JP5115929B2 - Liquid material processing equipment - Google Patents

Liquid material processing equipment Download PDF

Info

Publication number
JP5115929B2
JP5115929B2 JP2008185373A JP2008185373A JP5115929B2 JP 5115929 B2 JP5115929 B2 JP 5115929B2 JP 2008185373 A JP2008185373 A JP 2008185373A JP 2008185373 A JP2008185373 A JP 2008185373A JP 5115929 B2 JP5115929 B2 JP 5115929B2
Authority
JP
Japan
Prior art keywords
liquid material
ejector
nozzle
pressure gas
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008185373A
Other languages
Japanese (ja)
Other versions
JP2010000490A (en
Inventor
寛一 伊藤
Original Assignee
寛一 伊藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寛一 伊藤 filed Critical 寛一 伊藤
Priority to JP2008185373A priority Critical patent/JP5115929B2/en
Publication of JP2010000490A publication Critical patent/JP2010000490A/en
Application granted granted Critical
Publication of JP5115929B2 publication Critical patent/JP5115929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

本発明は、油水エマルジョンの製造、飲料液や医薬・化粧品の加工、廃水処理などの各種プロセスにおいて、液状物質の微粒化・安定エマルジョン化・均質化・滅菌などを目的とする液状物質の処理装置に係わる。  The present invention relates to an apparatus for treating a liquid substance for the purpose of atomization, stable emulsion formation, homogenization, sterilization, etc. of the liquid substance in various processes such as production of oil-water emulsions, processing of beverages and pharmaceuticals / cosmetics, and wastewater treatment. Related to.

近年油水エマルジョンの優れた燃焼性能が注目され、長時間安定したエマルジョンを維持するために界面活性剤の添加や撹拌操作に加えて超音波の強い分散乳化作用を利用する目的で20kHz程度の低周波数領域の超音波が照射される(例えば、特許文献1参照)。また、有機廃水のメタン化前処理においても汚泥粒子の可溶化目的で超音波の破砕作用を利用するなど、液状物質の処理では多分野で低周波数領域の超音波が利用されている。  In recent years, the excellent combustion performance of oil-water emulsions has attracted attention. In order to maintain a stable emulsion for a long time, in addition to the addition of a surfactant and a stirring operation, a low frequency of about 20 kHz is used for the purpose of utilizing a strong ultrasonic dispersion action. The region is irradiated with ultrasonic waves (see, for example, Patent Document 1). In addition, in the pretreatment of organic wastewater for methanation, ultrasonic waves in a low frequency region are used in many fields in the treatment of liquid substances, such as utilizing the crushing action of ultrasonic waves for the purpose of solubilizing sludge particles.

超音波発振法としては圧電型や磁歪型のほかに、ハルトマン法として知られている噴気式がある(例えば、非特許文献1、及び2参照)。この方法は共鳴空洞に高速気流を噴気して発振させる方法で、空洞の直径をd,深さをL,媒体の音速をVとすると近似的に周波数N≒V/4(L+0.3d)の音波が発振される現象に基づくもので、構造簡単で取り扱い容易であるが、超音波を得るためにはL及びdを小さくする必要があり、小型で低周波数領域の超音波発振に利用される。  As the ultrasonic oscillation method, there is a fusible type known as the Hartmann method in addition to the piezoelectric type and the magnetostrictive type (for example, see Non-Patent Documents 1 and 2). This method oscillates by jetting a high-speed air current into the resonance cavity. When the cavity diameter is d, the depth is L, and the sound velocity of the medium is V, the frequency is approximately N≈V / 4 (L + 0.3d). It is based on the phenomenon that sound waves are oscillated, and its structure is simple and easy to handle. However, in order to obtain ultrasonic waves, it is necessary to reduce L and d, and it is used for ultrasonic generation in a small and low frequency region .

一方、液状物質のエマルジョン化・均質化・滅菌などを目的として、周知の水蒸気エゼクターによって発生する超音速の衝撃波を利用する方法がある(例えば、特許文献2参照)。この方法は比較的構造が簡便で運転も容易であるが、機械的効率が低いので、駆動エネルギー(水蒸気使用量)を可及的に少なくする設計的配慮が必要とされる。(例えば、非特許文献3)  On the other hand, there is a method using a supersonic shock wave generated by a known water vapor ejector for the purpose of emulsifying, homogenizing and sterilizing a liquid substance (see, for example, Patent Document 2). This method has a relatively simple structure and is easy to operate. However, since the mechanical efficiency is low, design consideration is required to reduce the drive energy (water vapor consumption) as much as possible. (For example, Non-Patent Document 3)

特開2006−28215JP 2006-28215 A 特開平4−256428、及び特表平7−506527JP-A-4-256428 and JP-A-7-506527 日刊工業新聞社発行・飯田康夫著「ソノプロセスのはなし」、などPublished by Nikkan Kogyo Shimbun, Yasuo Iida, “Sono Process Story”, etc. 小林理研ニュースNo.33.2及びNo.34.2Kobayashi Riken News No. 33.2 and no. 34.2 丸善株式会社発行・化学工学便覧「スチームエゼクター」、などPublished by Maruzen Co., Ltd., Chemical Engineering Handbook "Steam Ejector", etc.

以上の背景に鑑み本発明は、液状物質の微粒化・安定エマルジョン化・均質化・滅菌などを目的とし、可及的に簡単な構成で、水蒸気量などの駆動エネルギーが少なく且つ効果的な処理方法及び装置の創出を課題としている。  In view of the above background, the present invention aims at atomization, stable emulsion formation, homogenization, sterilization, etc. of a liquid substance, has an as simple structure as possible, has a low driving energy such as an amount of water vapor, and is an effective treatment. The creation of methods and devices is an issue.

上記課題を解決するために、本発明は前記の噴気式超音波発振法とエゼクター法がいずれも駆動源として同一の高圧ガス(水蒸気)を使用することに着目したもので、両法を一体化して、超音波とエゼクターの同時相乗効果により性能を向上せしめると共に、高圧ガスを両者に併用することにより省エネルギー化も図るものである。  In order to solve the above-described problems, the present invention focuses on the fact that both the above-described fumarating ultrasonic oscillation method and ejector method use the same high-pressure gas (water vapor) as a driving source. Thus, the performance is improved by the simultaneous synergistic effect of the ultrasonic wave and the ejector, and energy saving is also achieved by using a high-pressure gas in both.

また、請求項1に記載の発明は、一端に反射鏡を有する円環室内に高圧ガス噴射口と共鳴空洞とを放射状に多数対峙させて超音波を発振せしめると共に、該円環室の他端を収縮円錐環を介して収縮・拡大ノズル(ラバールノズル)に連結してエゼクターを構築することにより液状物質を吸引・混合せしめて、液状物質に超音波とエゼクターの両効果を同時相乗的に作用せしめることを特徴とする、液状物質の処理装置である。  The invention according to claim 1 oscillates ultrasonic waves by causing a large number of high-pressure gas injection ports and resonance cavities to confront each other radially in an annular chamber having a reflecting mirror at one end, and the other end of the annular chamber. By connecting an ejector to a contraction / expansion nozzle (Laval nozzle) through a contraction conical ring, a liquid substance is sucked and mixed, and both the effects of ultrasound and ejector are made to act simultaneously and synergistically on the liquid substance. This is a liquid material processing apparatus.

請求項1に記載の発明によれば、超音波発振装置とエゼクターとが一体化されてコンパクトな構成となるのみならず、前記のように両者の駆動には同一の高圧ガスを共通利用できるので、少ない高圧ガス使用量により超音波とエゼクターの効果を同時相乗的に発揮する装置を構築できる効果がある。  According to the first aspect of the present invention, not only the ultrasonic oscillation device and the ejector are integrated into a compact configuration, but also the same high-pressure gas can be commonly used for driving both as described above. There is an effect that it is possible to construct a device that simultaneously and synergistically exhibits the effects of ultrasonic waves and ejectors with a small amount of high-pressure gas used.

以下、本発明の実施の形態を図に基づいて説明する。図1は本発明の実施例の断面図、図2は図1のA部詳細図、図3は、図1のPP断面図、をそれぞれ示す。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is a detailed view of a portion A in FIG. 1, and FIG. 3 is a cross-sectional view of PP in FIG.

図において、圧縮空気や水蒸気などの高圧ガス1は高圧ガス入口2より円筒状の高圧ガス室3に供給され、高圧ガス室3を形成する内筒4には噴気孔5を有する噴気ノズル6を放射状に多数(図示例では8ヶ)固定すると共に、内筒4と嵌合する外筒7には共鳴空洞8を有する共鳴器9を噴気孔5と同一中心線上に対峙して固定する。内筒4の外面と外筒7の内面とで構成される円環室10の一端には反射鏡11を設け、他端を収縮円錐環12と結合せしめ該収縮円錐環12の末端には収縮・拡大ノズル(ラバールノズル)13を構築する。反射鏡11は、発振した超音波を的確に反射させるために、噴気ノズル先端6’と共鳴空洞の距離Xの約1/2の中心点を焦点とする放物線の回転体で構築するとよい。収縮・拡大ノズル13の出口には原液入口14と連通する液室15を設けると共に、収縮・拡大ノズル13の出口に対峙して収縮管16と咽喉管17とで構成される混合ノズル18を設け、更にこれに連ねて拡大ノズル19と処理液出口20を設けることによって周知のようなエゼクターを構築せしめる。図中、21は原液、22は処理液を示す。  In the figure, a high-pressure gas 1 such as compressed air or water vapor is supplied to a cylindrical high-pressure gas chamber 3 from a high-pressure gas inlet 2, and an inner nozzle 4 having a high-pressure gas chamber 3 is provided with an injection nozzle 6 having an injection hole 5. A large number (eight in the illustrated example) are fixed in a radial manner, and a resonator 9 having a resonance cavity 8 is fixed to the outer cylinder 7 fitted to the inner cylinder 4 so as to face the same center line as that of the air holes 5. A reflecting mirror 11 is provided at one end of an annular chamber 10 constituted by the outer surface of the inner cylinder 4 and the inner surface of the outer cylinder 7, and the other end is connected to a contracting conical ring 12 and contracted at the end of the contracting conical ring 12. Construct an expansion nozzle (Laval nozzle) 13 In order to accurately reflect the oscillated ultrasonic wave, the reflecting mirror 11 may be constructed of a parabolic rotator whose focal point is a center point of about ½ of the distance X between the jet nozzle tip 6 ′ and the resonance cavity. A liquid chamber 15 communicating with the stock solution inlet 14 is provided at the outlet of the contraction / expansion nozzle 13, and a mixing nozzle 18 composed of a contraction tube 16 and a throat tube 17 is provided opposite to the outlet of the contraction / expansion nozzle 13. Further, by providing an enlarged nozzle 19 and a treatment liquid outlet 20 in connection with this, an ejector as is well known can be constructed. In the figure, 21 indicates a stock solution and 22 indicates a processing solution.

以上の構成により、以下高圧ガスとして水蒸気を用いた場合について作用を説明する。高圧ガス室3に供給された水蒸気は噴気孔5から共鳴空洞8に噴射され,共鳴空洞8の直径d=4mm,深さL=4mmとして水蒸気中の音速V≒400m/秒とすると、発振音波の周波数N≒V/4(L+0.3d)≒20kHzとなり、液状物質処理に適した低周波数領域の超音波が発振される。この超音波は円環室10から収縮円錐環12を経て集約されて高密度となり、収縮・拡大ノズル13に達して水蒸気流と共に進行する。  With the above configuration, the operation will be described below when steam is used as the high-pressure gas. The water vapor supplied to the high-pressure gas chamber 3 is jetted into the resonance cavity 8 from the nozzle hole 5, and when the diameter d of the resonance cavity 8 is 4 mm and the depth L is 4 mm, the sound velocity V in the water vapor is approximately 400 m / sec. The frequency N≈V / 4 (L + 0.3d) ≈20 kHz, and ultrasonic waves in a low frequency region suitable for liquid material processing are oscillated. The ultrasonic waves are concentrated from the annular chamber 10 via the contraction conical ring 12 and become high density, reach the contraction / expansion nozzle 13 and proceed with the water vapor flow.

収縮・拡大ノズル13から噴出する高速水蒸気流で発生する真空作用で、原液入口14から液室15に供給される原液21を吸引し、気液混合すると同時に水蒸気の急速な凝縮によって衝撃波を生じるので、収縮管16と咽喉管17とで構成される混合ノズル18内において強力な衝撃混合が行なわれ、その後に拡大ノズル19で静圧を回復して処理液出口20から排出される。このような周知の水蒸気エゼクター効果に加えて、本法では前記のように収縮円錐環12で集約された高密度の超音波が混合ノズル18に達して超音波の強い粒子破砕作用と分散乳化作用が付加されるので、従来のエゼクター処理に比して、より強力な微粒化・安定エマルジョン化・均質化・滅菌などの処理が可能になる。  The vacuum action generated by the high-speed steam flow ejected from the contraction / expansion nozzle 13 sucks the stock solution 21 supplied from the stock solution inlet 14 to the liquid chamber 15 and mixes the gas and liquid. At the same time, a shock wave is generated by rapid condensation of water vapor. Then, powerful impact mixing is performed in the mixing nozzle 18 constituted by the contraction tube 16 and the throat tube 17, and thereafter the static pressure is recovered by the expansion nozzle 19 and discharged from the processing liquid outlet 20. In addition to the well-known water vapor ejector effect, in this method, the high-density ultrasonic waves gathered by the shrinking conical ring 12 reach the mixing nozzle 18 as described above, and the ultrasonic particle-breaking action and dispersion emulsifying action are strong. Therefore, more powerful atomization, stable emulsion formation, homogenization, sterilization, and the like are possible compared to conventional ejector processing.

上記のうち、使用される水蒸気は飽和水蒸気でもよいが、噴気孔5から噴気された際の温度低下により水蒸気の一部が凝縮して後段のエゼクター作用に支障をきたすおそれがあるので、これを防ぐために過熱水蒸気を使用するとよい。また上記では、エゼクターへの原液入口14は1箇所としているが、特許文献2などに示されているように原液を複数個所から供給する方式を採用することもできることは勿論である。  Of the above, the water vapor used may be saturated water vapor, but this may cause a part of the water vapor to condense due to a decrease in temperature when blown from the fumarole hole 5 and hinder the ejector action at the later stage. Superheated steam may be used to prevent this. In the above, the stock solution inlet 14 to the ejector is provided at one place, but it is of course possible to employ a system in which the stock solution is supplied from a plurality of places as shown in Patent Document 2 and the like.

本発明の実施例の断面図  Sectional view of an embodiment of the present invention 図1のA部詳細図  Detailed view of part A in FIG. 図1のPP断面図  PP sectional view of FIG.

符号の説明Explanation of symbols

1 高圧ガス
2 高圧ガス入口
3 高圧ガス室
4 内筒
5 噴気孔
6 噴気ノズル
6’ 噴気ノズル先端
7 外筒
8 共鳴空洞
9 共鳴器
10 円環室
11 反射鏡
12 収縮円錐環
13 収縮・拡大ノズル(ラバールノズル)
14 原液入口
15 液室
16 収縮管
17 咽喉管
18 混合ノズル
19 拡大ノズル
20 処理液出口
21 原液
22 処理液
DESCRIPTION OF SYMBOLS 1 High pressure gas 2 High pressure gas inlet 3 High pressure gas chamber 4 Inner cylinder 5 Fumarole hole 6 Fumarole nozzle 6 'Fumarole nozzle tip 7 Outer cylinder 8 Resonant cavity 9 Resonator 10 Annular chamber 11 Reflecting mirror 12 Contraction conical ring 13 Contraction / expansion nozzle (Laval nozzle)
14 Stock solution inlet 15 Liquid chamber 16 Shrink tube 17 Throat tube 18 Mixing nozzle 19 Expansion nozzle 20 Treatment solution outlet 21 Stock solution 22 Treatment solution

Claims (1)

一端に反射鏡を有する円環室内に高圧ガス噴射口と共鳴空洞とを放射状に多数対峙させて超音波を発振せしめると共に、該円環室の他端を収縮円錐環を介して収縮・拡大ノズル(ラバールノズル)に連結してエゼクターを構築することにより液状物質を吸引・混合せしめて、液状物質に超音波とエゼクターの両効果を同時相乗的に作用せしめることを特徴とする、液状物質の処理装置。  A high-pressure gas injection port and a resonance cavity are radially opposed to each other in an annular chamber having a reflecting mirror at one end to oscillate ultrasonic waves, and the other end of the annular chamber is contracted and expanded via a contracting conical ring. Liquid material processing device characterized in that by constructing an ejector connected to a (Laval nozzle), the liquid material is sucked and mixed, and both the effects of ultrasound and ejector are simultaneously and synergistically acted on the liquid material. .
JP2008185373A 2008-06-20 2008-06-20 Liquid material processing equipment Expired - Fee Related JP5115929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008185373A JP5115929B2 (en) 2008-06-20 2008-06-20 Liquid material processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008185373A JP5115929B2 (en) 2008-06-20 2008-06-20 Liquid material processing equipment

Publications (2)

Publication Number Publication Date
JP2010000490A JP2010000490A (en) 2010-01-07
JP5115929B2 true JP5115929B2 (en) 2013-01-09

Family

ID=41582640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008185373A Expired - Fee Related JP5115929B2 (en) 2008-06-20 2008-06-20 Liquid material processing equipment

Country Status (1)

Country Link
JP (1) JP5115929B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10711807B2 (en) 2010-06-29 2020-07-14 Coldharbour Marine Limited Gas lift pump apparatus with ultrasonic energy generator and method
CN102059070B (en) * 2010-12-02 2013-02-27 广州市新栋力超声电子设备有限公司 Hydraulic/ultrasonic coupling cavitation device
GB2497954A (en) 2011-12-22 2013-07-03 Coldharbour Marine Ltd Gas lift pump with a sonic generator
TW201420203A (en) * 2012-11-23 2014-06-01 Prec Machinery Res & Dev Ct Annular material feed guiding device
US10765988B2 (en) 2013-10-14 2020-09-08 Coldharbour Marine Limited Apparatus and method for treating gas in a liquid medium with ultrasonic energy for chemical reaction
RU2619783C1 (en) * 2016-05-04 2017-05-18 Станислав Александрович Галактионов Acoustic mixer
CN106195347B (en) * 2016-07-11 2018-12-04 常州大学 A kind of anti-icing stifled automatic fluid injection throttle valve equipped with liquid storage device
RU2618828C1 (en) * 2016-08-15 2017-05-11 Станислав Александрович Галактионов Acoustic mixer nozzle
RU187218U1 (en) * 2018-12-10 2019-02-25 Станислав Александрович Галактионов HYDROCARBON LIQUID TREATMENT DEVICE
CN110052340B (en) * 2019-04-01 2024-03-19 江苏大学 Multistage ultrasonic atomization spraying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS545103A (en) * 1977-06-14 1979-01-16 Tokuyama Soda Kk Method of improving performance of steam ejector
SE8500276D0 (en) * 1985-01-22 1985-01-22 Asea Stal Ab METHOD OF MIXING FLUIDS AND APPARATUS FOR WORKING THE METHOD
JPS63218274A (en) * 1987-03-06 1988-09-12 Toa Nenryo Kogyo Kk Liquid atomizer
JPS63218273A (en) * 1987-03-06 1988-09-12 Toa Nenryo Kogyo Kk Liquid atomizer
JPS6438160A (en) * 1987-08-05 1989-02-08 Toa Nenryo Kogyo Kk Ultrasonic composite atomizer
JP2009022941A (en) * 2007-07-20 2009-02-05 Chuo Kiko Kk Air-blowing-type ultrasonic irradiation apparatus and system for treating liquid material

Also Published As

Publication number Publication date
JP2010000490A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5115929B2 (en) Liquid material processing equipment
CN108722326B (en) Vibration assembly, beauty device with vibration assembly and using method of beauty device
JP5974009B2 (en) Improved ultrasonic cleaning method and apparatus
AU705492B2 (en) Gas dissolution in liquids
JP2007027270A (en) Cleaning apparatus and cleaning method
ATE556788T1 (en) PRODUCTION OF PHARMACEUTICAL ACTIVE PARTICLES USING FOCUSED ACOUSTIC ENERGY
RU2284853C2 (en) Diffuser-emulsifier
JP2009022941A (en) Air-blowing-type ultrasonic irradiation apparatus and system for treating liquid material
WO2006068537A1 (en) Method for heat-mass-energy exchange and device for carrying out said method
JP2008540887A (en) Method for generating pressure pulsations and apparatus for implementing the method
RU2291712C2 (en) Method and device for disinfecting product be means of surface treatment
JP6449531B2 (en) Microbubble generator
EA009880B1 (en) Hydrodynamic generator of ultrasonic range acoustic oscillations and method for generating the same
JP5936168B1 (en) Underwater oxygen dissolution apparatus and underwater oxygen dissolution method using the same
JP5839771B2 (en) Microbubble generator and generation method
WO2019198225A1 (en) Air bubble generation device
CN104998863A (en) Ultrasonic cleaning machine
WO2008051115A1 (en) Heat-mass-and-energy exchange method and a device for carrying out said method
JP2011005359A (en) Organic waste liquid treatment apparatus and method
JP2012066218A (en) Ultrasonic wave generator
JP2008055369A (en) Microorganism sterilization arrangement
Gâmbuteanu et al. Principles and effects of acoustic cavitation
JP3299830B2 (en) Vibrating water jet injector and its vibration amplifier
US10233097B2 (en) Liquid treatment apparatus with ring vortex processor and method of using same
JP2006136819A (en) Liquid treatment apparatus and liquid treatment system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees