JP5111275B2 - Monitoring device, power storage device control system using the same, and railway vehicle - Google Patents

Monitoring device, power storage device control system using the same, and railway vehicle Download PDF

Info

Publication number
JP5111275B2
JP5111275B2 JP2008190393A JP2008190393A JP5111275B2 JP 5111275 B2 JP5111275 B2 JP 5111275B2 JP 2008190393 A JP2008190393 A JP 2008190393A JP 2008190393 A JP2008190393 A JP 2008190393A JP 5111275 B2 JP5111275 B2 JP 5111275B2
Authority
JP
Japan
Prior art keywords
power supply
power
monitoring device
control device
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008190393A
Other languages
Japanese (ja)
Other versions
JP2009100644A (en
Inventor
尊善 西野
誠司 石田
裕 有田
豊田  瑛一
裕 佐藤
嶋田  基巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008190393A priority Critical patent/JP5111275B2/en
Priority to CN2008101310033A priority patent/CN101399453B/en
Priority to GB0815796A priority patent/GB2453207B/en
Publication of JP2009100644A publication Critical patent/JP2009100644A/en
Application granted granted Critical
Publication of JP5111275B2 publication Critical patent/JP5111275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は蓄電池を監視する監視装置及びそれを用いた蓄電装置制御システム,鉄道車両に関する。   The present invention relates to a monitoring device for monitoring a storage battery, a power storage device control system using the same, and a railway vehicle.

充電や放電を繰り返すことができる蓄電池は電源装置として用い易く、携帯端末やノートPCの電源からハイブリッド自動車の動力源に至るまで、広く利用されている。   A storage battery that can be repeatedly charged and discharged is easy to use as a power supply, and is widely used from the power source of a portable terminal or a notebook PC to the power source of a hybrid vehicle.

蓄電池にはその化学的特性から適正に蓄えられるエネルギー量や適正な充放電電流が決まっている。これらを越えて充放電すると、化学的特性が変化して性能が低下したり壊れたりする。したがって、蓄電池を長持ちさせるためには蓄電池の状態を見ながら充放電を適正に調整する必要がある。   The amount of energy that can be stored properly and the appropriate charge / discharge current are determined for the storage battery due to its chemical characteristics. Charging / discharging beyond these will change the chemical properties and degrade or break performance. Therefore, in order to make the storage battery last longer, it is necessary to appropriately adjust charging / discharging while looking at the state of the storage battery.

このことから、蓄電池を利用するシステムでは、蓄電池の電圧等の状態を検知する監視装置が備えられ、検知した蓄電池の状態情報を充放電制御部に伝え、これを基に充放電を制御するのが普通である。   For this reason, in a system using a storage battery, a monitoring device that detects the state of the storage battery voltage and the like is provided, and the state information of the detected storage battery is transmitted to the charge / discharge control unit, and charge / discharge is controlled based on this information. Is normal.

自動車のような出力規模の大きいシステムで蓄電池を用いる際、大電力や大エネルギー容量を確保するため、蓄電池を多直列する(特許文献1)。この時、ある程度まとまった小規模な直列ごとに監視装置を備え、充放電制御部がその各々と連携できるようにすれば、監視装置のサイズや配線の上で都合が良い。   When a storage battery is used in a system with a large output scale such as an automobile, multiple storage batteries are connected in series in order to secure a large power and a large energy capacity (Patent Document 1). At this time, it is convenient in terms of the size and wiring of the monitoring device if a monitoring device is provided for each small series arranged to some extent and the charge / discharge control unit can cooperate with each.

特開2003−70179号公報JP 2003-70179 A

自動車の動力源としての用途では、多直列した蓄電池全体は数百ボルトの高電圧となる。監視装置はセンサで蓄電池と結線されていたり至近にあったりするので、高電圧による破壊を防止するため適切な絶縁を施す必要がある。これにはフォトカプラをはじめとする絶縁素子を使えるが、その分コストがかかる。   For use as a power source for automobiles, the entire multi-series storage battery has a high voltage of several hundred volts. Since the monitoring device is connected to the storage battery by a sensor or is in close proximity, it is necessary to provide appropriate insulation to prevent destruction due to high voltage. For this, an insulating element such as a photocoupler can be used, but the cost increases accordingly.

特許文献1の方法によれば、多直列された蓄電池に多数付随する監視装置(セルコントローラ)を一列に接続する際、その間をフォトカプラで絶縁する必要がなくなる。別途設ける充放電制御部(バッテリコントローラ)との通信路は直列の両端の監視装置に限り、この2箇所だけを多直列された蓄電池分の耐圧をもって絶縁することで、蓄電装置を安価に構成できる。   According to the method of Patent Document 1, when a large number of monitoring devices (cell controllers) associated with a multi-series storage battery are connected in a row, it is not necessary to insulate them with a photocoupler. The communication path to the separately provided charge / discharge control unit (battery controller) is limited to the monitoring devices at both ends in series, and the power storage device can be configured at low cost by insulating only these two locations with a withstand voltage for multiple series storage batteries. .

しかし、特許文献1の蓄電装置は電気自動車或いはハイブリッド電気自動車向けに144ボルト程度の電圧であり、比較的安価なフォトカプラで絶縁できる程度で済んでいることが前提である。これよりも大規模なシステム、例えばハイブリッド鉄道車両向けに蓄電池を架線電圧相当の1500ボルトまで多直列した場合、1500ボルトもの高圧に耐える絶縁素子が必要である。このような高耐圧素子は高価である。   However, it is assumed that the power storage device of Patent Document 1 has a voltage of about 144 volts for an electric vehicle or a hybrid electric vehicle and can be insulated by a relatively inexpensive photocoupler. When a large number of storage batteries are connected in series up to 1500 volts corresponding to the overhead line voltage for a larger-scale system, for example, a hybrid railway vehicle, an insulating element that can withstand a high voltage of 1500 volts is required. Such a high withstand voltage element is expensive.

本発明の目的は、このように蓄電池を多直列した高電圧な組電池を用いた場合でも、簡単且つ安価な構成で、蓄電池を長寿命可能な監視装置及びそれを用いた蓄電装置制御システムを提供することである。   An object of the present invention is to provide a monitoring device capable of extending the life of a storage battery with a simple and inexpensive configuration and a power storage device control system using the same even when a high-voltage assembled battery in which multiple storage batteries are connected in series is used. Is to provide.

上記課題を解決するために、本発明は、複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、組電池の充放電を制御する制御装置と、制御装置からその制御装置に隣接する監視装置へ情報を伝送する通信路と、を有し、複数の監視装置の各々は、複数の部分組電池の状態に基づいて充放電制御情報を生成する複数の処理手段と、電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、前記制御装置側に隣接して配置された監視装置または隣接する制御装置と通信を行うため第1の通信手段と、他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、処理手段と第1の通信手段又は第2の通信手段間に配置され、部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、監視装置は、制御装置と他の監視装置を介して接続される場合には、制御装置側に隣接する監視装置の電源手段の給電出力に連動する電源指令に基づき、電源手段の給電のオン/オフを切替え、制御装置と隣接する場合には、隣接する制御装置から入力される電源指令に基づき、電源手段の給電のオン/オフを切替える構成とする。 In order to solve the above-mentioned problems, the present invention monitors a plurality of battery packs each composed of a plurality of storage batteries connected in series, and a plurality of monitors each connected in series. And a communication device for transmitting information from the control device to a monitoring device adjacent to the control device. Each of the plurality of monitoring devices includes a plurality of parts. A plurality of processing means for generating charge / discharge control information based on the state of the assembled battery, and a power supply means capable of receiving electric energy , supplying power when receiving a power supply command, and stopping power supply output when not receiving the power supply command A first communication means for communicating with a monitoring device arranged adjacent to the control device side or an adjacent control device, and a second for communicating with a monitoring device arranged adjacent to the other side. Communication means, processing means and first Disposed between signal means or the second communication means when includes an insulating means for insulating at a voltage above the breakdown voltage of the subset cell, a monitoring device, which is connected via a control device and another monitoring device On the basis of the power supply command linked to the power supply output of the power supply means of the monitoring device adjacent to the control device side, switching on / off of power supply of the power supply device, and when adjacent to the control device, from the adjacent control device Based on the input power supply command , the power supply means is switched on / off .

また、複数の蓄電池からなる部分組電池と接続され、部分組電池を監視し、他の監視装置と直列に接続される監視装置において、直列に接続された複数の監視装置の一端は、部分組電池の充放電を制御する制御装置と接続され、監視装置は、部分組電池の状態に基づいて充放電制御情報を生成する処理手段と、電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、制御装置側に隣接して配置された監視装置または隣接する制御装置と通信を行うため第1の通信手段と、他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、処理手段と第2の通信手段間に配置され、部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、制御装置と他の監視装置を介して接続される場合には、制御装置側に隣接する監視装置の電源手段の給電出力に連動する電源指令に基づき、電源手段の給電のオン/オフを切替え、制御装置と隣接する場合には、隣接する制御装置から入力される電源指令に基づき、電源手段の給電のオン/オフを切替える構成とする。 Further, in a monitoring device connected to a partial battery composed of a plurality of storage batteries, monitoring the partial battery, and connected in series with another monitoring device, one end of the plurality of monitoring devices connected in series is a partial set. Connected to a control device that controls charging / discharging of the battery, the monitoring device can receive electric energy and processing means for generating charging / discharging control information based on the state of the sub battery, and supply power when receiving a power command The power supply means for stopping the power supply output when the power supply command is not received, the first communication means for communicating with the monitoring device arranged adjacent to the control device side or the adjacent control device, and the other side A second communication unit for communicating with a monitoring device disposed adjacent to the second monitoring unit; and an insulating unit that is disposed between the processing unit and the second communication unit and insulates with a withstand voltage equal to or higher than a voltage of the partially assembled battery. and, the control device and another monitoring device When connected via, on the basis of the power instruction interlocked to the power supply output of the power supply means of the monitoring device adjacent to the control apparatus switches the power supply on / off of the power supply means, in the case adjacent to the control unit The power supply means is switched on / off based on a power supply command input from an adjacent control device.

また、複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、組電池の充放電を制御する制御装置と、を有し、複数の監視装置の一端は、前記制御装置と接続され、複数の監視装置の各々は、複数の部分組電池の状態に基づいて充放電制御情報を生成する複数の処理手段と、制御装置側に隣接して配置された監視装置または隣接する制御装置と通信を行うため第1の通信手段と、他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、処理手段と第1の通信手段及び第2の通信手段間に配置され、部分組電池の電圧を絶縁する絶縁手段と、を有し、前記複数の監視装置の各々は、制御装置と他の監視装置を介して接続される場合には、制御装置側に隣接する監視装置の電源手段の給電出力を条件とする電源指令に基づき、電源手段の給電のオン/オフを切替え、制御装置と隣接する場合には、隣接する制御装置の電源手段の給電出力を条件とする電源指令に基づき、電源手段の給電のオン/オフを切替える構成とする。
In addition, a plurality of battery packs composed of a plurality of storage batteries are connected in series, a plurality of battery packs are monitored, a plurality of monitoring devices are connected in series, and charging / discharging of the battery pack is controlled. And one end of the plurality of monitoring devices is connected to the control device, and each of the plurality of monitoring devices generates a plurality of charge / discharge control information based on the state of the plurality of partial assembled batteries. In order to communicate with the monitoring device arranged adjacent to the control device side or the monitoring device arranged adjacent to the control device side or the adjacent control device, and to the monitoring device arranged adjacent to the other side A second communication means, a power supply means capable of receiving electric energy , supplying power when receiving a power supply command, and stopping power supply output when not receiving the power supply command , processing means, first communication means, and second Between the communication means of the The has an insulating means for insulating each of said plurality of monitoring devices, to be connected via a control device and another monitoring device, power feeding of the power supply means of the monitoring device adjacent to the control apparatus Based on the power supply command with the output as the condition, on / off of power supply of the power supply means is switched, and when adjacent to the control device , the power supply based on the power supply command with the condition as the power supply output of the power supply means of the adjacent control device The power supply of the means is switched on / off .

蓄電池を多直列した高電圧な組電池を用いた場合でも、簡単且つ安価な構成で、蓄電池を長寿命可能な監視装置及びそれを用いた蓄電装置制御システムを提供できる。   Even when a high-voltage assembled battery in which multiple storage batteries are connected in series is used, it is possible to provide a monitoring device capable of extending the life of the storage battery with a simple and inexpensive configuration and a power storage device control system using the same.

以下各実施例について図面を用いて説明する。   Each embodiment will be described below with reference to the drawings.

図1は、本発明の蓄電装置制御システムの一実施形態を示した図である。   FIG. 1 is a diagram showing an embodiment of a power storage device control system of the present invention.

組電池bは複数の蓄電池からなる。負荷ldは組電池bのエネルギーを消費したり、エネルギーを発生して組電池bを充電したりする。制御装置ctlは負荷ldを変化させて組電池bと負荷ldの間のエネルギーの出入り(組電池bの充放電)を調整できる。つまり組電池の充放電を制御できる。   The assembled battery b is composed of a plurality of storage batteries. The load ld consumes energy of the assembled battery b or generates energy to charge the assembled battery b. The control device ctl can change the load ld to adjust the energy input / output (charge / discharge of the battery pack b) between the battery pack b and the load ld. That is, charge / discharge of the assembled battery can be controlled.

遮断器brは通電可能と通電不可能の2つの状態を有する。これらの状態は制御装置ctlの遮断制御装置brcからの指令で制御できる。遮断器brを通電不可能とした時、組電池bは負荷ldと電気的に切り離され、負荷ldとの間で充放電できなくなる。   The circuit breaker br has two states: energization is possible and energization is not possible. These states can be controlled by a command from the cutoff control device brc of the control device ctl. When the circuit breaker br cannot be energized, the assembled battery b is electrically disconnected from the load ld and cannot be charged / discharged with the load ld.

組電池bは、部分組電池であるバッテリモジュールb1,b2,b3が複数直列に接続されて成る。そのうちバッテリモジュールb1は基準電位gndに接地される。バッテリモジュールb1,b2,b3は、例えばニッケル水素電池やリチウムイオン電池のような充放電可能なバッテリセル(蓄電池)が複数個直列に繋がって成る。本実施例では鉄道用途を考え、バッテリモジュールの両端の電圧は適正な範囲で充放電した場合に最大400ボルト程度、組電池bの電圧は最大1200ボルト程度である。   The assembled battery b includes a plurality of battery modules b1, b2, and b3 that are partial assembled batteries connected in series. Among them, the battery module b1 is grounded to the reference potential gnd. The battery modules b1, b2, b3 are formed by connecting a plurality of chargeable / dischargeable battery cells (storage batteries) such as nickel hydride batteries and lithium ion batteries in series. In this embodiment, considering the railway application, the voltage at both ends of the battery module is about 400 volts at the maximum when charged and discharged within an appropriate range, and the voltage of the assembled battery b is about 1200 volts at the maximum.

なお、バッテリモジュールの数は本例の3に限らず、複数あれば本発明を同様の形態で実施できる。バッテリモジュール1つの電圧も400ボルトに限らず、異なる電圧でも本発明は適用可能である。   Note that the number of battery modules is not limited to three in this example, and the present invention can be implemented in the same manner as long as there are a plurality of battery modules. The voltage of one battery module is not limited to 400 volts, and the present invention can be applied to different voltages.

電圧センサcc1,cc2,cc3はそれぞれバッテリモジュールb1,b2,b3と同電位で、バッテリモジュール内部のバッテリセルの電圧値を測って出力する電圧センサである。   The voltage sensors cc1, cc2, and cc3 are voltage sensors that measure and output voltage values of battery cells inside the battery module at the same potential as the battery modules b1, b2, and b3, respectively.

監視装置mo1,mo2,mo3は、複数の部分組電池であるバッテリモジュールを監視するものであり、監視装置の各々が直列に接続されている。具体的には、それぞれバッテリモジュールb1,b2,b3に付随し、自身が付随するバッテリモジュールの状態として電圧やSOC(蓄電されたエネルギー÷適正に蓄電できるエネルギー)を検出し、またこれらが適正な値かどうかでバッテリモジュールの異常を検知するのが主な機能である。本実施例では各監視装置の構成は同じである。例えば後で説明する監視装置mo3上の絶縁手段is3,接点r3,通信回路c32は本実施例では利用しないが、それでもこれらを省かず各監視装置を同じ構成にするのは、製造管理や組み立てが容易なためである。以下ではバッテリモジュールb2と監視装置mo2を中心に説明する。   The monitoring devices mo1, mo2, and mo3 monitor battery modules that are a plurality of partial assembled batteries, and each of the monitoring devices is connected in series. Specifically, the battery modules b1, b2, and b3 are attached to the battery modules, respectively, and the state of the battery module to which the battery modules b1, b2, and b3 are attached is detected. The main function is to detect an abnormality in the battery module based on whether it is a value. In this embodiment, the configuration of each monitoring device is the same. For example, the insulating means is3, the contact r3, and the communication circuit c32 on the monitoring device mo3, which will be described later, are not used in the present embodiment. This is because it is easy. Below, it demonstrates centering on the battery module b2 and the monitoring apparatus mo2.

電源手段p2はスイッチング電源回路である。これにバッテリモジュールb2から電圧(最大400ボルト)を印加することで、この後で説明する処理手段であるマイコンm2や絶縁手段is2,通信回路c21、加えて監視装置mo2に関する図示していない諸々の要素に給電するために適切な電気エネルギー(例えば一般の素子で広く利用される3.3ボルトや5ボルト電源)を監視するバッテリモジュールb2から受電し、出力できる。なお、電源手段p2には比較的高効率で安価なスイッチング電源方式を用いたが、このような給電機能を備えれば、どのような電源方式でも良い。   The power supply means p2 is a switching power supply circuit. By applying a voltage (maximum 400 volts) from the battery module b2, to the microcomputer m2, the insulating means is2, the communication circuit c21, and the monitoring device mo2, which are processing means to be described later, various items not shown Power can be received and output from the battery module b2 that monitors suitable electrical energy (eg, 3.3 volt or 5 volt power supply widely used in general devices) to power the element. The power supply means p2 uses a relatively high-efficiency and inexpensive switching power supply method, but any power supply method may be used as long as such a power supply function is provided.

電源素子ic2はスイッチング電源回路である電源手段p2を制御する素子である。スイッチング電源方式に必要な発振機構を内部に有している。電源素子ic2が発振中は電源手段p2の給電出力が有り、発振停止中は給電出力が停止する。また、電源素子ic2はリモートoff制御端子を有し、ここに印加される電源指令に応じて発振の動作と停止を切り替えられる。具体的には、この端子が短絡状態であれば(電源指令として“短絡状態”を印加すれば)発振でき、開放状態であれば(電源指令として“開放状態”を印加すれば)発振を停止する。このような電源素子は、スイッチング電源方式が一般的なことから、安価に手に入る。   The power supply element ic2 is an element that controls the power supply means p2 that is a switching power supply circuit. It has an oscillation mechanism necessary for the switching power supply system. While the power supply element ic2 is oscillating, the power supply output of the power supply means p2 is present, and when the oscillation is stopped, the power supply output is stopped. Further, the power supply element ic2 has a remote off control terminal, and the oscillation operation and the stop can be switched according to the power supply command applied thereto. Specifically, if this terminal is in a short-circuited state (if a “short-circuit state” is applied as a power command), it can oscillate, and if it is in an open state (if an “open state” is applied as a power command), the oscillation is stopped. To do. Since such a power supply element is generally a switching power supply system, it can be obtained at low cost.

つまり、電源手段p2内の電源素子ic2は、電源指令入力端子pci2に電源指令の入力がない場合は、給電出力を停止する。   That is, the power supply element ic2 in the power supply means p2 stops the power feeding output when there is no power command input to the power command input terminal pci2.

なお、ここでは電源手段p2を比較的高効率で安価なスイッチング電源方式とし、その中に制御用のリモートoff可能な電源素子ic2を配したが、電源手段p2は、先の通りの給電機能及び外部から印加される電源指令により出力を停止するリモートoff制御端子とを備えればどのような電源方式でもよい。   Here, the power supply means p2 is a relatively high-efficiency and inexpensive switching power supply system, and the power supply element ic2 for remote-off control is arranged therein, but the power supply means p2 has the power supply function and Any power supply method may be used as long as it has a remote off control terminal that stops output in response to a power supply command applied from the outside.

電源指令入力端子pci2は、下側に隣接して配置された監視装置mo1の電源手段p1の出力に連動する電源指令を受け取り電源手段p2内の電源素子ic2へと印加するための電源指令入力端子である。電源指令入力端子pci1は、隣接して配置された制御装置ctlから電源手段p1に印加する電源指令を受け取ることとなる。   The power supply command input terminal pci2 receives a power supply command linked to the output of the power supply means p1 of the monitoring device mo1 arranged adjacent to the lower side, and applies the power supply command input terminal to the power supply element ic2 in the power supply means p2. It is. The power supply command input terminal pci1 receives a power supply command to be applied to the power supply means p1 from the adjacent control device ctl.

監視装置mo2は処理手段であるマイコンm2を備える。マイコンm2は電圧センサcc2から結線を介して電圧値を受け取り、部分組電池であるバッテリモジュールb2の電圧を検出する。マイコンm2が電圧センサcc2から電圧値を受け取る方式はどのようなものでも良い。   The monitoring device mo2 includes a microcomputer m2 that is a processing means. The microcomputer m2 receives the voltage value from the voltage sensor cc2 via the connection, and detects the voltage of the battery module b2 that is a partially assembled battery. Any method may be used for the microcomputer m2 to receive the voltage value from the voltage sensor cc2.

マイコンm2は受け取ったバッテリモジュールb2の電圧値を演算処理し、SOCを検出する。また、電圧値やSOCを予め定めた閾値と比較し、その結果からバッテリモジュールb2の異常を検出する。なお、マイコンm2で検出する情報は制御装置ctlが必要とする情報に合わせて決めればよく、電圧値やSOCに限らない。例えばバッテリモジュールb2に電流センサを備え、電流値を検出するようにしても良い。あるいは温度センサを備え、温度を検出するようにしても良い。   The microcomputer m2 calculates the received voltage value of the battery module b2 and detects the SOC. Further, the voltage value and the SOC are compared with a predetermined threshold value, and an abnormality of the battery module b2 is detected from the result. The information detected by the microcomputer m2 may be determined according to information required by the control device ctl, and is not limited to the voltage value or the SOC. For example, the battery module b2 may be provided with a current sensor to detect the current value. Alternatively, a temperature sensor may be provided to detect the temperature.

つまり処理手段であるマイコンm2は、部分組電池であるバッテリモジュールb2の状態情報に基づいてSOCなどの充放電制御情報を生成するものである。   That is, the microcomputer m2 that is the processing means generates charge / discharge control information such as SOC based on the state information of the battery module b2 that is a partially assembled battery.

第1の通信手段である通信回路c21は、監視装置mo2と基準電位に近い一方側に隣接して配置された監視装置mo1と通信するための下通信回路である。また第1の通信手段である通信回路c11は、制御装置ctl通信するための通信回路である。マイコンm2は、通信回路c21を介し、マイコンm1との間で情報を送受信できる。この際の通信はどのような方式でも良い。ここでは簡単なシリアル通信とする。   The communication circuit c21 which is the first communication means is a lower communication circuit for communicating with the monitoring device mo2 disposed adjacent to the monitoring device mo2 on one side close to the reference potential. The communication circuit c11 that is the first communication means is a communication circuit for communicating with the control device ctl. The microcomputer m2 can transmit / receive information to / from the microcomputer m1 via the communication circuit c21. The communication at this time may be any method. Here, simple serial communication is assumed.

第2の通信手段である通信回路c22は、監視装置mo2と基準電位から遠い他方側に隣接して配置された監視装置mo3と通信するための上通信回路である。第2の通信手段である通信回路c22と処理手段であるマイコンm2との間はフォトカプラのような絶縁手段is2で絶縁される。マイコンm2は、絶縁手段is2と通信回路c22を介して監視装置mo3のマイコンm3との間で情報を送受信できる。この際の通信はどのような方式でも良い。ここでは簡単なシリアル通信とする。この第2の通信手段には、隣接して配置された監視装置mo3の電源手段p3から給電される。   The communication circuit c22 which is the second communication means is an upper communication circuit for communicating with the monitoring device mo2 disposed adjacent to the monitoring device mo2 on the other side far from the reference potential. The communication circuit c22 as the second communication means and the microcomputer m2 as the processing means are insulated by an insulating means is2 such as a photocoupler. The microcomputer m2 can transmit / receive information to / from the microcomputer m3 of the monitoring device mo3 via the insulating means is2 and the communication circuit c22. The communication at this time may be any method. Here, simple serial communication is assumed. The second communication means is supplied with power from the power supply means p3 of the monitoring device mo3 arranged adjacent to the second communication means.

絶縁手段(フォトカプラ)is2は、バッテリモジュールb2並みの電圧、即ち400ボルト程度の絶縁を目的とした使用に耐える品であればよい。つまり、この絶縁手段is2は、部分組電池であるバッテリモジュールb2の電圧以上の耐圧で絶縁していることが特徴である。   The insulating means (photocoupler) is2 may be a product that can withstand the use for the purpose of insulation at a voltage equivalent to the battery module b2, that is, about 400 volts. That is, the insulating means is2 is characterized in that it is insulated with a breakdown voltage equal to or higher than the voltage of the battery module b2 which is a partially assembled battery.

電源入力端子pa2は監視装置mo3の電源手段p3を電源入力とする上電源入力端子である。通信回路c22へは、電源入力端子pa2から給電する。電源回路rc2は、この給電ラインに乗るノイズを除去して通信回路c22に安定した電源を提供するための電源回路である。   The power input terminal pa2 is an upper power input terminal that uses the power supply means p3 of the monitoring device mo3 as a power input. Power is supplied to the communication circuit c22 from the power input terminal pa2. The power supply circuit rc2 is a power supply circuit that removes noise on the power supply line and provides a stable power supply to the communication circuit c22.

接点r2は、十分な給電があれば短絡し、なければ開放するという機能を持ち、かつ、バッテリモジュールb2相当400ボルトの絶縁に使用できるという絶縁a接点リレーである。接点r2は、このような機能を持つものであればどのような物でも良い。ここでは入力側の発光ダイオードが点灯した時に限って出力側のリレーが閉じるという素子を用いる。このような品は絶縁手段(フォトカプラ)is2と同程度に安価である。   The contact r2 is an insulated a contact relay that has a function of short-circuiting if there is sufficient power supply and opening if not, and can be used for insulation of 400 volts equivalent to the battery module b2. The contact r2 may be anything as long as it has such a function. Here, an element is used in which the output side relay is closed only when the light emitting diode on the input side is lit. Such a product is as inexpensive as the insulating means (photocoupler) is2.

つまり、接点r2は、電源路絶縁手段であり、電源手段p2から電源指令を受給でき、かつ電源手段p2と後述する電源指令出力端子pco2間に配置され、部分組電池であるバッテリモジュールb2の電圧以上の耐圧で絶縁すればよい。   That is, the contact r2 is a power supply path insulating means, can receive a power supply command from the power supply means p2, and is disposed between the power supply means p2 and a power supply command output terminal pco2 described later, and is a voltage of the battery module b2 that is a partially assembled battery. What is necessary is just to insulate with the above pressure | voltage resistance.

電源指令出力端子pco2は、電源指令入力手段pci2とは反対側に設けられ、隣接して配置された監視装置mo3へ電源指令を出力するための端子である。具体的には、絶縁a接点リレーである接点r2の状態を電源指令“開放状態”や“短絡状態”として出力し、監視装置mo3の電源素子ic3のリモートoff制御端子へと印加するための電源指令出力端子である。   The power supply command output terminal pco2 is a terminal that is provided on the opposite side to the power supply command input means pci2 and that outputs a power supply command to the monitoring device mo3 disposed adjacent thereto. Specifically, the power supply for outputting the state of the contact r2 which is an insulated a contact relay as a power supply command “open state” or “short circuit state” and applying it to the remote off control terminal of the power supply element ic3 of the monitoring device mo3. Command output terminal.

以上、監視装置mo2の構成を説明したが、監視装置mo1,mo3も同様の構成である。特に監視装置mo1は、電源手段p1とバッテリモジュールb1との結線を通じて基準電位に接地している。   The configuration of the monitoring device mo2 has been described above, but the monitoring devices mo1 and mo3 have the same configuration. In particular, the monitoring device mo1 is grounded to the reference potential through the connection between the power supply means p1 and the battery module b1.

次に制御装置ctlの構成を説明する。制御装置ctlは基準電位gndに接地されている。よって、同電位のバッテリモジュールb1や初段の監視装置mo1と絶縁なしに接続できる。また制御装置ctl上の各要素へは、組電池b以外の十分豊富なエネルギーを持つ電源装置から給電される。   Next, the configuration of the control device ctl will be described. The control device ctl is grounded to the reference potential gnd. Therefore, the battery module b1 having the same potential and the first-stage monitoring device mo1 can be connected without insulation. Further, power is supplied to each element on the control device ctl from a power supply device having abundant energy other than the assembled battery b.

マイコンtmは、主に組電池bの充放電量を調整するための計算処理を行う。   The microcomputer tm mainly performs calculation processing for adjusting the charge / discharge amount of the assembled battery b.

通信回路tcbは、初段の監視装置mo1の通信回路c11と結線される。マイコンtmは通信回路tcb,通信回路c11を介してマイコンm1との間で情報を送受信できる。この際の通信仕様は何でもよいが、ここでは簡単なシリアル通信とする。マイコンtmはマイコンm1を介して監視装置mo1,mo2,mo3で検出したバッテリモジュールb1,b2,b3の電圧やSOCや異常情報を取得できる。この動作については後述する。   The communication circuit tcb is connected to the communication circuit c11 of the first-stage monitoring device mo1. The microcomputer tm can transmit and receive information to and from the microcomputer m1 via the communication circuit tcb and the communication circuit c11. The communication specification at this time may be anything, but here it is assumed to be simple serial communication. The microcomputer tm can acquire the voltage, SOC, and abnormality information of the battery modules b1, b2, and b3 detected by the monitoring devices mo1, mo2, and mo3 via the microcomputer m1. This operation will be described later.

マイコンtmは、取得したバッテリモジュールb1,b2,b3の電圧やSOCを基に、例えばSOCが予め定めた閾値より高ければ充電を止める、SOCが小さ過ぎれば放電を止めて優先的に充電する、というような充放電制御情報を演算する。また、もしバッテリモジュールb1,b2,b3のいずれかが異常との情報を受ければ、遮断器brを動作させて組電池bの充放電を強制的に止めるという保護動作もできる。   The microcomputer tm stops charging based on the acquired voltage and SOC of the battery modules b1, b2, b3, for example, if the SOC is higher than a predetermined threshold, and stops discharging if the SOC is too small, and preferentially charges, Such charge / discharge control information is calculated. Further, if any of the battery modules b1, b2, b3 receives information that an abnormality has occurred, a protective operation of forcibly stopping charging / discharging of the assembled battery b by operating the circuit breaker br can be performed.

リレーtrは、マイコンtmからの指令で短絡と開放を切り替えられるリレーである。リレーtrは初段の監視装置mo1の電源指令入力端子pci1を介して電源素子ic1のリモートoff制御端子と接続され、開放や短絡の状態を電源指令として印加する。この関係は、接点r1と電源素子ic2との関係や、接点r2と電源素子ic3との関係と同様である。   The relay tr is a relay that can be switched between short circuit and open according to a command from the microcomputer tm. The relay tr is connected to the remote off control terminal of the power supply element ic1 via the power supply command input terminal pci1 of the first-stage monitoring device mo1, and applies an open or shorted state as a power supply command. This relationship is the same as the relationship between the contact r1 and the power supply element ic2 and the relationship between the contact r2 and the power supply element ic3.

本実施例の構成にて、制御装置ctlが組電池bの充放電の制御に必要なバッテリモジュールb1,b2,b3の状態情報を取得する様子を示す。便宜上、制御装置ctl内のマイコンtmから通信回路tcb,通信回路c11を経て隣接して配置された監視装置mo1内のマイコンm1に至る双方向の通信路を上位通信路、マイコンm1から絶縁手段(フォトカプラ)is1,通信回路c12,通信回路c21を経てマイコンm2に至る双方向の通信路を通信路12,マイコンm2から絶縁手段(フォトカプラ)is2,通信回路c22,通信回路c31を経てマイコンm3に至る双方向の通信路を通信路23と呼ぶ。   In the configuration of the present embodiment, a state in which the control device ctl acquires state information of the battery modules b1, b2, and b3 necessary for controlling charging / discharging of the assembled battery b is shown. For convenience, a bidirectional communication path from the microcomputer tm in the control device ctl to the microcomputer m1 in the monitoring device mo1 disposed adjacently via the communication circuit tcb and the communication circuit c11 is defined as an upper communication path, and an insulating means (from the microcomputer m1). Photocoupler) A bidirectional communication path from is1, communication circuit c12, communication circuit c21 to microcomputer m2 is connected to communication path 12, microcomputer m2 through insulation means (photocoupler) is2, communication circuit c22, communication circuit c31, and microcomputer m3. The two-way communication path leading to is called a communication path 23.

図2は、制御装置ctlのマイコンtmがバッテリモジュールb3の状態情報を取得するまでの上位通信路、通信路12,通信路23上の伝送データの流れを時系列に沿って示す図である。各々の通信路において伝送データがどちらに向かっているかを明示するため、基準電位側への伝送をdown(下り)、これと反対側への伝送をup(上り)と呼ぶ。ヘッダhd3,制御データcd3,状態情報sd3は伝送データである。丸印で示されたmtu,m1u,m2u,m3u,m2d,m1d,mtdはマイコンの処理を表す。   FIG. 2 is a diagram showing the flow of transmission data on the upper communication path, the communication path 12, and the communication path 23 in time series until the microcomputer tm of the control device ctl acquires the state information of the battery module b3. In order to clearly indicate the direction of transmission data in each communication path, transmission to the reference potential side is called down (down), and transmission to the opposite side is called up (up). The header hd3, control data cd3, and status information sd3 are transmission data. Mtu, m1u, m2u, m3u, m2d, m1d, and mtd indicated by circles represent microcomputer processing.

まず、マイコンtmが処理mtuにて、マイコンm3に宛てたバッテリモジュールb3の状態情報送付のリクエストを生成し、上位通信路のupへと送信する。リクエストはヘッダhd3,制御データcd3から成る。ヘッダhd3はリクエストの宛先を記したものである。制御データcd3はリクエストの内容(この場合であればバッテリモジュールb3の状態情報の送付)等を記した制御データである。   First, in the process mtu, the microcomputer tm generates a request for sending the status information of the battery module b3 addressed to the microcomputer m3, and transmits it to the upper communication path up. The request includes a header hd3 and control data cd3. The header hd3 describes the destination of the request. The control data cd3 is control data describing the content of the request (in this case, sending the status information of the battery module b3) and the like.

マイコンm1は上位通信路のupを介してこのリクエストを受信し、処理m1uにてヘッダhd3に記された宛先を調べる。宛先はマイコンm3で自身宛てではないため、受信したリクエスト(ヘッダhd3と制御データcd3)をそのまま通信路12のupへと送信する。   The microcomputer m1 receives this request via the upper communication path up, and checks the destination described in the header hd3 in the process m1u. Since the destination is not addressed to itself by the microcomputer m3, the received request (header hd3 and control data cd3) is transmitted to the up of the communication path 12 as it is.

マイコンm2は通信路12のupを介してこのリクエストを受信し、処理m2uにてヘッダhd3に記された宛先を調べる。マイコンm1と同様に自分宛てでないことを確認し、リクエストをそのまま通信路23のupへと送信する。   The microcomputer m2 receives this request through the up of the communication path 12, and checks the destination described in the header hd3 in the process m2u. As with the microcomputer m1, it is confirmed that it is not addressed to itself, and the request is transmitted as it is to the up of the communication path 23.

マイコンm3は通信路23のupを介してこのリクエストを受信し、処理m3uにてヘッダhd3に記された宛先を調べる。このリクエストが自分宛てであることを確認した後、制御データcd3からリクエストの内容を読み取る。ここではバッテリモジュールb3の状態情報の送付要請が記されている。これを受け、自身が検出したバッテリモジュールb3の電圧とSOCと異常情報をマイコンtmに応答すべく、これらで成る状態情報sd3を生成し、通信路23のdownへと送信する。   The microcomputer m3 receives this request through the up of the communication path 23, and checks the destination described in the header hd3 in the process m3u. After confirming that this request is addressed to itself, the content of the request is read from the control data cd3. Here, a request for sending state information of the battery module b3 is described. In response to this, in order to respond to the microcomputer tm with the voltage, SOC, and abnormality information of the battery module b3 detected by itself, the state information sd3 including these is generated and transmitted to the down of the communication path 23.

マイコンm2は、通信路23のdownを介して状態情報sd3を受信し、処理m2dにてこのデータをそのまま通信路12のdownへと送信する。この際、マイコンtmでの必要に応じ、例えばマイコンm2にてバッテリモジュールb3のSOCとバッテリモジュールb2のSOCを比較した結果を状態情報sd3に付加して送信することもできる。   The microcomputer m2 receives the state information sd3 via the down of the communication path 23, and transmits this data as it is to the down of the communication path 12 in the process m2d. At this time, the result of comparing the SOC of the battery module b3 and the SOC of the battery module b2 by the microcomputer m2, for example, can be added to the state information sd3 and transmitted as required by the microcomputer tm.

マイコンm1は、通信路12のdownを介して状態データを受信し、処理m1dにてこのデータをそのまま上位通信路のdownへと送信する。これに関しては処理m2dと同様である。   The microcomputer m1 receives the status data via the down of the communication path 12, and transmits this data as it is to the down of the higher-level communication path in the process m1d. This is the same as the process m2d.

マイコンtmは、上位通信路のdownを介して状態データを受信し、処理mtdにて展開する。こうしてマイコンtmは、処理mtuで送信したリクエストの通りバッテリモジュールb3の状態情報を取得する。   The microcomputer tm receives the state data via the down of the upper communication path and develops it in the process mtd. Thus, the microcomputer tm acquires the state information of the battery module b3 according to the request transmitted in the process mtu.

マイコンtmは、同様の手順でマイコンm2からバッテリモジュールb2の状態情報を受け取ることや、マイコンm1からバッテリモジュールb1の状態情報を受け取ることができ、取得したバッテリモジュールb1,b2,b3の状態情報を用いて組電池bの充放電を制御できる。なお、制御装置ctlが各バッテリモジュールb1,b2,b3の状態情報を取得できるのであれば、通信と処理の手順や内容はこれに限らない。   The microcomputer tm can receive the status information of the battery module b2 from the microcomputer m2 and the status information of the battery module b1 from the microcomputer m1 in the same procedure, and the acquired status information of the battery modules b1, b2, and b3 can be received. It is possible to control charging / discharging of the assembled battery b. In addition, if the control apparatus ctl can acquire the status information of each battery module b1, b2, b3, the procedure and content of communication and a process will not be restricted to this.

本実施例の構成にて、リレーtrを操作する時の動作を説明する。   An operation when the relay tr is operated in the configuration of the present embodiment will be described.

図3は、リレーtrを操作した時に電源手段p1,p2,p3の出力及び遮断器brの状態がどのように変化するかを示す図である。   FIG. 3 is a diagram showing how the outputs of the power supply means p1, p2 and p3 and the state of the circuit breaker br change when the relay tr is operated.

初め、リレーtrは短絡状態である。この時、先に説明した電源素子ic1のリモートoff制御端子に印加される電源指令(上位電源指令)は“短絡状態”である。よって電源素子ic1は発振可能で、電源手段p1は監視装置mo1上の絶縁a接点リレーである接点r1を含む諸要素に給電している。これを受けて絶縁a接点リレーである接点r1は短絡しており、電源素子ic2のリモートoff制御端子には電源指令“短絡状態”が印加されている。よって電源素子ic2は発振可能であり、電源手段p2は監視装置mo2上の絶縁a接点リレーである接点r2を含む諸要素に給電している。絶縁a接点リレーである接点r2と電源素子ic3に関しても同様で、電源手段p3は監視装置mo3上の諸要素に給電している。   Initially, the relay tr is short-circuited. At this time, the power supply command (upper power supply command) applied to the remote-off control terminal of the power supply element ic1 described above is the “short circuit state”. Therefore, the power supply element ic1 can oscillate, and the power supply means p1 supplies power to various elements including the contact r1 which is an insulated a contact relay on the monitoring device mo1. In response to this, the contact r1 which is an insulated a contact relay is short-circuited, and the power supply command “short-circuit state” is applied to the remote off control terminal of the power supply element ic2. Therefore, the power supply element ic2 can oscillate, and the power supply means p2 supplies power to various elements including the contact r2 which is an insulated a contact relay on the monitoring device mo2. The same applies to the contact r2 which is an insulated a contact relay and the power supply element ic3. The power supply means p3 supplies power to various elements on the monitoring device mo3.

ある時間Toffに、リレーtrはマイコンtmからの指令により開放する。この時、電源素子ic1のリモートoff制御端子に印加される電源指令(上位電源指令)は“開放状態”に変わる。これを受けて電源素子ic1は発振を停止するため、電源手段p1からの給電が停止する。遅延df1は、時間Toffから電源手段p1の給電出力が十分に小さくなるまでの伝播時間である。電源手段p1からの給電がなくなった絶縁a接点リレーである接点r1は開放し、電源素子ic2のリモートoff制御端子に印加される電源指令は“開放状態”に変わり、電源手段p2も給電出力を停止する。遅延df2は、電源手段p1の給電出力が十分に小さくなった時間Toff+df1から電源手段p2の給電出力が十分に小さくなるまでの伝播時間である。電源手段p2からの給電がなくなった絶縁a接点リレーである接点r2は開放し、電源素子ic3のリモートoff制御端子には電源指令“開放状態”が印加され、電源手段p3からの給電が停止する。遅延df3は、電源手段p2の給電出力が十分に小さくなった時間Toff+df1から電源手段p3の給電出力が十分に小さくなるまでの伝播時間である。   At a certain time Toff, the relay tr is opened by a command from the microcomputer tm. At this time, the power supply command (upper power supply command) applied to the remote off control terminal of the power supply element ic1 is changed to the “open state”. In response to this, the power supply element ic1 stops oscillating, so that the power supply from the power supply means p1 stops. The delay df1 is a propagation time from the time Toff until the power supply output of the power supply means p1 becomes sufficiently small. The contact r1, which is an insulated a-contact relay that no longer supplies power from the power supply means p1, is opened, the power command applied to the remote off control terminal of the power supply element ic2 changes to "open state", and the power supply means p2 also outputs power supply output. Stop. The delay df2 is a propagation time from the time Toff + df1 when the power supply output of the power supply means p1 becomes sufficiently small until the power supply output of the power supply means p2 becomes sufficiently small. The contact r2, which is an insulated a-contact relay that no longer supplies power from the power supply means p2, is opened, the power supply command "open state" is applied to the remote off control terminal of the power supply element ic3, and power supply from the power supply means p3 stops. . The delay df3 is a propagation time from the time Toff + df1 when the power supply output of the power supply means p2 becomes sufficiently small until the power supply output of the power supply means p3 becomes sufficiently small.

このようにして電源手段p1,p2,p3全ての給電出力が停止している状態から、ある時間Tonにマイコンtmからの指令を受けてリレーtrが短絡する。この時、電源素子ic1のリモートoff制御端子に印加される電源指令(上位電源指令)は再び“短絡状態”に変わり、電源手段p1から監視装置mo1上の絶縁a接点リレーを含む諸要素への給電が再開される。遅延dn1は、時間Tonから電源手段p1の給電再開までの伝播時間である。電源手段p1からの給電を受け、絶縁a接点リレーである接点r1は短絡に変わり、電源素子ic2のリモートoff制御端子に電源指令“開放状態”が印加され、電源手段p2が給電を再開する。遅延dn2はこの間の伝播時間である。これを受け、遅延dn3を経て、電源手段p3も同様に給電を再開する。   The relay tr is short-circuited in response to a command from the microcomputer tm at a certain time Ton from the state where all the power supply outputs of the power supply means p1, p2, and p3 are stopped in this way. At this time, the power supply command (upper power supply command) applied to the remote-off control terminal of the power supply element ic1 is changed to the “short circuit state” again, and the power supply means p1 to various elements including the insulated a contact relay on the monitoring device mo1. Power supply is resumed. The delay dn1 is the propagation time from the time Ton to the restart of power supply to the power supply means p1. Upon receiving power supply from the power supply means p1, the contact r1, which is an insulated a-contact relay, changes to a short circuit, the power supply command “open state” is applied to the remote off control terminal of the power supply element ic2, and the power supply means p2 resumes power supply. The delay dn2 is the propagation time during this period. In response to this, the power supply means p3 similarly resumes power supply after a delay dn3.

以上のように、リレーtrの短絡か開放かの状態を操作することで、これに連動して電源手段p1,p2,p3の給電を動作させたり停止させたりできる。   As described above, by operating the state of the short circuit or the open state of the relay tr, the power supply of the power supply means p1, p2, and p3 can be operated or stopped in conjunction with this.

マイコンtmは、リレーtrを操作する際、遮断制御装置brcへ遮断器brの操作指令を出す。これは、電源手段p1,p2,p3が止まりバッテリモジュールb1,b2,b3の状態を検出できなくなった状況にて組電池bを適正な範囲を越えて充放電し過ぎないようにするためである。具体的には、マイコンtmはリレーtrを開放する時に遮断制御装置brcへ予めその事を伝え、これを受けて遮断制御装置brcが遮断器brを通電不可にする。またマイコンtmはリレーtrを短絡する時に遮断制御装置brcへその事を伝え、これを受けて遮断制御装置brcは電源手段p1,p2,p3が給電を再開するまでの余裕を持った後に遮断器brを通電可にする。したがって図3のように、時間Toffにリレーtrを開放するよりも先行時間dfbだけ先に遮断器brが通電不可となり、時間Tonにリレーtrを短絡した後は待ち時間dnbを経て遮断器brが通電可となる。   When the microcomputer tm operates the relay tr, the microcomputer tm issues an operation command for operating the circuit breaker br to the circuit breaker control device brc. This is to prevent the battery pack b from being overcharged / discharged beyond an appropriate range in a situation where the power supply means p1, p2, p3 are stopped and the state of the battery modules b1, b2, b3 cannot be detected. . Specifically, the microcomputer tm informs the interruption control device brc in advance when the relay tr is opened, and the interruption control device brc makes the circuit breaker br not energized. Further, the microcomputer tm informs the interruption controller brc when the relay tr is short-circuited, and in response to this, the interruption controller brc has a margin until the power supply means p1, p2, and p3 resume the power supply, and then the breaker circuit breaker. Br can be energized. Therefore, as shown in FIG. 3, the circuit breaker br cannot be energized by the preceding time dfb before the relay tr is opened at the time Toff, and after the relay tr is short-circuited at the time Ton, the circuit breaker br is passed through the waiting time dnb. Energization is possible.

以上が本実施例の構成において、リレーtrの状態を操作する時の動作である。   The above is the operation when operating the state of the relay tr in the configuration of the present embodiment.

本実施例の蓄電装置制御システムでは、監視手段mo3上の主たる要素(マイコンm3,通信回路c31,絶縁手段(フォトカプラ)is3の発光側,電源手段p3,接点r3の発光側)及び監視装置mo2上の一部要素(絶縁手段(フォトカプラ)is2の非発光側,接点r2の非発光側,電源回路rc2)はバッテリモジュールb3と同電位になる。同様に、監視装置mo2上の主たる要素と監視装置mo1上の一部要素はバッテリモジュールb2と同電位になる。また監視装置mo1の主たる要素はバッテリモジュールb1と同電位(基準電位)になる。したがって、絶縁手段(フォトカプラ)is2及び絶縁a接点リレーr2にかかる電圧はバッテリモジュールb2相当400ボルトである。また、絶縁手段is1及びa接点リレーである接点r1にかかる電圧はバッテリモジュールb1の電圧相当400ボルトである。このように、部分組電池であるバッテリモジュールの電圧と少なくとも同じ、またはそれ以上の耐圧で絶縁する絶縁手段を使える、つまり組電池b相当1200ボルトの絶縁に使える高耐圧な素子を使わず、バッテリモジュール相当400ボルトの絶縁に使える素子のみで用いるため、簡単且つ安価な構成で、蓄電池を長寿命可能な監視装置及びそれを用いた蓄電装置制御システムを提供することができる。   In the power storage device control system of the present embodiment, the main elements on the monitoring means mo3 (the microcomputer m3, the communication circuit c31, the light emission side of the insulation means (photocoupler) is3, the power supply means p3, the light emission side of the contact r3), and the monitoring device mo2 The upper partial elements (the non-light-emitting side of the insulating means (photocoupler) is2, the non-light-emitting side of the contact r2, and the power supply circuit rc2) have the same potential as the battery module b3. Similarly, main elements on the monitoring device mo2 and some elements on the monitoring device mo1 have the same potential as the battery module b2. The main element of the monitoring device mo1 has the same potential (reference potential) as that of the battery module b1. Accordingly, the voltage applied to the insulating means (photocoupler) is2 and the insulated a-contact relay r2 is 400 volts equivalent to the battery module b2. The voltage applied to the insulation means is1 and the contact r1 which is the a contact relay is 400 volts corresponding to the voltage of the battery module b1. In this way, it is possible to use an insulating means that insulates at a withstand voltage at least equal to or higher than the voltage of the battery module that is a partially assembled battery, that is, without using a high withstand voltage element that can be used for insulation of 1200 volts equivalent to the assembled battery b. Since only an element that can be used for insulation of a module equivalent to 400 volts is used, it is possible to provide a monitoring device capable of extending the life of a storage battery with a simple and inexpensive configuration and a power storage device control system using the same.

本実施例の蓄電装置制御システムを用いると、長時間、組電池bを利用しない場合、リレーtrを操作するだけで監視装置mo1,mo2,mo3の電力消費を停止でき、組電池bの過放電を防ぐことができる。数百〜千数百ボルトと高圧な監視装置mo2,mo3の電圧消費を止めるのにそれらに直接触れる必要がないため簡単で安全である。   When the power storage device control system of this embodiment is used, when the assembled battery b is not used for a long time, the power consumption of the monitoring devices mo1, mo2, and mo3 can be stopped simply by operating the relay tr, and the assembled battery b is overdischarged. Can be prevented. Since it is not necessary to touch them directly to stop the voltage consumption of the high-voltage monitoring devices mo2 and mo3 of several hundred to thousands of volts, it is simple and safe.

本実施例の蓄電装置制御システムでは、例えば電源指令出力端子pco1と電源指令入力端子pci2の間の結線のような、各電源手段に電源指令を印加する結線が断線した時、電源素子ic1,ic2,ic3のリモートoff制御端子では電源指令“開放状態”が印加されるのと同じこととなり、給電が停止する。これにより、電源指令路の断線で監視装置の動作を止められず組電池bが過放電するということがなくなり、組電池bを長持ちさせられる。   In the power storage device control system of the present embodiment, when the connection for applying the power supply command to each power supply means, such as the connection between the power supply command output terminal pco1 and the power supply command input terminal pci2, is disconnected, the power supply elements ic1, ic2 , Ic3 remote off control terminal is the same as the application of the power command “open state”, and power supply is stopped. Thereby, the operation of the monitoring device cannot be stopped due to the disconnection of the power command path, and the assembled battery b is not overdischarged, and the assembled battery b can be made to last longer.

図4は、本発明の蓄電装置制御システムの他の実施形態を示した図である。図1と大きく異なる点は、部分組電池であるバッテリモジュールb2の電圧以上の耐圧で絶縁する絶縁手段is2が処理手段であるマイコンm2と第1の通信手段である通信回路c21間に配置されていることである。   FIG. 4 is a diagram showing another embodiment of the power storage device control system of the present invention. A significant difference from FIG. 1 is that an insulating means is2 that insulates with a withstand voltage equal to or higher than the voltage of the battery module b2 that is a partially assembled battery is disposed between the microcomputer m2 that is the processing means and the communication circuit c21 that is the first communication means. It is that you are.

具体的には、監視装置mo2′は、図1の監視装置mo2から次の点を変更したものである。次の点以外は、図1の監視装置と同様である。   Specifically, the monitoring device mo2 ′ is obtained by changing the following points from the monitoring device mo2 in FIG. Except for the following points, it is the same as the monitoring apparatus of FIG.

絶縁手段(フォトカプラ)is2の位置をマイコンm2と通信回路c22の間からマイコンm2と通信回路c21の間へと変えた。これに伴い、通信回路c22へは電源手段p2から給電し、通信回路c21へは監視装置mo1′の電源手段p1から電源入力端子pi2を介して給電するようにした。電源素子ic2へは同監視装置上にある接点r2を介して電源指令を印加するようにし、電源路絶縁手段である接点r2へは監視装置mo1′の電源手段p1から電源入力端子pi2を介して給電するようにした。つまり、隣接して配置された監視装置mo1′から電源手段p2に印加する(給電する)電源指令を電源入力端子pi2で受け取る。また、電源路絶縁手段である接点r2は、電源入力端子pi2と電源手段p2間に配置され、実施例1と同様、バッテリモジュールの電圧以上の耐圧で絶縁するものである。電源手段p2の給電出力は、電源出力端子po2から監視装置mo3′へと出力される。   The position of the insulating means (photocoupler) is2 was changed from between the microcomputer m2 and the communication circuit c22 to between the microcomputer m2 and the communication circuit c21. Accordingly, power is supplied to the communication circuit c22 from the power supply means p2, and power is supplied to the communication circuit c21 from the power supply means p1 of the monitoring device mo1 ′ via the power supply input terminal pi2. A power supply command is applied to the power supply element ic2 via a contact r2 on the monitoring device, and a contact r2 which is a power path insulation means is supplied from the power supply means p1 of the monitoring device mo1 'via a power supply input terminal pi2. Power was supplied. That is, a power supply command to be applied (powered) to the power supply means p2 from the monitoring device mo1 ′ disposed adjacent to the power supply input terminal pi2. The contact r2, which is a power path insulation means, is disposed between the power input terminal pi2 and the power supply means p2, and insulates with a breakdown voltage equal to or higher than the voltage of the battery module, as in the first embodiment. The power supply output of the power supply means p2 is output from the power supply output terminal po2 to the monitoring device mo3 ′.

監視装置mo1′,mo3′はそれぞれ監視装置mo1,mo3を同様に変更したものである。ただし、監視装置mo1′に関しては上記“下監視装置の電源手段”を制御装置ctl′の電源tpに読み替える。電源tpはマイコンtmからの指令で給電出力の有無を切り替えられる。接点r1は電源tpからの給電があれば短絡し、なければ開放する。   The monitoring devices mo1 ′ and mo3 ′ are obtained by similarly changing the monitoring devices mo1 and mo3, respectively. However, regarding the monitoring device mo1 ′, the “power supply means of the lower monitoring device” is replaced with the power supply tp of the control device ctl ′. The power supply tp can be switched between the presence and absence of a power supply output by a command from the microcomputer tm. The contact r1 is short-circuited if power is supplied from the power source tp, and is opened if not.

マイコンtmは、実施例1と同様に図2のようにしてバッテリモジュールb1,b2,b3の状態情報を取得できる。   The microcomputer tm can acquire the state information of the battery modules b1, b2, and b3 as shown in FIG.

各電源手段p1,p2,p3の給電出力は、実施例1でのリレーtrの開閉の代わりに、電源tpの給電有/無を切り替えることで、図3と同様に動作/停止できる。   The power supply output of each power supply means p1, p2, p3 can be operated / stopped in the same manner as in FIG. 3 by switching the power supply tp on / off instead of opening / closing the relay tr in the first embodiment.

本実施例の蓄電装置制御システムでは、例えば監視装置mo2′において、電源手段p2のリモートオン/オフ用のラインと、電源手段p2と絶縁された通信回路c21への給電ラインを、電源入力端子pi2からのライン1つで済ませている。実施例1ではこれらのラインは別々(リモートオン/オフ用には電源指令入力端子pci2、通信回路への給電には電源入力端子pa2)であった。このように、本実施例の蓄電装置制御システムは実施例1の蓄電装置制御システムよりも省配線に構成できる。   In the power storage device control system of the present embodiment, for example, in the monitoring device mo2 ′, a remote on / off line for the power supply means p2 and a power supply line to the communication circuit c21 insulated from the power supply means p2 are connected to the power input terminal pi2. One line from In the first embodiment, these lines are separate (a power supply command input terminal pci2 for remote on / off, and a power supply input terminal pa2 for power supply to the communication circuit). Thus, the power storage device control system of the present embodiment can be configured with less wiring than the power storage device control system of the first embodiment.

また、図5は、本実施例の鉄道車両の動力装置の一構成例を示すものである。   FIG. 5 shows an example of the configuration of the railway vehicle power unit according to this embodiment.

運転装置drvは、操作状態に応じた運転指令を変換器ldへ伝送する。変換器ldは、運転指令に応じ、輪軸に繋がるモータmtの回転を制御する。これにより、運転装置drvを操作して車両を加減速できる。   The driving device drv transmits an operation command corresponding to the operation state to the converter ld. The converter ld controls the rotation of the motor mt connected to the wheel shaft in accordance with the operation command. Thus, the vehicle can be accelerated / decelerated by operating the driving device drv.

変換器ldは、モータを動作させるための電力を、2つの動力装置から得る。1つはエンジン発電機src1である。この装置は、エンジンで発電機を駆動して発生させた電力を、変換器ldへ供給する。もう1つは蓄電装置src2である。この装置は、蓄電池を放電して発生させた電力を電力線2を介して変換器ldへ供給し、またモータmtからの回生電力を電力線2を介して蓄電池へ充電する。   The converter ld obtains electric power for operating the motor from the two power units. One is an engine generator src1. This device supplies electric power generated by driving a generator with an engine to a converter ld. The other is power storage device src2. This device supplies electric power generated by discharging the storage battery to the converter ld through the power line 2, and charges regenerative power from the motor mt to the storage battery through the power line 2.

変換器ldは、2つの動力装置の各々からの給電量を、運転指令に応じた必要電力に加え、動力源の状態を考慮して決める。蓄電装置src2との間では、通信線3を介して蓄電池の状態を受信し、充放電の制御指令を送信することで、充放電量を調整する。   The converter ld determines the amount of power supplied from each of the two power units in consideration of the state of the power source in addition to the necessary power corresponding to the operation command. Between the power storage device src <b> 2, the state of the storage battery is received via the communication line 3, and the charge / discharge amount is adjusted by transmitting a charge / discharge control command.

エンジン発電機src1及び蓄電装置src2から変換器ldに供給する電圧は、直流1500Vである。   The voltage supplied from the engine generator src1 and the power storage device src2 to the converter ld is DC 1500V.

図1,図4は、蓄電装置src2の具体的な構成例である。   1 and 4 are specific configuration examples of the power storage device src2.

以下、図6を参照し、蓄電装置src2の他の構成例を説明する。   Hereinafter, another configuration example of the power storage device src2 will be described with reference to FIG.

基本的な構成は、図1,図4で説明したものと同じであり、複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、その複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、組電池の充放電を制御する制御装置と、を有する構成である。   The basic configuration is the same as that described in FIG. 1 and FIG. 4, and monitors a plurality of partial batteries, each of which includes a plurality of storage batteries connected in series, and each of the plurality of partial batteries. Is a configuration having a plurality of monitoring devices connected in series and a control device for controlling charging / discharging of the assembled battery.

図6に示すように、蓄電装置src2は、複数の蓄電池である二次電池セルを直列接続した部分組電池であるバッテリモジュールb1〜b3を含む。各バッテリモジュールの定格電圧は500Vであり、3つのバッテリモジュールb1〜b3を直列接続することで定格電圧1500Vの組電池を構成している。組電池の両極端子は充放電の制御装置ctlを介して電力線2に接続し、先述の変換器ldと繋がる。制御装置ctlは2つの通信チャネルを備えるマイコンtmを含み、そのうち1つの通信チャネルは変換器ldと通信線3で繋がる。バッテリモジュールb1の負極と制御装置ctlは車体に接地され、電位は0Vである。   As shown in FIG. 6, the power storage device src2 includes battery modules b1 to b3 that are partial assembled batteries in which secondary battery cells that are a plurality of storage batteries are connected in series. The rated voltage of each battery module is 500V, and an assembled battery having a rated voltage of 1500V is configured by connecting three battery modules b1 to b3 in series. Both electrode terminals of the assembled battery are connected to the power line 2 via the charge / discharge control device ctl, and are connected to the converter ld described above. The control device ctl includes a microcomputer tm having two communication channels, one of which is connected to the converter ld by the communication line 3. The negative electrode of the battery module b1 and the control device ctl are grounded to the vehicle body, and the potential is 0V.

部分組電池のバッテリモジュールb1〜b3の各々には、電池の電圧を検出する監視装置mo1〜mo3が取り付けられている。監視装置mo1は、電圧センサcc1及び絶縁手段is14を介して電圧センサcc1と接続するマイコンm1を有する。監視装置mo2,mo3についても同様である。   Monitoring devices mo1 to mo3 for detecting the voltage of the battery are attached to each of the battery modules b1 to b3 of the partially assembled battery. The monitoring device mo1 has a microcomputer m1 connected to the voltage sensor cc1 via the voltage sensor cc1 and the insulating means is14. The same applies to the monitoring devices mo2 and mo3.

マイコンm1は2つの通信チャネルを有し、一方は絶縁手段is11を介して通信手段である通信回路c11と、他方は絶縁手段is12を介して通信手段である通信回路c12と繋がる。マイコンm2は2つの通信チャネルを有し、一方は絶縁手段is21を介して通信回路c21と、他方は絶縁手段is22を介して通信回路c22と繋がる。マイコンm3は2つの通信チャネルを有し、一方は絶縁手段is31を介して通信回路c31と、他方は絶縁手段is32を介して通信回路c32と繋がる。つまり、1つの監視装置には、2つの通信手段(第1の通信手段,第2の通信手段)を有し、マイコンと第1の通信手段間,マイコンと第2の通信手段間、それぞれに絶縁手段を設けた構造であることが特徴である。   The microcomputer m1 has two communication channels, one of which is connected to a communication circuit c11 which is a communication means via an insulation means is11, and the other is connected to a communication circuit c12 which is a communication means via an insulation means is12. The microcomputer m2 has two communication channels, one of which is connected to the communication circuit c21 via the insulating means is21 and the other is connected to the communication circuit c22 via the insulating means is22. The microcomputer m3 has two communication channels, one of which is connected to the communication circuit c31 via the insulating means is31 and the other is connected to the communication circuit c32 via the insulating means is32. That is, one monitoring device has two communication means (first communication means and second communication means), between the microcomputer and the first communication means, and between the microcomputer and the second communication means, respectively. It is characterized by a structure provided with an insulating means.

絶縁手段is11,is12,is21,is22,is31,is32は全て、バッテリモジュールの電圧にあたる500Vを絶縁でき、且つ双方向に信号を伝送できる。   All of the insulating means is11, is12, is21, is22, is31, and is32 can insulate 500V corresponding to the voltage of the battery module and transmit signals in both directions.

監視装置mo3と監視装置mo2との間では、通信回路c31と通信回路c22とが接続され、マイコンm2とマイコンm3が2つの絶縁手段is22,is31を介して通信できる。監視装置mo2と監視装置mo1との間では、通信回路c21と通信回路c12とが接続され、マイコンm2とマイコンm1が2つの絶縁手段is12,is21を介して通信できる。監視装置mo1と制御装置ctlとの間では、通信回路c11とマイコンtmの通信チャネルの1つが繋がり、マイコンm1とマイコンtmが絶縁手段is11を介して通信できる。   Between the monitoring device mo3 and the monitoring device mo2, the communication circuit c31 and the communication circuit c22 are connected, and the microcomputer m2 and the microcomputer m3 can communicate via the two insulating means is22 and is31. A communication circuit c21 and a communication circuit c12 are connected between the monitoring device mo2 and the monitoring device mo1, and the microcomputer m2 and the microcomputer m1 can communicate with each other via the two insulating means is12 and is21. Between the monitoring device mo1 and the control device ctl, one of the communication channels c11 and the communication channel of the microcomputer tm is connected, and the microcomputer m1 and the microcomputer tm can communicate via the insulating means is11.

監視装置mo2の通信回路c21,マイコンm2,通信回路c22の電位基準は、分圧手段vd2で決められる。通信回路c21の電位基準はバッテリモジュールb2の負極、通信回路c22の電位基準はバッテリモジュールb2の正極で、マイコンm2の電位基準はバッテリモジュールb2の両極電圧を抵抗で2等分した分圧点である。つまり、分圧手段は、部分組電池であるバッテリモジュールの両極に接続して負極電位より高く、正極電位よりも低い中間電位となるように複数の抵抗を直列接続された組抵抗で構成され、処理手段であるマイコンの基準電位が、その中間電位であるとするものである。このようにマイコンm2の電位基準をバッテリモジュールb2の中間電位とすることで、絶縁手段is24への印加電圧はバッテリモジュールの定格電圧の半分の250Vで済む。監視装置mo1,監視装置mo3の電位基準も同様である。   The potential reference of the communication circuit c21, the microcomputer m2, and the communication circuit c22 of the monitoring device mo2 is determined by the voltage dividing means vd2. The potential reference of the communication circuit c21 is the negative pole of the battery module b2, the potential reference of the communication circuit c22 is the positive pole of the battery module b2, and the potential reference of the microcomputer m2 is a voltage dividing point obtained by dividing the bipolar voltage of the battery module b2 into two by resistance. is there. That is, the voltage dividing means is composed of a combined resistor in which a plurality of resistors are connected in series so as to be an intermediate potential that is higher than the negative potential and lower than the positive potential by connecting to both electrodes of the battery module that is a partial assembled battery. It is assumed that the reference potential of the microcomputer as the processing means is an intermediate potential. Thus, by setting the potential reference of the microcomputer m2 to the intermediate potential of the battery module b2, the voltage applied to the insulating means is24 can be 250V, which is half the rated voltage of the battery module. The same applies to the potential reference of the monitoring device mo1 and the monitoring device mo3.

以上の構成によれば、マイコンm1〜m3及びマイコンtmの全てが直接あるいは他のマイコンを中継する形で通信路で繋がり、通信路上の基準電位は250Vずつ異なって分布し、絶縁手段is11,is12,is21,is22,is31の各々には250Vが印加される。   According to the above configuration, all of the microcomputers m1 to m3 and the microcomputer tm are connected by the communication path directly or relaying other microcomputers, and the reference potentials on the communication path are distributed differently by 250 V, and the insulating means is11, is12 , Is21, is22, and is31 are each applied with 250V.

表1に回路及びマイコンの基準電位をまとめる。   Table 1 summarizes the circuit and microcomputer reference potentials.

Figure 0005111275
Figure 0005111275

電源手段p1〜p3及び絶縁手段is13,is23,is33は、各監視装置の電源に係る。監視装置mo1〜mo3の電源は、各々バッテリモジュールb1〜b3の電圧を電源手段p1〜p3でマイコン等の電源電圧に変換して供給する。各電源手段は、制御装置ctlの側に隣接して接続する監視装置あるいは制御装置のマイコンから絶縁手段を介して制御信号を受信し、この信号に応じて電源出力をオン・オフする。すなわち、電源手段p1は制御装置ctlから、電源手段p2,p3はそれぞれ監視装置mo1,mo2から絶縁手段is13,is23を介してオン・オフを制御できる。   The power supply means p1 to p3 and the insulation means is13, is23, and is33 relate to the power supply of each monitoring device. The power supplies of the monitoring devices mo1 to mo3 are supplied by converting the voltages of the battery modules b1 to b3 into power supply voltages of a microcomputer or the like by the power supply means p1 to p3, respectively. Each power supply means receives a control signal from the monitoring device connected adjacent to the control device ctl side or the microcomputer of the control device via the insulating means, and turns on / off the power supply output in accordance with this signal. That is, the power supply means p1 can be controlled on / off from the control device ctl, and the power supply means p2 and p3 from the monitoring devices mo1 and mo2 via the insulation means is13 and is23, respectively.

電源p0は、バッテリモジュールとは別に車両に搭載された電源系統に繋がり、制御装置ctlに電源を供給する。   The power supply p0 is connected to a power supply system mounted on the vehicle separately from the battery module, and supplies power to the control device ctl.

上記の電源構成の詳細を、図7を用いて説明する。   Details of the power supply configuration will be described with reference to FIG.

図7は、電源手段に係る制御装置ctlと監視装置mo1、及び監視装置mo1と監視装置mo2の接続構成である。尚、監視装置mo2と監視装置mo3の接続構成は、監視装置mo1と監視装置mo2の接続構成と同様である。   FIG. 7 is a connection configuration of the control device ctl and the monitoring device mo1, and the monitoring device mo1 and the monitoring device mo2 according to the power supply means. The connection configuration between the monitoring device mo2 and the monitoring device mo3 is the same as the connection configuration between the monitoring device mo1 and the monitoring device mo2.

電源手段p1は絶縁トランスtr1を介してバッテリモジュールb1の両極と接続する電源素子ic1及びリレーr1で構成されたスイッチング電源であり、絶縁トランスtr1で絶縁したバッテリモジュールb1の電力をマイコンm1と通信回路c12へ供給する。リレーr1は、制御装置ctlからの信号により、電源素子ic1や絶縁トランスtr1へのバッテリモジュールb1からの電源供給を断続するノーマリオフの接点であり、制御装置ctlとリレーr1の接点側は500V以上の耐圧で絶縁されている。   The power supply means p1 is a switching power supply composed of a power supply element ic1 and a relay r1 connected to both poles of the battery module b1 via the insulation transformer tr1, and the power of the battery module b1 insulated by the insulation transformer tr1 is communicated with the microcomputer m1. c12. The relay r1 is a normally-off contact that intermittently supplies power from the battery module b1 to the power supply element ic1 and the insulation transformer tr1 according to a signal from the control device ctl. The contact side of the control device ctl and the relay r1 is 500 V or more. Insulated with pressure resistance.

リレーr1の接点側が開放している時は、バッテリモジュールb1からマイコンm1と通信回路c12へ供給する電力を取り出せない。すなわち、電源手段p1は出力オフとなる。リレーr1の発光側は、制御装置ctlのマイコンtmのポートとトランジスタを介して接続し、マイコンtmのポートをハイにすると、マイコンtmの電源でもある電源p0から通電される。すなわち、電源p0をオンしてマイコンtmを起動し、その後マイコンtmのポートをハイにすれば、リレーr1の接点側が閉じ、電源手段p1から通信回路c12及びマイコンm1への給電がオンする。   When the contact side of the relay r1 is open, the power supplied from the battery module b1 to the microcomputer m1 and the communication circuit c12 cannot be taken out. That is, the power supply means p1 is turned off. The light emitting side of the relay r1 is connected to the port of the microcomputer tm of the control device ctl via a transistor. When the port of the microcomputer tm is set to high, the power is supplied from the power source p0 which is also the power source of the microcomputer tm. That is, when the power supply p0 is turned on to start the microcomputer tm and then the port of the microcomputer tm is set to high, the contact side of the relay r1 is closed, and the power supply from the power supply means p1 to the communication circuit c12 and the microcomputer m1 is turned on.

制御装置ctlと監視装置mo1の間でマイコンtmと接点r1とを結ぶ信号線が切れると、リレーr1の発光側への通電が停止するため、電源手段p1の出力はオフする。   When the signal line connecting the microcomputer tm and the contact point r1 is disconnected between the control device ctl and the monitoring device mo1, the energization to the light emission side of the relay r1 is stopped, so the output of the power supply means p1 is turned off.

通信回路c11へは、電源p0から、接点r1の発光側を通電するための電力線を利用して給電される。   Power is supplied to the communication circuit c11 from the power source p0 using a power line for energizing the light emitting side of the contact r1.

電源手段p2は電源手段p1と同様の構成であり、バッテリモジュールb2の電力を通信回路c22とマイコンm2に供給する。リレーr2の受光側は、監視装置mo1のマイコンm1と絶縁手段is13を介して接続され、マイコンm1のポートをハイにすれば通電される。すなわち、マイコンm1から接点r2の接点の開閉を操作し、出力オン・オフを切り替えられる。   The power supply means p2 has the same configuration as that of the power supply means p1, and supplies the power of the battery module b2 to the communication circuit c22 and the microcomputer m2. The light receiving side of the relay r2 is connected to the microcomputer m1 of the monitoring device mo1 via the insulating means is13, and is energized when the port of the microcomputer m1 is set high. In other words, the microcomputer m1 can be operated to open / close the contact r2 to switch the output on / off.

監視装置mo1と監視装置mo2の間でマイコンm1とリレーr2とを結ぶ信号線が切れると、リレーr2の発光側への通電が停止するため、電源手段p2の出力はオフする。   When the signal line connecting the microcomputer m1 and the relay r2 is cut between the monitoring device mo1 and the monitoring device mo2, the energization to the light emission side of the relay r2 is stopped, so the output of the power supply means p2 is turned off.

通信回路c21へは、電源手段p1から、接点r2の発光側を通電するための電力線を利用して給電される。   Power is supplied to the communication circuit c21 from the power supply means p1 using a power line for energizing the light emission side of the contact r2.

以上の電源構成により、監視装置mo1の電源は制御装置ctlからオン・オフ可能であり、監視装置mo2の電源は監視装置mo1からオン・オフ可能であり、監視装置mo3の電源は監視装置mo2からオン・オフ可能である。すなわち、各監視装置の電源状態は隣接する監視装置または制御装置によりオン・オフ可能である。   With the above power supply configuration, the power source of the monitoring device mo1 can be turned on / off from the control device ctl, the power source of the monitoring device mo2 can be turned on / off from the monitoring device mo1, and the power source of the monitoring device mo3 can be turned on from the monitoring device mo2. It can be turned on and off. That is, the power supply state of each monitoring device can be turned on / off by the adjacent monitoring device or control device.

本構成の下で、制御装置ctlが各バッテリモジュールの状態を取得する様子を、バッテリモジュールb3の状態を取得する場合を例にした図8を用いて説明する。   A state in which the control device ctl acquires the state of each battery module under this configuration will be described with reference to FIG. 8 exemplifying the case of acquiring the state of the battery module b3.

時刻u1にマイコンtmが状態情報をリクエストする制御データcd3を生成する処理mtuを開始する。制御データcd3の、宛先をマイコンm3に設定し、マイコンtmは制御データcd3をマイコンm1へ送信する。これを受信したマイコンm1は宛先を確認する処理m1uを行い、マイコンm2へ制御データcd3を送信する。これを受信したマインm2でも同様の処理m2uを行い、マイコンm3へ制御データcd3を送信する。これを受信したマイコンm3は、処理m3uで宛先が自身であることを確認し、状態情報の処理を行い、状態情報sd3を生成し、宛先がマイコンtmに設定された状態情報sd3をマイコンm2へ送信する。これを受信したマイコンm2は転送のための処理m2dを行い、マイコンm1に転送し、マイコンm1も同様の処理m1dを行い、マイコンtmへ転送する。これにより、マイコンtmへ状態情報sd3が届く。   At time u1, the microcomputer tm starts a process mtu for generating control data cd3 for requesting status information. The destination of the control data cd3 is set to the microcomputer m3, and the microcomputer tm transmits the control data cd3 to the microcomputer m1. Receiving this, the microcomputer m1 performs a process m1u for confirming the destination, and transmits the control data cd3 to the microcomputer m2. The same processing m2u is performed in the main m2 that has received this, and the control data cd3 is transmitted to the microcomputer m3. Receiving this, the microcomputer m3 confirms that the destination is itself in the process m3u, processes the state information, generates the state information sd3, and sends the state information sd3 with the destination set to the microcomputer tm to the microcomputer m2. Send. Receiving this, the microcomputer m2 performs the process m2d for transfer and transfers it to the microcomputer m1, and the microcomputer m1 also performs the same process m1d and transfers it to the microcomputer tm. Thereby, the state information sd3 reaches the microcomputer tm.

マイコンtmは同様の手順でマイコンm1,m2の各々からバッテリモジュールb1,b2の状態情報を収集できる。   The microcomputer tm can collect the state information of the battery modules b1 and b2 from each of the microcomputers m1 and m2 in the same procedure.

次に、本構成の下で制御装置ctlが監視装置の起動と終了を制御する様子を、図9を用いて説明する。便宜のため、マイコンのポートの初期論理をローとする。   Next, how the control device ctl controls the start and end of the monitoring device under this configuration will be described with reference to FIG. For convenience, the initial logic of the microcomputer port is set to low.

まず、起動の手順を示す。時刻t0に、電源p0及び電源手段p1〜p3はオフしている。初め、時刻t1に電源p0をオンし、マイコンtmを起動する。次に時刻t2にマイコンtmがポートをハイにすることにより電源手段p1がオンし、マイコンm1が起動する。時刻t3に、マイコンm1がポートをハイにすると、電源手段p2がオンし、マイコンm2が起動する。時刻t4に、マイコンm2がポートをハイにすると、電源手段p3がオンし、マイコンm3が起動し、全てのマイコン及び周辺回路が起動状態になり、先述した電池状態の検出や伝送が可能となる。   First, the startup procedure is shown. At time t0, the power supply p0 and the power supply means p1 to p3 are turned off. First, at time t1, the power supply p0 is turned on and the microcomputer tm is activated. Next, when the microcomputer tm sets the port to high at time t2, the power supply means p1 is turned on and the microcomputer m1 is activated. When the microcomputer m1 sets the port to high at time t3, the power supply means p2 is turned on and the microcomputer m2 is activated. When the microcomputer m2 sets the port to high at time t4, the power supply means p3 is turned on, the microcomputer m3 is activated, all the microcomputers and peripheral circuits are activated, and the above-described battery state can be detected and transmitted. .

次に、終了の手順を示す。時刻t5に、マイコンtmがポートをローにすると、まず電源手段p1がオフする。すると、マイコンm1のポートがオフになって電源手段p2がオフし、更に連鎖的に電源手段p3がオフする。その後、時刻t6に電源p0をオフする。これで初期時刻t0の状態に戻る。   Next, the termination procedure is shown. When the microcomputer tm turns the port low at time t5, the power supply means p1 is first turned off. Then, the port of the microcomputer m1 is turned off, the power supply means p2 is turned off, and the power supply means p3 is further turned off in a chain. Thereafter, the power source p0 is turned off at time t6. This returns to the state at the initial time t0.

以上に示した本実施例の蓄電装置によると、複数の部分組電池であるバッテリモジュールを直列接続した高圧な組電池の状態を、各絶縁箇所でバッテリモジュールの定格電圧の半分を絶縁した監視装置を組み合わせることで検出できる。   According to the power storage device of the present embodiment described above, the monitoring device that insulates the state of the high-voltage assembled battery in which the battery modules, which are a plurality of partial assembled batteries, are connected in series, with half of the rated voltage of the battery module at each insulation location Can be detected by combining.

更に、電位の隣接する2つの監視装置間は2つの絶縁手段を介して接続するため、1つの絶縁手段が絶縁手段として機能しなくなった場合でも、もう1つの絶縁手段でマイコン間の絶縁を維持でき、絶縁不能の連鎖を防止できるため、高信頼である。   Furthermore, since two monitoring devices adjacent to each other are connected via two insulating means, even if one insulating means stops functioning as an insulating means, the insulation between microcomputers is maintained by the other insulating means. It is reliable because it can prevent insulative chains.

また、制御装置から全ての監視装置の電源オン・オフを制御できるため、監視装置を利用しない時には監視装置へ給電するバッテリモジュールの消耗を極力抑えられる。   In addition, since the power on / off of all the monitoring devices can be controlled from the control device, the consumption of the battery module that supplies power to the monitoring device can be suppressed as much as possible when the monitoring device is not used.

また、監視装置間を繋ぐハーネスの断線で電源制御用の信号を送達できない監視装置は自動的に電源オフするため、バッテリモジュールの過放電を回避できる。   Further, since the monitoring device that cannot deliver the power control signal due to the disconnection of the harness connecting the monitoring devices is automatically turned off, it is possible to avoid overdischarge of the battery module.

本実施例ではバッテリモジュール3つ直列した組電池と3つの監視装置で蓄電装置を構成したが、バッテリモジュールを更に増設した場合に適用することも可能である。この場合、更に高電位のバッテリモジュールに繋がる監視装置を、監視装置mo3の絶縁手段is32,is33及び通信回路c32に接続すれば、監視装置mo1と監視装置mo2との関係や、監視装置mo2と監視装置mo3との関係と同様に扱える。   In this embodiment, the power storage device is configured by an assembled battery in which three battery modules are connected in series and three monitoring devices. However, the present invention can also be applied to the case where battery modules are further added. In this case, if the monitoring device connected to the battery module having a higher potential is connected to the insulating means is32, is33 and the communication circuit c32 of the monitoring device mo3, the relationship between the monitoring device mo1 and the monitoring device mo2 and the monitoring device mo2 and the monitoring device are monitored. It can be handled in the same manner as the relationship with the device mo3.

本発明に係る蓄電装置制御システムの一実施例を示す図である。It is a figure which shows one Example of the electrical storage apparatus control system which concerns on this invention. 図1の制御装置がバッテリモジュールの状態を取得するための通信の様子を表す図である。It is a figure showing the mode of communication for the control apparatus of FIG. 1 to acquire the state of a battery module. 図1の制御装置にあるリレーを操作した時の各電源手段と遮断器の状態変化を表す図である。It is a figure showing the state change of each power supply means and circuit breaker when the relay in the control apparatus of FIG. 1 is operated. 本発明に係る蓄電装置制御システムの他の実施例を示す図である。It is a figure which shows the other Example of the electrical storage apparatus control system which concerns on this invention. 本発明に係る蓄電装置制御システムを利用した鉄道車両の動力装置の一実施例を示す図である。It is a figure which shows one Example of the motive power apparatus of the rail vehicle using the electrical storage apparatus control system which concerns on this invention. 本発明に係る蓄電装置制御システムの他の実施例を示す図である。It is a figure which shows the other Example of the electrical storage apparatus control system which concerns on this invention. 図6に示す電源手段の一実施例を示す図である。It is a figure which shows one Example of the power supply means shown in FIG. 図6に示す制御装置がバッテリモジュールの状態情報を取得するための通信の様子を示す図である。It is a figure which shows the mode of the communication for the control apparatus shown in FIG. 6 to acquire the status information of a battery module. 図6に示す監視装置を起動及び終了させる手順を示す図である。It is a figure which shows the procedure which starts and complete | finishes the monitoring apparatus shown in FIG.

符号の説明Explanation of symbols

ld 負荷
ctl,ctl′ 制御装置
b 組電池
b1,b2,b3 バッテリモジュール
gnd 基準電位
br 遮断器
cc1,cc2,cc3 電圧センサ
mo1,mo2,mo3,mo1′,mo2′,mo3′ 監視装置
p1,p2,p3 電源手段
r1,r2,r3 接点
ic1,ic2,ic3 電源素子
m1,m2,m3,tm マイコン
rc1,rc2,rc3 電源回路
is1,is2,is3 絶縁手段
c11,c12,c21,c22,c31,c32,tcb,tci 通信回路
pci1,pci2,pci3 電源指令入力端子
pco1,pco2,pco3 電源指令出力端子
pa1,pa2,pa3,pi1,pi2,pi3 電源入力端子
brc 遮断制御装置
mtu,m1u,m2u,m3u,m2d,m1d,mtd 処理
hd3 ヘッダ
cd3 制御データ
sd3 状態情報
df1,df2,df3,dn1,dn2,dn3 遅延
dfb 先行時間
dnb 待ち時間
po1,po2,po3 電源出力端子
ld load ctl, ctl ′ control device b assembled battery b1, b2, b3 battery module gnd reference potential br circuit breaker cc1, cc2, cc3 voltage sensor mo1, mo2, mo3, mo1 ′, mo2 ′, mo3 ′ monitoring devices p1, p2 , P3 power supply means r1, r2, r3 contacts ic1, ic2, ic3 power supply elements m1, m2, m3, tm microcomputer rc1, rc2, rc3 power supply circuit is1, is2, is3 insulation means c11, c12, c21, c22, c31, c32 , Tcb, tci communication circuits pci1, pci2, pci3 power supply command input terminals pco1, pco2, pco3 power supply command output terminals pa1, pa2, pa3, pi1, pi2, pi3 m2d, m1d, mtd processing hd3 Header cd3 control data sd3 state information df1, df2, df3, dn1, dn2, dn3 delay dfb preceding time dnb latency po1, po2, po3 power output terminal

Claims (22)

複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、
前記複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、
前記組電池の充放電を制御する制御装置と、
前記制御装置から前記制御装置に隣接する監視装置へ情報を伝送する通信路と、を有し、
前記複数の監視装置の各々は、
前記複数の部分組電池の状態に基づいて充放電制御情報を生成する複数の処理手段と、
電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置と通信を行うため第1の通信手段と、
他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、
前記処理手段と前記第2の通信手段間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、
前記監視装置は、
前記制御装置と他の監視装置を介して接続される場合には、前記制御装置側に隣接する監視装置の前記電源手段の給電出力に連動する前記電源指令に基づき、前記電源手段の給電のオン/オフを切替え、
前記制御装置と隣接する場合には、隣接する前記制御装置から入力される前記電源指令に基づき、前記電源手段の給電のオン/オフを切替えることを特徴とする蓄電装置制御システム。
An assembled battery in which a plurality of partial assembled batteries including a plurality of storage batteries are connected in series;
A plurality of monitoring devices each monitoring the plurality of partial batteries, each connected in series;
A control device for controlling charging and discharging of the assembled battery;
A communication path for transmitting information from the control device to a monitoring device adjacent to the control device,
Each of the plurality of monitoring devices is
A plurality of processing means for generating charge / discharge control information based on a state of the plurality of partial assembled batteries;
A power supply means that can receive electric energy, supplies power when receiving a power supply command, and stops power supply output when not receiving a power supply command ;
First communication means for communicating with a monitoring device arranged adjacent to the control device side or the adjacent control device;
A second communication means for communicating with a monitoring device arranged adjacent to the other side;
Insulating means disposed between the processing means and the second communication means, and insulating with a withstand voltage equal to or higher than the voltage of the partial assembled battery,
The monitoring device
When the control device is connected via another monitoring device, the power supply means is turned on based on the power command linked to the power supply output of the power supply means of the monitoring device adjacent to the control device side. Switch / off,
A power storage device control system characterized in that , when adjacent to the control device , the power supply means is switched on / off based on the power command input from the adjacent control device.
請求項1記載の蓄電装置制御システムにおいて、
前記複数の監視装置の各々は、
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から前記電源手段に印加する電源指令を受け取る電源指令入力端子と、
前記電源手段から給電がある場合に前記他方側に隣接して配置された監視装置へ電源指令を出力し、前記電源手段から給電が無い場合に前記他方側に隣接して配置された監視装置へ電源指令を出力しない電源指令出力端子と、
前記電源手段から電源指令を受給でき、且つ前記電源手段と前記電源指令出力端子間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する電源路絶縁手段と、を有する蓄電装置制御システム。
The power storage device control system according to claim 1,
Each of the plurality of monitoring devices is
A power supply command input terminal for receiving a power supply command to be applied to the power supply means from a monitoring device arranged adjacent to the control device side or the adjacent control device;
When power is supplied from the power supply means , a power command is output to the monitoring device disposed adjacent to the other side, and when power is not supplied from the power supply means, the monitoring device is disposed adjacent to the other side. A power supply command output terminal that does not output a power supply command,
A power storage device control system comprising: a power supply path insulating means that can receive a power supply command from the power supply means and that is disposed between the power supply means and the power supply command output terminal and insulates with a withstand voltage equal to or higher than a voltage of the partially assembled battery.
請求項2記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 2,
前記第2の通信手段へは、前記他方側に隣接して配置された監視装置の電源手段から給電される蓄電装置制御システム。The power storage device control system in which power is supplied to the second communication means from a power supply means of a monitoring device arranged adjacent to the other side.
複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、An assembled battery in which a plurality of partial assembled batteries including a plurality of storage batteries are connected in series;
前記複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、A plurality of monitoring devices each monitoring the plurality of partial batteries, each connected in series;
前記組電池の充放電を制御する制御装置と、A control device for controlling charging and discharging of the assembled battery;
前記制御装置から前記制御装置に隣接する監視装置へ情報を伝送する通信路と、を有し、A communication path for transmitting information from the control device to a monitoring device adjacent to the control device,
前記複数の監視装置の各々は、Each of the plurality of monitoring devices is
前記複数の部分組電池の状態に基づいて充放電制御情報を生成する複数の処理手段と、A plurality of processing means for generating charge / discharge control information based on a state of the plurality of partial assembled batteries;
電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、A power supply means that can receive electric energy, supplies power when receiving a power supply command, and stops power supply output when not receiving a power supply command;
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置と通信を行うため第1の通信手段と、First communication means for communicating with a monitoring device arranged adjacent to the control device side or the adjacent control device;
他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、A second communication means for communicating with a monitoring device arranged adjacent to the other side;
前記処理手段と前記第1の通信手段間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、An insulating means disposed between the processing means and the first communication means, and insulating at a withstand voltage equal to or higher than a voltage of the partial assembled battery;
前記監視装置は、The monitoring device
前記制御装置と他の監視装置を介して接続される場合には、前記制御装置側に隣接する監視装置の前記電源手段の給電出力に連動する前記電源指令に基づき、前記電源手段の給電のオン/オフを切替え、When the control device is connected via another monitoring device, the power supply means is turned on based on the power command linked to the power supply output of the power supply means of the monitoring device adjacent to the control device side. Switch / off,
前記制御装置と隣接する場合には、隣接する前記制御装置から入力される前記電源指令に基づき、前記電源手段の給電のオン/オフを切替えることを特徴とする蓄電装置制御システム。A power storage device control system characterized in that, when adjacent to the control device, the power supply means is switched on / off based on the power command input from the adjacent control device.
請求項4記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 4, wherein
前記複数の監視装置の各々は、Each of the plurality of monitoring devices is
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から前記電From the monitoring device arranged adjacent to the control device side or the adjacent control device, the electric power is supplied.
源手段に印加する電源指令を受け取る電源入力端子と、A power input terminal for receiving a power command to be applied to the power source means;
前記電源入力手段から電源指令を受給でき、且つ前記電源入力端子と前記電源手段間にA power command can be received from the power input means, and between the power input terminal and the power means.
配置され、前記部分組電池の電圧以上の耐圧で絶縁する電源路絶縁手段と、A power path insulation means arranged and insulated with a withstand voltage equal to or higher than the voltage of the partial assembled battery;
前記電源手段から給電がある場合に前記他方側に隣接して配置された監視装置へ電源指令を出力し、前記電源手段から給電が無い場合に前記他方側に隣接して配置された監視装置へ電源指令を出力しない電源指令出力端子と、When power is supplied from the power supply means, a power command is output to the monitoring device disposed adjacent to the other side, and when power is not supplied from the power supply means, the monitoring device is disposed adjacent to the other side. A power supply command output terminal that does not output a power supply command,
を有する蓄電装置制御システム。A power storage device control system.
請求項4記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 4, wherein
前記第1の通信手段へは、前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から給電される蓄電装置制御システム。A power storage device control system in which power is supplied to the first communication unit from a monitoring device arranged adjacent to the control device side or from the adjacent control device.
請求項4記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 4, wherein
前記第1の通信手段へは、前記電源入力端子から給電される蓄電装置制御システム。A power storage device control system in which power is supplied to the first communication unit from the power input terminal.
複数の蓄電池からなる部分組電池と接続され、前記部分組電池を監視し、他の監視装置と直列に接続される監視装置において、In a monitoring device connected to a partial battery composed of a plurality of storage batteries, monitoring the partial battery, and connected in series with another monitoring device,
前記直列に接続された複数の監視装置の一端は、前記部分組電池の充放電を制御する制御装置と接続され、One end of the plurality of monitoring devices connected in series is connected to a control device that controls charging and discharging of the partial battery pack,
前記監視装置は、The monitoring device
前記部分組電池の状態に基づいて充放電制御情報を生成する処理手段と、Processing means for generating charge / discharge control information based on the state of the partial battery pack;
電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、A power supply means that can receive electric energy, supplies power when receiving a power supply command, and stops power supply output when not receiving a power supply command;
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置と通信を行うため第1の通信手段と、First communication means for communicating with a monitoring device arranged adjacent to the control device side or the adjacent control device;
他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、A second communication means for communicating with a monitoring device arranged adjacent to the other side;
前記処理手段と前記第2の通信手段間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、Insulating means disposed between the processing means and the second communication means, and insulating with a withstand voltage equal to or higher than the voltage of the partial assembled battery,
前記制御装置と他の監視装置を介して接続される場合には、前記制御装置側に隣接する監視装置の前記電源手段の給電出力に連動する前記電源指令に基づき、前記電源手段の給電のオン/オフを切替え、When the control device is connected via another monitoring device, the power supply means is turned on based on the power command linked to the power supply output of the power supply means of the monitoring device adjacent to the control device side. Switch / off,
前記制御装置と隣接する場合には、隣接する前記制御装置から入力される前記電源指令に基づき、前記電源手段の給電のオン/オフを切替えることを特徴とする監視装置。A monitoring device, wherein when adjacent to the control device, the power supply means is switched on / off based on the power command input from the adjacent control device.
請求項8記載の監視装置において、The monitoring device according to claim 8, wherein
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から前記電源手段に印加する電源指令を受け取る電源指令入力端子と、A power supply command input terminal for receiving a power supply command to be applied to the power supply means from a monitoring device arranged adjacent to the control device side or the adjacent control device;
前記電源手段から給電がある場合に前記他方側に隣接して配置された監視装置へ電源指令を出力し、前記電源手段から給電が無い場合に前記他方側に隣接して配置された監視装置へ電源指令を出力しない電源指令出力端子と、When power is supplied from the power supply means, a power command is output to the monitoring device disposed adjacent to the other side, and when power is not supplied from the power supply means, the monitoring device is disposed adjacent to the other side. A power supply command output terminal that does not output a power supply command,
前記電源手段から電源指令を受給でき、且つ前記電源手段と前記電源指令出力端子間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する電源路絶縁手段と、を有する監視装置。A monitoring apparatus comprising: a power supply path insulating means that can receive a power supply command from the power supply means and that is disposed between the power supply means and the power supply command output terminal and insulates with a withstand voltage equal to or higher than a voltage of the partially assembled battery.
請求項9記載の監視装置において、The monitoring device according to claim 9, wherein
前記第2の通信手段へは、前記他方側に隣接して配置された監視装置の電源手段から給電される監視装置。A monitoring device fed to the second communication means from a power supply means of a monitoring device arranged adjacent to the other side.
複数の蓄電池からなる部分組電池と接続され、前記部分組電池を監視し、直列に接続される他の監視装置と接続可能な監視装置において、In a monitoring device that is connected to a partial battery composed of a plurality of storage batteries, monitors the partial battery, and can be connected to other monitoring devices connected in series.
前記直列に接続された複数の監視装置の一端は、前記部分組電池の充放電を制御する制御装置と接続され、One end of the plurality of monitoring devices connected in series is connected to a control device that controls charging and discharging of the partial battery pack,
前記監視装置は、The monitoring device
前記部分組電池の状態に基づいて充放電制御情報を生成する処理手段と、Processing means for generating charge / discharge control information based on the state of the partial battery pack;
電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、A power supply means that can receive electric energy, supplies power when receiving a power supply command, and stops power supply output when not receiving a power supply command;
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置と通信を行うため第1の通信手段と、First communication means for communicating with a monitoring device arranged adjacent to the control device side or the adjacent control device;
他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、A second communication means for communicating with a monitoring device arranged adjacent to the other side;
前記処理手段と前記第1の通信手段間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する絶縁手段と、を有し、An insulating means disposed between the processing means and the first communication means, and insulating at a withstand voltage equal to or higher than a voltage of the partial assembled battery;
前記制御装置と他の監視装置を介して接続される場合には、前記制御装置側に隣接する監視装置の前記電源手段の給電出力に連動する前記電源指令に基づき、前記電源手段の給電のオン/オフを切替え、When the control device is connected via another monitoring device, the power supply means is turned on based on the power command linked to the power supply output of the power supply means of the monitoring device adjacent to the control device side. Switch / off,
前記制御装置と隣接する場合には、隣接する前記制御装置から入力される前記電源指令に基づき、前記電源手段の給電のオン/オフを切替えることを特徴とする監視装置。A monitoring device, wherein when adjacent to the control device, the power supply means is switched on / off based on the power command input from the adjacent control device.
請求項11記載の監視装置において、The monitoring device according to claim 11, wherein
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から前記電源手段に印加する電源指令を受け取る電源入力端子と、A power supply input terminal for receiving a power supply command to be applied to the power supply means from a monitoring device arranged adjacent to the control device side or the adjacent control device;
前記電源入力手段から電源指令を受給でき、且つ前記電源入力端子と前記電源手段間に配置され、前記部分組電池の電圧以上の耐圧で絶縁する電源路絶縁手段と、A power path insulating means that can receive a power command from the power input means and is disposed between the power input terminal and the power means, and insulates with a withstand voltage equal to or higher than a voltage of the partially assembled battery;
前記電源手段から給電がある場合に前記他方側に隣接して配置された監視装置へ電源指令を出力し、前記電源手段から給電が無い場合に前記他方側に隣接して配置された監視装置へ電源指令を出力しない電源指令出力端子と、When power is supplied from the power supply means, a power command is output to the monitoring device disposed adjacent to the other side, and when power is not supplied from the power supply means, the monitoring device is disposed adjacent to the other side. A power supply command output terminal that does not output a power supply command,
を有する監視装置。Having a monitoring device.
請求項11記載の監視装置において、The monitoring device according to claim 11, wherein
前記第1の通信手段へは、前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置から給電される監視装置。The first communication means is a monitoring device arranged adjacent to the control device side or a monitoring device supplied with power from the adjacent control device.
請求項12記載の監視装置において、The monitoring device according to claim 12, wherein
前記第1の通信手段へは、前記電源入力端子から給電される監視装置。A monitoring device that supplies power to the first communication means from the power input terminal.
複数の蓄電池からなる部分組電池が複数直列に接続された組電池と、An assembled battery in which a plurality of partial assembled batteries including a plurality of storage batteries are connected in series;
複数の部分組電池を監視し、各々が直列に接続された複数の監視装置と、A plurality of monitoring devices each monitoring a plurality of partial batteries, each connected in series;
前記組電池の充放電を制御する制御装置と、を有し、A control device for controlling charging and discharging of the assembled battery,
前記複数の監視装置の一端は、前記制御装置と接続され、One end of the plurality of monitoring devices is connected to the control device,
前記複数の監視装置の各々は、Each of the plurality of monitoring devices is
前記複数の部分組電池の状態に基づいて充放電制御情報を生成する複数の処理手段と、A plurality of processing means for generating charge / discharge control information based on a state of the plurality of partial assembled batteries;
前記制御装置側に隣接して配置された監視装置または隣接する前記制御装置と通信を行It communicates with a monitoring device arranged adjacent to the control device side or with the adjacent control device.
うため第1の通信手段と、A first communication means;
他方側に隣接して配置された監視装置と通信を行うため第2の通信手段と、A second communication means for communicating with a monitoring device arranged adjacent to the other side;
電気エネルギーを受電でき、電源指令を受けた場合に給電し、電源指令を受けない場合に給電出力を停止する電源手段と、A power supply means that can receive electric energy, supplies power when receiving a power supply command, and stops power supply output when not receiving a power supply command;
前記処理手段と前記第1の通信手段及び前記第2の通信手段間に配置され、前記部分組The subset is disposed between the processing means and the first communication means and the second communication means.
電池の電圧を絶縁する絶縁手段と、を有し、Insulating means for insulating the voltage of the battery,
前記複数の監視装置の各々は、Each of the plurality of monitoring devices is
前記制御装置と他の監視装置を介して接続される場合には、前記制御装置側に隣接する監視装置の前記電源手段の給電出力を条件とする前記電源指令に基づき、前記電源手段の給電のオン/オフを切替え、When connected to the control device via another monitoring device, based on the power supply command on the condition of the power supply output of the power supply device of the monitoring device adjacent to the control device side, Switch on / off,
前記制御装置と隣接する場合には、隣接する前記制御装置の電源手段の給電出力を条件とする前記電源指令に基づき、前記電源手段の給電のオン/オフを切替えることを特徴とする蓄電装置制御システム。Power storage device control characterized in that, when adjacent to the control device, power supply on / off of the power supply means is switched based on the power supply command on the condition that the power supply output of the power supply means of the adjacent control device is a condition system.
請求項15記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 15, wherein
前記監視装置は、1つの前記部分組電池に1つ有する蓄電装置制御システム。The said monitoring apparatus is an electrical storage apparatus control system which has one in the said partial assembled battery.
請求項15記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 15, wherein
前記絶縁手段は、前記部分組電池の電圧以上の絶縁耐圧を有する蓄電装置制御システム。The power storage device control system, wherein the insulating means has a withstand voltage equal to or higher than a voltage of the partial assembled battery.
請求項15記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 15, wherein
前記監視装置は、The monitoring device
前記部分組電池の電圧を分圧する分圧手段と、A voltage dividing means for dividing the voltage of the battery assembly;
前記部分組電池と接続し、前記部分組電池の状態を検知するセンサと、A sensor that connects to the partial battery and detects a state of the partial battery;
前記センサと絶縁された信号線で接続して前記センサの出力を受信し、且つ前記分圧手段により基準電位が決まる処理手段と、Processing means connected to the sensor by an insulated signal line to receive the output of the sensor and determining a reference potential by the voltage dividing means;
を有することを特徴とする蓄電装置制御システム。A power storage device control system comprising:
請求項15記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 15, wherein
前記監視装置は、前記部分組電池の電圧を電源電圧に変換する電源手段を有する蓄電装置制御システム。The monitoring device is a power storage device control system having power supply means for converting a voltage of the partial assembled battery into a power supply voltage.
請求項19記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 19,
前記電源手段は、他の前記監視装置の電源手段から絶縁手段を介して電力が供給されたときに、接続された前記部分組電池の電圧を電源電圧に変換する蓄電装置制御システム。The power supply unit is a power storage device control system that converts the voltage of the connected assembled battery into a power supply voltage when power is supplied from a power supply unit of another monitoring device via an insulating unit.
請求項18記載の蓄電装置制御システムにおいて、The power storage device control system according to claim 18,
前記分圧手段は、前記部分組電池の両極に接続して負極電位より高く、正極電位よりもThe voltage dividing means is connected to both electrodes of the partial assembled battery and is higher than the negative electrode potential and higher than the positive electrode potential.
低い中間電位となるように複数の抵抗を直列接続された組抵抗で構成され、It is composed of a set resistor in which a plurality of resistors are connected in series so as to have a low intermediate potential,
前記処理手段の基準電位が前記中間電位である蓄電装置制御システム。A power storage device control system in which a reference potential of the processing means is the intermediate potential.
請求項1乃至7のいずれか1項、又は請求項15乃至18のいずれか1項に記載の蓄電装置制御システムを有する鉄道車両。A railway vehicle comprising the power storage device control system according to any one of claims 1 to 7 or any one of claims 15 to 18.
JP2008190393A 2007-09-27 2008-07-24 Monitoring device, power storage device control system using the same, and railway vehicle Expired - Fee Related JP5111275B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008190393A JP5111275B2 (en) 2007-09-27 2008-07-24 Monitoring device, power storage device control system using the same, and railway vehicle
CN2008101310033A CN101399453B (en) 2007-09-27 2008-08-19 Battery assembly comprised of modules including monitoring devices with isolated communication between processors in the monitoring devices
GB0815796A GB2453207B (en) 2007-09-27 2008-08-29 Battery monitoring device, battery control system, and railway vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007250405 2007-09-27
JP2007250405 2007-09-27
JP2008190393A JP5111275B2 (en) 2007-09-27 2008-07-24 Monitoring device, power storage device control system using the same, and railway vehicle

Publications (2)

Publication Number Publication Date
JP2009100644A JP2009100644A (en) 2009-05-07
JP5111275B2 true JP5111275B2 (en) 2013-01-09

Family

ID=40517791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190393A Expired - Fee Related JP5111275B2 (en) 2007-09-27 2008-07-24 Monitoring device, power storage device control system using the same, and railway vehicle

Country Status (2)

Country Link
JP (1) JP5111275B2 (en)
CN (1) CN101399453B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5113728B2 (en) * 2008-11-20 2013-01-09 株式会社日立製作所 Storage battery system, monitoring device and hybrid railway vehicle
US9013146B2 (en) 2009-06-29 2015-04-21 Nec Energy Devices, Ltd. Secondary battery pack
CN101741123B (en) * 2010-02-01 2013-05-29 鸿源控股有限公司 Efficient power intelligent management system for vehicle
JP5640474B2 (en) 2010-06-07 2014-12-17 ソニー株式会社 Battery system
JP5686238B2 (en) 2010-09-03 2015-03-18 ソニー株式会社 Electric circuit, charging control device, charging system, control method, power storage device, and power storage system
JP5510228B2 (en) * 2010-09-15 2014-06-04 ミツミ電機株式会社 Protection circuit
JP5671937B2 (en) 2010-10-22 2015-02-18 ソニー株式会社 Power storage system and output controller
JP5533608B2 (en) * 2010-12-01 2014-06-25 株式会社デンソー Battery monitoring device
US9263776B2 (en) * 2011-01-06 2016-02-16 Samsung Sdi Co., Ltd. Battery system and energy storage system including the same
JP5298152B2 (en) 2011-03-07 2013-09-25 株式会社日立製作所 Power conversion device and power conversion device for railway vehicles
EP2642630B1 (en) * 2011-03-25 2016-06-29 Sanyo Electric Co., Ltd. Battery system, electric-powered vehicle, mobile object, power storage device, power supply device
JP5008782B1 (en) * 2011-03-25 2012-08-22 三洋電機株式会社 Battery system, electric vehicle, moving object, power storage device, and power supply device
JP5801176B2 (en) * 2011-12-19 2015-10-28 株式会社東芝 Power storage device and maintenance method thereof
JP6168803B2 (en) 2012-03-30 2017-07-26 ラピスセミコンダクタ株式会社 Battery monitoring system and semiconductor device
CN103358926B (en) * 2012-03-30 2016-12-28 拉碧斯半导体株式会社 Battery monitoring system and semiconductor device
JP2017208983A (en) * 2016-05-20 2017-11-24 Connexx Systems株式会社 Composite battery system
JP6426804B2 (en) * 2017-08-10 2018-11-21 ラピスセミコンダクタ株式会社 Battery monitoring system and battery monitoring device
CN109633462B (en) * 2018-12-29 2021-04-20 蜂巢能源科技有限公司 Battery voltage state detection method and detection system in battery management system and battery management system
CN110600821B (en) * 2019-10-14 2020-11-27 保定中创电子科技有限公司 Storage battery pack online maintenance system
JP7434116B2 (en) 2020-09-08 2024-02-20 株式会社東芝 Battery module and control system
CN114243450B (en) * 2021-12-16 2023-06-09 厦门亿芯源半导体科技有限公司 DC coupling output power supply configuration method for DFB laser

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164269A (en) * 1987-12-18 1989-06-28 Nec Corp Power controlling circuit
JP3674328B2 (en) * 1998-09-03 2005-07-20 日産自動車株式会社 Electric vehicle battery pack controller
JP3930171B2 (en) * 1998-12-03 2007-06-13 株式会社日本自動車部品総合研究所 Battery monitoring device
JP3581825B2 (en) * 2000-09-28 2004-10-27 日立ホーム・アンド・ライフ・ソリューション株式会社 Power storage device
JP2002112542A (en) * 2000-09-29 2002-04-12 Fujitsu General Ltd Power supply circuit
JP2005110439A (en) * 2003-09-30 2005-04-21 Nippon Chemicon Corp Electric double layer capacitor device
JP4003798B2 (en) * 2003-11-20 2007-11-07 松下電器産業株式会社 Vehicle power supply
CN2739862Y (en) * 2004-08-11 2005-11-09 北京中信国安盟固利新材料技术研究院有限公司 Electric bicycle lithium ion cell energy package
JP4175434B2 (en) * 2005-09-05 2008-11-05 松下電器産業株式会社 Storage device status detection device

Also Published As

Publication number Publication date
CN101399453A (en) 2009-04-01
JP2009100644A (en) 2009-05-07
CN101399453B (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5111275B2 (en) Monitoring device, power storage device control system using the same, and railway vehicle
GB2453207A (en) Battery assembly comprised of modules including monitoring devices with isolated communication between processors in the monitoring devices
KR101680526B1 (en) Battery management apparatus and method
KR102062743B1 (en) High voltage battery system for vehicle applications
KR20180045954A (en) Battery management system and the controlling method thereof
WO2012043592A1 (en) Power source device and vehicle using same
JP2007151396A (en) Battery power supply device for electric vehicle
CN108482154B (en) Electric automobile control system
JP6549306B2 (en) vehicle
KR20180007024A (en) Battery management system for vehicle
JP2019509008A (en) Battery management system
CN113067404A (en) Power supply system and method for battery replacement station
KR102191744B1 (en) Supplying of low-voltage on-board electrical systems of vehicles having an electric drive
JP2018186670A (en) Charging system or charger
US11114877B2 (en) Battery device and vehicle
JP7425997B2 (en) power distribution module
JP2013255360A (en) Charge/discharge apparatus
WO2017130564A1 (en) Charging/discharging system
JP5931567B2 (en) Battery module
CN116001572A (en) Battery pack and battery pack management method
CN114683887A (en) Battery control method and battery system for implementing the same
JP2010206915A (en) Control device of secondary battery
WO2019193637A1 (en) Battery device and vehicle
US20220416552A1 (en) In-vehicle battery system
JP2016054604A (en) vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees