JP2009113002A - Pulverizing apparatus - Google Patents

Pulverizing apparatus Download PDF

Info

Publication number
JP2009113002A
JP2009113002A JP2007291998A JP2007291998A JP2009113002A JP 2009113002 A JP2009113002 A JP 2009113002A JP 2007291998 A JP2007291998 A JP 2007291998A JP 2007291998 A JP2007291998 A JP 2007291998A JP 2009113002 A JP2009113002 A JP 2009113002A
Authority
JP
Japan
Prior art keywords
channel
flow path
diameter
collision
nozzle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007291998A
Other languages
Japanese (ja)
Inventor
Masao Nakatani
正雄 中谷
Atsushi Takagi
淳 高木
Kota Ogura
孝太 小倉
Sumie Tarumoto
純枝 樽本
Yasumasa Matsumoto
泰正 松本
Hidetaka Iwai
秀隆 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Sugino Machine Ltd
Original Assignee
Kao Corp
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Sugino Machine Ltd filed Critical Kao Corp
Priority to JP2007291998A priority Critical patent/JP2009113002A/en
Publication of JP2009113002A publication Critical patent/JP2009113002A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pulverizing apparatus having a nozzle means prevented from having a crack in the interior of a member due to tensile stress by suppressing pressure loss and speed loss at the time of introducing a raw material. <P>SOLUTION: The pulverizing apparatus comprises a nozzle main body made of a highly hard material and installed in a nozzle means for collision of high pressure fluid channels, and the nozzle main body comprises a channel for causing collision of high pressure fluid, which are a plurality of through-holes formed from the outer circumferential face to the axial center, and a leading-out channel along the axial direction from the confluence point of these channels for collision. The channels for collision comprise large diameter channels in the downstream side and communicated with the leading-out channel and jetting channels with a small diameter formed in the upstream side of the large diameter channels for jetting the high pressure fluid led from outer circumferential side end apertures to the large diameter channels. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高圧流体同士を衝突させる微粒化装置に関し、詳しくは、衝突部を構成するノズル手段に関するものである。   The present invention relates to an atomizing device that causes high-pressure fluids to collide with each other, and more particularly, to a nozzle means that constitutes a collision part.

従来から、様々な分野の製品製造において、原料液の分散、乳化等を含む微粒化処理には、処理対象である原料液を高圧で噴射させ、その噴流同士をノズル手段を介して衝突させることによる衝撃を利用した微粒化装置が用いられている。   Conventionally, in the manufacture of products in various fields, in the atomization process including dispersion and emulsification of raw material liquid, the raw material liquid to be processed is jetted at a high pressure, and the jets collide with each other through nozzle means. A pulverization apparatus using an impact caused by the above is used.

このような微粒化装置のなかでも、微粒化に効果的な剪断力を得るために、ノズル手段として狭くて長い流路を備えたものを用い、高圧原料液をその狭くて長い流路内を通過させて衝突させる方式のものがある。   Among such atomization apparatuses, in order to obtain an effective shear force for atomization, a nozzle means having a narrow and long flow path is used, and the high-pressure raw material liquid is passed through the narrow and long flow path. There is a method of making it pass and collide.

この方式では、軸方向に二つ設けられた貫通孔からなる原料液導入流路同士が端部で軸方向と直交する方向に形成された溝により互いに連通された焼結ダイヤ製のディスクプレートに対して、溝なしディスクプレートを当接させることによって前記溝を塞いで、二つの導入流路から導入される高圧流体が直角に屈曲して中央で衝突するための衝突用流路となるノズル構成を備えたものがあった(例えば、特許文献1、特許文献2参照。)。この場合、溝なしディスクプレートにはその中心軸に沿って貫通孔が形成されており、衝突用流路となった溝部の中央の衝突位置から衝突後の流体を導出するものである。   In this method, the raw material liquid introduction flow paths composed of two through holes provided in the axial direction are connected to each other by a sintered diamond disk plate communicated with each other by a groove formed in a direction perpendicular to the axial direction at the end. On the other hand, the nozzle structure which becomes a collision flow path for closing the groove by bringing a disk plate without groove into contact and bending high-pressure fluid introduced from two introduction flow paths at right angles and colliding at the center (For example, refer to Patent Document 1 and Patent Document 2). In this case, the grooveless disk plate is formed with a through hole along its central axis, and the fluid after the collision is led out from the collision position at the center of the groove portion which becomes the collision flow path.

また、対面配置された溝のないプレート間の間隙を導入流路として外周方向から中心部で衝突させ、一方のプレートの中心軸に沿って形成された導出流路から衝突後原料液を導出するノズル構成を備えたものもある(例えば、特許文献3参照。)。   Further, the gap between the plates without grooves arranged facing each other is caused to collide with the central portion from the outer peripheral direction as an introduction flow path, and the post-collision raw material liquid is derived from the discharge flow path formed along the central axis of one plate. Some have a nozzle configuration (see, for example, Patent Document 3).

特開平9−201522号公報JP-A-9-201522 特開平2−261525号公報JP-A-2-261525 特開2005−144329号公報JP 2005-144329 A

しかしながら、焼結ダイヤは圧縮応力に対しては強いものの引っ張り応力には弱い性質があり、このような焼結ダイヤからなるディスクプレートに貫通孔や溝を形成して導入流路や衝突用流路を構成するものの場合、導入流路の内圧で引張り応力が生じると破断が生じる危険がある。そこで強度を向上させるための単結晶ダイヤモンドをプレート素材として用いることが考えられるが、上記のような屈曲した流路を形成するプレートは外形サイズが大きくならざるを得ず、高価な単結晶ダイヤモンドを利用するのはコストがかかりすぎるだけでなく加工が困難で実用的ではなかった。   However, the sintered diamond is strong against compressive stress but weak against tensile stress, and a through-hole or groove is formed in a disk plate made of such a sintered diamond to introduce and flow channels for collision. If there is a tensile stress caused by the internal pressure of the introduction flow path, there is a risk of breakage. Therefore, it is conceivable to use a single crystal diamond for improving the strength as a plate material. However, the plate forming the bent flow path as described above has to have a large outer size, and an expensive single crystal diamond is used. The use was not only costly but also difficult to process and was not practical.

また、上記のような導入流路および屈曲部は、原料液は直交方向に曲げられてから圧力を流速に変えるために微小断面積の溝からなる衝突用流路内を進んでから衝突する構成となっているため、圧力損失が生じてしまっている。従ってまずは導入流路の口径を大きくすることにより圧力損失を無くすことが考えられるが、この場合、導入流路内に係る圧力はディスクプレートに大きな引っ張り応力を与えて破断を生じせしめる恐れがあり、単に導入流路口径を大きくすることはできなかった。   In addition, the introduction flow path and the bent portion as described above are configured to collide after proceeding in the collision flow path formed by a groove having a minute cross-sectional area in order to change the pressure into the flow velocity after the raw material liquid is bent in the orthogonal direction. Therefore, pressure loss has occurred. Therefore, it is conceivable to first eliminate the pressure loss by increasing the diameter of the introduction flow path, but in this case, the pressure in the introduction flow path may give a large tensile stress to the disk plate and cause breakage. It was simply not possible to increase the inlet channel diameter.

さらに、ディスクプレート同士の当接は、溝(衝突用流路)から原料液が外部に漏れないように接触面同士を強く押し付けてシールする必要がある。しかし従来はこのシールをネジの締め付けによって行っていたため、確実なシール力を得るために強く締め付けるとプレートに割れが生じ、これを避けるために締め付けが緩く不充分となると導入流路に発生する圧力よりもプレート接触面の面圧が低くなるため原料液が漏れてしまうことになる。このように、ネジ締め付けの加減は難しく、熟練を要するものであった。   Furthermore, the contact between the disk plates needs to be strongly pressed against the contact surfaces so that the raw material liquid does not leak to the outside from the groove (collision flow path). However, in the past, this sealing was done by tightening the screws, so that if the plate was tightened strongly to obtain a reliable sealing force, the plate would crack, and the pressure generated in the introduction flow path would be loose and insufficient to avoid this. Since the surface pressure of the plate contact surface becomes lower than that, the raw material liquid leaks. Thus, it is difficult to adjust the screw tightening, and skill is required.

また、溝なしプレート同士を互いに対面配置して形成された間隙を導入流路とする構成のものでは、原料液の導入までの圧力損失はなく外周全体に圧力がかかるのでプレートには引っ張り応力がかからないが、高圧原料液は狭い隙間面を通るため、その壁面での速度損失が大きいという問題がある。   In addition, in the case of a configuration in which a gap formed by facing each other without grooves is used as an introduction flow path, there is no pressure loss until the introduction of the raw material liquid, and pressure is applied to the entire outer periphery, so that the plate has tensile stress. Although not required, since the high-pressure raw material liquid passes through a narrow gap surface, there is a problem that speed loss at the wall surface is large.

一方、微粒化装置を商用ベースで利用とする場合、処理量の増大が望まれるが、衝突用流路等を備えたノズル本体への原料液の流量を大きくしていけばその寿命は短く、そのためダイヤモンド等の高硬質材料からなるノズル本体を単に大型化するのでは、良好な微粒化性能の維持も、大粒ダイヤモンドの入手も困難で全く現実的ではないため、大流量化が可能となる実用的なノズル設計も切望されている。   On the other hand, when the atomizer is used on a commercial basis, an increase in the processing amount is desired, but if the flow rate of the raw material liquid to the nozzle body equipped with a collision channel or the like is increased, its life is shortened, For this reason, simply increasing the size of a nozzle body made of a high-hardness material such as diamond is not practical because it is difficult to maintain good atomization performance and to obtain large-diameter diamonds. Nozzle design is also eagerly desired.

本発明の目的は、上記問題点に鑑み、簡便な構成でありながら、従来よりも原料液の導入における圧力損失および速度損失を抑えて高速なジェットを形成できると共に部材内部に引張り応力による割れが生じることがなく、高価な硬質材料を不必要に用いることのない大流量化が可能なノズル手段を備えた微粒化装置を提供することにある。   In view of the above problems, the object of the present invention is to make it possible to form a high-speed jet while suppressing the pressure loss and the speed loss in the introduction of the raw material liquid as compared with the prior art, and to cause cracks due to tensile stress inside the member. An object of the present invention is to provide an atomizing apparatus provided with nozzle means that can increase the flow rate without causing unnecessary use of an expensive hard material.

上記目的を達成するため、請求項1に記載の発明に係る微粒化装置は、高圧流体同士を衝突させるためのノズル手段と、該ノズル手段へ前記高圧流体を導入するための導入流路とを備えた微粒化装置において、
前記ノズル手段は、高硬質材料からなるノズル本体を有し、該ノズル本体に、ノズル本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とを備え、前記導入流路に導かれた高圧流体が、前記ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものであり、
前記衝突用流路は、前記導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて前記外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路と、を備えていることを特徴とするものである。
In order to achieve the above object, the atomization apparatus according to the first aspect of the present invention includes a nozzle means for causing high-pressure fluids to collide with each other, and an introduction flow path for introducing the high-pressure fluid into the nozzle means. In the atomization apparatus provided,
The nozzle means has a nozzle body made of a highly rigid material, and a high-pressure fluid collision channel comprising a plurality of through holes formed in the nozzle body from the outer peripheral surface of the nozzle body toward the axis, and these A high-pressure fluid led to the introduction flow path is formed in the axial direction of the nozzle main body. It is introduced from the outer periphery to each outer peripheral side end opening of the collision flow path,
The collision channel includes a large-diameter channel on the downstream side communicating with the outlet channel, and a high-pressure fluid provided on the upstream side of the large-diameter channel and introduced from the outer peripheral end opening. And a small-diameter injection channel that is injected into the inside.

請求項2に記載の発明に係る微粒化装置は、請求項1に記載の微粒化装置において、前記噴射流路の外周側端部開口から前記大口径流路に達するまでの長さLが、0.15mm以上、0.6mm以下の範囲内であると共に、前記大口径流路の長さLが1.5mm≦L≦4mm、前記噴射流路1個の断面積Aと前記大口径流路1個の断面積Aの比が2≦A/A≦7であると共に、前記噴射流路の断面積の流路個数分の合計nAと前記導出流路の断面積Aの比が2≦A/nA≦80、を満たすものである。 Atomization device according to the invention described in claim 2 is the atomization device according to claim 1, a length L 1 from the outer peripheral end opening of the injection passage to reach the large diameter flow channel, Within the range of 0.15 mm or more and 0.6 mm or less, the length L 2 of the large-diameter channel is 1.5 mm ≦ L 2 ≦ 4 mm, the cross-sectional area A 1 of the single injection channel and the large-diameter flow The ratio of the cross-sectional area A 2 of one path is 2 ≦ A 2 / A 1 ≦ 7, and the total nA 1 corresponding to the number of the cross-sectional areas of the injection flow path is equal to the cross-sectional area A 3 of the outlet flow path. The ratio satisfies 2 ≦ A 3 / nA 1 ≦ 80.

請求項3に記載の発明に係る微粒化装置は、請求項1又は2に記載の微粒化装置において、 前記ノズル本体は、前記噴射流路の方向の外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分を有するものである。   According to a third aspect of the present invention, there is provided the atomization apparatus according to the first or second aspect, wherein the nozzle body expands outward from the outer peripheral side end in the direction of the injection flow path. It has a taper-shaped opening portion that has a diameter.

請求項4に記載の発明に係る微粒化装置は、請求項1〜3のいずれか1項に記載する微粒化装置において、前記大口径流路と導出流路の噴出方向との開き角度が95度以上、150度以下であることを特徴とするものである。   The atomization apparatus according to a fourth aspect of the present invention is the atomization apparatus according to any one of the first to third aspects, wherein an opening angle between the large-diameter channel and the ejection direction of the outlet channel is 95 degrees. As mentioned above, it is 150 degrees or less.

請求項5に記載の発明に係る微粒化装置は、請求項1〜4のいずれか1項に記載の微粒化装置において、前記噴射流路および前記大口径流路の断面がそれぞれ矩形であることを特徴とするものである。   The atomization apparatus according to the invention described in claim 5 is the atomization apparatus according to any one of claims 1 to 4, wherein each of the injection channel and the large-diameter channel has a rectangular cross section. It is a feature.

請求項6に記載の発明に係る微粒化装置は、請求項1〜5のいずれか1項に記載の微粒化装置において、前記ノズル本体は、前記大口径流路と前記導出流路が形成されている第1部材と、前記噴射流路が形成されている第2部材とを有し、前記第2部材が第1部材に形成された凹部に嵌合した状態にて前記噴射流路が前記大口径流路に連通するものである。   The atomization apparatus according to the invention described in claim 6 is the atomization apparatus according to any one of claims 1 to 5, wherein the nozzle body includes the large-diameter channel and the outlet channel. And the second member in which the injection passage is formed, and the injection passage is in the large opening in a state where the second member is fitted in a recess formed in the first member. It communicates with the radial channel.

請求項7に記載の発明に係る微粒化装置は、請求項6に記載の微粒化装置において、前記第2部材がダイヤモンドであることを特徴とするものである。   According to a seventh aspect of the present invention, there is provided the atomization apparatus according to the sixth aspect, wherein the second member is diamond.

請求項8に記載の発明に係る微粒化装置は、請求項1〜7のいずれか1項に記載の微粒化装置において、 前記ノズル本体を、バネの付勢力によってノズル本体の導出流路が装置ハウジング部材に設けられた導出流路に同軸上に位置決めされた状態で前記ハウジング部材に押圧するシール手段を備えたものである。   The atomization apparatus according to the invention described in claim 8 is the atomization apparatus according to any one of claims 1 to 7, wherein the nozzle body is connected to the nozzle body by a biasing force of a spring. Sealing means for pressing the housing member in a state of being coaxially positioned in a lead-out flow path provided in the housing member is provided.

請求項9に記載の発明に係る微粒化装置は、請求項1〜8のいずれか1項に記載の微粒化装置において、 前記高圧流体がエマルジョンであることを特徴とするものである。   The atomization apparatus according to the invention described in claim 9 is the atomization apparatus according to any one of claims 1 to 8, wherein the high-pressure fluid is an emulsion.

本発明の微粒化装置においては、ノズル本体に、該本体外周面から軸心に向かって形成された複数の貫通孔からなる衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とが設けられ、前記衝突用流路が、導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて衝突用流路の外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備えているものであるため、高圧流体が部材内で屈曲して形成された流路を進むことがなく、圧力損失なく良好に流速が増大されて噴射流路から大口径流路へ向かって噴射された高速ジェットは、その噴射力により高速を維持し且つ液−液間でのせん断力を得ることができ、さらに大口径流路内を出たジェットは高速を維持して衝突するため、良好な微粒化処理を行うことができるという効果がある。さらにノズル本体について噴射流路、大口径流路、導出流路の長さや径及び大口径流路と導出流路の開き角度等の設計寸法を特定の条件範囲内に規定することによって、微粒化用ノズル手段として高硬質材料の使用量を少なく抑えつつもより耐久性に優れ、高性能、高効率さらに大流量での高圧微粒化処理が可能なものが得られる。   In the atomization apparatus of the present invention, the nozzle main body has a collision flow path composed of a plurality of through-holes formed from the outer peripheral surface of the main body toward the shaft center, and the axial center from the confluence of these collision flow paths. A collision channel formed along the direction for deriving the fluid after the collision is provided, and the collision channel is a downstream large-diameter channel communicating with the deriving channel, and the large-diameter channel A high-pressure fluid provided on the upstream side and having a small-diameter injection channel for ejecting the high-pressure fluid introduced from the outer peripheral end opening of the collision channel into the large-diameter channel. The high-speed jet that is jetted from the injection flow path toward the large-diameter flow path without increasing the flow velocity without increasing the pressure flow through the bent flow path in the member, Maintain and obtain a shear force between liquid and liquid. Jet exiting the diameter channel in the order of collision while maintaining the high speed, there is an effect that it is possible to perform good atomization process. Furthermore, by defining the nozzle body within the specified condition range such as the length and diameter of the injection channel, large-diameter channel, outlet channel, and the opening angle of the large-diameter channel and outlet channel, the nozzle for atomization As a means, it is possible to obtain a material which is superior in durability while suppressing the use amount of the high-hardness material to be small, and which can perform high-pressure atomization treatment with high performance, high efficiency and high flow rate.

また、本発明のノズル手段においては、衝突用流路が下流側の大口径流路と上流側の小口径の噴射流路とを備えたものであるため、大口径流路と噴射流路とを別部材に形成して互いに連通状態に組み合わせた構成が可能であり、ノズル本体を大口径流路と導出流路が形成されている第1部材と噴射流路が形成されている第2部材の二種の部材で構成することもでき、高い耐久性が必要な噴射流路が形成される第2部材のみにダイヤモンド等の高硬質材料を用い、他の流路が形成される第1部材には安価な高硬質材料を用いることで、高い強度を持ち、且つノズル本体のコストを下げて製作することが可能であり、また高圧流体の導入時にはノズル本体の外周全体に圧力がかかって部材内部に引っ張り応力が生じることがないため、ノズル本体の割れを防止することができるだけでなく、ノズル本体の大型化が可能となり、良好な微粒化性能を維持した大流量処理も実現可能となる。   In the nozzle means of the present invention, since the collision flow path includes a downstream large-diameter flow path and an upstream small-diameter injection flow path, the large-diameter flow path and the injection flow path are separated from each other. It is possible to adopt a configuration in which the nozzle body is combined with each other in communication with each other, and the nozzle body is divided into a first member in which a large-diameter channel and a discharge channel are formed, and a second member in which an injection channel is formed. It is also possible to use a highly rigid material such as diamond only for the second member on which the injection flow path that requires high durability is formed, and the first member on which other flow paths are formed is inexpensive. By using such a hard material, it is possible to manufacture with high strength and lowering the cost of the nozzle body, and when high pressure fluid is introduced, pressure is applied to the entire outer periphery of the nozzle body to pull it inside the member. Since no stress is generated, the nozzle body Not only it is possible to prevent cracking, it is possible to increase in size of the nozzle body, it becomes possible to realize high flow processing maintaining good atomization performance.

本発明は、高圧流体同士を衝突させるためのノズル手段として、高硬質材料からなるノズル本体に、該本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とが設けられ、前記導入流路に導かれた高圧流体が、ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものを備えた微粒化装置であり、衝突用流路が、導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路とを備えているものである。   The present invention provides a high-pressure fluid collision flow comprising a plurality of through-holes formed in a nozzle main body made of a highly rigid material as a nozzle means for causing high-pressure fluids to collide with each other from the outer peripheral surface of the main body toward the axis. And a derivation flow path for deriving the fluid after collision formed along the axial direction from the confluence of the collision flow paths, and the high-pressure fluid led to the introduction flow path is provided. , A atomization device provided with an apparatus introduced from the outer periphery of the nozzle body to each outer peripheral side end opening of the collision flow channel, wherein the collision flow channel is a downstream large-diameter flow channel communicating with the outlet flow channel And a small-diameter injection channel that is provided on the upstream side of the large-diameter channel and that ejects high-pressure fluid introduced from the outer peripheral end opening into the large-diameter channel.

即ち、本発明のノズル手段においては、噴射流路とこれに続く大口径流路とが設けられて衝突用流路を構成し、該衝突用流路がノズル本体軸心と直交する面上あるいはそれ以上の角度をもって導出流路と連通するものであるため、各衝突用流路の各外周側端部開口から導入される高圧流体は、各噴射流路から大口径流路を経由してノズル本体軸心上の合流点へ向かって進み、該合流点で衝突し、衝突後には該合流点から軸心方向に沿って形成された導出流路からノズル本体外へ導出される。   That is, in the nozzle means of the present invention, an injection flow path and a large-diameter flow path that follows this form a collision flow path, and the collision flow path is on a surface orthogonal to the nozzle body axis or on the surface thereof. Since it communicates with the outlet channel at the above angle, the high-pressure fluid introduced from each outer peripheral end opening of each collision channel passes through the large-diameter channel from the nozzle channel and the nozzle body shaft It progresses toward the confluence on the center, collides with the confluence, and after the collision, it is led out of the nozzle body from the outlet passage formed along the axial direction from the confluence.

本発明で云う噴射流路とは、ノズル手段において高圧流体が流れる最も断面積の狭い流路であり、高圧流体がここを流れる際に圧力エネルギーが速度エネルギーに変換される流路である。これに連通する大口径流路内では、噴射流路から噴射される高圧流体はその噴射力により高速ジェットを形成し、この高速ジェットが周囲の流体と強い液−液間でのせん断力を生じる。この液−液間でのせん断及び大口径流路を通った後のジェットが衝突空間で衝突することによって微粒化はより促進される。   The injection flow path referred to in the present invention is a flow path having the narrowest cross-sectional area through which high-pressure fluid flows in the nozzle means. In the large-diameter channel communicating with this, the high-pressure fluid ejected from the ejection channel forms a high-speed jet by the ejection force, and this high-speed jet generates a shearing force between the surrounding fluid and a strong liquid-liquid. The atomization is further promoted by the liquid-liquid shear and the jet after passing through the large-diameter channel collide in the collision space.

従って、本発明のノズル手段においては、まず高圧流体が部材内で屈曲して形成された流路を進むことなく噴射流路に導入できるため、圧力損失がほとんど発生することなく良好に流速が増大されて噴射流路から大口径流路へ向かって高速ジェットが噴射され、さらに大口径流路内では良好な液−液間でのせん断力を発生させることができ、それと共に大口径流路から噴射したジェットは高速を維持した状態で、別の大口径流路から同様に噴射されたジェットと導出流路内で衝突するため、その際大きな衝突エネルギーが得られ、優れた微粒化性能を実現することができる。   Therefore, in the nozzle means of the present invention, since the high-pressure fluid can be introduced into the injection flow path without proceeding through the flow path formed by bending in the member, the flow velocity can be increased well with almost no pressure loss. A high-speed jet is jetted from the jet channel toward the large-diameter channel, and a good liquid-liquid shearing force can be generated in the large-diameter channel, and at the same time, the jet jetted from the large-diameter channel In a state where high speed is maintained, a jet injected from another large-diameter channel collides with the jet channel in the same way, so that a large collision energy can be obtained and excellent atomization performance can be realized. .

またさらに、本発明においては、ノズル本体について噴射流路や大口径流路、導出流路の長さや径等の設計寸法を特定の条件範囲内に規定することによって、高硬質材料の使用量を少なく抑えつつもより耐久性に優れ、高性能、高効率さらに大流量での高圧微粒化処理が可能なものが得られる。   Furthermore, in the present invention, the amount of use of the high-hardness material is reduced by defining the design dimensions such as the length and diameter of the injection flow channel, the large-diameter flow channel, and the discharge flow channel within a specific condition range for the nozzle body. It is possible to obtain a material that is superior in durability while being suppressed, capable of high performance, high efficiency, and high pressure atomization at a large flow rate.

流量は、噴射流路の個数nと口径dによって大略決定する。例えば、噴射流路断面形状が真円でn=2のとき、圧力245MPaにおいて、d=0.1mmで流量0.5L/min、d=0.25mmで流量4L/min、d=0.35mmで流量7.5L/min、d=0.5mmで流量12L/minとなる。 The flow rate is determined roughly by the number n and the diameter d 1 of the injection passage. For example, when the cross-sectional shape of the injection flow path is a perfect circle and n = 2, at a pressure of 245 MPa, a flow rate of 0.5 L / min at d 1 = 0.1 mm, a flow rate of 4 L / min at d 1 = 0.25 mm, and d 1 = The flow rate is 7.5 L / min at 0.35 mm, and the flow rate is 12 L / min at d 1 = 0.5 mm.

一方、高速ジェットの速度を最大限高めるためには、噴射流路の長さLを短くして流路内壁面と流体との摩擦による速度損失を極力低下させることが望ましい。しかし、短すぎるとノズル本体の強度が悪く破損を招く要因となるため、最低限の長さは必要である。具体的には噴射流路の長さLを、0.15mm以上0.6mm以下、より好ましくは0.25mm以上0.4mm以下の範囲内とすることが好適である。 Meanwhile, in order to maximize the speed of the high speed jet, the injection passage of making the utmost decrease the speed loss due to friction between the length of L 1 and short flow path wall and the fluid is desired. However, if the length is too short, the strength of the nozzle body is poor and causes damage, so a minimum length is necessary. The length L 1 of the concrete injection passage, 0.15 mm or more 0.6mm or less, more preferably preferably be in the range of 0.25mm or 0.4mm or less.

噴射流路からの高速ジェットは大口径流路に噴射され、大口径流路内で周囲の流体との液−液間でのせん断及び大口径流路を通った後のジェットが衝突空間で衝突することによって原料液の微粒化を実現する。即ち、1個の大口径流路の断面積Aと1個の噴射流路断面積Aとの比が2≦A/A≦7、より好ましくは2.5≦A/A≦6となるようにすることにより、液−液間でのせん断力及び衝突エネルギーを最大限に高める事ができる。なお、噴射流路と大口径流路とは同軸上に設けることが好ましい。 The high-speed jet from the injection channel is injected into the large-diameter channel, the liquid-liquid shearing with the surrounding fluid in the large-diameter channel, and the jet after passing through the large-diameter channel collide in the collision space. Achieving atomization of raw material liquid. That is, one of the cross-sectional area A 2 of the large diameter flow channel and one injection passage sectional ratio between the area A 1 is 2 ≦ A 2 / A 1 ≦ 7, more preferably 2.5 ≦ A 2 / A 1 By satisfying ≦ 6, the shearing force between the liquid and the liquid and the collision energy can be maximized. In addition, it is preferable to provide the injection channel and the large-diameter channel coaxially.

また、液−液間でのせん断力及び衝突エネルギーは大口径流路の長さLを好適な範囲にすることによってさらに高めることができる。即ち、大口径流路Lを1.5mm以上4mm以下、より好ましくは2mm以上3mm以下の範囲内とする事によって十分な液−液間でのせん断力を得て、且つエネルギーを高いレベルに維持したままジェットを導出流路内で衝突させることができる。 The liquid - shear and impact energy between the liquid can be further enhanced by the length L 2 of the large diameter flow channel to a suitable range. That is, the following large-diameter passage L 4 mm 2 to 1.5mm or more, sufficient liquid more preferably by in the range of 2mm or more 3mm or less - maintained to obtain a shear force between the liquid and the energy to a higher level The jet can be caused to collide in the outlet flow path as it is.

さらに、衝突後の流体は導出流路を通ってノズル本体から排出されるが、導出流路の径が小さすぎると導出流路での圧力損失が支配的となり噴射流路出口での高速ジェットの速度が充分に大きくならないため、導出流路径は適切な大きさにしなければならない。即ち、噴射流路の断面積の流路個数分の合計nA、導出流路の断面積をAとすると、Aを2≦A/nA≦80、より好ましくは2.5≦A/nA≦65とすることにより、ジェット同士の衝突速度を上げることができ、衝突エネルギーを高め、衝突時の微粒化性能をより向上させることができる。 Furthermore, the fluid after the collision is discharged from the nozzle body through the outlet channel, but if the diameter of the outlet channel is too small, pressure loss in the outlet channel dominates and the high-speed jet at the outlet of the injection channel Since the speed does not increase sufficiently, the outlet channel diameter must be appropriately sized. That is, assuming that the total number of cross-sectional areas of the injection flow path is nA 1 and the cross-sectional area of the outlet flow path is A 3 , A 3 is 2 ≦ A 3 / nA 1 ≦ 80, more preferably 2.5 ≦ By setting A 3 / nA 1 ≦ 65, the collision speed between jets can be increased, the collision energy can be increased, and the atomization performance at the time of collision can be further improved.

なお、本発明のノズル本体の高硬質材料としては、超硬合金、SUS440C等金属材料の耐磨耗性を向上させた材料や、窒化珪素、ジルコニア、アルミナ等のセラミックスおよびダイヤモンド、サファイア、ルビーなどが挙げられる。噴射流路には特に高硬質材料として耐摩耗性に優れるダイヤモンドを用いることが望ましい。ダイヤモンドを用いる場合、最も硬度の高い天然ダイヤモンドの他、人工単結晶ダイヤモンド、人工多結晶ダイヤモンド、焼結ダイヤモンドがあり、いずれも用いることができるが、十分な硬度を持ち揃った大きさの粒が得られ、入手のし易さから人工単結晶ダイヤモンドを用いることが最も望ましい。   In addition, examples of the highly hard material of the nozzle body of the present invention include materials with improved wear resistance of metal materials such as cemented carbide and SUS440C, ceramics such as silicon nitride, zirconia, and alumina, diamond, sapphire, ruby, and the like. Is mentioned. It is desirable to use diamond having excellent wear resistance as a particularly hard material for the injection flow path. In the case of using diamond, in addition to natural diamond with the highest hardness, there are artificial single crystal diamond, artificial polycrystalline diamond, and sintered diamond, and any of them can be used. It is most desirable to use artificial single crystal diamond because it is obtained and easily available.

また、本発明におけるノズル本体の衝突用流路は、主に下流側の大口径流路と上流側の噴射流路とで構成されるものであるため、これらの流路をそれぞれ別体の部材に形成し、互いに連通するように組み合わせて構成することが可能である。この場合、高い耐久性が必要な噴射流路のみをダイヤモンド等の高硬質材料に形成し、他の流路を安価で加工性の優れた別の高硬質材料に形成することができる。   In addition, since the collision flow path of the nozzle body in the present invention is mainly composed of the downstream large-diameter flow path and the upstream injection flow path, these flow paths are respectively formed as separate members. It is possible to form and combine them so as to communicate with each other. In this case, only the injection flow path that requires high durability can be formed in a high-hardness material such as diamond, and the other flow paths can be formed in another high-hardness material that is inexpensive and excellent in workability.

即ち、第1部材に導出流路とこれに連通する全ての大口径流路とを形成し、各噴射流路を衝突用流路の個数分の第2部材にそれぞれ形成し、第1部材の各大口径流路端部に形成された凹部にそれぞれ第2部材を嵌合した状態において各噴射流路がそれぞれ対応する大口径流路に連通するようにノズル本体を構成すれば、ノズル本体の全体寸法を決定するのは第1部材でありこれに対し各第2部材は格段に小さくてすむため、第2部材のみを高価なダイヤモンドとし、第1部材は大口径流路と導出流路に充分な強度をもつ安価な高硬質材料とすれば、微粒化処理の大流量化のためのノズル本体の大型化も低コストで容易に実現可能となる。   That is, the first member is formed with the outlet channel and all the large-diameter channels communicating with the first member, and each injection channel is formed on each of the second members corresponding to the number of the collision channels. If the nozzle body is configured such that each injection flow path communicates with the corresponding large diameter flow path in a state where the second member is fitted in the recess formed at the end of the large flow diameter flow path, the overall dimensions of the nozzle main body can be reduced. Since the first member is determined and each second member is much smaller, only the second member is made of expensive diamond, and the first member has sufficient strength for the large-diameter channel and the outlet channel. If it is made of an inexpensive, high-hard material, it is possible to easily increase the size of the nozzle body for increasing the flow rate of the atomization process at a low cost.

なお、軸心方向に沿って設けられた導出流路の噴出方向と衝突用流路、即ち大口径流路とがなす角度を開き角度とすると、軸心に対して90度の角度をもって大口径流路が導出流路と連通する場合、衝突用流路と導出流路は側面視でT字形状を形成することとなる。また、前記開き角度が軸心に対して90度を超える角度であればこれら衝突用流路と導出流路とが側面視で略Y字形状を形成することとなる。   In addition, when the angle formed by the ejection direction of the outlet flow path provided along the axial direction and the collision flow path, that is, the large-diameter flow path, is an opening angle, the large-diameter flow path has an angle of 90 degrees with respect to the axial center. When communicating with the outlet channel, the collision channel and the outlet channel form a T shape in a side view. If the opening angle exceeds 90 degrees with respect to the axis, the collision flow channel and the discharge flow channel form a substantially Y shape in a side view.

大口径流路より流出したジェットは導出流路内で衝突するが、導出流路の噴出方向と大口径流路の開き角度が90度で大口径流路が対向して設けられている場合、ジェットは点で合流するため、確実に衝突させるには高精度な芯出しが要求され、また使用開始時はジェット同士が確実に衝突した場合も、長時間の使用によって軸が変化し互いを損傷する可能性がある。しかし、90度を上回る開き角度とするとジェットは線で合流するため、軸心と直交する面上でジェット同士が対向していれば開き角度が加工や使用経過によって変化した場合でもジェット同士は衝突する。即ち、開き角度が95度以上150度以下とすることにより、ジェットの衝突確率が向上し微粒化性能も向上させることができる。   The jet that has flowed out of the large-diameter channel collides in the outlet channel, but if the outlet direction of the outlet channel and the opening angle of the large-diameter channel are 90 degrees and the large-diameter channel is opposed to the jet, Therefore, high-precision centering is required for reliable collision, and even when jets reliably collide at the start of use, the shaft may change due to long-term use and damage each other There is. However, if the opening angle exceeds 90 degrees, the jets merge at a line, so if the jets face each other on a plane orthogonal to the axis, the jets will collide even if the opening angle changes due to processing or usage. To do. That is, when the opening angle is 95 degrees or more and 150 degrees or less, the collision probability of the jet can be improved and the atomization performance can be improved.

また、本発明のノズル手段では、高圧流体の圧力をノズル本体の外周全体にかかるようにしたため、内圧を相殺することができるので各衝突用流路の方向の外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分を設けることができ、このテーパ形状開口部分によって高圧流体の導入をよりスムーズにすることができると共に、実質的に微小口径領域である噴射流路が短くなって壁面抵抗による速度損失をさらに低減することができる。   In the nozzle means of the present invention, since the pressure of the high-pressure fluid is applied to the entire outer periphery of the nozzle body, the internal pressure can be canceled out, so that the outer end of each collision channel is directed outward. The taper-shaped opening portion that expands in diameter can be provided, the introduction of the high-pressure fluid can be made smoother by the taper-shaped opening portion, and the injection flow path that is a substantially small-diameter region is shortened and the wall surface Speed loss due to resistance can be further reduced.

このようなテーパ形状開口部分を形成した場合、図3(a)に示すように実質的な噴射流路の長さLは、ノズル本体表面に露呈する開口端から大口径流路に達する領域のうち、テーパ形状部分を除く長さであり、これは即ち噴射流路方向の外周側開口部にテーパ形状部分を形成することによって、より流体抵抗を減少せしめ、より高速で大口径流路内に噴射し、大口径流路内における高速ジェット周囲の強い液−液間でのせん断及び導出流路内での高速な流体同士の衝突を実現できるものである。なお、前述の用に噴射流路が大口径流路が形成されている第1部材とは別の第2部材に形成される場合、このテーパ形状開口部分も噴射流路と連続して同じ第2部材に形成すれば良い。 When forming such a tapered opening portion, the length L 1 of the substantial injection passage, as shown in FIG. 3 (a), the region from the open end exposed to the nozzle body surface reaches the large diameter flow channel Of these, it is the length excluding the taper-shaped part, that is, by forming the taper-shaped part at the outer peripheral side opening in the direction of the injection flow path, the fluid resistance is further reduced, and the high-speed injection into the large-diameter flow path In addition, strong liquid-liquid shearing around the high-speed jet in the large-diameter channel and high-speed fluid collision in the outlet channel can be realized. In addition, when the injection flow path is formed on the second member different from the first member on which the large-diameter flow path is formed for the above-mentioned purpose, this tapered opening portion is also the same as the second continuous with the injection flow path. What is necessary is just to form in a member.

また噴射流路、大口径流路、導出流路の断面形状は、円形状が流体と流路内壁面との摩擦損失の低減、加工の容易さ、機械的強度といった点から望ましいが、断面が円形である噴射流路から噴射される高速ジェットの断面も円であるため精度よく衝突させることは困難である。しかし、断面を矩形とし、矩形の長辺が軸心に直交する面と平行する方向に衝突用流路を設ければ、衝突空間におけるジェットの衝突確率は向上し、さらに高速ジェットの表面積が増大するため液−液間でのせん断も向上させることができる。即ち、噴射流路および大口径流路の断面が矩形であれば、さらに耐久性および微粒化性能を向上させることができる。   In addition, the cross-sectional shapes of the injection flow channel, large-diameter flow channel, and outlet flow channel are preferably circular from the viewpoint of reducing friction loss between the fluid and the inner wall surface of the flow channel, ease of processing, and mechanical strength. Since the cross section of the high-speed jet injected from the injection flow path is also a circle, it is difficult to collide with high accuracy. However, if the cross section is rectangular and the collision flow path is provided in the direction parallel to the plane perpendicular to the axis, the collision probability of the jet in the collision space is improved and the surface area of the high-speed jet is increased. Therefore, the shear between the liquid and the liquid can also be improved. That is, if the cross section of the injection channel and the large-diameter channel is rectangular, the durability and atomization performance can be further improved.

さらに、導出流路は下流出口側開口に向かって拡径するテーパ形状としても良い。この場合、導出流路断面積Aはテーパ部の無い衝突空間14Xの断面積で代表できる。 Furthermore, the outlet channel may have a tapered shape that expands toward the downstream outlet side opening. In this case, outlet flow path cross-sectional area A 3 can be represented by the cross-sectional area of no collision space 14X tapered portion.

なお、本発明のノズル手段において、ノズル本体の導出流路から導出される衝突済み流体は、ノズル本体が設置される微粒化装置のハウジング部材に設けられた導出流路を経て装置外へ送られるため、流体の漏れのない導出のためには、このノズル本体側の導出流路と装置ハウジング部材側の導出流路とが良好なシール状態で連通される必要がある。   In the nozzle means of the present invention, the collided fluid led out from the lead-out flow path of the nozzle body is sent out of the apparatus through the lead-out flow path provided in the housing member of the atomization device where the nozzle main body is installed. Therefore, for derivation without fluid leakage, the derivation flow path on the nozzle body side and the derivation flow path on the apparatus housing member side need to communicate with each other in a good sealed state.

そこで、ノズル本体の導出流路がハウジング部材側の導出流路に対して同軸上に位置決めされた状態でノズル本体をハウジング部材へ押圧するシール手段を設ければ良い。このシール手段としては、ノズル本体が高圧流体の導入時に発生する圧力を利用できることから、ネジ等の強固で加減が困難な締め付け手段は必要なく、バネの付勢力を利用した簡便なもので充分である。   Therefore, it is only necessary to provide sealing means for pressing the nozzle body against the housing member in a state where the outlet flow path of the nozzle body is coaxially positioned with respect to the outlet flow path on the housing member side. As the sealing means, since the nozzle body can use the pressure generated when the high-pressure fluid is introduced, there is no need for a fastening means such as a screw that is difficult to adjust, and a simple means using the biasing force of the spring is sufficient. is there.

また、噴射流路、大口径流路及び導出流路内でキャビテーションを発生する場合、従来のプレート同士を強固にネジ止め固定していたノズル手段ではネジ穴部分等にキャビテーションによる圧力変動に伴う振動の影響を受けたネジの緩みやネジ自身の振動によるネジ穴部分での損傷が発生する恐れがあったが、本発明においては一つの部材からなるノズル本体自身はもちろん、バネを利用したシール手段により押圧された装置ハウジング部材側との間にもネジ穴部などを設ける必要がないため、振動による悪影響を受ける恐れもなくなる。むしろ、バネのみによる押圧固定状態であってもそのバネによる振動の吸収緩和作用により、ノズル手段のハウジング側の導出流路との軸ズレ防止効果が期待できる。   In addition, when cavitation is generated in the injection flow channel, large-diameter flow channel, and outlet flow channel, in the nozzle means in which the conventional plates are firmly fixed to each other with screws, vibrations due to pressure fluctuations due to cavitation are generated in the screw hole portions. There was a risk of damage to the screw hole due to loosening of the affected screw or vibration of the screw itself, but in the present invention, not only the nozzle body itself consisting of one member but also sealing means using a spring Since there is no need to provide a screw hole or the like between the pressed device housing member side, there is no possibility of being adversely affected by vibration. Rather, the effect of preventing the axial displacement of the nozzle means with the outlet flow path on the housing side can be expected by the vibration absorbing and mitigating action of the spring even in the press-fixed state using only the spring.

以上、本発明について詳述したノズル本体は特に処理原料を特定することなく微粒化に用いることができるが、流体と固体壁との摩擦による損失を極力抑えつつ、高速な流体を連通する大口径流路に噴射することで高速ジェット周囲に強い液−液間でのせん断力や衝撃力を発生させることができ、その後さらにジェット同士を効率的に衝突させる事ができる。このため、連続相と分散相とが共に液体である分散系すなわちエマルジョンの微粒化に特に優れた性能を発揮する。   As described above, the nozzle body described in detail for the present invention can be used for atomization without specifying a processing raw material, but a large-diameter flow that allows high-speed fluid communication while suppressing loss due to friction between the fluid and the solid wall as much as possible. By jetting onto the road, a strong liquid-liquid shearing force or impact force can be generated around the high-speed jet, and then the jets can collide more efficiently. For this reason, the performance which was especially excellent in atomization of the dispersion system which is a liquid in a continuous phase and a dispersed phase, ie, an emulsion, is exhibited.

本発明の実施例による微粒化装置として、原料液の高圧流体同士を衝突させるためのノズル手段に、同軸上に配置された噴射流路と大口径流路とで2本の衝突用流路が構成され、下流側の大口径流路と軸心とが同一面上で軸心に対して角度をもって設けられ、大口径流路と軸心方向に沿った導出流路とが側面視で略Y字状に設けられてなるノズル本体を備えた装置を図1に示す。図1(a)は本微粒化装置の概略構成を示す側断面図であり、(b)はノズル本体部分の拡大図である。本実施例の微粒化装置1は、略カップ状のハウジング2にプラグ部材6を嵌合して内部に形成されるチャンバ9内に、プラグ部材6側の押さえ部材7とハウジング2側からバネ5により付勢されるノズル押さえ3との間でノズル本体10が保持されるものである。   As the atomization apparatus according to the embodiment of the present invention, two collision flow paths are constituted by the injection flow path and the large-diameter flow path that are coaxially arranged in the nozzle means for causing the high-pressure fluids of the raw material liquid to collide with each other. The downstream large-diameter channel and the axial center are provided on the same plane at an angle with respect to the axial center, and the large-diameter channel and the outlet channel along the axial direction are substantially Y-shaped in a side view. The apparatus provided with the nozzle main body provided is shown in FIG. Fig.1 (a) is a sectional side view which shows schematic structure of this atomization apparatus, (b) is an enlarged view of a nozzle main-body part. The atomization device 1 of this embodiment includes a pressing member 7 on the plug member 6 side and a spring 5 from the housing 2 side in a chamber 9 formed inside by fitting the plug member 6 to a substantially cup-shaped housing 2. The nozzle body 10 is held between the nozzle presser 3 and the nozzle presser 3 that is biased by.

ノズル本体10は、例えば超硬合金などの高硬質材料からなる第1部材11に互いに軸心方向へ向かい合うように軸心に対して角度をもって形成された大口径流路13とこの大口径流路13同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路14とが略Y字状に設けられ、第1部材11の各大口径流路開口端部に形成された凹部11xに、噴射流路12Yが形成された単結晶ダイヤモンド等の高硬質材料からなる第2部材16がそれぞれ嵌合されて構成されたものである。なお、第1部材11と第2部材16との接合固定は、ろう付、例えば銀ろうによって行える。   The nozzle body 10 includes, for example, a large-diameter channel 13 formed at an angle with respect to the axial center so as to face each other in the axial direction in the first member 11 made of a highly hard material such as cemented carbide, and the large-diameter channels 13. And a lead-out flow path 14 for leading the fluid after the collision formed along the axial direction from the merging point is provided in a substantially Y shape, and is formed at each large-diameter flow path opening end of the first member 11. A second member 16 made of a high-hardness material such as single crystal diamond in which an injection flow path 12Y is formed is fitted in each of the recessed portions 11x. The first member 11 and the second member 16 can be joined and fixed by brazing, for example, silver brazing.

各第2部材16には、それぞれ外側に向かって拡径するテーパ形状開口部分12Xを備えた噴射流路12Yが形成されており、前記凹部11xへの嵌合状態にて各噴射流路12Yが大口径流路13に同軸上に連通し、噴射用流路が構成される。なお本実施例において、ノズル本体10へ高圧流体を導入するための導入流路15は、ノズル押さえ3とプラグ側の押さえ部材7との間でノズル本体10の外側空間に形成される。   Each second member 16 is formed with an injection flow path 12Y having a tapered opening portion 12X that expands toward the outside, and each injection flow path 12Y is fitted in the recess 11x. The injection channel is configured to communicate coaxially with the large-diameter channel 13. In this embodiment, the introduction flow path 15 for introducing a high-pressure fluid into the nozzle body 10 is formed in the outer space of the nozzle body 10 between the nozzle holder 3 and the plug-side pressing member 7.

従って、衝突処理対象原料である高圧流体は、ハウジング2の端部からチャンバ9およびノズル押さえ3に形成された供給流路4を経て導入流路15へ送られ、この導入流路15からノズル本体10の外周面全体に圧をかける状態で供給され、ノズル本体外周面に開口する各第2部材16のテーパ形状開口部分12Xからそれぞれ噴射流路12Yへ導かれ、各大口径流路13に噴射され、その後ジェットはそれぞれ衝突空間14Xへ送られ、軸心上の合流点にて衝突する。   Therefore, the high-pressure fluid that is the material to be subjected to the collision treatment is sent from the end of the housing 2 to the introduction passage 15 through the supply passage 4 formed in the chamber 9 and the nozzle retainer 3, and from the introduction passage 15 to the nozzle body. 10 is supplied in a state in which pressure is applied to the entire outer peripheral surface of the nozzle 10, guided from the tapered opening 12X of each second member 16 opened to the outer peripheral surface of the nozzle body to the injection flow path 12Y, and injected to each large-diameter flow path 13. Thereafter, the jets are respectively sent to the collision space 14X and collide at a confluence on the axial center.

従って、以上のような構成のノズル本体10を備えた本実施例における微粒化装置1では、高圧流体がノズル本体10内で屈曲する衝突用流路を進むことが無いため、圧力損失をほとんど発生することなく衝突空間14Xへ導入される。   Therefore, in the atomization apparatus 1 according to the present embodiment including the nozzle body 10 having the above-described configuration, almost no pressure loss occurs because the high-pressure fluid does not travel through the collision flow path bent in the nozzle body 10. Without being introduced to the collision space 14X.

また、本実施例では、ノズル本体10を二種の部材で構成し、噴射流路12Yはダイヤモンド等の高硬質材料を用い、他の大口径流路13、導出流路14等は安価な高硬質材料を用いた。これによって、安価で自由な流路設計を行うことができる。   Further, in this embodiment, the nozzle body 10 is composed of two types of members, the injection flow path 12Y uses a hard material such as diamond, and the other large-diameter flow path 13, the outlet flow path 14 and the like are inexpensive and hard. Material was used. Thereby, an inexpensive and free flow path design can be performed.

なお、各噴射流路12Yの外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分12Xを設けたことにより、高圧流体の導入、加速がよりスムーズになる。このテーパ形状開口部分12Xでは、高圧流体導入時に引っ張り応力が生じるが、前述のように本ノズル本体10ではその外周面全体に高圧流体の圧力がかかることにより相殺されるため問題ない。   In addition, the introduction and acceleration of the high-pressure fluid become smoother by providing the tapered opening portion 12X whose diameter increases from the outer peripheral side end of each ejection flow path 12Y toward the outside. In the tapered opening portion 12X, a tensile stress is generated when the high-pressure fluid is introduced, but there is no problem because the high-pressure fluid pressure is applied to the entire outer peripheral surface of the nozzle body 10 as described above.

このようなテーパ形状開口部分12Xを設けた場合、高圧流体の縮流等によって高圧流体が噴射流路に導入される際の抵抗をなくすことができ、良好な高速ジェットを形成させることができる。   When such a tapered opening portion 12X is provided, it is possible to eliminate resistance when the high-pressure fluid is introduced into the ejection flow path due to the contraction of the high-pressure fluid, and a good high-speed jet can be formed.

また、噴射流路と大口径流路とからなる衝突用流路を、軸心方向と直交する面上ではなく軸心に対して角度をもって設けた場合、衝突空間14Xにおいてジェットがより確実に衝突し、高い衝突エネルギーを得ることができ、ジェットによって対向する大口径流路等を損傷する可能性も低減することができる。さらに、噴射流路、大口径流路を矩形のスリットとし高速ジェットの形状を扁平とすることで、大口径流路13における液−液間でのせん断力を高め、衝突空間14Xにおけるジェット同士が正確に衝突し、微粒化性能を高めることができる。   In addition, when the collision flow path composed of the injection flow path and the large-diameter flow path is provided at an angle with respect to the axis instead of on the plane orthogonal to the axial direction, the jet collides more reliably in the collision space 14X. High impact energy can be obtained, and the possibility of damaging the large-diameter channel facing the jet can be reduced. Furthermore, the jet flow channel and the large-diameter channel are rectangular slits, and the shape of the high-speed jet is flattened, so that the shear force between the liquid and the liquid in the large-diameter channel 13 is increased, and the jets in the collision space 14X are accurately Colliding and improving atomization performance.

さらに本実施例では、ノズル本体10を装置ハウジング側、ここでは押さえ部材7に対して押圧固定し当接面を良好にシールしてノズル本体10の導出流路14とハウジング側の導出流路8との間の流体漏れを防止するためのシール手段として、バネ5によるノズル押さえ3を設けた。   Furthermore, in this embodiment, the nozzle body 10 is pressed and fixed to the apparatus housing side, here the holding member 7, and the contact surface is well sealed, and the outlet channel 14 of the nozzle body 10 and the outlet channel 8 on the housing side. As a sealing means for preventing fluid leakage between the two, a nozzle presser 3 by a spring 5 is provided.

本実施例におけるノズル本体10は、第1部材11と第2部材16との二種類の部材で構成し、大口径流路13、導出流路14を設けた安価な高硬質材料に、噴射流路12Yが形成されたダイヤモンド等の高硬質材料を用いた第2部材16を組み込んだ構成となっており、また、高圧流体が導入流路15に満たされることによりノズル本体10の外周全体に高圧流体の圧力がかかることから、従来の二つのプレートの重なりによって構成された場合のようにネジ止め等の部材破損が生じる危険のある強固で調整加減が困難な締め付け手段は必要なく、上記のようなバネ5の付勢力を利用した簡便なものでノズル本体10とハウジング間は良好なシール状態が得られ、流体漏れは充分に防止できる。   The nozzle body 10 in the present embodiment is composed of two types of members, a first member 11 and a second member 16, and an injection flow path is formed on an inexpensive high-rigid material provided with a large-diameter flow path 13 and a discharge flow path 14. The second member 16 using a high-hardness material such as diamond in which 12Y is formed is incorporated, and the high-pressure fluid is filled in the introduction flow path 15 so that the entire outer periphery of the nozzle body 10 is filled with the high-pressure fluid. Therefore, there is no need for a tightening means that is difficult to adjust and adjust, and there is a risk of damage to a member such as screwing as in the case where it is configured by overlapping two conventional plates. A simple one using the urging force of the spring 5 provides a good seal between the nozzle body 10 and the housing, and fluid leakage can be sufficiently prevented.

なお、上記実施例では、導出流路14が断面円形で出口側がテーパ状に拡径したものの場合を示したが、本発明においては、導出流路の形状をこれに限定するものではなく、実際の微粒化工程における原料液や各条件に応じて、良好な衝突条件が得られる衝突空間が形成されると共に衝突後の流体の導出がよりスムーズに行えるものであればよい。なお、導出流路断面積Aはテーパ部の無い衝突空間14Xの断面積で定義される。 In the above-described embodiment, the case where the outlet channel 14 has a circular cross section and the outlet side has a tapered diameter is shown. However, in the present invention, the shape of the outlet channel is not limited to this. In accordance with the raw material liquid and each condition in the atomization step, a collision space in which good collision conditions can be obtained is formed and fluid after the collision can be led out more smoothly. Incidentally, outlet flow path cross-sectional area A 3 is defined by the cross-sectional area of no collision space 14X tapered portion.

例えば、図2((a)はノズル本体の側断面図、(b)は(a)のA−A断面矢視図、
(c)は(a)のB−B断面矢視図)に示すノズル本体20のように、第1部材21に断面略長方形状で衝突空間から出口側に亘って同じ断面積で形成された導出流路24が挙げられる。この導出流路24を断面略長方形状としたことによって、横方向の面積を拡げることとなり、衝突距離を変更せずに、衝突後の原料液がスムーズに流れる。
For example, FIG. 2 ((a) is a sectional side view of the nozzle body, (b) is a sectional view taken along the line AA in (a),
(C) is the same as the nozzle body 20 shown in (a) BB cross-sectional view), and the first member 21 has a substantially rectangular cross section and is formed with the same cross sectional area from the collision space to the outlet side. An outlet channel 24 is exemplified. By setting the lead-out flow path 24 to have a substantially rectangular cross section, the area in the lateral direction is expanded, and the raw material liquid after the collision flows smoothly without changing the collision distance.

本発明のより具体的な実施様態として、図3、図4に示す各タイプのノズル本体(30,40)を組み込んで図1に示すように構成した微粒化装置においてそれぞれ繰り返し衝突処理テストを行い、ノズル本体に形成された噴射流路の口径d、大口径流路の口径dおよび導出流路の口径dの各口径の比率と、噴射流路、大口径流路の長さによる微粒化性能への影響を検討した結果を以下に示す。 As a more specific embodiment of the present invention, repeated collision processing tests were performed in the atomization apparatus constructed as shown in FIG. 1 by incorporating each type of nozzle body (30, 40) shown in FIGS. Atomization by the ratio of each of the diameter d 1 of the injection flow path formed in the nozzle body, the diameter d 2 of the large diameter flow path and the diameter d 3 of the outlet flow path, and the length of the injection flow path and the large diameter flow path The results of studying the effect on performance are shown below.

図3のタイプのノズル本体30は、(a)の側断面図に示すように、噴射流路32Yの外周側端部から外側に向かうテーパ形状開口部分32Xが形成され、噴射流路32Y、大口径流路33とも断面形状は円形である。図3(b)は(a)のA−A断面矢視図、(c)は(b)のB−B断面矢視図である。   As shown in the side sectional view of FIG. 3A, the nozzle body 30 of the type in FIG. 3 is formed with a tapered opening portion 32 </ b> X that extends outward from the outer peripheral side end of the injection flow path 32 </ b> Y. The cross-sectional shape of the radial channel 33 is circular. 3B is a cross-sectional view taken along the line AA in FIG. 3A, and FIG. 3C is a cross-sectional view taken along the line BB in FIG.

また、図4のタイプのノズル本体40は(a)の側断面図に示すように、噴射流路42Yの外周側端部から外側に向かうテーパ形状開口部分42Xが形成され、噴射流路42Y、大口径流路43とも断面形状は矩形である。図4(b)は(a)のA−A断面矢視図、(c)は(b)のB−B断面矢視図である。   Further, as shown in the side sectional view of FIG. 4A, the nozzle body 40 of the type in FIG. 4 is formed with a tapered opening portion 42 </ b> X that extends outward from the outer peripheral side end of the injection flow path 42 </ b> Y, The cross-sectional shape of the large-diameter channel 43 is rectangular. 4B is a cross-sectional view taken along the line AA in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the line BB in FIG.

いずれのタイプのノズル本体(30,40)とも、噴射流路(32Y,42Y)がダイヤモンドからなる第2部材(36,46)に形成され、超硬合金等の第1部材(31,41)に形成された大口径流路(33,43)の端部の凹部に第2部材(36,46)が嵌合されることにより噴射流路と大口径流路とが同軸上に連通されて衝突用流路が構成されるものである。いずれも衝突用流路の個数n=2とした。   In any type of nozzle body (30, 40), the injection flow path (32Y, 42Y) is formed in the second member (36, 46) made of diamond, and the first member (31, 41) such as cemented carbide. When the second member (36, 46) is fitted in the concave portion at the end of the large-diameter channel (33, 43) formed in the nozzle, the injection channel and the large-diameter channel are connected coaxially for collision. A flow path is constituted. In all cases, the number of collision channels n = 2.

本実施例における衝突処理テストは、流動パラフィン250g、セチルトリメチルアンモニウムクロリド20g、精製水730gを混合し、80℃に加熱混合し、ホモジナイザーで撹拌して得た粗乳化液1000gを原料として用いた。即ち、この粗乳化液を収容した原料タンクから高圧ポンプを介して操作圧力175MPaまたは225MPaで微粒化装置へ送り、微粒化装置の導出流路から排出される衝突済み処理液を背圧調整バルブ(背圧0〜15MPa)を介して冷却機(冷却水入口温度15℃)へ送り、冷却後に再び原料タンクへ回収し、次の衝突処理工程を繰り返す。   In the collision treatment test in this example, 250 g of liquid paraffin, 20 g of cetyltrimethylammonium chloride, and 730 g of purified water were mixed, heated and mixed at 80 ° C., and stirred with a homogenizer, and 1000 g of a coarse emulsion was used as a raw material. That is, the collided processing liquid which is sent from the raw material tank containing the coarse emulsion liquid to the atomization apparatus through the high-pressure pump at an operating pressure of 175 MPa or 225 MPa and discharged from the outlet flow path of the atomization apparatus is supplied to the back pressure adjusting valve ( It is sent to a cooler (cooling water inlet temperature 15 ° C.) via a back pressure of 0 to 15 MPa, recovered to the raw material tank again after cooling, and the next collision treatment process is repeated.

本テストでは、衝突処理を5回繰り返し、回収した液体を室温まで冷却して水中油型乳化組成物を得た。該組成物を水で5倍に稀釈して、粒径測定試料とし、微粒化性能を評価した。微粒化性能は外観透明性により評価できるため、本テストにおける評価方法としては、各試料を透過率測定セルに2mL入れ、紫外線可視吸光光度計(UV−160,株式会社島津製作所製)にて波長550nmの光の透過率を測定し、純水の透過率を100%とした時の比透過率(%)で示した。比透過率の値が大きいほど乳化組成物の透明性が高く、油滴がより微細に分散されていることを示す。本実施例においては、比透過率60%以上を微粒化性能の良好なものとした。これは、比透過率60%未満となる粒径の乳化組成物では、比透過率が60%以上の乳化組成物と比べて大粒径の油滴が多いため、合一等が起こりやすく、経時的な安定性が低くなるためである。   In this test, the collision treatment was repeated 5 times, and the recovered liquid was cooled to room temperature to obtain an oil-in-water emulsion composition. The composition was diluted 5 times with water to obtain a particle size measurement sample, and the atomization performance was evaluated. Since the atomization performance can be evaluated by the appearance transparency, as an evaluation method in this test, 2 mL of each sample is put into a transmittance measuring cell, and the wavelength is measured with an ultraviolet visible absorptiometer (UV-160, manufactured by Shimadzu Corporation). The transmittance of light at 550 nm was measured and expressed as a specific transmittance (%) when the transmittance of pure water was 100%. The greater the specific transmittance value, the higher the transparency of the emulsified composition, indicating that the oil droplets are more finely dispersed. In this example, the specific transmittance of 60% or more was considered to have good atomization performance. This is because the emulsion composition having a particle size with a specific transmittance of less than 60% has more oil droplets with a large particle size than the emulsion composition with a specific transmittance of 60% or more. This is because the stability over time decreases.

まず図3に示したタイプのノズル本体30を用い、操作圧力175MPaで衝突処理テストを実施した場合を表1に示す。全体としてNo.1〜11は微粒化性能に優れ、No.13〜21では微粒化性能が劣るという結果である。なおNo.12の例は20時間運転後の流量測定の結果、流量が大幅に増加し、ノズル本体に損傷が確認された。   First, Table 1 shows a case where a collision treatment test was performed at an operating pressure of 175 MPa using the nozzle body 30 of the type shown in FIG. As a whole, No. 1 to 11 are excellent in atomization performance, and No. 13 to 21 are inferior in atomization performance. In the example of No. 12, as a result of the flow rate measurement after 20 hours of operation, the flow rate was significantly increased, and the nozzle body was confirmed to be damaged.

Figure 2009113002
Figure 2009113002

噴射流路32Yの長さLについて、0.1mm〜0.7mmの範囲で検討したところ、表1のNo.1、6、10の結果から、L=0.2〜0.5mmにおいて良好な微粒化性能が確認されたが、No.12の結果からL=0.1mmと流路長さが短すぎると噴射流路部の強度が低く、微粒化性能は高いが連続運転にて流量が増大するなど耐久性が低く、また逆にNo.21の結果からL=0.7mmと流路長さが長すぎるとその低い透過率から明らかなように流路内壁面と流体との摩擦によって速度が損失し、微粒化性能は不良であった。 The length L 1 of the injection passage 32Y, was examined in the range of 0.1Mm~0.7Mm, from the results of No.1,6,10 in Table 1, in L 1 = 0.2 to 0.5 mm Although good atomization performance was confirmed, from the result of No. 12, if the channel length is too short as L 1 = 0.1 mm, the strength of the injection channel is low and the atomization performance is high, but continuous operation As the flow rate increases, the durability is low, and conversely, from the result of No. 21, if the channel length is too long as L 1 = 0.7 mm, the inner wall surface of the channel and fluid The speed was lost due to friction with the material, and the atomization performance was poor.

大口径流路33の断面積Aと噴射流路32Yの断面積Aの関係について検討したところ表1のNo.5、6、9の結果から、A/A=2.0〜5.2の場合は良好な微粒化性能が確認されたが、これに対しNo.16の結果から、A/A=1.3と各断面積の差が小さい場合は噴射流路から出た高速ジェットが大口径流路の壁面との摩擦によって速度が低下し、またNo.19、20の結果からA/A=6.6や8.2と大きすぎる場合は噴射流路から大口径流路に向かって噴射された高速ジェットは大口径流路内に滞留する液体との摩擦によって減衰するため、それぞれ大口径流路内で周囲流体との液−液間でのせん断力が減少し、十分なエネルギーを得られず微粒化性能が低くなってしまった。 From No.5,6,9 of the results of Table 1 was examined the relationship between the cross-sectional area A 2 and the injection flow path cross-sectional area of 32Y A 1 having a large diameter flow path 33, A 2 / A 1 = 2.0~5 In the case of .2, good atomization performance was confirmed. On the other hand, from the result of No. 16, when A 2 / A 1 = 1.3 and the difference in each cross-sectional area is small, the atomization performance is If the high-speed jet is reduced in speed by friction with the wall surface of the large-diameter channel, and if the results of No. 19 and 20 are too large, such as A 2 / A 1 = 6.6 or 8.2, the large-diameter from the injection channel The high-speed jet jetted toward the radial channel is attenuated by friction with the liquid staying in the large-diameter channel, so that the shear force between the liquid and the liquid in the large-diameter channel is reduced. As a result, the atomization performance was lowered.

大口径流路33の長さLについて検討したところ、表1のNo.2、6、7の結果からL=1.5〜3mmにおいて良好な微粒化性能が確認できたが、No.13、14、17の結果から、A/Aが好ましい範囲であってもNo.13、14のようにL=0.5mm、1mmと短すぎる場合は高速ジェットと周囲流体との液−液間でのせん断力が十分に得られないまま導出流路にて衝突してしまい、No.17のようにL=5mmと長すぎる場合は、大口径流路内で高速ジェットが広がるとともに速度の減衰が大きくなり大口径流路内における液−液間でのせん断力が低下するため、微粒化性能が低下してしまう。 When the length L 2 of the large-diameter channel 33 was examined, good atomization performance was confirmed at L 2 = 1.5 to 3 mm from the results of Nos. 2 , 6, and 7 in Table 1. 14 and 17, even if A 2 / A 1 is within the preferred range, when L 2 = 0.5 mm or 1 mm is too short as in No. 13 and 14, the liquid of the high-speed jet and the surrounding fluid— When a collision occurs in the outlet channel without sufficiently obtaining a shearing force between the liquids and L 2 = 5 mm is too long as in No. 17, the high-speed jet spreads in the large-diameter channel and the velocity is increased. Attenuation increases and the shearing force between the liquid and the liquid in the large-diameter channel decreases, so that the atomization performance decreases.

導出流路34の断面積Aと噴射流路32Yの断面積の流路個数分の合計nAの関係について検討したところ、表1のNo.3、4、6、8の結果からA/nA=4.1〜65.3においては良好な微粒化性能が確認されたが、これに対しNo.15、18の結果から、No.15のA/nA=1.5のように導出流路の径が小さいと導出流路での圧力損失が支配的となって噴射流路出口での高速ジェットの速度が十分に大きくならず、またNo.18のA/nA=102のように導出流路径が大きすぎると衝突エネルギーが大幅に減少するため微粒化性能は大きく低下してしまう。 Was investigated flow path the number fraction of relationship sum nA 1 of the cross-sectional area of the cross-sectional area A 3 of the outlet flow path 34 injection passage 32Y, A 3 from the results of No.3,4,6,8 Table 1 / NA 1 = 4.1 to 65.3, good atomization performance was confirmed. On the other hand, from the results of Nos. 15 and 18, A 3 / nA 1 = 1.5 of No. 15 Thus, when the diameter of the outlet channel is small, the pressure loss in the outlet channel is dominant, and the speed of the high-speed jet at the outlet of the injection channel is not sufficiently increased, and No. 18 A 3 / nA 1 If the outlet channel diameter is too large as in = 102, the collision energy is greatly reduced, and the atomization performance is greatly reduced.

以上の結果として、噴射流路、大口径流路及び導出流路の各寸法を適切な値とすることによって良好な微粒化性能が得られ、具体的には、噴射流路長さを0.25mm≦L≦0.4mm、大口径流路長さを2mm≦L≦3mmとし、1個の大口径流路の断面積Aを噴射流路の断面積Aに対して2.5≦A/A≦6の範囲内とすると共に、噴射流路の断面積の流路個数分の合計nAと導出流路の断面積Aを2.5≦A/nA≦65を満たす形状とするとき、微粒化性能は良好なものとなる。 As a result of the above, good atomization performance can be obtained by setting the dimensions of the injection channel, the large-diameter channel, and the outlet channel to appropriate values. Specifically, the length of the injection channel is 0.25 mm. ≦ L 1 ≦ 0.4 mm, the large-diameter channel length is 2 mm ≦ L 2 ≦ 3 mm, and the sectional area A 2 of one large-diameter channel is 2.5 ≦ A with respect to the sectional area A 1 of the injection channel. 2 / A 1 ≦ 6, and the total nA 1 of the number of cross-sectional areas of the injection flow path and the cross-sectional area A 3 of the outlet flow path are 2.5 ≦ A 3 / nA 1 ≦ 65. When the shape is satisfied, the atomization performance is good.

次に、図4に示したタイプのノズル本体40を用い、操作圧力175MPaで衝突処理テストを実施した場合を表2に示す。   Next, Table 2 shows a case where the collision treatment test was performed at an operating pressure of 175 MPa using the nozzle body 40 of the type shown in FIG.

Figure 2009113002
Figure 2009113002

本テストは、ノズル本体40の設計を、噴射流路長さ、大口径流路長さ、A/A、A/Aは表1に結果を示した流路断面が円形の場合の衝突処理テストにおいてに好ましいとされた範囲内となるような条件とし、噴射流路および大口径流路の断面形状を矩形として行ったものである。表2に示したNo.22〜24の結果から、流路断面形状を矩形にすることで微粒化性能をさらに向上することができた。 In this test, the design of the nozzle body 40 is the same as the injection channel length, large-diameter channel length, A 2 / A 1 , A 3 / A 1 in the case where the channel cross section whose result is shown in Table 1 is circular. The conditions are set so as to be within a preferable range in the collision treatment test, and the cross-sectional shapes of the injection flow path and the large-diameter flow path are rectangular. From the results of Nos. 22 to 24 shown in Table 2, the atomization performance could be further improved by making the channel cross-sectional shape rectangular.

次に、ノズル本体30を用いて操作圧力175MPaで衝突処理テストを行って良好な結果が得られたNo.1、2、3、6、8と同じ各流路設計で操作圧力を225MPaに変更して同様の衝突処理テストを行った場合の結果を表3に、またノスル本体40を用いて操作圧力175MPaで衝突処理テストを行ったNo.22、23、24と同じ各流路設計で操作圧力を225MPaに変更して同様の衝突処理テストを行った場合の結果を表4にそれぞれ示す。   Next, the operation pressure was changed to 225 MPa in the same flow path design as Nos. 1, 2, 3, 6, and 8 in which the collision treatment test was performed using the nozzle body 30 at the operation pressure of 175 MPa and good results were obtained. Table 3 shows the results of the same collision treatment test, and the same flow path design as Nos. 22, 23, and 24, in which the collision treatment test was performed at the operating pressure of 175 MPa using the nosl body 40, was performed. Table 4 shows the results when the same collision treatment test was performed with the pressure changed to 225 MPa.

Figure 2009113002
Figure 2009113002

Figure 2009113002
Figure 2009113002

表3に示したNo.25〜29及び表4に示したNo.30〜32の結果から、表1及び表2の結果からノズル本体の流路設計として好ましい条件においては、操作圧力を上げることによりさらに微粒化性能を向上することができた。   From the results of Nos. 25 to 29 shown in Table 3 and Nos. 30 to 32 shown in Table 4, the operating pressure should be increased under the preferable conditions for the flow path design of the nozzle body from the results of Tables 1 and 2. As a result, the atomization performance could be further improved.

上記実施例では、ノズル本体に外周面から軸心に向かい合う二つの貫通孔からなる衝突用流路が軸心に対して角度をもって設けられ導出流路と略Y字形状を成すものの場合を示したが、本発明はこれに限るものではなく、例えば、図5に示すような互いに等角度間隔で放射状に形成された3本以上の貫通孔からなる衝突用流路(噴射流路52Y及び大口径流路53)を備えたノズル本体50のように、衝突用流路の数や配置は、実際の原料液や処理条件に応じてより高い衝突処理効率が望めるものを適宜選択すればよい。   In the above-described embodiment, the case where the collision flow path including two through holes facing the axial center from the outer peripheral surface is provided in the nozzle main body at an angle with respect to the axial center and is formed in a substantially Y shape with the outlet flow path is shown. However, the present invention is not limited to this. For example, as shown in FIG. 5, a collision flow path (an injection flow path 52Y and a large-diameter flow formed of three or more through holes formed radially at equal angular intervals from each other). As in the nozzle body 50 provided with the channel 53), the number and arrangement of the collision channels may be appropriately selected according to the actual raw material liquid and processing conditions, which can achieve higher collision processing efficiency.

また、本発明における噴射流路を構成する高硬質材料としては、上記実施例で用いたダイヤモンドの他に、例えばサファイヤ等、加工が可能でありながら充分な高硬度を備えたものであれば種々の材質が採用可能である。   In addition to the diamond used in the above embodiment, the high-hardness material constituting the injection flow path in the present invention may be various as long as it has sufficient hardness but can be processed, such as sapphire. Can be used.

本発明の一実施例による微粒化装置略構成図であり、(a)は本微粒化装置の概略構成を示す側断面図であり、(b)はノズル本体部分の拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the atomization apparatus by one Example of this invention, (a) is a sectional side view which shows schematic structure of this atomization apparatus, (b) is an enlarged view of a nozzle main-body part. 本発明によるノズル本体の別の例を示す概略構成図であり、(a)は側断面図、(b)は(a)のA−A断面矢視図、(c)は(a)のB−B断面矢視図である 。It is a schematic block diagram which shows another example of the nozzle main body by this invention, (a) is a sectional side view, (b) is AA sectional arrow view of (a), (c) is B of (a). FIG. 本発明の実施例における微粒化処理テストに用いた噴射流路および大口径流路が円柱の場合のノズル手段の概略構成図であり、(a)は噴射流路の外周側端部から外側に向かうテーパ形状開口部分が形成され、噴射流路、大口径流路とも断面形状が円形であるノズル本体、(b)は(a)のA−A断面矢視図(拡大図)、(c)は(b)のB−B断面矢視図(拡大図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the nozzle means in case the injection flow path and large-diameter flow path which were used for the atomization process test in the Example of this invention are cylinders, (a) goes outside from the outer peripheral side edge part of an injection flow path. A nozzle body in which a tapered opening portion is formed and both the injection flow channel and the large-diameter flow channel have a circular cross-sectional shape, (b) is a cross-sectional view (enlarged view) taken along the line AA in (a), and (c) is ( It is a BB cross-sectional arrow view (enlarged view) of b). 本発明の実施例における微粒化処理テストに用いた噴射流路および大口径流路が矩形の場合のノズル手段の概略構成図であり、(a)は噴射流路の外周側端部から外側に向かうテーパ形状開口部分が形成され、噴射流路、大口径流路とも断面形状が矩形であるノズル本体、(b)は(a)のA−A断面矢視図(拡大図)、(c)は(b)のB−B断面矢視図(拡大図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the nozzle means in case the injection flow path and large-diameter flow path which were used for the atomization process test in the Example of this invention are rectangles, (a) goes outside from the outer peripheral side edge part of an injection flow path. A nozzle body in which a tapered opening is formed, and both the injection flow channel and the large-diameter flow channel have a rectangular cross-sectional shape, (b) is a cross-sectional view (enlarged view) taken along the line AA in (a), and (c) is ( It is a BB cross-sectional arrow view (enlarged view) of b). 本発明の他のノズル本体の構成を示す側断面図である。It is a sectional side view which shows the structure of the other nozzle main body of this invention.

符号の説明Explanation of symbols

1:微粒化装置
2:ハウジング
3:ノズル押さえ
4:高圧流体供給流路
5:バネ
6:プラグ部材
7:押さえ部材
8:導出流路
9:チャンバ
10,20,30,40,50:ノズル本体手段
11,21,31,41,51:第1部材
11X:凹部
12X,22X,32X,42X,52X:テーパ形状開口部分
12Y,22Y,32Y,42Y,52Y:噴射流路
13,23,33,43,53:大口径流路
14,24,34,44,54:(ノズル本体の)導出流路
14X:衝突空間
14Y:テーパ状出口
14L:衝突距離
15:導入流路
16,26,36,46,56:第2部材
1: Atomization device 2: Housing 3: Nozzle holder 4: High-pressure fluid supply channel 5: Spring 6: Plug member 7: Holding member 8: Outlet channel 9: Chamber 10, 20, 30, 40, 50: Nozzle body Means 11, 21, 31, 41, 51: first member 11X: recesses 12X, 22X, 32X, 42X, 52X: taper-shaped opening portions 12Y, 22Y, 32Y, 42Y, 52Y: injection passages 13, 23, 33, 43, 53: Large-diameter channels 14, 24, 34, 44, 54: Derived channels 14X (of the nozzle body): Collision space 14Y: Tapered outlet 14L: Collision distance 15: Introduction channels 16, 26, 36, 46 , 56: second member

Claims (9)

高圧流体同士を衝突させるためのノズル手段と、該ノズル手段へ前記高圧流体を導入するための導入流路とを備えた微粒化装置において、
前記ノズル手段は、高硬質材料からなるノズル本体を有し、該ノズル本体に、ノズル本体外周面から軸心に向かって形成された複数の貫通孔からなる高圧流体の衝突用流路と、これら衝突用流路同士の合流点から軸心方向に沿って形成された衝突後の流体を導出するための導出流路とを備え、前記導入流路に導かれた高圧流体が、前記ノズル本体の外周から前記衝突用流路の各外周側端部開口へ導入されるものであり、
前記衝突用流路は、前記導出流路に連通する下流側の大口径流路と、この大口径流路の上流側に設けられて前記外周側端部開口から導入された高圧流体を該大口径流路内に噴出する小口径の噴射流路と、を備えていることを特徴とする微粒化装置。
In the atomization apparatus provided with the nozzle means for causing the high-pressure fluids to collide with each other and the introduction flow path for introducing the high-pressure fluid into the nozzle means,
The nozzle means has a nozzle body made of a highly rigid material, and a high-pressure fluid collision channel comprising a plurality of through holes formed in the nozzle body from the outer peripheral surface of the nozzle body toward the axis, and these A high-pressure fluid led to the introduction flow path is formed in the axial direction of the nozzle main body. It is introduced from the outer periphery to each outer peripheral side end opening of the collision flow path,
The collision channel includes a large-diameter channel on the downstream side communicating with the outlet channel, and a high-pressure fluid provided on the upstream side of the large-diameter channel and introduced from the outer peripheral end opening. An atomizing device comprising: a small-diameter injection channel that is injected into the inside.
前記噴射流路の外周側端部開口から前記大口径流路に達するまでの長さLが、0.15mm以上、0.6mm以下の範囲内であると共に、前記大口径流路の長さLが1.5mm≦L≦4mm、前記噴射流路1個の断面積Aと前記大口径流路1個の断面積Aの比が2≦A/A≦7であると共に、前記噴射流路の断面積の流路個数分の合計nAと前記導出流路の断面積Aの比が2≦A/nA≦80、を満たすことを特徴とする請求項1に記載の微粒化装置。 The length L 1 from the outer peripheral side end opening of the injection flow channel to the large-diameter flow channel is in the range of 0.15 mm or more and 0.6 mm or less, and the large-diameter flow channel length L 2 1.5 mm ≦ L 2 ≦ 4 mm, and the ratio of the cross-sectional area A 1 of the single injection flow path to the cross-sectional area A 2 of the single large-diameter flow path is 2 ≦ A 2 / A 1 ≦ 7, and 2. The ratio of the total nA 1 corresponding to the number of flow paths in the cross-sectional area of the ejection flow path and the cross-sectional area A 3 of the outlet flow path satisfies 2 ≦ A 3 / nA 1 ≦ 80. Atomization equipment. 前記ノズル本体は、前記噴射流路の方向の外周側端部からそれぞれ外側に向かって拡径するテーパ形状開口部分を有することを特徴とする請求項1又は2に記載の微粒化装置。   The atomization device according to claim 1 or 2, wherein the nozzle body has a tapered opening portion having a diameter that increases outward from an outer peripheral side end in a direction of the injection flow path. 前記大口径流路と導出流路の噴出方向との開き角度が95度以上、150度以下であることを特徴とする請求項1〜3のいずれか1項に記載の微粒化装置。   The atomization apparatus according to any one of claims 1 to 3, wherein an opening angle between the large-diameter channel and the ejection direction of the outlet channel is 95 degrees or more and 150 degrees or less. 前記噴射流路および前記大口径流路の断面がそれぞれ矩形であることを特徴とする請求項1〜4のいずれか1項に記載の微粒化装置。   The atomization apparatus according to any one of claims 1 to 4, wherein each of the injection channel and the large-diameter channel has a rectangular cross section. 前記ノズル本体は、前記大口径流路と前記導出流路が形成されている第1部材と、前記噴射流路が形成されている第2部材とを有し、前記第2部材が第1部材に形成された凹部に嵌合した状態にて前記噴射流路が前記大口径流路に連通することを特徴とする請求項1〜5のいずれか1項に記載の微粒化装置。   The nozzle body includes a first member in which the large-diameter channel and the outlet channel are formed, and a second member in which the ejection channel is formed, and the second member serves as the first member. The atomization apparatus according to any one of claims 1 to 5, wherein the injection flow path communicates with the large-diameter flow path in a state of being fitted in the formed recess. 前記第2部材がダイヤモンドであることを特徴とする請求項6に記載の微粒化装置。   The atomization apparatus according to claim 6, wherein the second member is diamond. 前記ノズル本体を、バネの付勢力によってノズル本体の導出流路が装置ハウジング部材に設けられた導出流路に同軸上に位置決めされた状態で前記ハウジング部材に押圧するシール手段を備えたことを特徴とする請求項1〜7のいずれか1項に記載の微粒化装置。   Sealing means is provided for pressing the nozzle body against the housing member in a state where the outlet channel of the nozzle body is positioned coaxially with the outlet channel provided in the apparatus housing member by a biasing force of a spring. The atomization apparatus according to any one of claims 1 to 7. 前記高圧流体がエマルジョンであることを特徴とする請求項1〜8のいずれか1項に記載の微粒化装置。   The atomization apparatus according to any one of claims 1 to 8, wherein the high-pressure fluid is an emulsion.
JP2007291998A 2007-11-09 2007-11-09 Pulverizing apparatus Pending JP2009113002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007291998A JP2009113002A (en) 2007-11-09 2007-11-09 Pulverizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007291998A JP2009113002A (en) 2007-11-09 2007-11-09 Pulverizing apparatus

Publications (1)

Publication Number Publication Date
JP2009113002A true JP2009113002A (en) 2009-05-28

Family

ID=40780738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007291998A Pending JP2009113002A (en) 2007-11-09 2007-11-09 Pulverizing apparatus

Country Status (1)

Country Link
JP (1) JP2009113002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113010A (en) * 2007-11-09 2009-05-28 Kao Corp Method for preparing oil-in-water type emulsified composition
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
KR20180024609A (en) * 2016-08-30 2018-03-08 (주)씨엔엔티 Apparatus for crashing fluid with multi-nozzle structure
CN109351443A (en) * 2018-12-02 2019-02-19 北京协同创新食品科技有限公司 A kind of high-pressure jet spray head and the high-pressure jet grinding device using the spray head
CN109395666A (en) * 2018-12-20 2019-03-01 中原工学院 It is integrated to jet flow type reactor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103642A (en) * 1994-10-03 1996-04-23 Tokushu Kika Kogyo Kk Liquid superfine atomizing mixer
JPH10315226A (en) * 1997-05-20 1998-12-02 Mitsui Chem Inc Mixing module for spray gun with improved two-liquid mixing properties
JP2000000448A (en) * 1998-06-18 2000-01-07 Sugino Mach Ltd Fluid collision apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08103642A (en) * 1994-10-03 1996-04-23 Tokushu Kika Kogyo Kk Liquid superfine atomizing mixer
JPH10315226A (en) * 1997-05-20 1998-12-02 Mitsui Chem Inc Mixing module for spray gun with improved two-liquid mixing properties
JP2000000448A (en) * 1998-06-18 2000-01-07 Sugino Mach Ltd Fluid collision apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009113010A (en) * 2007-11-09 2009-05-28 Kao Corp Method for preparing oil-in-water type emulsified composition
WO2016103387A1 (en) * 2014-12-25 2016-06-30 フロンコルコ資産保有会社 Fluid mixing device
KR20180024609A (en) * 2016-08-30 2018-03-08 (주)씨엔엔티 Apparatus for crashing fluid with multi-nozzle structure
KR101877726B1 (en) * 2016-08-30 2018-07-13 (주)씨엔엔티 Apparatus for crashing fluid with multi-nozzle structure
CN109351443A (en) * 2018-12-02 2019-02-19 北京协同创新食品科技有限公司 A kind of high-pressure jet spray head and the high-pressure jet grinding device using the spray head
CN109351443B (en) * 2018-12-02 2024-02-27 北京协同创新食品科技有限公司 High-pressure jet nozzle and high-pressure jet crushing device using same
CN109395666A (en) * 2018-12-20 2019-03-01 中原工学院 It is integrated to jet flow type reactor
CN109395666B (en) * 2018-12-20 2023-09-26 中原工学院 Integrated convection type reactor

Similar Documents

Publication Publication Date Title
JP2009113002A (en) Pulverizing apparatus
US9416329B2 (en) Apparatus and process for production of nanobubble liquid
US7922566B2 (en) Cutting head for fluid jet machine with indexing focusing device
JP2007309236A (en) Fuel injection nozzle
BR112014003635B1 (en) valve for a flowing fluid
WO2021108245A3 (en) Static mixer and additive manufacturing system comprising the static mixer
JP5117165B2 (en) Method for producing oil-in-water emulsion composition
CN103415263A (en) Surgical probe with increased fluid flow
JP2008284524A (en) Atomizing apparatus
JP2008284525A (en) Atomizing apparatus
EP0452494A1 (en) Transferred plasma-arc torch
US20200290061A1 (en) Swirling pintle injectors
US8905333B1 (en) Diesel injector and method utilizing focused supercavitation to reduce spray penetration length
JP2005028305A (en) Gas-liquid mixture production device, sewage purifying device and fuel injection equipment
JP2007301509A (en) Atomizing device
EP1954406B1 (en) Zero-torque orifice mount assembly
JP4321862B2 (en) Cavitation stabilizer
EP3002449B1 (en) Fuel injection valve
JP5021234B2 (en) Atomizer
CA2939998C (en) Orifice for a waterjet cutter
JP4640017B2 (en) Emulsifying device
JP2587390B2 (en) Ultra-fine atomizing and mixing equipment for liquids
Jicha et al. Influence of some geometrical parameters on the characteristics of effervescent atomization
US9724709B2 (en) Swirler elements for nozzles
CN109073113B (en) Regulator valve assembly and components thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130522