JP5117165B2 - Method for producing oil-in-water emulsion composition - Google Patents

Method for producing oil-in-water emulsion composition Download PDF

Info

Publication number
JP5117165B2
JP5117165B2 JP2007292164A JP2007292164A JP5117165B2 JP 5117165 B2 JP5117165 B2 JP 5117165B2 JP 2007292164 A JP2007292164 A JP 2007292164A JP 2007292164 A JP2007292164 A JP 2007292164A JP 5117165 B2 JP5117165 B2 JP 5117165B2
Authority
JP
Japan
Prior art keywords
flow path
channel
diameter
oil
collision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007292164A
Other languages
Japanese (ja)
Other versions
JP2009113010A (en
Inventor
秀隆 岩井
泰正 松本
純枝 樽本
友彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2007292164A priority Critical patent/JP5117165B2/en
Publication of JP2009113010A publication Critical patent/JP2009113010A/en
Application granted granted Critical
Publication of JP5117165B2 publication Critical patent/JP5117165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)

Description

本発明は、多量の油性成分が均一に分散し、単分散な粒子径分布で、安定な水中油型乳化組成物を、効率良く製造する方法に関する。   The present invention relates to a method for efficiently producing a stable oil-in-water emulsion composition in which a large amount of an oil component is uniformly dispersed and has a monodispersed particle size distribution.

水中油型乳化組成物は、化粧料に広く用いられており、その使用感は非常に重要な課題となっている。化粧料に用いられる油性成分は、保湿等のスキンケア効果のために必要な成分である。従来、このような油性成分を安定に配合した水中油型乳化組成物を調製するため、乳化粒子を微細化することが行われてきた。しかしながら、このような微細乳化粒子を調製しようとすると、乳化剤の種類が限られたり、乳化剤の含有量を多くする必要があり、べたつき感が生じたり、人によっては皮膚に刺激を感じる場合があった。   Oil-in-water emulsion compositions are widely used in cosmetics, and their feeling of use is a very important issue. The oil component used in cosmetics is a component necessary for skin care effects such as moisturizing. Conventionally, in order to prepare an oil-in-water emulsion composition in which such an oily component is stably blended, the emulsion particles have been refined. However, when preparing such fine emulsified particles, the type of emulsifier is limited, the content of the emulsifier needs to be increased, a sticky feeling may occur, and some people may feel irritation on the skin. It was.

油性成分を比較的多量に含有する乳化物は、効率的な破砕、分散、乳化を行なう目的で、工業的には、一般に高圧乳化機を用いて製造される。特許文献1には、高圧乳化機で乳剤(乳化物)を製造する際に、高圧乳化処理部の高圧乳化作用点にかかる圧力に対し0.2%以上5%未満の背圧をかけることにより、超微小な乳剤粒子から構成される乳化組成物を製造する方法が記載されている。しかしながら、この方法で得られる乳化組成物は、乳化粒子が微小であるものの、粒子径は均一でなく、十分な安定性を得ることはできなかった。   An emulsion containing a relatively large amount of an oil component is generally produced industrially using a high-pressure emulsifier for the purpose of efficient crushing, dispersion and emulsification. In Patent Document 1, when an emulsion (emulsion) is produced with a high-pressure emulsifier, a back pressure of 0.2% or more and less than 5% is applied to the pressure applied to the high-pressure emulsification action point of the high-pressure emulsification processing unit. Describes a method for producing an emulsion composition composed of ultrafine emulsion grains. However, although the emulsion composition obtained by this method has fine emulsion particles, the particle diameter is not uniform, and sufficient stability cannot be obtained.

一方、乳化粒子径分布の狭い単分散な乳化組成物を調製することで、乳化安定性を向上することが行われている。高度な単分散性を備えた乳化分散体や微粒子を製造する技術として、特許文献2に記載されているマイクロチャネル乳化技術が知られている。この技術は、分散相と連続相とを区切る膜に人工的に一様な構造を与え、微粒子の直径の標準偏差/微粒子の平均直径が0.03以下になる、非常に単分散の高い微粒子を得られるようにするものである。しかしながら、この方法により、均一な乳化粒子径を得ることはできるものの、その乳化粒子径は1μm程度の大きいものであった。従って、微細な乳化粒子径で、単分散性の高い乳化組成物の製造方法が熱望されていた。
国際公開第95/35157号パンフレット 特開2000−273188公報
On the other hand, emulsification stability is improved by preparing a monodispersed emulsion composition having a narrow emulsion particle size distribution. As a technique for producing an emulsified dispersion or fine particles having high monodispersibility, a microchannel emulsification technique described in Patent Document 2 is known. This technology gives a uniform structure to the membrane that separates the dispersed phase and the continuous phase, and the standard deviation of the diameter of the fine particles / the average diameter of the fine particles is 0.03 or less. It is to be able to obtain. However, although a uniform emulsified particle diameter can be obtained by this method, the emulsified particle diameter is as large as about 1 μm. Therefore, a method for producing an emulsion composition having a fine emulsion particle diameter and high monodispersibility has been eagerly desired.
International Publication No. 95/35157 Pamphlet JP 2000-273188 A

本発明の目的は、多量の油性成分を安定に乳化した微細な乳化粒子で、単分散な粒子径分布の水中油型乳化組成物を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing an oil-in-water emulsion composition having finely dispersed particles in which a large amount of oily components are stably emulsified and having a monodispersed particle size distribution.

本発明者らは、(A)界面活性剤、(B)25℃で液状の油性成分及び(C)水を含有する組成物を、簡便な構成でありながら、従来よりも原料液の導入における圧力損失及び速度損失を抑えつつ十分な衝突力が確保できると共に部材内部に引張り応力による割れが生じることのないノズル手段を備えた微粒化装置を用いて乳化させることにより、油性成分を多く含有する系においても、高単分散で安定な水中油型乳化組成物が、効率良く得られることを見出した。   The inventors of the present invention have introduced a composition containing (A) a surfactant, (B) an oily component that is liquid at 25 ° C. and (C) water, with a simple structure, while introducing a raw material liquid more than before. It contains a large amount of oily components by emulsification using a atomizer equipped with nozzle means that can secure sufficient impact force while suppressing pressure loss and speed loss and does not cause cracks due to tensile stress inside the member. It was also found that a highly monodispersed and stable oil-in-water emulsion composition can be obtained efficiently even in the system.

すなわち、本発明は、(A)界面活性剤、(B)25℃で液状の油性成分及び(C)水を含有する組成物を高圧流体となし、当該高圧流体同士を衝突させるためのノズル手段と、該ノズル手段へ前記高圧流体を導入するための導入流路とを備えた微粒化装置により乳化させる水中油型乳化組成物の製造方法であって、
前記ノズル手段は、高硬質材料からなるノズル本体を有し、該ノズル本体に、ノズル本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とを備え、前記導入流路に導かれた高圧流体が、前記ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものであり、
前記衝突用流路は、前記導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて前記外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備え、
前記噴射流路の外周側端部開口から前記大口径流路に達するまでの長さL1が、0.15mm以上0.6mm以下、前記大口径流路の長さL2が、1.5mm以上4mm以下、前記噴射流路1個の断面積A1と前記大口径流路1個の断面積A2の比が、2≦A2/A1≦7であると共に、前記噴射流路の断面積の流路個数分の合計nA1と前記導出流路の断面積A3の比が、2≦A3/nA1≦80を満たす微粒化装置
を用いて乳化させる水中油型乳化組成物の製造方法を提供するものである。
また、本発明は、当該製造方法により得られる水中油型乳化組成物を提供するものである。
That is, the present invention provides (A) a surfactant, (B) a composition containing an oily component that is liquid at 25 ° C. and (C) water as a high-pressure fluid, and nozzle means for causing the high-pressure fluid to collide with each other. And a method for producing an oil-in-water emulsified composition emulsified by a pulverizing apparatus comprising an introduction flow path for introducing the high-pressure fluid into the nozzle means,
The nozzle means has a nozzle body made of a highly rigid material, and a high-pressure fluid collision channel comprising a plurality of through holes formed in the nozzle body from the outer peripheral surface of the nozzle body toward the axis, and these A high-pressure fluid led to the introduction flow path is formed in the axial direction of the nozzle main body. It is introduced from the outer periphery to each outer peripheral side end opening of the collision flow path,
The collision channel includes a large-diameter channel on the downstream side communicating with the outlet channel, and a high-pressure fluid provided on the upstream side of the large-diameter channel and introduced from the outer peripheral end opening. With a small-diameter injection channel that injects into the inside,
The length L 1 from the outer peripheral side end opening of the injection flow path to the large diameter flow path is 0.15 mm or more and 0.6 mm or less, and the length L 2 of the large diameter flow path is 1.5 mm or more and 4 mm. Hereinafter, the ratio of the cross-sectional area A 1 of the single injection flow path to the cross-sectional area A 2 of the single large-diameter flow path is 2 ≦ A 2 / A 1 ≦ 7, and the cross-sectional area of the injection flow path Method for producing an oil-in-water emulsified composition in which emulsification is performed using a pulverizing apparatus in which the ratio of the total nA 1 for the number of flow paths to the cross-sectional area A 3 of the outlet flow paths satisfies 2 ≦ A 3 / nA 1 ≦ 80 Is to provide.
Moreover, this invention provides the oil-in-water emulsion composition obtained by the said manufacturing method.

本発明によれば、多量の油性成分を含有する系においても、微小粒子が均一に分散し、単分散な粒子径分布で、非常に安定な水中油型乳化組成物を、効率良く得ることができる。   According to the present invention, even in a system containing a large amount of an oil component, it is possible to efficiently obtain a very stable oil-in-water emulsion composition in which fine particles are uniformly dispersed and a monodispersed particle size distribution. it can.

本発明で製造される水中油型乳化組成物は、特に制限されず、多量の油性成分を含有する場合にも、安定な乳化組成物を得ることができる。
本発明により得られる水中油型乳化組成物は、(A)界面活性剤、(B)25℃で液状の油性成分及び(C)水を含有するものである。
The oil-in-water emulsion composition produced in the present invention is not particularly limited, and a stable emulsion composition can be obtained even when a large amount of an oil component is contained.
The oil-in-water emulsion composition obtained by the present invention contains (A) a surfactant, (B) an oily component that is liquid at 25 ° C., and (C) water.

(A)界面活性剤としては、親水性界面活性剤が好ましく、一般に化粧料に用いられるものであって、例えばアニオン界面活性剤、カチオン界面活性剤、非イオン界面活性剤のいずれでも良く、特にアニオン界面活性剤が好ましい。具体的には、ラウリン酸ナトリウム、パルミチン酸カリウム等の高級脂肪酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリル硫酸トリエタノールアミン等のアルキルエーテル硫酸エステル塩;ラウロイルサルコシンナトリウム等のN−アシルサルコシン塩;N−ミリストイル−N−メチルタウリンナトリウム等の高級脂肪酸アミドスルホン酸塩;モノステアリルリン酸ナトリウム等のアルキルリン酸塩;ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンステアリルエーテルリン酸ナトリウム等のポリオキシエチレンアルキルエーテルリン酸塩;ジ−2−エチルヘキシルスルホコハク酸ナトリウム等の長鎖スルホコハク酸塩;リニアドデシルベンゼンスルホン酸ナトリウム、リニアドデシルベンゼンスルホン酸トリエタノールアミン等のアルキルベンゼンスルホン酸塩;N−ラウロイルグルタミン酸モノナトリウム、N−ステアロイル−L−グルタミン酸モノナトリウム、N−ステアロイルグルタミン酸ジナトリウム、N−ミリストイル−L−グルタミン酸モノナトリウム等の長鎖N−アシルグルタミン酸塩;レシチン、水素添加レシチン等の天然系界面活性剤などが挙げられる。   (A) The surfactant is preferably a hydrophilic surfactant, and is generally used in cosmetics. For example, any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant may be used. Anionic surfactants are preferred. Specifically, higher fatty acid salts such as sodium laurate and potassium palmitate; alkyl sulfate salts such as sodium lauryl sulfate and potassium lauryl sulfate; alkyl ether sulfate salts such as polyoxyethylene lauryl sulfate triethanolamine; lauroyl sarcosine N-acyl sarcosine salts such as sodium; higher fatty acid amide sulfonates such as N-myristoyl-N-methyltaurine sodium; alkyl phosphates such as sodium monostearyl phosphate; polyoxyethylene oleyl ether sodium phosphate, polyoxy Polyoxyethylene alkyl ether phosphates such as sodium ethylene stearyl ether phosphate; Long chain sulfosuccinates such as sodium di-2-ethylhexyl sulfosuccinate; Linear dodecylbenzene Alkylbenzenesulfonates such as sodium sulfonate, linear dodecylbenzenesulfonate triethanolamine; monosodium N-lauroyl glutamate, monosodium N-stearoyl-L-glutamate, disodium N-stearoylglutamate, N-myristoyl-L-glutamic acid Long chain N-acyl glutamates such as monosodium; natural surfactants such as lecithin and hydrogenated lecithin.

これらのうち、N−ミリストイル−N−メチルタウリンナトリウム等の長鎖N−アシルタウリン塩;モノステアリルリン酸ナトリウム等のアルキルリン酸塩、ポリオキシエチレンオレイルエーテルリン酸ナトリウム、ポリオキシエチレンステアリルエーテルリン酸ナトリウム等のポリオキシエチレンアルキルエーテルリン酸塩;N−ラウロイルグルタミン酸モノナトリウム、N−ミリストイルグルタミン酸ジナトリウム、N−ステアロイル−L−グルタミン酸モノナトリウム等の長鎖N−アシルグルタミン酸塩が好ましい。特に、アルキル鎖長が16以上の長鎖N−アシルタウリン塩、長鎖N−アシルグルタミン酸塩が好ましい。   Among these, long-chain N-acyl taurine salts such as N-myristoyl-N-methyltaurine sodium; alkyl phosphates such as sodium monostearyl phosphate, polyoxyethylene oleyl ether sodium phosphate, polyoxyethylene stearyl ether phosphorus Polyoxyethylene alkyl ether phosphates such as sodium acid; long-chain N-acyl glutamates such as monosodium N-lauroyl glutamate, disodium N-myristoyl glutamate, and monosodium N-stearoyl-L-glutamate are preferred. In particular, long-chain N-acyl taurine salts and long-chain N-acyl glutamates having an alkyl chain length of 16 or more are preferred.

(A)界面活性剤は、1種以上を用いることができ、全組成中に0.01〜5質量%、特に0.1〜2.5質量%含有されるのが好ましい。   (A) 1 or more types can be used for surfactant, It is preferable to contain 0.01-5 mass% in whole composition, especially 0.1-2.5 mass%.

(B)油性成分としては、通常化粧料に用いられるもので、25℃で液状の、合成及び天然由来の油性成分で、例えば炭化水素油、エステル油、エーテル油、シリコーン油、フッ素油等が含まれる。
より具体的には、ホホバ油等の植物油;液状ラノリン等の動物油;流動パラフィン、スクワラン等の炭化水素油;脂肪酸エステル、多価アルコール脂肪酸エステル、グリセリン誘導体、アミノ酸誘導体等のエステル油;ジメチルポリシロキサン、ジメチルシクロポリシロキサン、メチルフェニルポリシロキサン、メチルハイドロジェンポリシロキサン、高級アルコール変性オルガノポリシロキサン等のシリコーン油;フルオロポリエーテル、パーフルオロアルキルエーテルシリコーン等のフッ素油;パラメトキシケイ皮酸2−エチルヘキシル等の紫外線吸収剤などが挙げられる。
(B) The oily component is usually used in cosmetics, and is a synthetic and naturally-derived oily component that is liquid at 25 ° C., for example, hydrocarbon oil, ester oil, ether oil, silicone oil, fluorine oil, etc. included.
More specifically, vegetable oils such as jojoba oil; animal oils such as liquid lanolin; hydrocarbon oils such as liquid paraffin and squalane; ester oils such as fatty acid esters, polyhydric alcohol fatty acid esters, glycerin derivatives, and amino acid derivatives; dimethylpolysiloxane , Dimethylcyclopolysiloxane, methylphenylpolysiloxane, methylhydrogenpolysiloxane, higher alcohol-modified organopolysiloxane and other silicone oils; fluoropolyether, perfluoroalkylether silicone and other fluorine oils; 2-methoxyhexyl paramethoxycinnamate And ultraviolet absorbers.

(B)油性成分は、1種以上を用いることができ、保湿性と使用感の点から、全組成中に0.11〜60質量%、特に1.1〜30質量%であるのが好ましい。   (B) 1 or more types of oily components can be used, and it is preferable that it is 0.11-60 mass% in the whole composition from the point of moisture retention and a usability | use_condition, especially 1.1-30 mass%. .

本発明においては、少ない(A)界面活性剤量で、多量の(B)油性成分を乳化させることができ、成分(A)に対する成分(B)の質量割合が、11質量倍以上とすることができ、好ましくは11〜38質量倍、より好ましくは12〜24質量倍、特に好ましくは15〜20質量倍とすることができる。   In the present invention, a small amount of (A) surfactant can be used to emulsify a large amount of (B) oil component, and the mass ratio of component (B) to component (A) should be 11 mass times or more. Preferably, it is 11-38 mass times, More preferably, it is 12-24 mass times, Especially preferably, it can be 15-20 mass times.

本発明において、(C)水の含有量は、全組成中に10〜99質量%、特に10〜95質量%であるのが好ましい。
また、その他の水性基剤、例えばエタノールやプロパノール等の炭素数1〜4の低級アルコールなどを含有することもできる。
In the present invention, the content of (C) water is preferably 10 to 99% by mass, particularly 10 to 95% by mass in the total composition.
Moreover, other aqueous bases, for example, C1-C4 lower alcohols, such as ethanol and propanol, can also be contained.

本発明の水中油型乳化組成物には、更に(D)両親媒性脂質(25℃で固体)を含有させることができ、少ない処理回数で微細粒子径のエマルションを得ることができる。
かかる両親媒性脂質としては、例えば、ミリスチン酸、ステアリン酸等の高級脂肪酸;セタノール、ステアリルアルコール、ベヘニルアルコール等の高級アルコール;スフィンゴシン等のスフィンゴシン類;セラミド類などが挙げられる。セラミド類としては、例えばRobson K.J. et al., J. Lipid Res.,35,2060(1994)や、Wertz P.W. et al., J. Lipid Res.,24,759(1983)等に記載されているタイプI〜VIIのセラミドや、特開昭62-228048号公報記載のセラミド類似化合物などが含まれ、前者の市販品としては、セラミドIII、セラミドIIIB、セラミドIIIA、セラミドIV、フィトセラミドI(以上、デグサ社)、セラミドII(セダーマ社)、セラミドTIC−001(高砂香料社)等が挙げられる。
The oil-in-water emulsion composition of the present invention can further contain (D) an amphiphilic lipid (solid at 25 ° C.), and an emulsion having a fine particle diameter can be obtained with a small number of treatments.
Examples of such amphiphilic lipids include higher fatty acids such as myristic acid and stearic acid; higher alcohols such as cetanol, stearyl alcohol, and behenyl alcohol; sphingosines such as sphingosine; and ceramides. Examples of ceramides include type I described in Robson KJ et al., J. Lipid Res., 35, 2060 (1994), Wertz PW et al., J. Lipid Res., 24, 759 (1983), and the like. -VII ceramides and ceramide analogues described in JP-A-62-228048, etc., and the former commercially available products include ceramide III, ceramide IIIB, ceramide IIIA, ceramide IV, phytoceramide I (and above, degusa). Co., Ltd.), Ceramide II (Cedama Corporation), Ceramide TIC-001 (Takasago Fragrance Co., Ltd.) and the like.

両親媒性脂質は、1種以上を用いることができ、全組成中に0.01〜20質量%、特に0.1〜10質量%含有するのが好ましい。   One or more kinds of amphiphilic lipids can be used, and the total composition preferably contains 0.01 to 20% by mass, particularly 0.1 to 10% by mass.

本発明の水中油型乳化組成物には、更に(E)多価アルコール含有させることができ、少ない処理回数で微細粒子径のエマルションを得ることができる。
かかる多価アルコールとしては、例えば、グリセリン、1,3−ブチレングリコール、プロピレングリコール、ジプロピレングリコール、ジグリセリン、イソプレングリコール、1,2−ペンタンジオール、キシリット、ソルビット、ポリエチレングリコール等が挙げられる。
The oil-in-water emulsion composition of the present invention can further contain (E) a polyhydric alcohol, and an emulsion having a fine particle diameter can be obtained with a small number of treatments.
Examples of the polyhydric alcohol include glycerin, 1,3-butylene glycol, propylene glycol, dipropylene glycol, diglycerin, isoprene glycol, 1,2-pentanediol, xylit, sorbit, polyethylene glycol, and the like.

多価アルコールは、1種以上を用いることができ、全組成中に0.5〜50質量%、特に0.5〜30質量%含有するのが好ましい。また、多価アルコールは、油性成分に対して0.8〜2質量倍であるのが好ましい。
また、(D)両親媒性脂質と(E)多価アルコールを組み合わせて用いることもできる。
One or more kinds of polyhydric alcohols can be used, and it is preferable to contain 0.5 to 50% by mass, particularly 0.5 to 30% by mass in the total composition. Moreover, it is preferable that a polyhydric alcohol is 0.8-2 mass times with respect to an oil-based component.
Moreover, (D) amphiphilic lipid and (E) polyhydric alcohol can also be used in combination.

本発明の水中油型乳化組成物は、例えば、全成分を混合して粗乳化液とし、これを高圧流体同士を衝突させるためのノズル手段と、該ノズル手段へ前記高圧流体を導入するための導入流路とを備えた微粒化装置であって、
前記ノズル手段は、高硬質材料からなるノズル本体を有し、該ノズル本体に、ノズル本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とを備え、前記導入流路に導かれた高圧流体が、前記ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものであり、
前記衝突用流路は、前記導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて前記外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備え、
前記噴射流路の外周側端部開口から前記大口径流路に達するまでの長さL1が、0.15mm以上0.6mm以下、前記大口径流路の長さL2が、1.5mm以上4mm以下、前記噴射流路1個の断面積A1と前記大口径流路1個の断面積A2の比が、2≦A2/A1≦7であると共に、前記噴射流路の断面積の流路個数分の合計nA1と前記導出流路の断面積A3の比が、2≦A3/nA1≦80を満たす微粒化装置
を用いて乳化させることにより、製造することができる。
The oil-in-water emulsified composition of the present invention is, for example, a mixture of all components to obtain a crude emulsion, nozzle means for causing this to collide with high-pressure fluid, and for introducing the high-pressure fluid into the nozzle means An atomization device having an introduction channel,
The nozzle means has a nozzle body made of a highly rigid material, and a high-pressure fluid collision channel comprising a plurality of through holes formed in the nozzle body from the outer peripheral surface of the nozzle body toward the axis, and these A high-pressure fluid led to the introduction flow path is formed in the axial direction of the nozzle main body. It is introduced from the outer periphery to each outer peripheral side end opening of the collision flow path,
The collision channel includes a large-diameter channel on the downstream side communicating with the outlet channel, and a high-pressure fluid provided on the upstream side of the large-diameter channel and introduced from the outer peripheral end opening. With a small-diameter injection channel that injects into the inside,
The length L 1 from the outer peripheral side end opening of the injection flow path to the large diameter flow path is 0.15 mm or more and 0.6 mm or less, and the length L 2 of the large diameter flow path is 1.5 mm or more and 4 mm. Hereinafter, the ratio of the cross-sectional area A 1 of the single injection flow path to the cross-sectional area A 2 of the single large-diameter flow path is 2 ≦ A 2 / A 1 ≦ 7, and the cross-sectional area of the injection flow path It can be manufactured by emulsifying using a pulverizing apparatus in which the ratio of the total nA 1 corresponding to the number of channels and the cross-sectional area A 3 of the outlet channels satisfies 2 ≦ A 3 / nA 1 ≦ 80.

粗乳化液とは、成分(A)、(B)及び(C)、必要に応じて、成分(D)、(E)、及びその他の成分を加え、これらそれぞれが溶解し得る温度以上に加温してプロペラ撹拌、あるいはホモジナイザー等によって油性成分と水性成分が見かけ上、ほぼ均一に混合された状態であるものをいう。   The coarse emulsion means components (A), (B) and (C) and, if necessary, components (D), (E), and other components, and is added above the temperature at which each of them can be dissolved. An oily component and an aqueous component are apparently almost uniformly mixed by heating and propeller stirring or a homogenizer.

粗乳化液は、装置内の貯蔵槽に充填され、接続する増圧シリンダーに移送され、高い圧力がかけられる。粗乳化液は、微粒化装置に導入される。   The coarse emulsion is filled in a storage tank in the apparatus, transferred to a connecting pressure-increasing cylinder, and a high pressure is applied. The coarse emulsion is introduced into the atomizer.

本発明で用いる微粒化装置は、高圧流体同士を衝突させるためのノズル手段として、高硬質材料からなるノズル本体に、該本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とが設けられ、前記導入流路に導かれた高圧流体が、ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものを備えた微粒化装置であり、衝突用流路が、導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備えているものである。   The atomization apparatus used in the present invention is a high-pressure nozzle composed of a plurality of through-holes formed in a nozzle body made of a hard material as nozzle means for causing high-pressure fluids to collide with each other from the outer peripheral surface of the body toward the axis. There are provided a fluid collision flow channel and a discharge flow channel for deriving the fluid after the collision formed along the axial direction from the confluence of the collision flow channels. The atomizing device is provided with a high-pressure fluid that is introduced from the outer periphery of the nozzle body to each outer peripheral end opening of the collision flow channel, and the collision flow channel is downstream of the discharge flow channel. A large-diameter channel on the side, and a small-diameter injection channel provided on the upstream side of the large-diameter channel and for ejecting high-pressure fluid introduced from the outer end opening into the large-diameter channel It is.

すなわち、ノズル手段においては、噴射流路とこれに続く大口径流路とが設けられて衝突用流路を構成し、該衝突用流路がノズル本体軸心と直交する面上あるいはそれ以上の角度をもって導出流路と連通するものであるため、各衝突用流路の各外周側端部開口から導入される高圧流体は、各噴射流路から大口径流路を経由してノズル本体軸心上の合流点へ向かって進み、該合流点で衝突し、衝突後には該合流点から軸心方向に沿って形成された導出流路からノズル本体外へ導出される。   That is, in the nozzle means, an injection flow path and a large-diameter flow path that follows this are provided to form a collision flow path, and the collision flow path is at an angle on a plane perpendicular to the nozzle body axis or more. Therefore, the high-pressure fluid introduced from each outer peripheral end opening of each collision flow channel is on the nozzle body axis via the large-diameter flow channel from each injection flow channel. It progresses toward the confluence, collides at the confluence, and after the collision, it is led out of the nozzle body from the outlet passage formed along the axial direction from the confluence.

噴射流路とは、ノズル手段において高圧流体が流れる最も断面積の狭い流路であり、高圧流体がここを流れる際に圧力エネルギーが速度エネルギーに変換される流路である。これに連通する大口径流路内では、噴射流路から噴射される高圧流体はその噴射力により高速ジェットを形成し、この高速ジェットが周囲の流体と強い液−液間でのせん断力を生じる。この液−液間でのせん断力及び大口径流路を通った後のジェットが衝突空間で衝突することによって微粒化は促進される。   The injection flow path is a flow path having the narrowest cross-sectional area in which high-pressure fluid flows in the nozzle means, and is a flow path in which pressure energy is converted into velocity energy when the high-pressure fluid flows here. In the large-diameter channel communicating with this, the high-pressure fluid ejected from the ejection channel forms a high-speed jet by the ejection force, and this high-speed jet generates a shearing force between the surrounding fluid and a strong liquid-liquid. The atomization is promoted by the shear force between the liquid and the liquid and the jet after passing through the large-diameter channel colliding in the collision space.

従って、ノズル手段においては、まず高圧流体が部材内で屈曲して形成された流路を進むことなく噴射流路に導入できるため、圧力損失がほとんど発生することなく良好に流速が増大されて噴射流路から大口径流路へ向かって高速ジェットが噴射され、さらに大口径流路内では良好な液−液間でのせん断力を発生させることができ、それと共に大口径流路から噴射したジェットは高速を維持した状態で別の大口径流路から同様に噴射されたジェットと導出流路内で衝突するため、優れた微粒化性能を実現することができる。   Therefore, in the nozzle means, since the high-pressure fluid can be introduced into the injection flow path without proceeding through the flow path formed by bending in the member, the flow rate can be increased well with almost no pressure loss. A high-speed jet is ejected from the flow channel toward the large-diameter channel, and a good liquid-liquid shearing force can be generated in the large-diameter channel. In the maintained state, a jet sprayed from another large-diameter channel in the same manner collides with the inside of the outlet channel, so that excellent atomization performance can be realized.

またさらに、ノズル本体について噴射流路や大口径流路、導出流路の長さや径等の設計寸法を特定の条件範囲内に規定することによって、高硬質材料の使用量を少なく抑えつつもより耐久性に優れ、高性能、高効率さらに大流量での高圧微粒化処理が可能なものが得られる。   In addition, by defining the design dimensions such as the length and diameter of the injection channel, large-diameter channel, and outlet channel within the specified condition range for the nozzle body, it is more durable while keeping the amount of high-rigid material used low. High performance, high efficiency, and high pressure atomization with a large flow rate can be obtained.

流量は、噴射流路の個数nと口径d1によって大略決定する。例えば、噴射流路断面形状が真円でn=2のとき、圧力245MPaにおいて、d1=0.1mmで流量0.5L/min、d1=0.25mmで流量4L/min、d1=0.35mmで流量7.5L/min、d1=0.5mmで流量12L/minとなる。 The flow rate is roughly determined by the number n of injection channels and the diameter d 1 . For example, when the cross-sectional shape of the injection flow path is a perfect circle and n = 2, at a pressure of 245 MPa, a flow rate of 0.5 L / min at d 1 = 0.1 mm, a flow rate of 4 L / min at d 1 = 0.25 mm, and d 1 = The flow rate is 7.5 L / min at 0.35 mm, and the flow rate is 12 L / min at d 1 = 0.5 mm.

一方、高速ジェットの速度を最大限高めるためには、噴射流路の長さL1を短くして流路内壁面と流体との摩擦による速度損失を極力低下させることが望ましい。しかし、短すぎるとノズル本体の強度が十分ではなく破損を招く要因となるため、最低限の長さは必要である。具体的には噴射流路の長さL1を、0.15mm以上0.6mm以下、より好ましくは0.25mm以上0.4mm以下の範囲内とすることが好適である。 On the other hand, in order to maximize the speed of the high-speed jet, it is desirable to reduce the speed loss due to friction between the inner wall surface of the flow path and the fluid as much as possible by shortening the length L 1 of the injection flow path. However, if the length is too short, the strength of the nozzle body is not sufficient and causes damage, so a minimum length is necessary. Specifically, it is preferable that the length L 1 of the injection flow path be in the range of 0.15 mm to 0.6 mm, more preferably 0.25 mm to 0.4 mm.

噴射流路からの高速ジェットは大口径流路に噴射され、大口径流路内で周囲の流体との液−液間でのせん断及び大口径流路を通った後のジェットが衝突空間で衝突することによって原料液の微粒化を実現する。すなわち、噴射流路1個の断面積A1と大口径流路1個の断面積A2の比を、2≦A2/A1≦7、より好ましくは2.5≦A2/A1≦6とすることにより、液−液間でのせん断力及び衝突エネルギーを最大限に高めることができる。なお、噴射流路と大口径流路とは同軸上に設けることが好ましい。 The high-speed jet from the injection channel is injected into the large-diameter channel, the liquid-liquid shearing with the surrounding fluid in the large-diameter channel, and the jet after passing through the large-diameter channel collide in the collision space. Achieving atomization of raw material liquid. That is, the ratio of the injection passage one cross-sectional area A 1 and the large-diameter passage one cross-sectional area A 2, 2 ≦ A 2 / A 1 ≦ 7, more preferably 2.5 ≦ A 2 / A 1 ≦ By setting it to 6, the shearing force between the liquid and the liquid and the collision energy can be maximized. In addition, it is preferable to provide the injection channel and the large-diameter channel coaxially.

また、液−液間でのせん断力及び衝突によるエネルギーは大口径流路の長さL2を好適な範囲にすることによってさらに高めることができる。すなわち、大口径流路の長さL2を1.5mm以上4mm以下、より好ましくは2mm以上3mm以下の範囲内とすることによって、十分な液−液間でのせん断力を得て、かつエネルギーを高いレベルに維持したままジェットを導出流路内で衝突させることができる。 Further, the shear force between the liquid and the liquid and the energy due to the collision can be further increased by setting the length L 2 of the large-diameter channel to a suitable range. That is, the length L 2 of 1.5mm or more 4mm large-diameter flow path or less, more preferably by a range of 2mm or 3mm or less, sufficient liquid - to give a shear force between the liquid and the energy The jet can be collided in the outlet channel while maintaining a high level.

さらに、衝突後の流体は導出流路を通ってノズル本体から排出されるが、導出流路の径が小さすぎると導出流路での圧力損失が支配的となり、噴射流路出口での高速ジェットの速度が十分に大きくならないため、導出流路径は適切な大きさにすれば良い。すなわち、噴射流路の断面積の流路個数分の合計nA1と、導出流路の断面積A3の比を、2≦A3/nA1≦80、より好ましくは2.5≦A3/nA1≦65とすることにより、ジェット同士の衝突速度を上げることができ、衝突エネルギーを高め、微粒化性能をより向上させることができる。 Furthermore, the fluid after the collision is discharged from the nozzle body through the outlet channel, but if the outlet channel diameter is too small, the pressure loss in the outlet channel becomes dominant, and the high-speed jet at the outlet of the injection channel Therefore, the outlet flow path diameter may be set to an appropriate size. That is, the ratio of the total nA 1 of the cross-sectional area of the ejection flow path to the number of flow paths and the cross-sectional area A 3 of the outlet flow path is 2 ≦ A 3 / nA 1 ≦ 80, more preferably 2.5 ≦ A 3. By setting / nA 1 ≦ 65, the collision speed between jets can be increased, the collision energy can be increased, and the atomization performance can be further improved.

なお、ノズル本体の高硬質材料としては、超硬合金、SUS440C等金属材料の耐磨耗性を向上させた材料や、窒化珪素、ジルコニア、アルミナ等のセラミックス、さらに、ダイヤモンド、サファイア、ルビーなどが挙げられる。噴射流路には、高硬質材料として特に耐摩耗性に優れるダイヤモンドを用いることが望ましい。ダイヤモンドを用いる場合、最も硬度の高い天然ダイヤモンドの他、人工単結晶ダイヤモンド、人工多結晶ダイヤモンド、焼結ダイヤモンドがあり、いずれも用いることができるが、十分な硬度を持ち揃った大きさの粒が得られ、入手のし易さから人工単結晶ダイヤモンドを用いることが最も望ましい。   In addition, as the hard material of the nozzle body, a metal material such as cemented carbide or SUS440C with improved wear resistance, ceramics such as silicon nitride, zirconia, or alumina, diamond, sapphire, ruby, etc. Can be mentioned. It is desirable to use diamond that is particularly excellent in wear resistance as a highly hard material for the injection flow path. In the case of using diamond, in addition to natural diamond with the highest hardness, there are artificial single crystal diamond, artificial polycrystalline diamond, and sintered diamond, and any of them can be used. It is most desirable to use artificial single crystal diamond because it is obtained and easily available.

また、ノズル本体の衝突用流路は、主に下流側の大口径流路と上流側の噴射流路とで構成されるものであるため、これらの流路をそれぞれ別体の部材に形成し、互いに連通するように組み合わせて構成することが可能である。この場合、高い耐久性が必要な噴射流路のみをダイヤモンド等の高硬質材料で形成し、他の流路を安価で加工性の優れた別の高硬質材料で形成することができる。   Moreover, since the collision flow path of the nozzle body is mainly composed of a downstream large-diameter flow path and an upstream injection flow path, these flow paths are formed in separate members, It is possible to configure in combination so as to communicate with each other. In this case, only the injection flow path that requires high durability can be formed of a highly rigid material such as diamond, and the other flow paths can be formed of another highly rigid material that is inexpensive and excellent in workability.

すなわち、第1部材として導出流路とこれに連通する全ての大口径流路とを形成し、各噴射流路を衝突用流路の個数分の第2部材としてそれぞれ形成し、第1部材の各大口径流路端部に形成された凹部にそれぞれ第2部材を嵌合した状態において各噴射流路がそれぞれ対応する大口径流路に連通するようにノズル本体を構成すれば、ノズル本体の全体寸法を決定するのは第1部材でありこれに対し各第2部材は格段に小さくてすむため、第2部材のみを高価なダイヤモンドとし、第1部材は大口径流路と導出流路に充分な強度をもつ安価な高硬質材料とすれば、微粒化処理の大流量化のためのノズル本体の大型化も低コストで容易に実現可能となる。   That is, the outlet channel and all large-diameter channels communicating with the first channel are formed as the first member, and each injection channel is formed as the second member corresponding to the number of the collision channels, If the nozzle body is configured such that each injection flow path communicates with the corresponding large diameter flow path in a state where the second member is fitted in the recess formed at the end of the large flow diameter flow path, the overall dimensions of the nozzle main body can be reduced. Since the first member is determined and each second member is much smaller, only the second member is made of expensive diamond, and the first member has sufficient strength for the large-diameter channel and the outlet channel. If it is made of an inexpensive, high-hard material, it is possible to easily increase the size of the nozzle body for increasing the flow rate of the atomization process at a low cost.

なお、軸心方向に沿って設けられた導出流路の噴出方向と衝突用流路、すなわち大口径流路とがなす角度を開き角度とすると、軸心に対して90度の角度をもって大口径流路が導出流路と連通する場合、衝突用流路と導出流路は側面視でT字形状を形成することとなる。また、前記開き角度が軸心に対して90度を超える角度であればこれら衝突用流路と導出流路とが側面視で略Y字形状を形成することとなる。   If the angle formed between the ejection direction of the outlet flow path provided along the axial direction and the collision flow path, that is, the large diameter flow path is defined as the opening angle, the large diameter flow path has an angle of 90 degrees with respect to the axial center. When communicating with the outlet channel, the collision channel and the outlet channel form a T shape in a side view. If the opening angle exceeds 90 degrees with respect to the axis, the collision flow channel and the discharge flow channel form a substantially Y shape in a side view.

大口径流路より流出したジェットは導出流路内で衝突するが、導出流路の噴出方向と大口径流路の開き角度が90度で大口径流路が対向して設けられている場合、ジェットは点で合流するため、確実に衝突させるには高精度な芯出しが要求され、また使用開始時はジェット同士が確実に衝突した場合も、長時間の使用によって軸が変化し互いを損傷する可能性がある。しかし、90度を上回る開き角度とするとジェットは線で合流するため、軸心と直交する面上でジェット同士が対向していれば開き角度が加工や使用経過によって変化した場合でもジェット同士は衝突する。すなわち、開き角度を95度以上150度以下とすることにより、ジェット流の衝突確率が向上し微粒化性能も向上させることができる。   The jet that has flowed out of the large-diameter channel collides in the outlet channel, but if the outlet direction of the outlet channel and the opening angle of the large-diameter channel are 90 degrees and the large-diameter channel is opposed to the jet, Therefore, high-precision centering is required for reliable collision, and even when jets reliably collide at the start of use, the shaft may change due to long-term use and damage each other There is. However, if the opening angle exceeds 90 degrees, the jets merge at a line, so if the jets face each other on a plane orthogonal to the axis, the jets will collide even if the opening angle changes due to processing or usage. To do. That is, by setting the opening angle to 95 degrees or more and 150 degrees or less, the collision probability of the jet flow can be improved and the atomization performance can be improved.

また、ノズル手段では、高圧流体の圧力をノズル本体の外周全体にかかるようにしたため、内圧を相殺することができるので各衝突用流路の方向の外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分を設けることができ、このテーパ形状開口部分によって高圧流体の導入をよりスムーズにすることができると共に、実質的に微小口径領域である噴射流路が短くなって壁面抵抗による速度損失をさらに低減することができる。   In the nozzle means, since the pressure of the high-pressure fluid is applied to the entire outer periphery of the nozzle body, the internal pressure can be canceled out, so that the diameter increases from the outer peripheral side end in the direction of each collision flow channel toward the outside. The tapered opening can provide a smoother introduction of the high-pressure fluid, and the jet flow path, which is a substantially small aperture area, can be shortened, resulting in a speed due to wall resistance. Loss can be further reduced.

このようなテーパ形状開口部分を形成した場合、図3(a)に示すように実質的な噴射流路の長さL1は、ノズル本体表面に露呈する開口端から大口径流路に達する領域のうち、テーパ形状部分を除く長さであり、これはすなわち、噴射流路の方向の外周側開口部にテーパ形状部分を形成することによって、より流体抵抗を減少せしめ、より高速で大口径流路内に噴射し、大口径流路内における高速ジェット周囲の強い液−液間でのせん断及び導出流路内での高速な流体同士の衝突を実現できるものである。なお、前述のように、噴射流路が、大口径流路が形成されている第1部材とは別の第2部材に形成される場合、このテーパ形状開口部分も噴射流路と連続して同じ第2部材に形成すれば良い。 When forming such a tapered opening portion, the length L 1 of the substantial injection passage, as shown in FIG. 3 (a), the region from the open end exposed to the nozzle body surface reaches the large diameter flow channel Of these, it is the length excluding the taper-shaped part. That is, by forming the taper-shaped part at the outer peripheral side opening in the direction of the injection flow path, the fluid resistance is further reduced, and the inside of the large-diameter flow path at a higher speed. And a strong liquid-liquid shear around the high-speed jet in the large-diameter channel and high-speed fluid collision in the outlet channel can be realized. As described above, when the injection flow path is formed in the second member different from the first member in which the large-diameter flow path is formed, this tapered opening portion is also continuously the same as the injection flow path. What is necessary is just to form in a 2nd member.

また噴射流路、大口径流路、導出流路の断面形状は、円形状が流体と流路内壁面との摩擦損失の低減、加工の容易さ、機械的強度といった点から望ましいが、断面が円形である噴射流路から噴射される高速ジェットの断面も円であるため精度よく衝突させることは困難である。しかし、断面を矩形とし、矩形の長辺が軸心に直交する面と平行する方向に衝突用流路を設ければ、衝突空間におけるジェットの衝突確率は向上し、さらに高速ジェットの表面積が増大するため液−液間でのせん断力も向上させることができる。すなわち、噴射流路および大口径流路の断面が矩形であれば、さらに耐久性および微粒化性能を向上させることができる。   In addition, the cross-sectional shapes of the injection flow channel, large-diameter flow channel, and outlet flow channel are preferably circular from the viewpoint of reducing friction loss between the fluid and the inner wall surface of the flow channel, ease of processing, and mechanical strength. Since the cross section of the high-speed jet injected from the injection flow path is also a circle, it is difficult to collide with high accuracy. However, if the cross section is rectangular and the collision flow path is provided in the direction parallel to the plane perpendicular to the axis, the collision probability of the jet in the collision space is improved and the surface area of the high-speed jet is increased. Therefore, the shear force between the liquid and the liquid can also be improved. That is, if the cross section of the injection channel and the large-diameter channel is rectangular, durability and atomization performance can be further improved.

さらに、導出流路は下流出口側開口に向かって拡径するテーパ形状としても良い。この場合、導出流路断面積A3はテーパ部の無い衝突空間14Xの断面積で代表できる。 Furthermore, the outlet channel may have a tapered shape that expands toward the downstream outlet side opening. In this case, the outlet channel cross-sectional area A 3 can be represented by the cross-sectional area of the collision space 14X having no taper portion.

なお、ノズル手段において、ノズル本体の導出流路から導出される衝突済み流体は、ノズル本体が設置される微粒化装置のハウジング部材に設けられた導出流路を経て装置外へ送られるため、流体の漏れのない導出のためには、このノズル本体側の導出流路と装置ハウジング部材側の導出流路とが良好なシール状態で連通される必要がある。   In the nozzle means, the collided fluid led out from the lead-out channel of the nozzle body is sent to the outside of the device via the lead-out channel provided in the housing member of the atomization device in which the nozzle body is installed. For derivation without leakage, it is necessary that the derivation flow path on the nozzle body side and the derivation flow path on the apparatus housing member side communicate with each other in a good sealed state.

そこで、ノズル本体の導出流路がハウジング部材側の導出流路に対して同軸上に位置決めされた状態で、ノズル本体をハウジング部材へ押圧するシール手段を設ければ良い。このシール手段としては、ノズル本体が高圧流体の導入時に発生する圧力を利用できることから、ネジ等の強固で加減が困難な締め付け手段は必要なく、バネの付勢力を利用した簡便なもので充分である。   Therefore, it is only necessary to provide sealing means for pressing the nozzle body against the housing member in a state where the outlet channel of the nozzle body is positioned coaxially with respect to the outlet channel on the housing member side. As the sealing means, since the nozzle body can use the pressure generated when the high-pressure fluid is introduced, there is no need for a fastening means such as a screw that is difficult to adjust, and a simple means using the biasing force of the spring is sufficient. is there.

また、噴射流路、大口径流路及び導出流路内でキャビテーションを発生する場合、従来のプレート同士を強固にネジ止め固定していたノズル手段ではネジ穴部分等にキャビテーションによる圧力変動に伴う振動の影響を受けたネジの緩みやネジ自身の振動によるネジ穴部分での損傷が発生する恐れがあったが、本発明においては一つの部材からなるノズル本体自身はもちろん、バネを利用したシール手段により押圧された装置ハウジング部材側との間にもネジ穴部などを設ける必要がないため、振動による悪影響を受ける恐れもなくなる。むしろ、バネのみによる押圧固定状態であっても、そのバネによる振動の吸収緩和作用により、ノズル手段のハウジング側の導出流路との軸ズレ防止効果が期待できる。   In addition, when cavitation is generated in the injection flow channel, large-diameter flow channel, and outlet flow channel, in the nozzle means in which the conventional plates are firmly fixed to each other with screws, vibrations due to pressure fluctuations due to cavitation are generated in the screw hole portions. There was a risk of damage to the screw hole due to loosening of the affected screw or vibration of the screw itself, but in the present invention, not only the nozzle body itself consisting of one member but also sealing means using a spring Since there is no need to provide a screw hole or the like between the pressed device housing member side, there is no possibility of being adversely affected by vibration. Rather, even in a press-fixed state using only a spring, an effect of preventing the axial displacement of the nozzle means with the lead-out flow path on the housing side can be expected due to the vibration absorbing and mitigating action of the spring.

以上、詳述したノズル手段は、特に処理原料を特定することなく微粒化に用いることができるが、流体と固体壁との摩擦による損失を極力抑えつつ、高速な流体を連接する大口径流路に噴射することで高速ジェット周囲に強い液−液間でのせん断力を発生させることができ、その後さらにジェット同士を効率的に衝突させることができる。このため、連続相と分散相とが共に液体である分散系すなわちエマルジョンの微粒化に特に優れた性能を発揮する。   As described above, the nozzle means described in detail can be used for atomization without particularly specifying the processing raw material, but in a large-diameter channel connecting high-speed fluid while suppressing loss due to friction between the fluid and the solid wall as much as possible. By jetting, a strong liquid-liquid shearing force can be generated around the high-speed jet, and then the jets can collide more efficiently. For this reason, the performance which was especially excellent in atomization of the dispersion system which is a liquid in a continuous phase and a dispersed phase, ie, an emulsion, is exhibited.

本発明において、衝突流路通過前の流体圧力は70000〜245000kPa、特に120000〜210000kPaであるのが好ましく、それにより、微細で高単分散性な粒径分布を持つ乳化粒子を得ることができる。   In the present invention, the fluid pressure before passing through the collision flow path is preferably 70,000 to 245,000 kPa, particularly 120000 to 210000 kPa, whereby emulsified particles having a fine and highly monodisperse particle size distribution can be obtained.

また、本発明においては、流体衝突部にかかる圧力に対し、5〜20%、特に5〜10%の背圧をかけるのが、より効率良く微細乳化物を得ることができ、少ない処理回数で微細な乳化粒子を得ることができるので好ましい。背圧は、微粒化装置のノズル通過直後の圧力をいう。
背圧をかけるための装置は、組成物の流出量を調整する弁で対応でき、流体衝突部の出口側に直接装着するか、又は出口側の配管と耐圧ジョイント等で接続して用いることができる。
Further, in the present invention, applying a back pressure of 5 to 20%, particularly 5 to 10%, with respect to the pressure applied to the fluid collision part can obtain a fine emulsion more efficiently and with a small number of treatments. It is preferable because fine emulsified particles can be obtained. The back pressure refers to the pressure immediately after passing through the nozzle of the atomizer.
The device for applying the back pressure can be handled by a valve that adjusts the outflow amount of the composition, and can be directly attached to the outlet side of the fluid collision part or connected to the outlet side pipe by a pressure-resistant joint or the like. it can.

従来、多量の油性成分を微細に乳化させる場合、強力な剪断エネルギーを発生させるために、高処理圧を与えなくてはならず、これが高圧乳化機の寿命を短くする要因となっていた。本発明においては、高圧乳化処理部の構造を選択することにより、乳化粒子の微細化に必要な処理圧力を、従来より下げることができる。これは、構造上の省エネルギー化ばかりでなく、流体衝突装置の耐久性への負荷が大きく削減できる点でも非常に有効である。得られる乳化粒子は粒径が小さく、単分散であり、透明性が高く、安定性に優れた水中油型乳化組成物が得られるものである。また、圧力エネルギーが、油滴の微細化エネルギーとして効率よく転換されるため、発熱量が少なく抑えることができるため、付属する冷却装置を簡略化することができる。   Conventionally, when a large amount of an oil component is finely emulsified, a high processing pressure has to be applied in order to generate strong shear energy, which has been a factor in shortening the life of a high-pressure emulsifier. In the present invention, by selecting the structure of the high-pressure emulsification processing section, the processing pressure required for making the emulsified particles finer can be lowered than before. This is very effective not only in terms of structural energy saving but also in that the load on the durability of the fluid collision device can be greatly reduced. The resulting emulsified particles have a small particle size, are monodispersed, have high transparency, and provide an oil-in-water emulsion composition with excellent stability. In addition, since the pressure energy is efficiently converted as the energy for refining oil droplets, the amount of generated heat can be suppressed, and the attached cooling device can be simplified.

さらに、流体衝突処理中又は処理直後の平均液温度を80℃以下にするのが、微小粒子がより均一に分散し、透明性が高く安定な乳化組成物が得られるので好ましい。具体的には、流体衝突処理部を通過直後に、乳化液を冷却するのが好ましく、流体衝突処理部開口部から25cm以内、特に15cm以内に冷却装置を配設するのが好ましい。市販の高圧乳化機に冷却装置が配設されている場合があるが、通常冷却装置の位置は、高圧乳化処理部開口部から遠い位置(25cmより離れている)であり、冷却効果も十分ではない。   Furthermore, it is preferable to set the average liquid temperature during the fluid collision treatment or immediately after the treatment to 80 ° C. or lower because fine particles are more uniformly dispersed and a highly transparent and stable emulsion composition can be obtained. Specifically, it is preferable to cool the emulsified liquid immediately after passing through the fluid collision treatment unit, and it is preferable to arrange the cooling device within 25 cm, particularly within 15 cm from the fluid collision treatment unit opening. Although there are cases where a cooling device is arranged in a commercially available high-pressure emulsifier, the position of the cooling device is usually a position far from the opening of the high-pressure emulsification treatment part (separated from 25 cm), and the cooling effect is not sufficient Absent.

本発明によれば、微細粒子に乳化され、油滴の平均粒子径が好ましくは0.01〜0.5μm、特に好ましくは0.025〜0.2μm、更に好ましくは0.025〜0.1μmとなるような乳化組成物を得ることができる。さらに、微細乳化粒子の粒度分布は単分散であり、粒度分布の単分散性を表わすCV値が、好ましくは3〜50%、特に好ましくは5〜25%、更に好ましくは7〜10%となる乳化組成物を得ることができる。   According to the present invention, the average particle diameter of the oil droplets emulsified in fine particles is preferably 0.01 to 0.5 μm, particularly preferably 0.025 to 0.2 μm, more preferably 0.025 to 0.1 μm. An emulsified composition can be obtained. Furthermore, the particle size distribution of the finely emulsified particles is monodispersed, and the CV value representing the monodispersity of the particle size distribution is preferably 3 to 50%, particularly preferably 5 to 25%, and more preferably 7 to 10%. An emulsified composition can be obtained.

CV値は平均粒子径に対する標準偏差の割合で算出される。平均粒子径と標準偏差は動的光散乱法を原理とした粒径測定装置によって測定される。例えば、堀場製作所製LB−500、大塚電子製DLS−7000などを用いることができる。測定には試料濃度が高いと内部光散乱(多重散乱)が生じるため、十分に希釈した試料を用いることが必要である。例えば、堀場製作所製LB−500では、試料濃度を電圧で表示している、0.5V〜16.0Vの範囲にはいるように希釈する。また、測定時には測定温度での分散媒粘度を入力しなければならない。通常は水で希釈する場合が多く、水の粘度に対し、温度補正を行った数値が用いられている。粒子に当たった散乱光はその粒子径に応じて光ゆらぎ信号として検出器にて検出され、その解析により平均粒子径、粒径分布が計算される。その際に様々な算出法が採用されているが、本測定においては、体積基準による粒径分布、メジアン平均粒子径にて行った。
このように高単分散性を持って微細乳化されることにより、乳化組成物は透明性と安定性が高く、油性成分が多量に含有されていても、安定な水中油型乳化物を得ることができる。
The CV value is calculated as a ratio of the standard deviation with respect to the average particle diameter. The average particle size and standard deviation are measured by a particle size measuring device based on the dynamic light scattering method. For example, LB-500 manufactured by HORIBA, Ltd., DLS-7000 manufactured by Otsuka Electronics, etc. can be used. When the sample concentration is high, internal light scattering (multiple scattering) occurs, so it is necessary to use a sufficiently diluted sample. For example, in LB-500 manufactured by HORIBA, the sample concentration is diluted so as to be in the range of 0.5 V to 16.0 V, which is indicated by voltage. Further, at the time of measurement, the dispersion medium viscosity at the measurement temperature must be input. Usually, it is often diluted with water, and a numerical value obtained by correcting the temperature of the viscosity of water is used. Scattered light hitting the particles is detected by a detector as a light fluctuation signal according to the particle diameter, and the average particle diameter and particle size distribution are calculated by the analysis. In this case, various calculation methods are employed. In this measurement, the volume-based particle size distribution and the median average particle size were used.
By being finely emulsified with high monodispersibility in this way, the emulsion composition has high transparency and stability, and a stable oil-in-water emulsion can be obtained even if a large amount of oily components are contained. Can do.

本発明により得られる水中油型乳化組成物は、そのまま化粧料等として、特に透明性の高い化粧料として、好適に使用することができる。
また、高圧乳化により得られた水中油型乳化組成物を、水等の水性成分、またはそれらに水溶性の有効成分や添加剤を加えたもので希釈して、例えば化粧水や美容液等の化粧料として用いることができる。本発明により得られる水中油型乳化組成物は、さらに希釈によって水等の水性成分が添加されても、高圧乳化により得られた乳化状態が維持され、油滴の平均粒子径が、0.01〜0.5μmであって、透過率が45〜90%の化粧料を得ることが可能である。
The oil-in-water emulsion composition obtained according to the present invention can be suitably used as it is as a cosmetic, particularly as a highly transparent cosmetic.
In addition, the oil-in-water emulsion composition obtained by high-pressure emulsification is diluted with an aqueous component such as water, or those obtained by adding a water-soluble active ingredient or additive thereto, for example, a lotion or a cosmetic liquid. It can be used as a cosmetic. The oil-in-water emulsion composition obtained by the present invention maintains the emulsified state obtained by high-pressure emulsification even when an aqueous component such as water is further added by dilution, and the average particle size of oil droplets is 0.01. A cosmetic material having a transmittance of 45 to 90% can be obtained.

このような有効成分や添加剤としては、アスコルビン酸、ニコチン酸アミド、ニコチン酸等の水溶性ビタミン類;オウバクエキス、カンゾウエキス、アロエエキス、スギナエキス、茶エキス、キューカンバーエキス、チョウジエキス、ニンジンエキス、ハマメリス抽出液、プラセンタエキス、海藻エキス、マロニエエキス、ユズエキス、ユーカリエキス、アスナロ抽出液等の動・植物抽出液;水酸化カリウム、水酸化ナトリウム、トリエタノールアミン、炭酸ナトリウム、クエン酸塩、酒石酸塩、乳酸塩、リン酸塩、コハク酸塩、アジピン酸塩等のpH調整剤;カルボキシビニルポリマー、アルギン酸ナトリウム、カラギーナン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、グアーガム、キサンタンガム、カルボキシメチルキトサン、ヒアルロン酸ナトリウム等の増粘剤などが挙げられる。   Examples of such active ingredients and additives include water-soluble vitamins such as ascorbic acid, nicotinic acid amide, and nicotinic acid; , Hamamelis extract, placenta extract, seaweed extract, maroonnier extract, yuzu extract, eucalyptus extract, asunalo extract, etc., animal and plant extracts; potassium hydroxide, sodium hydroxide, triethanolamine, sodium carbonate, citrate, tartaric acid PH adjusters such as salt, lactate, phosphate, succinate, adipate; carboxyvinyl polymer, sodium alginate, carrageenan, carboxymethylcellulose, hydroxyethylcellulose, guar gum, xanthan gum, carboxymethyl Chitosan, and the like thickeners such as sodium hyaluronate.

参考例1
本発明で用いる微粒化装置1として、原料液の高圧流体同士を衝突させるためのノズル手段に、同軸上に配置された噴射流路と大口径流路とで2本の衝突用流路が構成され、下流側の大口径流路と軸心とが同一面上で軸心に対して角度をもって設けられ、大口径流路と軸心方向に沿った導出流路とが側面視で略Y字状に設けられてなるノズル本体を備えた装置を図1に示す。図1(a)は微粒化装置1の概略構成を示す側断面図であり、(b)はノズル本体部分の拡大図である。微粒化装置1は、略カップ状のハウジング2にプラグ部材6を嵌合して内部に形成されるチャンバ9内に、プラグ部材6側の押さえ部材7とハウジング2側からバネ5により付勢されるノズル押さえ3との間でノズル本体10が保持されるものである。
Reference example 1
As the atomization apparatus 1 used in the present invention, two collision flow paths are configured by a nozzle means for colliding high-pressure fluids of raw material liquids, and an injection flow path and a large-diameter flow path arranged coaxially. The downstream large-diameter channel and the axial center are provided on the same plane at an angle with respect to the axial center, and the large-diameter channel and the outlet channel along the axial direction are provided in a substantially Y shape in a side view. FIG. 1 shows an apparatus having a nozzle body. FIG. 1A is a side sectional view showing a schematic configuration of the atomization apparatus 1, and FIG. 1B is an enlarged view of a nozzle body portion. The atomizing device 1 is urged by a spring 5 from a holding member 7 on the plug member 6 side and a housing 2 side in a chamber 9 formed inside by fitting a plug member 6 to a substantially cup-shaped housing 2. The nozzle body 10 is held between the nozzle holder 3 and the nozzle holder 3.

ノズル本体10は、例えば超硬合金などの高硬質材料からなる第1部材11に、互いに軸心方向へ向かい合うように軸心に対して角度をもって形成された大口径流路13とこの大口径流路13同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路14とが略Y字状に設けられ、第1部材11の各大口径流路開口端部に形成された凹部11xに、噴射流路12Yが形成された単結晶ダイヤモンド等の高硬質材料からなる第2部材16がそれぞれ嵌合されて構成されたものである。なお、第1部材11と第2部材16との接合固定は、ろう付、例えば銀ろう等によって行われる。   The nozzle body 10 includes a large-diameter channel 13 formed in the first member 11 made of a highly hard material such as a cemented carbide, for example, at an angle with respect to the axial center so as to face each other in the axial direction, and the large-diameter channel 13. A lead-out flow path 14 for leading the fluid after the collision formed along the axial direction from the merging point between each other is provided in a substantially Y shape, and is provided at each large-diameter flow path opening end of the first member 11. The second member 16 made of a highly hard material such as single crystal diamond in which the injection flow path 12Y is formed is fitted to the formed recess 11x, respectively. The first member 11 and the second member 16 are joined and fixed by brazing, for example, silver brazing.

各第2部材16には、それぞれ外側に向かって拡径するテーパ形状開口部分12Xを備えた噴射流路12Yが形成されており、前記凹部11xへの嵌合状態にて各噴射流路12Yが大口径流路13に同軸上に連通し、噴射用流路が構成される。なお、ノズル本体10へ高圧流体を導入するための導入流路15は、ノズル押さえ3とプラグ側の押さえ部材7との間でノズル本体10の外側空間に形成される。   Each second member 16 is formed with an injection flow path 12Y having a tapered opening portion 12X that expands toward the outside, and each injection flow path 12Y is fitted in the recess 11x. The injection channel is configured to communicate coaxially with the large-diameter channel 13. An introduction flow path 15 for introducing a high-pressure fluid into the nozzle body 10 is formed in the outer space of the nozzle body 10 between the nozzle holder 3 and the holding member 7 on the plug side.

従って、衝突処理対象原料である高圧流体は、ハウジング2の端部からチャンバ9およびノズル押さえ3に形成された供給流路4を経て導入流路15へ送られ、この導入流路15からノズル本体10の外周面全体に圧をかける状態で供給され、ノズル本体外周面に開口する各第2部材16のテーパ形状開口12Xからそれぞれ噴射流路12Yへ導かれ、高速ジェットとして各大口径流路13に噴射され、その後ジェットはそれぞれ衝突空間14Xへ送られ、軸心上の合流点にて衝突する。   Therefore, the high-pressure fluid that is the material to be subjected to the collision treatment is sent from the end of the housing 2 to the introduction passage 15 through the supply passage 4 formed in the chamber 9 and the nozzle retainer 3, and from the introduction passage 15 to the nozzle body. 10 is supplied in a state where pressure is applied to the entire outer peripheral surface of the nozzle 10, and is guided to the injection flow passage 12Y from the tapered opening 12X of each second member 16 that opens to the outer peripheral surface of the nozzle body, and is supplied to each large-diameter flow passage 13 as a high-speed jet. After being jetted, each jet is sent to the collision space 14X and collides at a confluence on the axis.

従って、以上のような構成のノズル本体10を備えた微粒化装置1では、高圧流体がノズル本体10内で屈曲する衝突用流路を進むことが無いため、圧力損失をほとんど発生することなく衝突空間14Xへ導入される。   Therefore, in the atomization apparatus 1 including the nozzle body 10 having the above-described configuration, the high-pressure fluid does not travel through the collision flow path that is bent in the nozzle body 10, so that the collision occurs with little pressure loss. It is introduced into the space 14X.

また、微粒化装置1では、ノズル本体10を二種の部材で構成し、噴射流路12Yはダイヤモンド等の高硬質材料を用い、他の大口径流路13、導出流路14等は安価な高硬質材料を用いた。これによって、安価で自由な流路設計を行うことができる。   Further, in the atomization apparatus 1, the nozzle body 10 is composed of two kinds of members, the injection flow path 12Y uses a high-hard material such as diamond, and the other large-diameter flow path 13, the discharge flow path 14 and the like are inexpensive and high. A hard material was used. Thereby, an inexpensive and free flow path design can be performed.

なお、各噴射流路12Yの外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分12Xを設けたことにより、高圧流体の導入、加速がよりスムーズになる。このテーパ形状開口部分12Xでは、高圧流体導入時に引っ張り応力が生じるが、前述のように本ノズル本体10ではその外周面全体に高圧流体の圧力がかかることにより相殺されるため問題ない。   In addition, the introduction and acceleration of the high-pressure fluid become smoother by providing the tapered opening portion 12X whose diameter increases from the outer peripheral side end of each ejection flow path 12Y toward the outside. In the tapered opening portion 12X, a tensile stress is generated when the high-pressure fluid is introduced, but there is no problem because the high-pressure fluid pressure is applied to the entire outer peripheral surface of the nozzle body 10 as described above.

このようなテーパ形状開口部分12Xを設けた場合、高圧流体の縮流等によって高圧流体が噴射流路に導入される際の抵抗をなくすことができ、良好なジェットを形成させることができる。   When such a tapered opening portion 12X is provided, it is possible to eliminate resistance when the high-pressure fluid is introduced into the ejection flow path due to contraction of the high-pressure fluid, and a good jet can be formed.

また、噴射流路と大口径流路とからなる衝突用流路を、軸心方向と直交する面上ではなく軸心に対して角度をもって設けた場合、衝突空間14Xにおいてジェットはより確実に衝突し、高い衝突エネルギーを得ることができ、ジェットによって対向する大口径流路等を損傷する可能性も低減することができる。さらに、噴射流路、大口径流路を矩形のスリットとし高速ジェットの形状を扁平とすることで、大口径流路13における液−液間でのせん断力を高め、衝突空間14Xにおけるジェット同士が正確に衝突され、微粒化性能を高めることができる。   In addition, when a collision flow path composed of an injection flow path and a large-diameter flow path is provided at an angle with respect to the axis rather than on a plane orthogonal to the axial direction, the jet collides more reliably in the collision space 14X. High impact energy can be obtained, and the possibility of damaging the large-diameter channel facing the jet can be reduced. Furthermore, the jet flow channel and the large-diameter channel are rectangular slits, and the shape of the high-speed jet is flattened, so that the shear force between the liquid and the liquid in the large-diameter channel 13 is increased, and the jets in the collision space 14X are accurately It can collide and can improve atomization performance.

さらに、微粒化装置1では、ノズル本体10を装置ハウジング側、ここでは押さえ部材7に対して押圧固定し、当接面を良好にシールしてノズル本体10の導出流路14とハウジング側の導出流路8との間の流体漏れを防止するためのシール手段として、バネ5によるノズル押さえ3を設けた。   Furthermore, in the atomization apparatus 1, the nozzle body 10 is pressed and fixed to the apparatus housing side, here, the pressing member 7, and the contact surface is well sealed to lead out the discharge passage 14 of the nozzle body 10 and the housing side. As a sealing means for preventing fluid leakage with the flow path 8, a nozzle presser 3 by a spring 5 is provided.

微粒化装置1におけるノズル本体10は、第1部材11と第2部材16との二種類の部材で構成し、大口径流路13、導出流路14を設けた安価な高硬質材料に、噴射流路12Yが形成されたダイヤモンド等の高硬質材料を用いた第2部材16を組み込んだ構成となっており、また、高圧流体が導入流路15に満たされることによりノズル本体10の外周全体に高圧流体の圧力がかかることから、従来の二つのプレートの重なりによって構成された場合のようにネジ止め等の部材破損が生じる危険のある強固で調整加減が困難な締め付け手段は必要なく、上記のようなバネ5の付勢力を利用した簡便なものでノズル本体10とハウジング間は良好なシール状態が得られ、流体漏れは充分に防止できる。   The nozzle body 10 in the atomization apparatus 1 is composed of two types of members, a first member 11 and a second member 16, and is injected into an inexpensive high-rigid material provided with a large-diameter channel 13 and a lead-out channel 14. The second member 16 using a high-hardness material such as diamond in which the passage 12Y is formed is incorporated, and the high-pressure fluid is filled in the introduction flow path 15 so that the entire outer periphery of the nozzle body 10 has a high pressure. Since the fluid pressure is applied, there is no need for a tightening means that is difficult to adjust and adjust, and there is a risk of member damage such as screwing, as in the case where it is configured by overlapping two conventional plates. A simple seal utilizing the biasing force of the spring 5 can provide a good seal between the nozzle body 10 and the housing, and fluid leakage can be sufficiently prevented.

なお、微粒化装置1では、導出流路14が断面円形で出口側がテーパ状に拡径したものの場合を示したが、導出流路の形状をこれに限定するものではなく、実際の微粒化工程における原料液や各条件に応じて、良好な衝突条件が得られる衝突空間が形成されると共に衝突後の流体の導出がよりスムーズに行えるものであればよい。なお、導出流路断面積A3はテーパ部の無い衝突空間14Xの断面積で定義される。 In addition, in the atomization apparatus 1, although the case where the derivation | leading-out flow path 14 was a cross-sectional circle and the exit side was diameter-expanded was shown, the shape of an derivation | leading-out flow path is not limited to this, The actual atomization process As long as a collision space is formed in which good collision conditions can be obtained and the fluid after the collision can be led out more smoothly according to the raw material liquid and each condition. The outlet flow passage cross-sectional area A 3 is defined by the cross-sectional area of the collision space 14X having no taper portion.

例えば、図2((a)はノズル本体の側断面図、(b)は(a)のA−A断面矢視図、
(c)は(a)のB−B断面矢視図)に示すノズル本体20のように、第1部材21に断面略長方形状で衝突空間から出口側に亘って同じ断面積で形成された導出流路24が挙げられる。この導出流路24を断面略長方形状としたことによって、横方向の面積を拡げることとなり、衝突距離を変更せずに、衝突後の原料液がスムーズに流れる。
For example, FIG. 2 ((a) is a sectional side view of the nozzle body, (b) is a sectional view taken along the line AA in (a),
(C) is the same as the nozzle body 20 shown in (a) BB cross-sectional view), and the first member 21 has a substantially rectangular cross section and is formed with the same cross sectional area from the collision space to the outlet side. An outlet channel 24 is exemplified. By setting the lead-out flow path 24 to have a substantially rectangular cross section, the area in the lateral direction is expanded, and the raw material liquid after the collision flows smoothly without changing the collision distance.

より具体的な実施様態として、図3、図4に示す各タイプのノズル本体(30,40)を組み込んで図1に示すように構成した微粒化装置が挙げられる。   As a more specific embodiment, there can be mentioned an atomization apparatus constructed as shown in FIG. 1 by incorporating each type of nozzle body (30, 40) shown in FIGS.

図3のタイプのノズル本体30は、(a)の側断面図に示すように、噴射流路32Yの外周側端部から外側に向かうテーパ形状開口部分32Xが形成され、噴射流路32Y、大口径流路33とも断面形状は円形である。図3(b)は(a)のA−A断面矢視図、(c)は(b)のB−B断面矢視図である。   As shown in the side sectional view of FIG. 3A, the nozzle body 30 of the type in FIG. 3 is formed with a tapered opening portion 32 </ b> X that extends outward from the outer peripheral side end of the injection flow path 32 </ b> Y. The cross-sectional shape of the radial channel 33 is circular. 3B is a cross-sectional view taken along the line AA in FIG. 3A, and FIG. 3C is a cross-sectional view taken along the line BB in FIG.

また、図4のタイプのノズル本体40は(a)の側断面図に示すように、噴射流路42Yの外周側端部から外側に向かうテーパ形状開口部分42Xが形成され、噴射流路42Y、大口径流路43とも断面形状は矩形である。図4(b)は(a)のA−A断面矢視図、(c)は(b)のB−B断面矢視図である。   Further, as shown in the side sectional view of FIG. 4A, the nozzle body 40 of the type in FIG. 4 is formed with a tapered opening portion 42 </ b> X that extends outward from the outer peripheral side end of the injection flow path 42 </ b> Y, The cross-sectional shape of the large-diameter channel 43 is rectangular. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line BB in FIG.

いずれのタイプのノズル本体(30,40)とも、噴射流路(32Y,42Y)がダイヤモンドからなる第2部材(36,46)に形成され、超硬合金等の第1部材(31,41)に形成された大口径流路(33,43)の端部の凹部に第2部材(36,46)が嵌合されることにより噴射流路と大口径流路とが同軸上に連通されて衝突用流路が構成されるものである。いずれも衝突用流路の個数n=2とした。   In any type of nozzle body (30, 40), the injection flow path (32Y, 42Y) is formed in the second member (36, 46) made of diamond, and the first member (31, 41) such as cemented carbide. When the second member (36, 46) is fitted in the concave portion at the end of the large-diameter channel (33, 43) formed in the nozzle, the injection channel and the large-diameter channel are connected coaxially for collision. A flow path is constituted. In all cases, the number of collision channels n = 2.

なお、上記においては、ノズル本体に外周面から軸心に向かい合う二つの貫通孔からなる衝突用流路が軸心に対して角度をもって設けられ導出流路と略Y字形状を成すものの場合を示したが、これに限るものではなく、例えば、図5に示すような互いに等角度間隔で放射状に形成された3本以上の貫通孔からなる衝突用流路(噴射流路52Y及び大口径流路53)を備えたノズル本体50のように、衝突用流路の数や配置は、実際の原料液や処理条件に応じてより高い衝突処理効率が望めるものを適宜選択すればよい。   In the above description, the case where the nozzle body has a collision channel formed of two through holes facing the shaft center from the outer peripheral surface at an angle with respect to the shaft center and having a substantially Y shape with the lead-out channel is shown. However, the present invention is not limited to this. For example, a collision flow path (an injection flow path 52Y and a large-diameter flow path 53) including three or more through holes formed radially at equal angular intervals as shown in FIG. The number and arrangement of the collision flow paths may be appropriately selected according to the actual raw material liquid and the treatment conditions, as long as the collision treatment efficiency is desired.

実施例1〜3
図3に示したタイプで、表1に示すノズル形状を備えたノズル本体30を組み込み、図1に示すように構成した微粒化装置を用い、水中油型乳化組成物を製造した。
すなわち、流動パラフィン250g、N−ステアロイル−L−グルタミン酸ナトリウム15g、ステアリン酸30g、グリセリン200g及び精製水505gを混合し、80℃に加熱混合し、ホモジナイザーで撹拌して粗乳化液とした。この粗乳化液を収容した原料タンクから高圧ポンプを介して操作圧力175MPaで微粒化装置へ送り、微粒化装置の導出流路から排出される衝突済み処理液を背圧調整バルブ(背圧0〜15MPa)を介して冷却機(冷却水入口温度15℃)へ送り、冷却後に再び原料タンクへ回収し、次の衝突処理工程を繰り返す。
Examples 1-3
An oil-in-water emulsified composition of the type shown in FIG. 3 was manufactured using the atomizing apparatus constructed as shown in FIG. 1 by incorporating the nozzle body 30 having the nozzle shape shown in Table 1.
That is, 250 g of liquid paraffin, 15 g of sodium N-stearoyl-L-glutamate, 30 g of stearic acid, 200 g of glycerin and 505 g of purified water were mixed, heated and mixed at 80 ° C., and stirred with a homogenizer to obtain a crude emulsion. From the raw material tank containing the coarse emulsion, the treated liquid discharged from the outlet flow path of the atomizer is sent to the atomizer via the high-pressure pump at an operating pressure of 175 MPa. 15 MPa) to the cooler (cooling water inlet temperature 15 ° C.), and after cooling, it is recovered again in the raw material tank, and the next collision treatment process is repeated.

衝突処理を5回繰り返し、回収した液体を室温まで冷却して、水中油型乳化組成物を得た。得られた組成物を水で100倍に希釈し、光散乱式粒度分布測定装置(LB−500、堀場製作所社製)を用いて、メジアン平均粒子径、標準偏差を測定し、CV値を算出した。結果を表1に併せて示す。   The collision treatment was repeated 5 times, and the recovered liquid was cooled to room temperature to obtain an oil-in-water emulsion composition. The obtained composition was diluted 100 times with water, and using a light scattering particle size distribution analyzer (LB-500, manufactured by Horiba, Ltd.), the median average particle diameter and standard deviation were measured, and the CV value was calculated. did. The results are also shown in Table 1.

Figure 0005117165
Figure 0005117165

比較例1、2
実施例1〜3と同じ手順、同条件にて調製した粗乳化液を既存の高圧微粒化装置にて処理し、水中油型乳化組成物を得た。得られた乳化組成物を、水で100倍に希釈し、光散乱式粒度分布測定装置(LB−500、堀場製作所社製)を用いて、メジアン平均粒子径、標準偏差を測定し、CV値を算出した。結果を以下に示す。
Comparative Examples 1 and 2
The crude emulsion prepared under the same procedure and conditions as in Examples 1 to 3 was processed with an existing high-pressure atomizer to obtain an oil-in-water emulsion composition. The obtained emulsified composition was diluted 100 times with water, and the median average particle size and standard deviation were measured using a light scattering particle size distribution analyzer (LB-500, manufactured by HORIBA, Ltd.). Was calculated. The results are shown below.

(比較例1)
高圧微粒化装置:マイクロフルイダイザーM−140K(microfluidics社製)、
標準Y型チャンバー装着。
平均粒子径0.070μm、CV値63%
(比較例2)
高圧微粒化装置:アルティマイザーHJP−25005(タウテクノロジー社製)、
標準液−液衝突型チャンバー装着。
平均粒子径0.120μm、CV値71%
(Comparative Example 1)
High-pressure atomizer: Microfluidizer M-140K (manufactured by microfluidics),
Equipped with standard Y-type chamber.
Average particle size 0.070μm, CV value 63%
(Comparative Example 2)
High pressure atomizer: Optimizer HJP-25005 (manufactured by Tau Technology),
Equipped with standard liquid-liquid collision chamber.
Average particle size 0.120 μm, CV value 71%

実施例4〜9、比較例3〜6
実施例1〜3、比較例1、2で得られた乳化組成物、及びそれらの乳化組成物を精製水で10倍希釈した乳化組成物について、保存安定性を評価した。保存開始時の外観は、いずれも透明であり、保存後の外観を目視にて評価して、透明の場合:○、半透明の場合:△、白濁の場合:×と示した。結果を表2に示す。
Examples 4-9, Comparative Examples 3-6
The storage stability was evaluated for the emulsion compositions obtained in Examples 1 to 3 and Comparative Examples 1 and 2 and the emulsion compositions obtained by diluting these emulsion compositions 10 times with purified water. The appearance at the start of storage was transparent, and the appearance after storage was evaluated by visual observation. When transparent, it was indicated as ◯, when it was translucent: Δ, and when it was cloudy: ×. The results are shown in Table 2.

Figure 0005117165
Figure 0005117165

実施例10
図4に示したタイプで、表3に示すノズル形状を備えたノズル本体40を組み込み、図1に示すように構成した微粒化装置を用い、水中油型乳化組成物を製造した。
すなわち、N−ミリストイル−N−メチルタウリンナトリウム25g、スクワラン100g、ジメチルポリシロキサン(6cs)200g、セラミドIII20g、グリセリン450gに、精製水205mLを加え、ホモジナイザーで撹拌して粗乳化液とした。この粗乳化液を、微細化装置にて、処理圧180000kPa、背圧10500kPaにて、5回繰返し処理し、水中油型乳化組成物を得た。
得られた組成物を水で100倍に希釈し、光散乱式粒度分布測定装置(LB−500、堀場製作所社製)を用いて、メジアン平均粒子径、標準偏差を測定し、CV値を算出した。結果を表3に併せて示す。
この組成物250mLに、4%アスコルビン酸マグネシウム水溶液750mLを混合し、外観が透明な美容液を得た。この美容液を5℃、20℃、30℃の環境下で6ヶ月保存した結果、いずれも外観に変化は認められなかった。
Example 10
An oil-in-water emulsified composition of the type shown in FIG. 4 was manufactured using a micronizer configured as shown in FIG. 1 by incorporating a nozzle body 40 having the nozzle shape shown in Table 3.
That is, 25 g of sodium N-myristoyl-N-methyltaurine, 100 g of squalane, 200 g of dimethylpolysiloxane (6cs), 20 g of ceramide III, and 450 g of glycerin were added with 205 mL of purified water and stirred with a homogenizer to obtain a crude emulsion. This crude emulsion was repeatedly processed 5 times with a refining device at a processing pressure of 180000 kPa and a back pressure of 10500 kPa to obtain an oil-in-water emulsion composition.
The obtained composition was diluted 100 times with water, and using a light scattering particle size distribution analyzer (LB-500, manufactured by Horiba, Ltd.), the median average particle diameter and standard deviation were measured, and the CV value was calculated. did. The results are also shown in Table 3.
250 mL of this composition was mixed with 750 mL of 4% magnesium ascorbate aqueous solution to obtain a cosmetic liquid having a transparent appearance. As a result of storing this cosmetic liquid in an environment of 5 ° C., 20 ° C., and 30 ° C. for 6 months, no change was observed in its appearance.

Figure 0005117165
Figure 0005117165

実施例11
ポリオキシエチレンオレイルエーテルリン酸ナトリウム30g、ジメチルポリシロキサン(6cs)330g、セラミドIII10g、グリセリン200gに、精製水430mLを加え、ホモジナイザーで撹拌して粗乳化液とした。この粗乳化液を、図3に示したタイプで、表1に示す実施例2のノズル形状を備えたノズル本体30を組み込み、図1に示すように構成した微細化装置にて、処理圧125000kPa、背圧12000kPaにて、7回繰返し処理し、水中油型乳化組成物を得た。
得られた水中油型乳化組成物の平均粒子径は0.041μm、CV値9%であった。この乳化物を5℃、20℃、40℃の環境下で6ヶ月保存した結果、いずれも外観に変化は認められなかった。
Example 11
To 30 g of polyoxyethylene oleyl ether sodium phosphate, 330 g of dimethylpolysiloxane (6 cs), 10 g of ceramide III, and 200 g of glycerin, 430 mL of purified water was added and stirred with a homogenizer to obtain a crude emulsion. This coarse emulsion is of the type shown in FIG. 3 and incorporated with a nozzle body 30 having the nozzle shape of Example 2 shown in Table 1 and processed at a processing pressure of 125,000 kPa in a micronizer configured as shown in FIG. Then, it was repeatedly treated 7 times at a back pressure of 12,000 kPa to obtain an oil-in-water emulsion composition.
The obtained oil-in-water emulsion composition had an average particle size of 0.041 μm and a CV value of 9%. As a result of storing this emulsion for 6 months in an environment of 5 ° C., 20 ° C., and 40 ° C., no change was observed in its appearance.

比較例7
実施例11と同じ組成からなる粗乳化物を、比較例1で用いた微細化装置にて、処理圧処理圧125000kPa、背圧12000kPaにて、10回処理し、水中油型乳化組成物を得た。
得られた水中油型乳化組成物の平均粒子径は0.043μm、CV値63%であった。この乳化物を5℃、20℃、40℃の環境下で6ヶ月保存した結果、20℃では外観に変化は認められなかったが、5℃、40℃ではクリーミングが観察された。
Comparative Example 7
The crude emulsion having the same composition as that of Example 11 was treated 10 times with the refining apparatus used in Comparative Example 1 at a treatment pressure treatment pressure of 125,000 kPa and a back pressure of 12,000 kPa, to obtain an oil-in-water emulsion composition. It was.
The resulting oil-in-water emulsion composition had an average particle size of 0.043 μm and a CV value of 63%. As a result of storing this emulsion for 6 months in an environment of 5 ° C, 20 ° C, and 40 ° C, no change was observed in the appearance at 20 ° C, but creaming was observed at 5 ° C and 40 ° C.

本発明で用いる微粒化装置の一例の概略構成図である。(a)は微粒化装置の概略構成を示す側断面図であり、(b)はノズル本体部分の拡大図である。It is a schematic block diagram of an example of the atomization apparatus used by this invention. (A) is a sectional side view showing a schematic configuration of the atomization apparatus, and (b) is an enlarged view of a nozzle body portion. 本発明で用いる微粒化装置における、ノズル本体の別の例を示す概略構成図である。(a)は側断面図、(b)は(a)のA−A断面矢視図、(c)は(a)のB−B断面矢視図である。It is a schematic block diagram which shows another example of the nozzle main body in the atomization apparatus used by this invention. (A) is a sectional side view, (b) is an AA sectional arrow view of (a), and (c) is an BB sectional arrow view of (a). 本発明で用いる微粒化装置において、噴射流路および大口径流路が円柱の場合のノズル手段の概略構成図である。(a)は噴射流路の外周側端部から外側に向かうテーパ形状開口部分が形成され、噴射流路、大口径流路とも断面形状が円形であるノズル本体、(b)は(a)のA−A断面矢視図(拡大図)、(c)は(b)のB−B断面矢視図(拡大図)である。In the atomization apparatus used by this invention, it is a schematic block diagram of the nozzle means in case an injection flow path and a large diameter flow path are cylinders. (A) is a nozzle body in which a tapered opening portion is formed outward from the outer peripheral side end of the injection flow path, and both the injection flow path and the large-diameter flow path have a circular cross-sectional shape, and (b) is an A in (a). -A sectional view (enlarged view), (c) is a BB sectional view (enlarged view) of (b). 本発明で用いる微粒化装置において、噴射流路および大口径流路が矩形の場合のノズル手段の概略構成図である。(a)は噴射流路の外周側端部から外側に向かうテーパ形状開口部分が形成され、噴射流路、大口径流路とも断面形状が矩形であるノズル本体、(b)は(a)のA−A断面矢視図(拡大図)、(c)は(b)のB−B断面矢視図(拡大図)である。In the atomization apparatus used by this invention, it is a schematic block diagram of a nozzle means in case an injection flow path and a large diameter flow path are rectangles. (A) is a nozzle body having a tapered opening portion formed outwardly from the outer peripheral side end of the injection flow path, and both the injection flow path and the large diameter flow path have a rectangular cross-sectional shape, and (b) is an A in (a). -A sectional view (enlarged view), (c) is a BB sectional view (enlarged view) of (b). 本発明で用いる微粒化装置において、他のノズル本体の構成を示す側断面図である。It is a sectional side view which shows the structure of the other nozzle main body in the atomization apparatus used by this invention.

符号の説明Explanation of symbols

1:微粒化装置
2:ハウジング
3:ノズル押さえ
4:高圧流体供給流路
5:バネ
6:プラグ部材
7:押さえ部材
8:導出流路
9:チャンバ
10,20,30、40,50:ノズル本体手段
11,21,31,41,51:第1部材
11X:凹部
12X,22X,32X,42X,52X:テーパ形状開口部分
12Y,22Y,32Y,42Y,52Y:噴射流路
13,23,33、43,53:大口径流路
14,24,34,44,54:(ノズル本体の)導出流路
14X:衝突空間
14Y:テーパ状出口
14L:衝突距離
15:導入流路
16,26,36,46,56:第2部材
1: Atomization device 2: Housing 3: Nozzle holder 4: High-pressure fluid supply channel 5: Spring 6: Plug member 7: Holding member 8: Outlet channel 9: Chamber 10, 20, 30, 40, 50: Nozzle body Means 11, 21, 31, 41, 51: first member 11X: recesses 12X, 22X, 32X, 42X, 52X: tapered opening portions 12Y, 22Y, 32Y, 42Y, 52Y: injection passages 13, 23, 33, 43, 53: Large-diameter channels 14, 24, 34, 44, 54: Derived channels 14X (of the nozzle body): Collision space 14Y: Tapered outlet 14L: Collision distance 15: Introduction channels 16, 26, 36, 46 , 56: second member

Claims (6)

(A)界面活性剤、(B)25℃で液状の油性成分及び(C)水を含有する組成物を高圧流体となし、当該高圧流体同士を衝突させるためのノズル手段と、該ノズル手段へ前記高圧流体を導入するための導入流路とを備えた微粒化装置により乳化させる水中油型乳化組成物の製造方法であって、
前記ノズル手段は、高硬質材料からなるノズル本体を有し、該ノズル本体に、ノズル本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とを備え、前記導入流路に導かれた高圧流体が、前記ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものであり、
前記衝突用流路は、前記導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて前記外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備え、
前記大口径流路と導出流路とが側面視で略Y字形状を形成し、
前記噴射流路の外周側端部開口から前記大口径流路に達するまでの長さL1が、0.15mm以上0.6mm以下、前記大口径流路の長さL2が、1.5mm以上4mm以下、前記噴射流路1個の断面積A1と前記大口径流路1個の断面積A2の比が、2≦A2/A1≦7であると共に、前記噴射流路の断面積の流路個数分の合計nA1と前記導出流路の断面積A3の比が、2≦A3/nA1≦80を満たす微粒化装置
を用いて乳化させる水中油型乳化組成物の製造方法。
(A) a surfactant, (B) a composition containing an oily component that is liquid at 25 ° C. and (C) water as a high-pressure fluid, and nozzle means for causing the high-pressure fluid to collide with each other, to the nozzle means A method for producing an oil-in-water emulsified composition emulsified by a atomizer equipped with an introduction flow path for introducing the high-pressure fluid,
The nozzle means has a nozzle body made of a highly rigid material, and a high-pressure fluid collision channel comprising a plurality of through holes formed in the nozzle body from the outer peripheral surface of the nozzle body toward the axis, and these A high-pressure fluid led to the introduction flow path is formed in the axial direction of the nozzle main body. It is introduced from the outer periphery to each outer peripheral side end opening of the collision flow path,
The collision channel includes a large-diameter channel on the downstream side communicating with the outlet channel, and a high-pressure fluid provided on the upstream side of the large-diameter channel and introduced from the outer peripheral end opening. With a small-diameter injection channel that injects into
The large-diameter channel and the outlet channel form a substantially Y shape in side view,
The length L 1 from the outer peripheral side end opening of the injection flow path to the large diameter flow path is 0.15 mm or more and 0.6 mm or less, and the length L 2 of the large diameter flow path is 1.5 mm or more and 4 mm. Hereinafter, the ratio of the cross-sectional area A 1 of the single injection flow path to the cross-sectional area A 2 of the single large-diameter flow path is 2 ≦ A 2 / A 1 ≦ 7, and the cross-sectional area of the injection flow path Method for producing an oil-in-water emulsified composition in which emulsification is performed using a pulverizing apparatus in which the ratio of the total nA 1 for the number of flow paths to the cross-sectional area A 3 of the outlet flow paths satisfies 2 ≦ A 3 / nA 1 ≦ 80 .
水中油型乳化組成物が、油滴の平均粒子径が0.01〜0.5μmであり、CV値が3〜50%である請求項1記載の製造方法。   The production method according to claim 1, wherein the oil-in-water emulsion composition has an oil droplet average particle size of 0.01 to 0.5 µm and a CV value of 3 to 50%. 水中油型乳化組成物が、(B)成分/(A)成分の質量割合が11倍以上である請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein the oil-in-water emulsion composition has a mass ratio of (B) component / (A) component of 11 times or more. 水中油型乳化組成物が、更に(D)両親媒性脂質を含有する請求項1〜3のいずれか1項記載の製造方法。   The production method according to any one of claims 1 to 3, wherein the oil-in-water emulsion composition further comprises (D) an amphiphilic lipid. 水中油型乳化組成物が、更に(E)多価アルコールを含有する請求項1〜4のいずれか1項記載の製造方法。   The production method according to any one of claims 1 to 4, wherein the oil-in-water emulsion composition further comprises (E) a polyhydric alcohol. 請求項1〜5のいずれか1項記載の製造方法により得られる水中油型乳化組成物。   The oil-in-water type emulsion composition obtained by the manufacturing method of any one of Claims 1-5.
JP2007292164A 2007-11-09 2007-11-09 Method for producing oil-in-water emulsion composition Expired - Fee Related JP5117165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292164A JP5117165B2 (en) 2007-11-09 2007-11-09 Method for producing oil-in-water emulsion composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292164A JP5117165B2 (en) 2007-11-09 2007-11-09 Method for producing oil-in-water emulsion composition

Publications (2)

Publication Number Publication Date
JP2009113010A JP2009113010A (en) 2009-05-28
JP5117165B2 true JP5117165B2 (en) 2013-01-09

Family

ID=40780746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292164A Expired - Fee Related JP5117165B2 (en) 2007-11-09 2007-11-09 Method for producing oil-in-water emulsion composition

Country Status (1)

Country Link
JP (1) JP5117165B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425908B2 (en) 1997-12-12 2013-04-23 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8440402B2 (en) 2000-05-19 2013-05-14 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a HER2 antibody cancer therapy
US9081019B2 (en) 2008-12-01 2015-07-14 Laboratory Corporation Of America Holdings Methods and assays for measuring p95 and/or p95 complexes in a sample and antibodies specific for p95
US9110066B2 (en) 2009-01-15 2015-08-18 Laboratory Corporation Of America Holdings HER-3 antibodies and methods of use
US9283273B2 (en) 1995-07-27 2016-03-15 Genentech, Inc. Protein formulation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
FR3086514B1 (en) * 2018-10-02 2021-10-15 Oreal HAIR COLORING PROCESS
CN109433078B (en) * 2018-11-30 2023-05-02 南昌大学 Preparation device and preparation method of high internal phase camellia oil emulsion
CN109351443B (en) * 2018-12-02 2024-02-27 北京协同创新食品科技有限公司 High-pressure jet nozzle and high-pressure jet crushing device using same
WO2021075003A1 (en) * 2019-10-16 2021-04-22 株式会社 ナノ・キューブ・ジャパン Method for manufacturing dispersion of ultrafine particles of poorly soluble substance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2587390B2 (en) * 1994-10-03 1997-03-05 特殊機化工業株式会社 Ultra-fine atomizing and mixing equipment for liquids
JPH10315226A (en) * 1997-05-20 1998-12-02 Mitsui Chem Inc Mixing module for spray gun with improved two-liquid mixing properties
JP2006341146A (en) * 2005-06-07 2006-12-21 Kao Corp Method for preparing oil-in-water emultion composition
JP2009113002A (en) * 2007-11-09 2009-05-28 Sugino Mach Ltd Pulverizing apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283273B2 (en) 1995-07-27 2016-03-15 Genentech, Inc. Protein formulation
US8425908B2 (en) 1997-12-12 2013-04-23 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8642036B2 (en) 1997-12-12 2014-02-04 Genentech, Inc. Treatment with anti-ErbB2 antibodies
US8440402B2 (en) 2000-05-19 2013-05-14 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to a HER2 antibody cancer therapy
US8592152B2 (en) 2000-05-19 2013-11-26 Genentech, Inc. Gene detection assay for improving the likelihood of an effective response to an EGFR antagonist cancer therapy
US9081019B2 (en) 2008-12-01 2015-07-14 Laboratory Corporation Of America Holdings Methods and assays for measuring p95 and/or p95 complexes in a sample and antibodies specific for p95
US10273308B2 (en) 2008-12-01 2019-04-30 Laboratory Corporation Of America Holdings Methods of producing antibodies specific for p95
US9110066B2 (en) 2009-01-15 2015-08-18 Laboratory Corporation Of America Holdings HER-3 antibodies and methods of use
US9766242B2 (en) 2009-01-15 2017-09-19 Laboratory Corporation Of America Holdings Methods of determining patient response by measurement of HER-3 and P95
US10775382B2 (en) 2009-01-15 2020-09-15 Laboratory Corporation Of America Holdings Methods of determining patient response by measurement of HER-3

Also Published As

Publication number Publication date
JP2009113010A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5117165B2 (en) Method for producing oil-in-water emulsion composition
Jasmina et al. Preparation of nanoemulsions by high-energy and lowenergy emulsification methods
JP5117105B2 (en) Method for producing oil-in-water emulsion composition
JP3717703B2 (en) Production of emulsion
JP2006341146A (en) Method for preparing oil-in-water emultion composition
Halnor et al. Nanoemulsion: A novel platform for drug delivery system
JP5117106B2 (en) Method for producing oil-in-water emulsion composition
KR20120010226A (en) Dispersion and manufacturing method therefor
US20110015416A1 (en) Method for mixing fluids, method for producing particulates, and particulates
Mishra et al. Nanoemulsion: a novel drug delivery tool
CN106466234A (en) Containing lecithin and two(Lauramide L-Glutamine)The blue emulsion compositionss of L-Lysine sodium salt
JP5086583B2 (en) Method for producing ceramide fine particle dispersion
JP5081762B2 (en) Method for producing oil-in-water emulsion composition
JP4058108B2 (en) Method and apparatus for producing liposome dispersion
JP5424427B2 (en) Method for producing biological ingestion
JP5202171B2 (en) Method for producing oil-in-water emulsion composition
WO2011099422A1 (en) Emulsion and cosmetic containing same
JP6596392B2 (en) Atomizer
JP3970878B2 (en) Method for producing oil-in-water emulsion composition
TW201828914A (en) Method for producing ceramide microparticle dispersion
JP3648147B2 (en) Oil-in-water emulsified cosmetic
US20220273582A1 (en) Continuous method for nano-emulsification by concentration phase inversion
JP2010149062A (en) Apparatus and method of mixing fluid
JP3930036B1 (en) Atomization method, atomization apparatus and atomization system
JP4473494B2 (en) Microemulsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R151 Written notification of patent or utility model registration

Ref document number: 5117165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees