JP5115949B2 - Conductive material and resistor paste - Google Patents

Conductive material and resistor paste Download PDF

Info

Publication number
JP5115949B2
JP5115949B2 JP2006353094A JP2006353094A JP5115949B2 JP 5115949 B2 JP5115949 B2 JP 5115949B2 JP 2006353094 A JP2006353094 A JP 2006353094A JP 2006353094 A JP2006353094 A JP 2006353094A JP 5115949 B2 JP5115949 B2 JP 5115949B2
Authority
JP
Japan
Prior art keywords
conductive material
resistor
thick film
srru
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006353094A
Other languages
Japanese (ja)
Other versions
JP2008166427A (en
Inventor
齊 大里
功 籠宮
和也 三輪
慎司 松本
幸則 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2006353094A priority Critical patent/JP5115949B2/en
Publication of JP2008166427A publication Critical patent/JP2008166427A/en
Application granted granted Critical
Publication of JP5115949B2 publication Critical patent/JP5115949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉛を含まない厚膜抵抗体を形成するための導電材料、および、該導電材料を含有する抵抗体用ペーストに関する。   The present invention relates to a conductive material for forming a thick film resistor not containing lead, and a resistor paste containing the conductive material.

近年、鉛は環境汚染の原因となることから、電子部品材料の鉛フリー化が進んでいる。厚膜抵抗器に関しても同様であり、導電材料・ガラス材料の鉛フリー化が検討されている。従来、厚膜抵抗体を形成するための抵抗体用ペーストとして、比較的高い抵抗率領域ではPb2Ru2O6.5等の鉛を含有した導電材料を含むペーストが一般に用いられている。しかしながら、鉛フリー化の要請から、Bi2Ru2O7、BaRuO3、CaRuO3、SrRuO3等の鉛を含まない導電材料を用いた抵抗体用ペーストが提案されている(例えば、特許文献1、2、参考文献:「電気導電性酸化物」津田惟雄著;裳華房)。
特開平8−253342公報 特開2005−57041号公報
In recent years, since lead causes environmental pollution, lead-free electronic component materials have been developed. The same applies to thick film resistors, and lead-free conductive materials and glass materials are being studied. Conventionally, as a resistor paste for forming a thick film resistor, a paste containing a conductive material containing lead such as Pb 2 Ru 2 O 6.5 is generally used in a relatively high resistivity region. However, a resistor paste using a conductive material not containing lead, such as Bi 2 Ru 2 O 7 , BaRuO 3 , CaRuO 3 , SrRuO 3, etc. has been proposed due to the demand for lead-free (for example, Patent Document 1). 2, Reference: “Electrically Conductive Oxide” by Tsuda Ikuo;
JP-A-8-253342 JP 2005-57041 A

しかしながら、厚膜抵抗体で高抵抗値を得るために使用していた導電材料であるPb2Ru2O6.5と同等の特性を引き出すことができる材料の選択は難しく、適当な材料の候補は絞られていないというのが現状である。 However, it is difficult to select a material that can bring out the same characteristics as Pb 2 Ru 2 O 6.5 , which is a conductive material used to obtain a high resistance value in a thick film resistor. The current situation is that it is not.

本発明は、上述した事情に鑑みてなされたもので、厚膜抵抗体を形成するための導電材料として、一般に用いられている高抵抗側の導電材料であるPb2Ru2O6.5に代替可能な鉛フリーの導電材料および該導電材料を含有する抵抗体ペーストを提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and can be replaced with Pb 2 Ru 2 O 6.5 which is a conductive material on the high resistance side which is generally used as a conductive material for forming a thick film resistor. An object of the present invention is to provide a lead-free conductive material and a resistor paste containing the conductive material.

上記課題を解決するため、本発明の導電材料は、SrRuO3のRuの一部をSnで置換固溶させたSrRu1-xSnxO3(但し、Xは置換比率)を用いる。このSrRu1-xSnxO3からなる導電材料は、置換比率Xの増加に伴って抵抗率は増大し、TCRは減少する。したがって、所望の抵抗値を置換比率Xで調整可能となる。また、従来から高抵抗側の導電材料として一般に用いられているPb2Ru2O6.5の比抵抗3×10-6(Ω・m)よりも高い比抵抗が得られる。このため、厚膜抵抗器の高抵抗化が比較的容易に出来る。但し、TCRが大きく負となるX=0.4以上は厚膜抵抗体材料としては好ましくない。したがって、置換比率Xは0<X<0.4の範囲であることが好ましい。 In order to solve the above-described problems, the conductive material of the present invention uses SrRu 1-x Sn x O 3 (where X is a substitution ratio) in which a part of Ru of SrRuO 3 is substituted and dissolved by Sn. In the conductive material made of SrRu 1-x Sn x O 3 , the resistivity increases and the TCR decreases as the substitution ratio X increases. Therefore, a desired resistance value can be adjusted by the replacement ratio X. Further, a specific resistance higher than the specific resistance of 3 × 10 −6 (Ω · m) of Pb 2 Ru 2 O 6.5 , which has been conventionally used as a conductive material on the high resistance side, can be obtained. For this reason, it is possible to relatively easily increase the resistance of the thick film resistor. However, X = 0.4 or more where TCR is large and negative is not preferable as a thick film resistor material. Therefore, the substitution ratio X is preferably in the range of 0 <X <0.4.

上記本発明によれば、上記導電材料は従来のPb2Ru2O6.5よりも高比抵抗で且つ良好なTCRが得られるので、上記導電材料を用いて厚膜抵抗器を作製することで、高抵抗側で所望の抵抗値とTCRを容易に得ることができると共に、鉛フリーの厚膜抵抗器を容易に製造することができる。 According to the present invention, since the conductive material has a higher specific resistance and better TCR than conventional Pb 2 Ru 2 O 6.5 , by producing a thick film resistor using the conductive material, A desired resistance value and TCR can be easily obtained on the high resistance side, and a lead-free thick film resistor can be easily manufactured.

以下、本発明の実施形態について、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の導電材料の製造方法は、図1に示すように、SrCO3と、RuO2と、SnO2とを所定の割合で含む混合粉末を作製し、その混合粉末を焼成することによって、SrRuO3のRuの一部をSnで置換したSrRu1-xSnxO3(但し、Xは置換比率)を形成する。混合粉末の作製時に、RuO2の含有量が30〜47.5mol%であり、SnO2の含有量が2.5〜20mol%であることが好ましい。これによって、置換比率Xが0<X<0.4の範囲のものを作製することができる。 As shown in FIG. 1, the method for producing a conductive material of the present invention produces a mixed powder containing SrCO 3 , RuO 2 , and SnO 2 at a predetermined ratio, and fires the mixed powder to produce SrRuO A part of Ru of 3 is substituted with Sn to form SrRu 1-x Sn x O 3 (where X is a substitution ratio). At the time of preparing the mixed powder, the RuO 2 content is preferably 30 to 47.5 mol%, and the SnO 2 content is preferably 2.5 to 20 mol%. As a result, it is possible to produce a material having a substitution ratio X in the range of 0 <X <0.4.

次に、SrRu1-XSnXO3の作製方法の具体例について説明する。
まず、出発原料として、前処理(熱処理)を行うことによって平均粒径を約8μmとしたRuO2、SrCO3(堺化学工業(株)製)、SnO2(キシダ化学(株)製)を表1に示す所定の割合で秤量し、蒸留水、ジルコニアボールとともにプラスチック製ポットに入れ、24時間ボールミルによる湿式混合を行い、120℃で乾燥して混合粉末とする。
Next, a specific example of a method for producing SrRu 1-X Sn X O 3 will be described.
First, as starting materials, RuO 2 , SrCO 3 (manufactured by Sakai Chemical Industry Co., Ltd.), SnO 2 (manufactured by Kishida Chemical Co., Ltd.) whose average particle size was about 8 μm by pretreatment (heat treatment) Weigh at a predetermined ratio shown in 1 and place in a plastic pot together with distilled water and zirconia balls, perform wet mixing with a ball mill for 24 hours, and dry at 120 ° C. to obtain a mixed powder.

Figure 0005115949
Figure 0005115949

そして、混合粉末を850℃の大気中において4時間の仮焼成を行う。この時の昇温及び降温速度は5℃/min程度が適当である。仮焼成後、アルミナ乳鉢を用いて30分粉砕し、300μmのふるいにかけて造粒した試料を、1350℃の大気雰囲気中において4時間の本焼成を行う。この時の昇温及び降温速度は5℃/min程度が適当である。   Then, the mixed powder is calcined for 4 hours in the atmosphere of 850 ° C. At this time, an appropriate temperature increase / decrease rate is about 5 ° C / min. After pre-baking, the sample pulverized for 30 minutes using an alumina mortar and granulated through a 300 μm sieve is subjected to main baking for 4 hours in an air atmosphere at 1350 ° C. At this time, an appropriate temperature increase / decrease rate is about 5 ° C / min.

試験例では、仮焼成後粉砕し、造粒した粉末を直径12mmの金型を用いて約100MPaの圧力で一軸加圧成型し、さらにCIP(冷間静水圧加工)を行って成形体を形成している。そして、得られた成形体をアルミナボートに載せ、本焼成をして、SrRu1-xSnxO3の成形体(焼成体)を形成している。 In the test example, the powder after calcination and pulverization and granulation was uniaxially pressed at a pressure of about 100 MPa using a mold with a diameter of 12 mm, and further formed by CIP (cold isostatic pressing). is doing. Then, the obtained compact is placed on an alumina boat and subjected to main firing to form a compact (sintered body) of SrRu 1-x Sn x O 3 .

得られた焼結体は、X線回折装置を用いて結晶構造を解析した結果、ペロブスカイト型結晶構造を有していることが判った。また、SrRuO3のXRDパターンと比較すると低角度側にピークシフトしていることから、ABO3ペロブスカイト型のBサイトにRu4+(酸素6配位、イオン半径0.620Å)よりイオン半径の大きなSn4+(酸素6配位、イオン半径0.690Å)が置換固溶されたと考えられる。 As a result of analyzing the crystal structure using an X-ray diffractometer, the obtained sintered body was found to have a perovskite crystal structure. Compared with the XRD pattern of SrRuO 3 , it has a peak shift to the lower angle side, so that Sn has a larger ionic radius than Ru 4+ (oxygen 6-coordinated, ionic radius 0.620 mm) at the ABO 3 perovskite type B site. It is thought that 4+ (oxygen 6-coordinate, ionic radius 0.690Å) was dissolved by substitution.

得られたSrRu1-xSnxO3の成形体(焼成体)について、抵抗率およびTCRを測定した。この結果を図3および図4に示す。抵抗率の測定は、ロレスターGP(三菱化学(株)製)を用いて抵抗値を測定し、体積抵抗率ρを以下の式より求めた。
ρ=R×RCF×t(Ω・m)
ここで、Rは抵抗値、tは試料厚み、RCF(Resistivity Correction Factor)は電流分布の形状による補正係数である。
The resistivity and TCR of the obtained SrRu 1-x Sn x O 3 molded body (fired body) were measured. The results are shown in FIG. 3 and FIG. The resistivity was measured by using a Lorester GP (manufactured by Mitsubishi Chemical Corporation), and the volume resistivity ρ was determined from the following equation.
ρ = R × RCF × t (Ω ・ m)
Here, R is a resistance value, t is a sample thickness, and RCF (Resistivity Correction Factor) is a correction factor depending on the shape of the current distribution.

抵抗温度特性(TCR)は、電気炉を用いて成形体(焼成体)の温度を変化させ、四探針法によりそれぞれの温度(125℃、25℃)の抵抗値を測定し、抵抗温度特性(TCR)を以下の式により求めた。

Figure 0005115949
Resistance temperature characteristics (TCR) are measured by changing the temperature of the molded body (fired body) using an electric furnace and measuring the resistance value of each temperature (125 ° C, 25 ° C) by the four-probe method. (TCR) was calculated by the following formula.
Figure 0005115949

図3は、SrRu1-xSnxO3の置換比率Xと抵抗率(Ω・m)との関係を示す。置換比率Xが0<X<0.4の範囲で、抵抗率(Ω・m)が1×10-5以上であることを示している。特に、置換比率Xが0<X<0.2の範囲で、抵抗率(Ω・m)が1×10-5から5×10-5程度であることを示している。この抵抗率は、Pb2Ru2O6.5の抵抗率と比較して1桁程度高く、RuO2の抵抗率と比較して2桁程度高い。 FIG. 3 shows the relationship between the substitution ratio X of SrRu 1-x Sn x O 3 and the resistivity (Ω · m). It indicates that the substitution ratio X is in the range of 0 <X <0.4 and the resistivity (Ω · m) is 1 × 10 −5 or more. In particular, it indicates that the substitution ratio X is in the range of 0 <X <0.2 and the resistivity (Ω · m) is about 1 × 10 −5 to 5 × 10 −5 . This resistivity is about an order of magnitude higher than that of Pb 2 Ru 2 O 6.5 , and about two orders of magnitude higher than that of RuO 2 .

図4は、SrRu1-xSnxO3の置換比率XとTCR(10-6/K)との関係を示す。置換比率Xを0〜0.4の範囲とした導電材料において、TCR(10-6/K)が+1000以下で-2300以上であることがわかる。特に、置換比率Xが0〜0.2の範囲では、TCR(10-6/K)が+1000以下である。このTCRは、RuO2のTCRが+3000程度であり、Pb2Ru2O6.5のTCRが+2000程度であるのと比較して十分に低い。但し、置換比率Xを0.4以上とすると、TCRが大きく負となり厚膜抵抗体材料としては好ましくない。したがって、置換比率XはX<0.4の範囲とすることが好ましい。 FIG. 4 shows the relationship between the substitution ratio X of SrRu 1-x Sn x O 3 and TCR (10 −6 / K). It can be seen that TCR (10 −6 / K) is +1000 or less and −2300 or more in the conductive material in which the substitution ratio X is in the range of 0 to 0.4. In particular, when the substitution ratio X is in the range of 0 to 0.2, TCR (10 −6 / K) is +1000 or less. This TCR is sufficiently low compared to the TCR of RuO 2 being about +3000 and the TCR of Pb 2 Ru 2 O 6.5 being about +2000. However, if the substitution ratio X is 0.4 or more, the TCR becomes large and negative, which is not preferable as a thick film resistor material. Therefore, the substitution ratio X is preferably in the range of X <0.4.

次に、本発明の抵抗体ペーストについて説明する。このペーストは、鉛フリーの厚膜抵抗器用の抵抗体ペーストであって、SrRu1-xSnxO3の粉末からなる導電材料と、SrO含有ホウ珪酸ガラスと、有機ビヒクルとを混合して作製したものである。上記抵抗体用ペーストの材料である、導電材料、ガラス材料および有機ビヒクルについて、以下に個別に説明する。 Next, the resistor paste of the present invention will be described. This paste is a resistor paste for lead-free thick film resistors, made by mixing a conductive material made of SrRu 1-x Sn x O 3 powder, SrO-containing borosilicate glass, and an organic vehicle. It is a thing. The conductive material, glass material, and organic vehicle, which are the materials for the resistor paste, will be individually described below.

(SrRu1-xSnxO3導電材料)
上述したように、出発原料として、SrCO3、RuO2、SnO2を所定の割合で秤量し、仮焼成して混合粉末としたものを本焼成し、得られた粉末をボールミル等で粉砕し、SrRu1-xSnxO3の粉末からなる導電材料が得られる。置換比率Xは、表1に示すように、SrCO3、RuO2、SnO2の混合割合で決めることができる。SrRuO3の抵抗率は1×10-5(Ω・m)であるが、Ru4+サイトにSn4+が置換固溶した場合、4d軌道の電子が減少し電気的特性が徐々に金属的から半導体的性質へと変化したと推測され、置換比率Xの増加に伴って抵抗値が上昇し、TCRが減少したと考えられる。ここで、RuO2の含有量は30〜47.5mol%とし、SnO2の含有量は2.5〜20mol%とした。これにより、置換比率Xを表1に示すように0≦X≦0.4とすることができる。なお、前述のとおり、置換比率Xは0<X<0.4であることが好ましい。したがって、SnO2の含有量(mol%)をYとすると、Yがとり得る範囲としては0<Y<20(mol%)とすることができる。また、RuO2の含有量(mol%)をZとすると、Zがとり得る範囲としては30<Z<50(mol%)とすることができる。
(SrRu 1-x Sn x O 3 conductive material)
As described above, as a starting material, SrCO 3 , RuO 2 , SnO 2 are weighed at a predetermined ratio, pre-fired to obtain a mixed powder, this is fired, and the obtained powder is pulverized with a ball mill or the like, A conductive material made of SrRu 1-x Sn x O 3 powder is obtained. As shown in Table 1, the substitution ratio X can be determined by the mixing ratio of SrCO 3 , RuO 2 , and SnO 2 . The resistivity of SrRuO 3 is 1 × 10 -5 (Ω · m). However, when Sn 4+ is substituted and dissolved in the Ru 4+ site, the electrons in the 4d orbital decrease and the electrical characteristics gradually become metallic. It is presumed that the semiconductor property has changed from that of the semiconductor, and as the substitution ratio X increases, the resistance value increases and the TCR decreases. Here, the content of RuO 2 was 30 to 47.5 mol%, and the content of SnO 2 was 2.5 to 20 mol%. Thereby, as shown in Table 1, the substitution ratio X can be 0 ≦ X ≦ 0.4. As described above, the substitution ratio X is preferably 0 <X <0.4. Therefore, if the SnO 2 content (mol%) is Y, the range that Y can take can be 0 <Y <20 (mol%). If the RuO 2 content (mol%) is Z, the range that Z can take can be 30 <Z <50 (mol%).

(ガラス材料)
SrO系のホウ珪酸ガラス(SrO-SiO2-B2O3)が好ましい。その作製例としては、SrCO3・SiO2・B2O3を秤量混合し、1400℃・2時間で溶融させ、水中投下で急冷させ、ボールミル等で粉砕し、ガラス粉末を作製することができる。
(Glass material)
SrO-based borosilicate glass (SrO—SiO 2 —B 2 O 3 ) is preferred. As a preparation example, SrCO 3 · SiO 2 · B 2 O 3 can be weighed and mixed, melted at 1400 ° C for 2 hours, quenched by dropping in water, and pulverized with a ball mill or the like to produce a glass powder. .

ここで、SiO2:B2O3=3:2で一定とし、SrO含有量が10〜50mol%のホウ珪酸ガラス材料を作製することが好ましい。なお、ガラス化する範囲であれば組成比が変化しても良い。但し、このホウ珪酸ガラス系には不混和領域が存在するので組成によっては1相領域と2相領域が考えられるが、導電材料と混合して用いる抵抗体用としては1相領域(One Liquid領域)を用いた方が抵抗値制御には好ましい。 Here, it is preferable to prepare a borosilicate glass material having a constant SiO 2 : B 2 O 3 = 3: 2 and an SrO content of 10 to 50 mol%. Note that the composition ratio may change as long as it is in a vitrified range. However, since this borosilicate glass system has immiscible regions, one-phase region and two-phase region can be considered depending on the composition, but one-phase region (One Liquid region) is used for a resistor mixed with a conductive material. ) Is preferable for resistance value control.

SrRu1-XSnXO3(0<X<0.4)を含む導電材料を用い、ガラス材料にSrOを含むホウ珪酸ガラスを用いて厚膜抵抗体を作製すると、焼成過程においてガラス材料がSrOを含有することに伴って導電材料成分が分解しない。これにより、RuO2の析出を制御することが可能となり、比抵抗の低いRuO2成分を実質的に含まない厚膜抵抗体の作製が可能となる。SrOの含有量については、ガラス化する範囲であれば含有量に制限はないが、ガラス特性、例えば軟化温度等を考慮すると10mol%〜50mol%とする組成が好ましい。 When a thick film resistor is made using a conductive material containing SrRu 1-X Sn X O 3 (0 <X <0.4) and a borosilicate glass containing SrO as the glass material, the glass material becomes SrO in the firing process. The conductive material component does not decompose with the inclusion. This makes it possible to control the deposition of RuO 2, it is possible to produce a thick film resistor containing no low RuO 2-component resistivity substantially. The SrO content is not limited as long as it is in the range of vitrification, but considering the glass characteristics such as the softening temperature, a composition of 10 mol% to 50 mol% is preferable.

(有機ビヒクル)
エチルセルロース、α−テルピネオール、テキサノール等を用いることが好ましい。
(Organic vehicle)
It is preferable to use ethyl cellulose, α-terpineol, texanol or the like.

以上の材料を準備し、導電材料:ガラス材料=1:1の割合とし、有機ビヒクルを適量加え、ロールを用いて混練して抵抗体用ペーストを得る。完成品の抵抗値は、導電材料とガラス材料の比率によって調整可能である。特性や加工性等を考慮すると導電材料は10wt%〜70wt%とすることが好ましい。   The above materials are prepared, a ratio of conductive material: glass material = 1: 1, an appropriate amount of an organic vehicle is added, and kneading is performed using a roll to obtain a resistor paste. The resistance value of the finished product can be adjusted by the ratio of the conductive material and the glass material. Considering characteristics and workability, the conductive material is preferably 10 wt% to 70 wt%.

次に、本発明の抵抗体用ペーストを用いた厚膜固定抵抗器の製造方法について、図5を参照して説明する。まず、アルミナなどのセラミック基板を準備する。セラミック基板は多数個取りできる基板であり、あらかじめ1次分割溝、2次分割溝が形成されている。   Next, a method for manufacturing a thick film fixed resistor using the resistor paste of the present invention will be described with reference to FIG. First, a ceramic substrate such as alumina is prepared. A large number of ceramic substrates can be obtained, and primary division grooves and secondary division grooves are formed in advance.

次に、下面電極を形成する。すなわち、セラミック基板に、下面電極をスクリーン印刷により印刷し、焼成して形成する。電極材料は、Ag系、またはAg-Pd系ペーストを用いる。次に、上面電極をセラミック基板に、スクリーン印刷により印刷し、焼成して形成する。電極材料は、Ag系、またはAg-Pd系ペーストを用いる。   Next, a bottom electrode is formed. That is, the lower surface electrode is printed on the ceramic substrate by screen printing and fired. As the electrode material, an Ag-based or Ag-Pd-based paste is used. Next, the upper surface electrode is printed on the ceramic substrate by screen printing and fired. As the electrode material, an Ag-based or Ag-Pd-based paste is used.

次に、抵抗体を形成する。セラミック基板の上面電極間に、上面電極同士を接続するように上記SrRu1-XSnXO3(0<X<0.4)を含む導電材料と、SrOを含有するホウ珪酸ガラスと、有機ビヒクルと、を混合して得られた抵抗体用ペーストをスクリーン印刷により、所定パターンに従って印刷する。印刷特性は、従来と同じ有機ビヒクルを使うため、変わらない。抵抗体を印刷した後、850℃程度の温度で、10分程度焼成する。 Next, a resistor is formed. A conductive material containing SrRu 1-X Sn X O 3 (0 <X <0.4), a borosilicate glass containing SrO, and an organic vehicle so as to connect the upper electrodes between the upper electrodes of the ceramic substrate. The resistor paste obtained by mixing is printed according to a predetermined pattern by screen printing. Printing characteristics remain the same because they use the same organic vehicle as before. After the resistor is printed, it is baked at a temperature of about 850 ° C. for about 10 minutes.

次に、抵抗値をトリミングにより調整する。これは、レーザ光により抵抗体に切込みを形成して、所望する抵抗値になるように調整する。そして、抵抗体を覆うように保護膜を形成する。   Next, the resistance value is adjusted by trimming. This is adjusted by forming a notch in the resistor with a laser beam to obtain a desired resistance value. Then, a protective film is formed so as to cover the resistor.

次に、セラミック基板を1次分割溝に沿って分割し、短冊状の基板を得る。そして、短冊状にセラミック基板を分割することにより露出した端面に金属膜を形成することにより、上面電極と下面電極とを接続する。例えば、成膜法としてはスパッタリング法を用い、Ni-Cr系金属材料を端面に被着する。さらに、端面電極が形成された短冊状基板を、2次分割溝に沿って分割し、チップ単体を得る。そして、上面電極、下面電極および端面電極の表面にめっき層を形成する。材料としては鉛フリーのSn系はんだ材料を用いることが好ましい。   Next, the ceramic substrate is divided along the primary dividing groove to obtain a strip-shaped substrate. And a metal film is formed in the end surface exposed by dividing | segmenting a ceramic substrate in strip shape, and an upper surface electrode and a lower surface electrode are connected. For example, a sputtering method is used as a film forming method, and a Ni—Cr-based metal material is deposited on the end face. Further, the strip-shaped substrate on which the end face electrodes are formed is divided along the secondary dividing grooves to obtain a single chip. Then, plating layers are formed on the surfaces of the upper surface electrode, the lower surface electrode, and the end surface electrode. It is preferable to use a lead-free Sn-based solder material as the material.

以上の厚膜抵抗器の製造方法によれば、SrRu1-XSnXO3(0<X<0.4)とSrOを含有するホウ珪酸ガラスとを含む抵抗体用ペーストを用いて厚膜抵抗体を形成するので、比抵抗の低いRuO2成分が形成されず、比較的抵抗値の高い領域でSrRu1-XSnXO3(0<X<0.4)により固定抵抗器として所望の抵抗値が得られる。そして、上記抵抗体用ペーストは、鉛フリーであるので、環境上の問題がない。これにより、厚膜抵抗器の比較的シート抵抗値が高いものも、鉛を含むペーストを使うことなく、所望の抵抗値を容易に得ることができる。 According to the above method for manufacturing a thick film resistor, a thick film resistor is formed using a paste for a resistor including SrRu 1-X Sn X O 3 (0 <X <0.4) and borosilicate glass containing SrO. Therefore, RuO 2 component with low specific resistance is not formed, and SrRu 1-X Sn X O 3 (0 <X <0.4) has a desired resistance value as a fixed resistor in a relatively high resistance region. can get. Since the resistor paste is lead-free, there is no environmental problem. Thereby, even a thick film resistor having a relatively high sheet resistance value can easily obtain a desired resistance value without using a paste containing lead.

従って、本発明の抵抗体用ペーストを用いれば、厚膜抵抗体の作製手順は従来から変更する必要がなく、新たな設備や工程を追加する必要がないため、コストの増大を伴うことなく、鉛フリー化へ移行できる。   Therefore, if the resistor paste of the present invention is used, the manufacturing procedure of the thick film resistor does not need to be changed conventionally, and it is not necessary to add new equipment and processes, without increasing the cost, Shift to lead-free.

なお、図5に示す厚膜抵抗器の製造方法は、単体の厚膜抵抗器についてのものであるが、例えばハイブリッドIC等の厚膜抵抗器の製造などの絶縁基板上に印刷して焼成するものについて、同様に適用できることは勿論である。   The method for manufacturing the thick film resistor shown in FIG. 5 is for a single thick film resistor. For example, the thick film resistor is printed on an insulating substrate such as for manufacturing a thick film resistor such as a hybrid IC and fired. Of course, it can be applied to the same thing.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明の抵抗体用ペーストの作製プロセスを示すフロー図である。It is a flowchart which shows the preparation process of the paste for resistors of this invention. 本発明の導電材料の作製プロセスを示すフロー図である。It is a flowchart which shows the preparation processes of the electrically-conductive material of this invention. SrRu1-xSnxO3の置換比率Xと抵抗率(Ω・m)との関係を示すグラフである。Is a graph showing the relationship between SrRu 1-x Sn x O 3 of substitution ratio X and the resistivity and the (Ω · m). SrRu1-xSnxO3の置換比率XとTCR(10-6/K)との関係を示すグラフである。 3 is a graph showing the relationship between the substitution ratio X of SrRu 1-x Sn x O 3 and TCR (10 −6 / K). 本発明の抵抗体用ペーストを用いた厚膜抵抗器の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the thick film resistor using the paste for resistors of this invention.

Claims (2)

厚膜抵抗体に用いるSrRuO 3 のRuの一部をSnで置換させたSrRu 1-X Sn X O 3 で表される導電材料であって、置換比率Xが0<X<0.4の範囲であることを特徴とする導電材料。 A conductive material represented by SrRu 1-X Sn X O 3 in which a part of Ru of SrRuO 3 used for a thick film resistor is substituted with Sn, and the substitution ratio X is in the range of 0 <X <0.4. A conductive material characterized by that. 厚膜抵抗体に用いる導電材料の製造方法であって、
SrCO3と、RuO2と、SnO2とを所定の割合で含む混合粉末を作製し、
前記RuO 2 の含有量が30〜47.5mol%であり、前記SnO 2 の含有量が2.5〜20mol%であり、
前記混合粉末を焼成することによって、SrRuO3のRuの一部をSnで置換することを特徴と
する導電材料の製造方法。
A method for producing a conductive material used for a thick film resistor,
A mixed powder containing SrCO 3 , RuO 2 and SnO 2 at a predetermined ratio is prepared,
The RuO 2 content is 30-47.5 mol%, the SnO 2 content is 2.5-20 mol%,
A method for producing a conductive material, wherein a part of Ru of SrRuO 3 is replaced with Sn by firing the mixed powder.
JP2006353094A 2006-12-27 2006-12-27 Conductive material and resistor paste Expired - Fee Related JP5115949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353094A JP5115949B2 (en) 2006-12-27 2006-12-27 Conductive material and resistor paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353094A JP5115949B2 (en) 2006-12-27 2006-12-27 Conductive material and resistor paste

Publications (2)

Publication Number Publication Date
JP2008166427A JP2008166427A (en) 2008-07-17
JP5115949B2 true JP5115949B2 (en) 2013-01-09

Family

ID=39695525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353094A Expired - Fee Related JP5115949B2 (en) 2006-12-27 2006-12-27 Conductive material and resistor paste

Country Status (1)

Country Link
JP (1) JP5115949B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119592A1 (en) * 2013-02-04 2014-08-07 独立行政法人産業技術総合研究所 Resistive element, inorganic-material paste for electronic component such as dielectric, and process for producing said inorganic-material paste

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3843767B2 (en) * 2001-06-19 2006-11-08 Tdk株式会社 Method for manufacturing resistor paste and method for manufacturing thick film resistor
JP2005209737A (en) * 2004-01-20 2005-08-04 Tdk Corp Conductive material and its production process, resistor paste, resistor, electronic component
JP2005235756A (en) * 2004-01-20 2005-09-02 Tdk Corp Resistor paste, its manufacturing method, resistor and electronic component
JP2005244119A (en) * 2004-02-27 2005-09-08 Tdk Corp Resistor paste and resistor using the same
JP2006261349A (en) * 2005-03-16 2006-09-28 Tdk Corp Resistor paste and resistor
JP2006261350A (en) * 2005-03-16 2006-09-28 Tdk Corp Resistor paste and resistor
JP2007266108A (en) * 2006-03-27 2007-10-11 Nagoya Institute Of Technology Paste for resistor and manufacturing method for thick-film resistor
JP2009071219A (en) * 2007-09-18 2009-04-02 Nagoya Institute Of Technology Conductive material, paste for thick-film resistor and its manufacturing method

Also Published As

Publication number Publication date
JP2008166427A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4726890B2 (en) Surface mount negative thermistor
JP2007103594A (en) Resistor composition and thick film resistor
US9530547B2 (en) Laminated PTC thermistor element
CN106104712B (en) Resistance composition
KR20160134703A (en) Thin film resistive body and production method for same
JPH0620001B2 (en) Composition for producing electric resistance element and method for producing electric resistance element
JP5624977B2 (en) Lead-free resistor composition
US20100307669A1 (en) Piezoceramic multi-layer element
JP2004356266A (en) Resistor paste, resistor and electronic part
JPWO2004047124A1 (en) Resistor paste, resistor and electronic components
JP5115949B2 (en) Conductive material and resistor paste
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
JP2006108610A (en) Conductive material, resistor paste, resistor and electronic component
JP2009164496A (en) Conductive material, and paste for thick film resistor and manufacturing method thereof
JPS6224388B2 (en)
JP2013197447A (en) Manufacturing method of multilayer varistor
JP2006261350A (en) Resistor paste and resistor
JP2005123141A (en) Conductive paste and piezoelectric ceramic electronic component
JP2007266108A (en) Paste for resistor and manufacturing method for thick-film resistor
CN112088411A (en) Thermistor sintered compact and temperature sensor element
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2012111385A1 (en) Positive temperature-coefficient thermistor
JP7297409B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
KR100201160B1 (en) Resistance material composition, resistive paste, and resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5115949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees