30 g of MBMP, and 0.10 g of DIAS were used.
PEB was carried out at 170 ° C. for 3 minutes, the exposure amount was 300 mJ / cm 2 , the development time was 2 seconds, and the dissolution rate was measured in the same manner as in Example 1. The result is shown in FIG. It was confirmed that the ratio of the dissolution rate between the unexposed area and the exposed area was about 12000 times.

[実施例4]
(感光性樹脂組成物の感度評価)
実施例2の感光性樹脂組成物をスピンコーター(ミカサ社製 1H−D7)にて8インチシリコンウエハーにスピン塗布し、ホットプレートにて80℃、60秒間プリベークを行い、膜厚2.5μmの膜を形成した。膜厚はフィルム膜厚測定装置(Veeco Instruments Inc.社製 Dektak3system)にて測定した。
この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するコンタクト露光機(ミカサ社製 マスクアライメント装置 M−1S)を用いて、種々の露光量で露光を行った。さらに、170℃、3分間PEBを行った。これをDMAcで2秒間現像し各露光量における膜厚を測定した。得られた感度曲線を図4に示す。ここで縦軸は、(露光現像後の膜厚/露光前の膜厚)×100(%)で相対膜厚(Normalized film thickness)を示し、横軸はExposure dose(露光量)を示す。この図からD50(相対膜厚が50%になる露光量)は21mJ/cmでありγ値は2.1であった。γ値の定義は非特許文献2のp60に記載されているが、ここでは相対膜厚が50%である点でのグラフの接線の傾きと定義する。
[Example 4]
(Sensitivity evaluation of photosensitive resin composition)
The photosensitive resin composition of Example 2 was spin-coated on an 8-inch silicon wafer with a spin coater (1H-D7 manufactured by Mikasa), pre-baked at 80 ° C. for 60 seconds with a hot plate, and a film thickness of 2.5 μm. A film was formed. The film thickness was measured with a film thickness measuring device (Dektak 3 system manufactured by Veeco Instruments Inc.).
This coating film was exposed with various exposure amounts using a contact exposure machine (mask alignment apparatus M-1S manufactured by Mikasa Co., Ltd.) having an exposure wavelength of i-line (365 nm) through a reticle with a test pattern. Further, PEB was performed at 170 ° C. for 3 minutes. This was developed with DMAc for 2 seconds, and the film thickness at each exposure amount was measured. The obtained sensitivity curve is shown in FIG. Here, the vertical axis indicates (relative film thickness) by (film thickness after exposure / development / film thickness before exposure) × 100 (%), and the horizontal axis indicates exposure dose. From this figure, D 50 (exposure amount at which the relative film thickness becomes 50%) was 21 mJ / cm 2 and the γ value was 2.1. The definition of the γ value is described in p60 of Non-Patent Document 2, but here it is defined as the slope of the tangent line of the graph at the point where the relative film thickness is 50%.

〔実施例5〕
(感光性樹脂組成物の解像度の評価)
実施例2の感光性樹脂組成物をスピンコーターにて8インチシリコンウエハーにスピン塗布し、ホットプレートにて80℃、60秒間プリベークを行い、膜厚2.5μmの膜を形成した。
この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するコンタクト露光機(ミカサ社製 マスクアライメント装置 M−1S)を用いて、150mJ/cmの露光を行った。さらに、170℃、3分間PEBを行った。これをDMAcで15秒間現像しレリーフ画像を形成した。電子顕微鏡による観察で4μm/4μmのライン/スペースパターンまで解像している事を確認した。
Example 5
(Evaluation of resolution of photosensitive resin composition)
The photosensitive resin composition of Example 2 was spin-coated on an 8-inch silicon wafer with a spin coater, and prebaked at 80 ° C. for 60 seconds with a hot plate to form a film with a thickness of 2.5 μm.
This coating film was exposed to 150 mJ / cm 2 using a contact exposure machine (mask alignment apparatus M-1S manufactured by Mikasa) having an exposure wavelength of i-line (365 nm) through a reticle with a test pattern. Further, PEB was performed at 170 ° C. for 3 minutes. This was developed with DMAc for 15 seconds to form a relief image. It was confirmed by the observation with an electron microscope that resolution was achieved up to a line / space pattern of 4 μm / 4 μm.

[実施例6]
(感光性PEES組成物から得たフィルムの動的粘弾性の評価)
実施例2で調製した感光性樹脂組成物をガラス板にバーコーターで塗布し、ホットプレート上で40℃、80℃、100℃、135℃で続けて各30秒間プリベークを行った。 次にi線で1000mJ/cmの露光を全面に実施した。次に170℃のホットプレート上で15分間PEBを行った。
得られた膜から長さは30mm、幅は10mm、膜厚は60μmの試験片を切り出した。
このフィルムをサンプルとして動的粘弾性測定装置(型式:DMS6300 セイコーインスツル製)を用い空気中、2℃/分の速度で昇温しながら1Hzの周波数で動的粘弾性を測定した。その結果を図5に示す。
50℃での貯蔵弾性率(E’)は1.7GPaと良好な機械物性を示した。また損失弾性率(E”)のピークから求めたガラス転移点(Tg)は220℃で、次の参考例1に示したPEESと同じ値であり、レリーフパターンはマトリックスポリマーであるPEESの良好な耐熱性を維持していることが明らかになった。
[Example 6]
(Evaluation of dynamic viscoelasticity of film obtained from photosensitive PEES composition)
The photosensitive resin composition prepared in Example 2 was applied to a glass plate with a bar coater, and prebaked on a hot plate at 40 ° C., 80 ° C., 100 ° C., and 135 ° C. for 30 seconds each. Next, exposure of 1000 mJ / cm 2 was performed on the entire surface with i-line. Next, PEB was performed on a hot plate at 170 ° C. for 15 minutes.
A test piece having a length of 30 mm, a width of 10 mm, and a film thickness of 60 μm was cut out from the obtained film.
Using this film as a sample, a dynamic viscoelasticity measuring apparatus (model: DMS6300, manufactured by Seiko Instruments Inc.) was used to measure the dynamic viscoelasticity at a frequency of 1 Hz while raising the temperature at a rate of 2 ° C./min. The result is shown in FIG.
The storage elastic modulus (E ′) at 50 ° C. was 1.7 GPa, indicating good mechanical properties. The glass transition point (Tg) obtained from the peak of the loss modulus (E ″) is 220 ° C., which is the same value as the PEES shown in Reference Example 1 below, and the relief pattern is good for PEES which is a matrix polymer. It became clear that heat resistance was maintained.

[参考例1]
(PEESフィルムの動的粘弾性性能の評価)
実施例1で用いたPEESをシクロペンタノンに溶解し固形分濃度20%の溶液を作成した。この溶液をガラス板にバーコーターで塗布し、ホットプレート上で40℃、80℃、100℃、135℃で各30秒間プリベークを行った。
次に60℃で2時間真空乾燥を行った。
実施例6と同じサイズの試験片を切りだし実施例6と同様に測定した。その結果を図5に示す。50℃での貯蔵弾性率(E’)は1.0GPaであった。そして、損失弾性率(E”)のピークから求めたガラス転移点(Tg)は220℃であった。
[Reference Example 1]
(Evaluation of dynamic viscoelastic performance of PEES film)
PEES used in Example 1 was dissolved in cyclopentanone to prepare a solution having a solid content of 20%. This solution was applied to a glass plate with a bar coater, and prebaked at 40 ° C., 80 ° C., 100 ° C., and 135 ° C. for 30 seconds on a hot plate.
Next, it vacuum-dried at 60 degreeC for 2 hours.
A test piece of the same size as in Example 6 was cut out and measured in the same manner as in Example 6. The result is shown in FIG. The storage elastic modulus (E ′) at 50 ° C. was 1.0 GPa. And the glass transition point (Tg) calculated | required from the peak of loss elastic modulus (E '') was 220 degreeC.

[参考例2]
(光酸発生剤の熱重量減少量評価)
DIASおよび下式で示されるPTMAを1分あたり100mlの空気を流しながら熱重量分析装置で熱安定性の評価を行った。結果を図6に示す(縦軸に重量減少量(%)、横軸に温度(℃)をとった。)がPTMAは150℃付近から重量減少が始まり195℃付近から急激に重量減少したのに対しDIASは190℃付近から重量減少を始め220℃付近から急激に重量減少をみた。なおDIASの100℃付近でのわずかな重量減少は水分の揮発によるものと考えられる。
[Reference Example 2]
(Evaluation of thermal weight loss of photoacid generator)
Thermal stability was evaluated with a thermogravimetric analyzer while flowing 100 ml of air per minute using DIAS and PTMA represented by the following formula. The results are shown in FIG. 6 (the weight loss (%) on the vertical axis and the temperature (° C.) on the horizontal axis). PTMA started to lose weight from around 150 ° C. and suddenly decreased from around 195 ° C. On the other hand, DIAS started to decrease in weight from around 190 ° C and suddenly decreased from around 220 ° C. The slight weight loss of DIAS near 100 ° C. is considered to be due to the volatilization of moisture.

本発明の感光性樹脂組成物は、半導体の保護膜、パッケージの絶縁膜の製造に好適に使用することができる。   The photosensitive resin composition of this invention can be used conveniently for manufacture of the protective film of a semiconductor, and the insulating film of a package.

実施例1の感光性樹脂組成物塗膜の3分間のPEBを行った後の膜の溶解速度(Dissolution rate)をPEBの温度(PEB temperature)に対してプロットしたもの。□は露光しなかった膜、◆はi線で300mJ/cmの露光を行った膜に関するデータを示す。The dissolution rate of the film | membrane after performing PEB for 3 minutes of the photosensitive resin composition coating film of Example 1 was plotted with respect to the temperature (PEB temperature) of PEB. □ indicates data on a film that was not exposed, and ◆ indicates data on a film that was exposed at 300 mJ / cm 2 with i-line. 実施例2の感光性樹脂組成物塗膜のPEBを160℃で行い、現像を2秒に固定した場合のPEBの時間(PEB time)に対して膜の溶解速度(Dissolution rate)をプロットしたものである。□は露光しなかった膜、◆はi線で300mJ/cmの露光を行った膜に関するデータを示す。A plot of the dissolution rate of the film against the PEB time when PEB of the photosensitive resin composition coating film of Example 2 was carried out at 160 ° C. and development was fixed at 2 seconds. It is. □ indicates data on a film that was not exposed, and ◆ indicates data on a film that was exposed at 300 mJ / cm 2 with i-line. 実施例3の感光性樹脂組成物塗膜のPEBを170℃で行い、現像を2秒に固定した場合のPEBの時間(PEB time)に対して膜の溶解速度(Dissolution rate)をプロットしたものである。□は露光しなかった膜、◆はi線で300mJ/cmの露光を行った膜に関するデータである。A plot of the dissolution rate of the film against the PEB time when PEB of the photosensitive resin composition coating film of Example 3 was carried out at 170 ° C. and development was fixed at 2 seconds. It is. □ is data on a film that was not exposed, and ◆ is data on a film that was exposed at 300 mJ / cm 2 with i-line. 実施例2の感光性樹脂組成物塗膜を種々の露光量で露光し170℃でのPEBを3分間行い、現像を2秒に固定した場合の露光量(Exposure Dose)に対して残膜率(Normalized film thickness)をプロットしたものである。The photosensitive resin composition coating film of Example 2 was exposed at various exposure amounts, subjected to PEB at 170 ° C. for 3 minutes, and the remaining film ratio relative to the exposure amount (Exposure Dose) when development was fixed at 2 seconds. (Normalized film thickness) is plotted. 実施例2で調整した感光性樹脂組成物から得たフィルム(実施例6)(「PSPEES」とも記す)の動的粘弾性の温度依存性を測定したチャートである。●がE’◆がE”である。○、◇はポリスルホンPEESそのもの(参考例1)のE’、E”である。3 is a chart obtained by measuring the temperature dependence of dynamic viscoelasticity of a film (Example 6) (also referred to as “PSPEES”) obtained from the photosensitive resin composition prepared in Example 2. FIG. ● is E ′ ◆ is E ″. ○ and ◇ are E ′ and E ″ of polysulfone PEES itself (Reference Example 1). 参考例2の2種類の光酸発生剤(DIASおよびPTMA)の空気中での熱重量分析曲線を示す(縦軸:残存率(%)、横軸に温度(℃))。The thermogravimetric analysis curves in the air of the two types of photoacid generators (DIAS and PTMA) of Reference Example 2 are shown (vertical axis: residual rate (%), horizontal axis is temperature (° C.)).

Claims (5)

(A)下記一般式(I)で示されるポリエーテルスルホン100質量部に対して、(B)酸触媒の存在下、架橋反応を起こすCHOR基(ここで、Rは炭素数1〜4のアルキル基を示す。)を有する架橋剤2〜40質量部、(C)ナフタレン核またはアントラセン核を有する光酸発生剤2〜20質量部を含むことを特徴とする感光性樹脂組成物。
(式中、mは0または1、nは10〜400の整数、Arは炭素数6〜18の芳香族基である。)
(A) With respect to 100 parts by mass of polyethersulfone represented by the following general formula (I), (B) a CH 2 OR group that causes a crosslinking reaction in the presence of an acid catalyst (where R is a carbon number of 1 to 4). A photosensitive resin composition comprising 2 to 40 parts by mass of a crosslinking agent having 2 to 20 parts by mass of a photoacid generator having a naphthalene nucleus or an anthracene nucleus.
(In the formula, m is 0 or 1, n is an integer of 10 to 400, and Ar is an aromatic group having 6 to 18 carbon atoms.)
上記(A)ポリエーテルスルホンが、上記一般式(I)の式中、mが1、Arがビフェニル基であることを特徴とする請求項1に記載の感光性樹脂組成物。   2. The photosensitive resin composition according to claim 1, wherein (A) the polyethersulfone is represented by formula (I), wherein m is 1 and Ar is a biphenyl group. 上記(B)架橋剤が、酸触媒の存在下、架橋反応を起こすCHOCH基を有することを特徴とする請求項1又は2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the (B) crosslinking agent has a CH 2 OCH 3 group that causes a crosslinking reaction in the presence of an acid catalyst. (1)請求項1〜3のいずれか一項に記載の感光性樹脂組成物からなる感光性樹脂層を基板上に形成し、(2)活性光線で露光し、(3)80〜190℃で加熱し、(4)現像する、ことを特徴とする、レリーフパターンの製造方法。   (1) A photosensitive resin layer comprising the photosensitive resin composition according to any one of claims 1 to 3 is formed on a substrate, (2) exposed with actinic rays, and (3) 80 to 190 ° C. (4) Development is performed, and a relief pattern manufacturing method is provided. 請求項4に記載の製造方法により得られたレリーフパターンを有してなる半導体装置。   A semiconductor device having a relief pattern obtained by the manufacturing method according to claim 4.
JP2008134960A 2008-05-23 2008-05-23 Photosensitive heat resistant resin composition Expired - Fee Related JP5117281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134960A JP5117281B2 (en) 2008-05-23 2008-05-23 Photosensitive heat resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134960A JP5117281B2 (en) 2008-05-23 2008-05-23 Photosensitive heat resistant resin composition

Publications (2)

Publication Number Publication Date
JP2009282344A JP2009282344A (en) 2009-12-03
JP5117281B2 true JP5117281B2 (en) 2013-01-16

Family

ID=41452847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134960A Expired - Fee Related JP5117281B2 (en) 2008-05-23 2008-05-23 Photosensitive heat resistant resin composition

Country Status (1)

Country Link
JP (1) JP5117281B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723626B2 (en) * 2010-02-19 2015-05-27 富士フイルム株式会社 Pattern forming method, chemically amplified resist composition, and resist film
CN102660300B (en) * 2012-04-28 2014-02-12 深圳市华星光电技术有限公司 Liquid crystal medium composite as well as liquid crystal display using same and manufacturing method of liquid crystal medium composite
CN102746855B (en) * 2012-07-20 2015-02-25 深圳市华星光电技术有限公司 Liquid crystal medium mixture for liquid crystal display
CN102876336A (en) * 2012-09-21 2013-01-16 深圳市华星光电技术有限公司 Liquid crystal medium mixture and liquid crystal display employing liquid crystal medium mixture
JP6428002B2 (en) * 2014-07-09 2018-11-28 東レ株式会社 Resin composition for antireflection film, method for producing antireflection film and method for producing pattern using the same, and solid-state imaging device
JP6443021B2 (en) * 2014-12-05 2018-12-26 Jsr株式会社 Radiation-sensitive resin composition, insulating film, method for forming the same, and display element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11143073A (en) * 1997-11-11 1999-05-28 Ngk Spark Plug Co Ltd Resist material for printed circuit board
JP2001033964A (en) * 1999-07-15 2001-02-09 Hitachi Chem Co Ltd Negative type photosensitive resin composition, production of pattern and electronic parts

Also Published As

Publication number Publication date
JP2009282344A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
TWI658063B (en) Photosensitive resin composition, production method of patterned hardened film using the same, patterned hardened film and semiconductor device
JP3958011B2 (en) Positive photosensitive resin composition, method for producing positive photosensitive resin composition, and semiconductor device
WO2010092824A1 (en) Positive photosensitive resin composition, cured film using same, protective film, insulating film, semiconductor device, and display device
JP4893748B2 (en) Photosensitive resin composition, insulating film, protective film and electronic device
JP5099336B2 (en) Negative photosensitive resin composition
JP5117281B2 (en) Photosensitive heat resistant resin composition
JP2018084626A (en) Photosensitive resin composition, method for producing patterned cured film, cured film, interlayer insulation film, cover coat layer, surface protective film and electronic component
EP4036144A1 (en) Resin composition, resin composition film, cured film, hollow structure using same, and semiconductor device
WO2013122208A1 (en) Photosensitive resin composition, method for producing patterned cured film, and electronic component
JP6555115B2 (en) Photosensitive resin material
JP4581706B2 (en) Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and method for manufacturing semiconductor device and display element
WO2023139814A1 (en) Resin composition, film, cured membrane, semiconductor device, and multilayer circuit board
CN108604059B (en) Positive photosensitive resin composition
JP4250835B2 (en) Positive photosensitive resin composition and semiconductor device
CN108604060B (en) Positive photosensitive resin composition
JP5521939B2 (en) Photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device using the same
JP2019148816A (en) Photosensitive resin material
TW202104371A (en) Photosensitive polyimide resin composition
JP5374821B2 (en) Positive photosensitive resin composition, cured film, protective film, insulating film, and semiconductor device and display device using the same
JP7315127B1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, electronic component using these
JPWO2018179330A1 (en) Photosensitive resin composition, method for producing pattern cured film, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component
WO2023182041A1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, and electronic component using same
JP4165459B2 (en) Positive photosensitive polyimide precursor composition
WO2023032467A1 (en) Resin composition, resin composition film, cured film, and semiconductor device
JP4165455B2 (en) Positive photosensitive polyimide precursor composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees