JP5111028B2 - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP5111028B2
JP5111028B2 JP2007231673A JP2007231673A JP5111028B2 JP 5111028 B2 JP5111028 B2 JP 5111028B2 JP 2007231673 A JP2007231673 A JP 2007231673A JP 2007231673 A JP2007231673 A JP 2007231673A JP 5111028 B2 JP5111028 B2 JP 5111028B2
Authority
JP
Japan
Prior art keywords
mass
welding
flux
content
cored wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007231673A
Other languages
Japanese (ja)
Other versions
JP2009061474A (en
Inventor
大輔 杉山
朋和 森本
茂雄 長岡
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007231673A priority Critical patent/JP5111028B2/en
Priority to CN2008101448946A priority patent/CN101380706B/en
Priority to SG200806318-2A priority patent/SG150482A1/en
Priority to KR1020080087190A priority patent/KR100998839B1/en
Publication of JP2009061474A publication Critical patent/JP2009061474A/en
Application granted granted Critical
Publication of JP5111028B2 publication Critical patent/JP5111028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、軟鋼、引張強さ490MPa級高張力鋼よりなる被溶接物のガスシールドアーク溶接に用いられるフラックス入りワイヤに関し、立向上進溶接において溶融金属の垂れ落ちなく高溶接電流にて良好な溶接を行うことができ、また、片面溶接において初層での耐高温割れ性に優れており、さらに、大入熱溶接において低温靭性に優れた溶接金属を得ることができる、ガスシールドアーク溶接用フラックス入りワイヤに関するものである。   The present invention relates to a flux-cored wire used for gas shielded arc welding of workpieces made of mild steel and tensile strength 490 MPa class high strength steel, and good at high welding current without dripping of molten metal in vertical welding. For gas shielded arc welding, which can be welded, has excellent hot crack resistance in the first layer in single-sided welding, and can obtain weld metal with excellent low temperature toughness in high heat input welding The present invention relates to a flux-cored wire.

ガスシールドアーク溶接用フラックス入りワイヤは、軟鋼、490MPa級高張力鋼よりなる被溶接物の溶接に主に用いられており、ソリッドワイヤに比較してビード外観や溶接作業性が良好で、さらに溶着効率に優れていることから、年々その使用量が増加している。   Flux-cored wire for gas shielded arc welding is mainly used for welding workpieces made of mild steel and 490MPa high-strength steel, and has a better bead appearance and welding workability than solid wire, and is further welded Due to its high efficiency, its usage is increasing year by year.

ところが、ガスシールドアーク溶接用フラックス入りワイヤは、ソリッドワイヤと比較して溶接速度が大きいため、片面溶接における裏波ビードを形成する初層で高温割れ(凝固割れ)が発生しやすい傾向があった。また、ワイヤ中にルチール等の金属酸化物を多く含み、それらが溶接中に完全にスラグとして浮上できず、溶接金属中に金属介在物として残留するため、溶接入熱が30〜60kJ/cmのような大入熱溶接において−20℃などの低温での良好な靭性を有する溶接金属の確保が困難であった。また、立向上進溶接において下向溶接と同じ電流で溶接した場合、溶融金属が垂れやすい(ビードが垂れやすい)という傾向があった。   However, the flux-cored wire for gas shielded arc welding has a higher welding speed than the solid wire, and therefore there is a tendency for high-temperature cracking (solidification cracking) to occur in the first layer that forms the back bead in single-sided welding. . In addition, the wire contains a lot of metal oxides such as rutile, and they cannot completely float as slag during welding and remain as metal inclusions in the weld metal, so that the welding heat input is 30 to 60 kJ / cm. In such high heat input welding, it has been difficult to secure a weld metal having good toughness at a low temperature such as −20 ° C. In addition, when welding with the same current as that of downward welding in vertical improvement welding, there is a tendency that the molten metal tends to sag (beads tend to sag).

そして、これらの、立向上進溶接における高電流化、片面溶接での初層の耐高温割れ性の向上、及び、大入熱溶接での低温靭性の向上を同時に図るようにした、ガスシールドアーク溶接用フラックス入りワイヤについては、従来提案されていなかった。   These gas shield arcs are designed to simultaneously increase the current in vertical welding, improve the hot crack resistance of the first layer in single-sided welding, and improve the low temperature toughness in high heat input welding. Conventionally, no flux-cored wire for welding has been proposed.

特開平8−99192号公報JP-A-8-99192 特開平11−151592号公報Japanese Patent Laid-Open No. 11-151592 特開2003−311476号公報Japanese Patent Laid-Open No. 2003-311476

そこで、本発明の課題は、軟鋼、490MPa級高張力鋼よりなる被溶接物のガスシールドアーク溶接に用いられるフラックス入りワイヤにおいて、立向上進溶接において溶融金属の垂れ落ちなく高溶接電流にて良好な溶接を行うことができ、また、片面溶接において初層での耐高温割れ性に優れており、さらに、溶着量を多くした大入熱溶接において低温靭性に優れた溶接金属を得ることができる、ガスシールドアーク溶接用フラックス入りワイヤを提供することにある。   Accordingly, an object of the present invention is to provide a flux-cored wire used for gas shielded arc welding of workpieces made of mild steel, 490 MPa class high-strength steel, and good at high welding current without dripping of molten metal in vertical welding. Can be welded, and is excellent in hot crack resistance in the first layer in single-sided welding. Furthermore, it is possible to obtain a weld metal excellent in low temperature toughness in large heat input welding with a large amount of welding. Another object is to provide a flux-cored wire for gas shielded arc welding.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。請求項1の発明は、軟鋼又は合金鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量あたり、TiO:4.5〜7.0質量%、Ti:0.11〜0.29質量%、Mg:0.30〜0.70質量%、C:0.02〜0.08質量%、Si:0.35〜0.75質量%、Mn:2.20〜2.85質量%、B:0.002〜0.010質量%を含有するとともに、前記Mgの含有量を[Mg]とし、MgOの含有量を[MgO]とすると、前記Mgの含有量に対してMgOが、[MgO]+[Mg]×1.66:≦2.5質量%の関係を満たすことを特徴とするガスシールドアーク溶接用フラックス入りワイヤである。 In order to solve the above problems, the present invention takes the following technical means. The invention of claim 1 is a flux-cored wire for gas shielded arc welding formed by filling a soft steel or alloy steel outer shell with a flux, TiO 2 : 4.5 to 7.0% by mass, Ti: 0.11-0.29 mass%, Mg: 0.30-0.70 mass%, C: 0.02-0.08 mass%, Si: 0.35-0.75 mass%, Mn: 2. 20 to 2.85% by mass, B: 0.002 to 0.010% by mass, Mg content is [Mg], and MgO content is [MgO]. The flux-cored wire for gas shielded arc welding, wherein MgO satisfies a relationship of [MgO] + [Mg] × 1.66: ≦ 2.5 mass% with respect to the amount.

請求項2の発明は、請求項1記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、ワイヤ全質量あたり、Al:≦0.5質量%(ただし、0を含む)を満たし、前記Alの含有量を[Al]とし、Alの含有量を[Al]とすると、前記Alの含有量に対して、[Al]+[Al]×1.89:0.5〜1.0質量%の関係を満たすようにAlを含有することを特徴とするものである。 The invention according to claim 2 is the flux-cored wire for gas shielded arc welding according to claim 1, further satisfying Al: ≦ 0.5 mass% (including 0) per total mass of the wire, the content and [Al], when the content of Al 2 O 3 and [Al 2 O 3], relative to the content of the Al, [Al 2 O 3] + [Al] × 1.89: 0 Al 2 O 3 is contained so as to satisfy the relationship of 0.5 to 1.0% by mass.

請求項3の発明は、請求項1又は2記載のガスシールドアーク溶接用フラックス入りワイヤにおいて、さらに、ワイヤ全質量あたり、Ni:0.2〜1.0質量%を含有することを特徴とするものである。   The invention of claim 3 is the flux-cored wire for gas shielded arc welding according to claim 1 or 2, further comprising Ni: 0.2 to 1.0 mass% per total mass of the wire. Is.

このような特徴を有する本発明によれば、軟鋼、490MPa級高張力鋼よりなる被溶接物のガスシールドアーク溶接に用いられるフラックス入りワイヤにおいて、立向上進溶接において溶融金属の垂れ落ちなく高溶接電流にて良好な溶接を行うことができ、また、片面溶接において初層での耐高温割れ性に優れており、さらに、溶着量を多くした大入熱溶接において低温靭性に優れた溶接金属を得ることができる、ガスシールドアーク溶接用フラックス入りワイヤを提供することができる。   According to the present invention having such a feature, in a flux-cored wire used for gas shielded arc welding of a workpiece made of mild steel, 490 MPa class high-tensile steel, high welding without dripping of molten metal in vertical improvement welding is achieved. It is possible to perform welding with good current, and has excellent hot crack resistance in the first layer in single-sided welding, and weld metal with excellent low temperature toughness in high heat input welding with a large amount of welding. A flux-cored wire for gas shielded arc welding that can be obtained can be provided.

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

前記の課題を解決すべく、先ず、本願発明者らは、立向上進溶接における溶融金属の垂れ落ちをなくすため、主にルチール(TiO)からなるスラグ量の増加を図った。しかしながら、これによって溶融金属の垂れ落ちは解消されたものの、下向の片面溶接における初層での耐高温割れ性は低下した。 In order to solve the above-mentioned problems, the present inventors first attempted to increase the amount of slag mainly composed of rutile (TiO 2 ) in order to eliminate the dripping of molten metal in the vertical improvement welding. However, although the dripping of the molten metal was eliminated by this, the hot crack resistance in the first layer in the downward single-sided welding was lowered.

そこで、その原因と対策について検討を進め、高温割れ性が発生しやすくなった原因が溶接金属中の酸素量の増加によることをつきとめ、スラグ量を維持しながら酸素量を低減する手段について検討を行った。   Therefore, we investigated the causes and countermeasures, determined that the cause of the high temperature cracking tendency was the increase in the amount of oxygen in the weld metal, and examined the means to reduce the amount of oxygen while maintaining the slag amount. went.

その結果、最初からTiO、SiOのようなスラグ生成剤を必要量添加するのではなく、溶接中にスラグ成分に変わる合金成分を添加しておくことによって、スラグ量を維持しながら、溶接金属中の酸素量を低減して耐高温割れ性を向上させるようにした。通常、フラックス入りワイヤには、脱酸剤としてMn、Si、Al、Ti、Mg等使用されるが、本発明ではTi、Mgの添加が効果的であることがわかった。 As a result, the required amount of slag generator such as TiO 2 and SiO 2 is not added from the beginning, but by adding an alloy component that changes to a slag component during welding, while maintaining the slag amount, welding is performed. The amount of oxygen in the metal was reduced to improve hot cracking resistance. Normally, Mn, Si, Al, Ti, Mg, etc. are used as deoxidizers in the flux-cored wire, but it has been found that the addition of Ti and Mg is effective in the present invention.

前記Tiについては、溶接時に脱酸剤として作用することにより、溶接金属中の酸素量を低減することで片面溶接における初層での耐高温割れ性を向上し、生じたTiOがスラグ成分として作用することにより、立向上進溶接における溶融金属の垂れ落ちを防ぐという効果を発揮する。さらに、Tiは、溶接金属中に僅かに残留することにより、溶接金属の組織を微細化し、大入熱溶接における低温靭性を向上させる効果を発揮する。 For Ti, by acting as a deoxidizer during welding, the amount of oxygen in the weld metal is reduced, thereby improving the hot crack resistance in the first layer in single-sided welding, and the resulting TiO 2 is used as a slag component. By acting, the effect of preventing dripping of the molten metal in the vertical improvement welding is exhibited. Further, Ti slightly remains in the weld metal, thereby miniaturizing the structure of the weld metal and exhibiting the effect of improving the low temperature toughness in high heat input welding.

一方、前記Mgについては、溶接金属中に残留することなく、ほぼすべてが脱酸剤として作用することにより、溶接金属中の酸素量を低減する効果が大きく、よって片面溶接における初層での耐高温割れ性を向上させる効果が大きい。また、脱酸作用によって生じたMgOは、酸素と脱酸剤の平衡状態を変化させて脱酸作用を促進する効果がある。   On the other hand, Mg does not remain in the weld metal, and almost all acts as a deoxidizer, so that the effect of reducing the amount of oxygen in the weld metal is great, and therefore the resistance in the first layer in single-sided welding is great. Great effect to improve hot cracking. Further, MgO produced by the deoxidation action has an effect of promoting the deoxidation action by changing the equilibrium state of oxygen and the deoxidizer.

また、Mg、MgO、C、Si、Mn及びBの含有量を適切に規定することにより、30〜60kJ/cm程度の大入熱溶接における溶接金属の低温靭性を向上させることができる。   Moreover, the low temperature toughness of the weld metal in the high heat input welding of about 30 to 60 kJ / cm can be improved by appropriately defining the contents of Mg, MgO, C, Si, Mn, and B.

なお、本発明のガスシールドアーク溶接用フラックス入りワイヤは、シールドガスとしてCOガスを用いるものである。また、そのフラックス含有率は、10〜18質量%(対ワイヤ全質量)の範囲が適切である。 The flux-cored wire for gas shielded arc welding of the present invention uses CO 2 gas as the shielding gas. Moreover, the range of 10-18 mass% (vs. wire total mass) is suitable for the flux content rate.

次に、本発明のガスシールドアーク溶接用フラックス入りワイヤの組成及び数値の限定理由について説明する。   Next, the reason for limiting the composition and numerical values of the flux-cored wire for gas shielded arc welding of the present invention will be described.

[TiO:4.5〜7.0質量%]TiOはスラグ生成剤(スラグ形成剤)として作用する。TiOの含有量が4.5質量%未満では立向上進溶接において溶融金属を垂れ落ちないように支えるだけのスラグ量を確保することができず、ビード形状が不良となる。一方、7.0質量%を超えると、溶接金属中の酸素量が多くなり、片面溶接における初層での耐高温割れ性が低下し、また、低温での靭性が低下する。したがって、TiOの含有量は4.5〜7.0質量%とする。 [TiO 2 : 4.5 to 7.0% by mass] TiO 2 acts as a slag forming agent (slag forming agent). If the content of TiO 2 is less than 4.5% by mass, it is not possible to secure an amount of slag that can support the molten metal so that it does not sag in the vertical welding, and the bead shape becomes poor. On the other hand, if it exceeds 7.0% by mass, the amount of oxygen in the weld metal increases, the hot crack resistance in the first layer in single-sided welding decreases, and the toughness at low temperatures decreases. Therefore, the content of TiO 2 is 4.5 to 7.0 mass%.

[Ti:0.11〜0.29質量%]Tiは、前述したように、脱酸剤として作用して溶接金属中の酸素量を低減することで片面溶接における初層での耐高温割れ性を向上し、また、生じたTiOがスラグ成分として作用して立向上進溶接における溶融金属の垂れ落ちを防ぐという効果を有する。さらに、Tiは、溶接金属中に僅かに残留することにより、溶接金属の組織を微細化し、大入熱溶接における低温での靭性を向上させる効果を有する。このような効果を発揮させるためTiの含有量は0.11質量%以上必要である。一方、0.29質量%を超えると溶接金属中の残存量が多くなり過ぎて強度の上昇にともなって靭性が低下する。したがって、Tiの含有量は0.11〜0.29質量%とする。 [Ti: 0.11 to 0.29% by mass] Ti, as described above, acts as a deoxidizer to reduce the amount of oxygen in the weld metal, thereby reducing the hot crack resistance in the first layer in single-sided welding. In addition, the produced TiO 2 acts as a slag component and has an effect of preventing the molten metal from dripping in the vertical welding. Furthermore, Ti has the effect of making the structure of the weld metal finer by remaining slightly in the weld metal and improving the toughness at low temperatures in large heat input welding. In order to exhibit such an effect, the Ti content needs to be 0.11% by mass or more. On the other hand, if it exceeds 0.29% by mass, the remaining amount in the weld metal is excessively increased and the toughness is lowered as the strength is increased. Therefore, the Ti content is 0.11 to 0.29 mass%.

[Mg:0.30〜0.70質量%]Mgは脱酸剤として作用し、溶接金属中の酸素量を低減して、片面溶接における初層での耐高温割れ性を向上し、溶接金属の低温靭性も向上させる。Mgの含有量が0.30質量%未満ではこのような効果が得られず、0.70質量%を超えるとワイヤの耐吸湿性が低下して耐低温割れ性が低下する。したがって、Mgの含有量は0.30〜0.70質量%とする。   [Mg: 0.30 to 0.70% by mass] Mg acts as a deoxidizer, reduces the amount of oxygen in the weld metal, improves hot crack resistance in the first layer in single-sided welding, and weld metal Also improves the low temperature toughness. When the Mg content is less than 0.30% by mass, such an effect cannot be obtained. When the Mg content exceeds 0.70% by mass, the moisture absorption resistance of the wire decreases and the cold cracking resistance decreases. Therefore, the Mg content is set to 0.30 to 0.70 mass%.

[[MgO]+[Mg]×1.66:≦2.5質量%]MgOはこれを添加すると酸化還元定数の変化により酸化が促進され、より脱酸の効果が高められる成分である。しかしながら、MgOは溶融金属の垂れ落ちを促進してしまう成分である。そのため、MgOの含有量は、前記Mgの含有量に対して、[MgO]+[Mg]×1.66:≦2.5質量%の関係を満たすように含有させる必要があり、より好ましくは、[MgO]+[Mg]×1.66:≦1.7質量%の関係を満たすことがよい。前記Mgの含有量に対して、[MgO]+[Mg]×1.66の値が2.5質量%を超える場合のMgOの含有量では、溶融金属が垂れ落ちやすくなる。また、横向溶接においてはスラグの凝固温度が高くなるためにスラグ巻込みなどの欠陥も発生しやすくなる。   [[MgO] + [Mg] × 1.66: ≦ 2.5% by mass] MgO is a component that, when added, promotes oxidation due to a change in oxidation-reduction constant and enhances the deoxidation effect. However, MgO is a component that promotes dripping of the molten metal. Therefore, the content of MgO needs to be contained so as to satisfy the relationship of [MgO] + [Mg] × 1.66: ≦ 2.5 mass% with respect to the content of Mg, more preferably [MgO] + [Mg] × 1.66: ≦ 1.7% by mass is preferably satisfied. When the value of [MgO] + [Mg] × 1.66 exceeds 2.5% by mass with respect to the Mg content, the molten metal tends to sag. Further, in the transverse welding, since the solidification temperature of the slag becomes high, defects such as slag entrainment are likely to occur.

[C:0.02〜0.08質量%]Cは溶接金属の強度を確保するのに必要な元素である。Cの含有量が0.02質量%未満では溶接金属の強度が確保できず、また、低温での靭性も低下する。一方、0.08質量%を超えると溶接金属の強度が上昇して低温での靭性が低下する。また、耐低温割れ性も低下し、スパッタ発生量も増加する。したがって、Cの含有量は0.02〜0.08質量%とする。   [C: 0.02 to 0.08 mass%] C is an element necessary for ensuring the strength of the weld metal. If the C content is less than 0.02% by mass, the strength of the weld metal cannot be ensured, and the toughness at low temperatures also decreases. On the other hand, if it exceeds 0.08% by mass, the strength of the weld metal increases and the toughness at low temperature decreases. In addition, the resistance to cold cracking is reduced, and the amount of spatter generated is also increased. Therefore, the C content is 0.02 to 0.08 mass%.

[Si:0.35〜0.75質量%]Siは脱酸剤として作用し、溶接金属の強度を調整する作用があり、また、溶融金属の粘性を高めて立向上進溶接性を向上させる効果もある。Siの含有量が0.35質量%未満ではこれらの効果が得られない。一方、0.75質量%を超えると溶接金属の強度が高くなり低温での靭性が低下する。また、耐低温割れ性、耐高温割れ性も低下する。したがって、Siの含有量は0.35〜0.75質量%とする。   [Si: 0.35 to 0.75 mass%] Si acts as a deoxidizer and has an effect of adjusting the strength of the weld metal, and also increases the viscosity of the molten metal to improve the vertical weldability. There is also an effect. If the Si content is less than 0.35% by mass, these effects cannot be obtained. On the other hand, when it exceeds 0.75 mass%, the strength of the weld metal is increased and the toughness at low temperature is lowered. In addition, the low temperature crack resistance and the high temperature crack resistance are also lowered. Therefore, the Si content is set to 0.35 to 0.75% by mass.

[Mn:2.20〜2.85質量%]Mnは脱酸剤として作用するとともに、溶接金属の強度、及び低温での靭性を向上させる効果がある。Mnの含有量が2.20質量%未満ではこのような効果が十分発揮されず、2.85質量%を超えると、逆に溶接金属の強度が高く過ぎ、低温での靭性が低下し、低温割れも発生しやすくなる。したがって、Mnの含有量は2.20〜2.85質量%とする。   [Mn: 2.20 to 2.85 mass%] Mn acts as a deoxidizer and has the effect of improving the strength of weld metal and toughness at low temperatures. If the content of Mn is less than 2.20% by mass, such an effect is not sufficiently exhibited. If the content exceeds 2.85% by mass, the strength of the weld metal is too high, and the toughness at low temperature is lowered. Cracks are also likely to occur. Therefore, the Mn content is 2.20 to 2.85 mass%.

[B:0.002〜0.010質量%]Bは溶接金属の結晶粒を微細化させて低温での靭性を向上させる効果を有する。Bの含有量が0.002質量%未満では靭性向上効果が十分に得られず、一方、0.010質量%を超えると耐高温割れ性が低下する。したがって、Bの含有量は0.002〜0.010質量%とする。   [B: 0.002 to 0.010 mass%] B has an effect of improving the toughness at low temperature by refining the crystal grains of the weld metal. If the content of B is less than 0.002% by mass, a sufficient effect of improving toughness cannot be obtained. On the other hand, if the content exceeds 0.010% by mass, the hot cracking resistance decreases. Therefore, the B content is set to 0.002 to 0.010 mass%.

[Al:≦0.5質量%(ただし、0を含む)]Alは溶接中に酸化物となり、これによってスラグの凝固温度を上昇させることにより、立向上進溶接において溶融金属の垂れ落ちを防ぐ効果がある。しかし、Alは溶接金属中に若干残留しその残留量が多いと溶接金属の靭性を低下させ、また、スパッタ発生量が増加する。したがって、Alの含有量は0.5質量%以下に規制する必要がある。   [Al: ≦ 0.5 mass% (including 0)] Al becomes an oxide during welding, thereby increasing the solidification temperature of the slag, thereby preventing dripping of the molten metal in the vertical improvement welding. effective. However, Al remains slightly in the weld metal, and if the residual amount is large, the toughness of the weld metal is reduced and the amount of spatter generated increases. Therefore, the Al content needs to be regulated to 0.5% by mass or less.

[[Al]+[Al]×1.89:0.5〜1.0質量%]Alはスラグの凝固温度を上昇させる作用があり、これによって立向上進溶接において溶融金属の垂れ落ちを防ぐ効果がある。前記Alの含有量に対して、[Al]+[Al]×1.89の値が0.5質量%未満となる場合のAlの含有量では、前記の垂れ落ち防止効果が十分に発揮されない。一方、Alの含有量に対して、[Al]+[Al]×1.89の値が1.0質量%を超える場合のAlの含有量では、アークが不安定となって、スパッタ発生量が増加するとともに、スラグが硬くなりすぎてスラグ剥離性が悪化する。 [[Al 2 O 3 ] + [Al] × 1.89: 0.5 to 1.0% by mass] Al 2 O 3 has the effect of increasing the solidification temperature of the slag, thereby melting in the vertical welding. It has the effect of preventing metal dripping. Relative to the content of the Al, the content of Al 2 O 3 in the case where the value of [Al 2 O 3] + [ Al] × 1.89 is less than 0.5 wt%, said drool prevention The effect is not fully demonstrated. On the other hand, relative to the content of Al, the content of Al 2 O 3 in the case where the value of [Al 2 O 3] + [ Al] × 1.89 is more than 1.0 wt%, arc is unstable As a result, the amount of spatter generated increases and the slag becomes too hard and the slag peelability deteriorates.

[Ni:0.2〜1.0質量%]Niは溶接金属の低温での靭性を向上させる効果を有する。Niの含有量が0.2質量%未満では前記の靭性向上効果が得られない。一方、1.0質量%を超えて添加しても、−40℃程度での衝撃性能に関しては添加量に比例した効果が得られず、また、原料としてのNiの価格が高いため製造コストも上昇する。したがって、Niの含有量は0.2〜1.0質量%とする。   [Ni: 0.2 to 1.0% by mass] Ni has an effect of improving the toughness of the weld metal at a low temperature. When the Ni content is less than 0.2% by mass, the toughness improving effect cannot be obtained. On the other hand, even if added over 1.0% by mass, an effect proportional to the added amount cannot be obtained with respect to impact performance at about −40 ° C., and the manufacturing cost is also high because the price of Ni as a raw material is high. To rise. Therefore, the Ni content is 0.2 to 1.0 mass%.

軟鋼製(JIS G 3141 SPCC)の外皮中にフラックスを充填してなるワイヤ径1.4mmのガスシールドアーク溶接用フラックス入りワイヤを作製した(実施例No.1〜実施例No.18、及び比較例No.19〜比較例No.57)。各ワイヤは、いずれも、そのフラックス含有率が14質量%である。これらのワイヤの化学成分を表1、表2及び表3に示す。   A flux-cored wire for gas shield arc welding with a wire diameter of 1.4 mm, which is formed by filling a flux in a skin made of mild steel (JIS G 3141 SPCC) (Example No. 1 to Example No. 18 and comparison) Example No. 19 to Comparative Example No. 57). Each wire has a flux content of 14% by mass. The chemical components of these wires are shown in Tables 1, 2 and 3.

前記作製した各ワイヤを用いて、表4に示す溶接条件で、(イ)立向上進溶接、(ロ)低温靭性を評価するための大入熱による下向突合せ溶接、(ハ)耐高温割れ性を評価するための下向突合せ片面溶接の初層溶接、及び(ニ)耐低温割れ性を評価するための下向突合せ溶接の各溶接試験を実施した。   Using each of the produced wires, under the welding conditions shown in Table 4, (b) vertical improvement welding, (b) downward butt welding with a large heat input for evaluating low temperature toughness, and (c) hot cracking resistance Welding tests were conducted for the first layer welding of the downward butt single-sided welding for evaluating the properties and (d) the downward butt welding for evaluating the cold cracking resistance.

立向上進溶接では、すみ肉溶接を立向上進にて行い、溶融金属の垂れの度合い(ビード形状の良否)などを評価した。評価は、溶接電流180A、デルタウィービングにおいて、ビード形状が凸形状でなく良好なものを「○」とし、ビード形状が不良なものを「×」とした。さらに、220A、デルタウィービングにおいてビード形状が凸形状でなく良好なものを「○〜◎」、250A、デルタウィービングにおいてビード形状が凸形状でなく良好なものを「◎」とした。評価結果を表5及び表6に示す。   In vertical improvement welding, fillet welding was performed in vertical improvement, and the degree of dripping of molten metal (the quality of the bead shape) was evaluated. In the evaluation, in welding current 180A and delta weaving, a good bead shape was not a convex shape, and “good”, and a poor bead shape was “x”. Furthermore, in 220A, delta weaving, the good bead shape was not “convex”, and “250”, and in delta weaving, the bead shape was not convex, “good”. The evaluation results are shown in Tables 5 and 6.

下向突合せ溶接では、大入熱溶接による溶接金属の低温での靭性を評価した。シャルピー試験片は溶接部の板厚方向における中央位置から採取し、シャルピー衝撃試験(試験片サイズ及び試験方法はJIS Z3111に準拠)により、−40℃におけるシャルピー吸収エネルギー値を測定した。3本のシャルピー試験片の平均値を−40℃吸収エネルギーとした。評価は、−40℃吸収エネルギーが100Jを超えるものを「◎」とし、47J〜100Jの範囲のものを「○」とし、47J未満のものを「×」とした。評価結果を表5及び表6に示す。   In downward butt welding, the low temperature toughness of weld metal by high heat input welding was evaluated. The Charpy test piece was collected from the center position in the plate thickness direction of the welded portion, and the Charpy absorbed energy value at −40 ° C. was measured by a Charpy impact test (the test piece size and test method conform to JIS Z3111). The average value of the three Charpy test pieces was defined as -40 ° C absorbed energy. In the evaluation, the case where the absorption energy at −40 ° C. exceeds 100 J is indicated as “◎”, the case where the absorption energy is in the range of 47 J to 100 J is indicated as “◯”, and the case where the absorption energy is less than 47 J is indicated as “X”. The evaluation results are shown in Tables 5 and 6.

下向突合せ片面溶接の初層溶接(拘束割れ試験)では、溶接後に、放射線透過試験により高温割れの有無を調べた。評価は、溶接電流230Aでの初層溶接で高温割れなしのものを「○」とし、高温割れが発生したものを「×」とした。評価結果を表5及び表6に示す。また、下向突合せ窓枠拘束割れ試験では、溶接後に超音波探傷試験により、低温割れの有無を調べた。評価は、低温割れなしのものを「○」とし、低温割れが発生したものを「×」とした。評価結果を表5及び表6に示す。   In the first layer welding (constraint cracking test) of downward butt single-sided welding, the presence or absence of hot cracking was examined by a radiation transmission test after welding. In the evaluation, in the first layer welding with a welding current of 230 A, the one without hot cracking was rated as “◯”, and the one with hot cracking occurred as “x”. The evaluation results are shown in Tables 5 and 6. In the downward butt window frame restraint cracking test, the presence or absence of low temperature cracking was examined by ultrasonic flaw detection after welding. In the evaluation, “o” indicates that there is no cold cracking, and “x” indicates that cold cracking occurs. The evaluation results are shown in Tables 5 and 6.

Figure 0005111028
Figure 0005111028

Figure 0005111028
Figure 0005111028

Figure 0005111028
Figure 0005111028

Figure 0005111028
Figure 0005111028

Figure 0005111028
Figure 0005111028

Figure 0005111028
Figure 0005111028

比較例の結果についてみると、比較例のNo.21及びNo.26は、TiOが上限値を超えているため、片面溶接の初層で高温割れが発生し、また、大入熱溶接での低温靭性が低かった。比較例のNo.35、No.39、No.43及びNo.51は、TiOが下限値を下回っているため、立向上進溶接でビード形状が凸状で不良であった。 As for the results of the comparative example, the comparative example No. 21 and no. In No. 26, since TiO 2 exceeded the upper limit value, high temperature cracking occurred in the first layer of single-sided welding, and low temperature toughness in high heat input welding was low. Comparative Example No. 35, no. 39, no. 43 and no. In No. 51, since TiO 2 was below the lower limit value, the bead shape was convex and poor in vertical improvement welding.

次に、比較例のNo.20及びNo.33は、Tiが上限値を超えているため、溶接金属の強度が増大して大入熱溶接での低温靭性が低かった。比較例のNo.19、No.23及びNo.28は、Tiが下限値を下回っているため、片面溶接の初層で高温割れが発生し、また、大入熱溶接での低温靭性が低かった。   Next, No. of the comparative example. 20 and no. In No. 33, since Ti exceeded the upper limit, the strength of the weld metal was increased and the low temperature toughness in high heat input welding was low. Comparative Example No. 19, no. 23 and no. In No. 28, since Ti was below the lower limit, hot cracking occurred in the first layer of single-sided welding, and low temperature toughness in high heat input welding was low.

次に、比較例のNo.47、No.49及びNo.54は、Mgが上限値を超えているため、低温割れが発生した。比較例のNo.27及びNo.30は、Mgが下限値を下回っているため、片面溶接の初層で高温割れが発生し、また、大入熱溶接での低温靭性が低かった。なお、前記比較例No.27はAl及びAlが添加されており、立向上進溶接性が非常に良好であった。 Next, No. of the comparative example. 47, no. 49 and No. No. 54 had low temperature cracking because Mg exceeded the upper limit. Comparative Example No. 27 and no. In No. 30, since Mg was below the lower limit, hot cracking occurred in the first layer of single-sided welding, and low temperature toughness in high heat input welding was low. The comparative example No. In No. 27, Al and Al 2 O 3 were added, and the uplifting weldability was very good.

次に、比較例のNo.45及びNo.53は、Cが上限値を超えているため、溶接金属の強度が増大して大入熱溶接での低温靭性が低かった。また、低温割れが発生した。比較例のNo.29は、Cが下限値を下回っているため、大入熱溶接での低温靭性が低かった。   Next, No. of the comparative example. 45 and no. In No. 53, since C exceeded the upper limit value, the strength of the weld metal was increased and the low temperature toughness in the high heat input welding was low. Moreover, cold cracking occurred. Comparative Example No. In No. 29, C was lower than the lower limit value, so the low temperature toughness in high heat input welding was low.

次に、比較例のNo.44及びNo.46は、Siが上限値を超えているため、片面溶接の初層で高温割れが発生し、大入熱溶接での低温靭性が低かった。また、低温割れが発生した。前記比較例No.44はAl及びAlが添加されているため、立向上進溶接性が非常に良好であった。比較例のNo.24、No.36及びNo.55は、Siが下限値を下回っているため、立向上進溶接でビード形状が凸状で不良であった。なお、前記比較例No.55はAlが添加されているものの、Siが下限値を下回っているため、立向上進溶接でビード形状が凸状で不良であった。 Next, No. of the comparative example. 44 and no. In No. 46, since Si exceeded the upper limit, high temperature cracking occurred in the first layer of single-sided welding, and low temperature toughness in high heat input welding was low. Moreover, cold cracking occurred. Comparative Example No. No. 44 had very good weldability due to the improvement in the vertical improvement since Al 2 O 3 and Al were added. Comparative Example No. 24, no. 36 and no. In No. 55, Si was lower than the lower limit value, so that the bead shape was convex and defective in vertical improvement welding. The comparative example No. Although Al 2 O 3 was added to No. 55, since Si was below the lower limit value, the bead shape was convex and poor in the vertical improvement welding.

次に、比較例のNo.41及びNo.50は、Mnが上限値を超えているため、溶接金属の強度が増大して大入熱溶接での低温靭性が低く、また、低温割れが発生した。比較例のNo.25、No.37及びNo.56は、Mnが下限値を下回っているため、大入熱溶接での低温靭性が低かった。なお、前記比較例No.56はNiが添加されているものの、Mnが下限値を下回っているため、大入熱溶接での低温靭性が低かった。   Next, No. of the comparative example. 41 and no. In No. 50, since Mn exceeded the upper limit, the strength of the weld metal increased, the low temperature toughness in high heat input welding was low, and low temperature cracking occurred. Comparative Example No. 25, no. 37 and no. In No. 56, since Mn was below the lower limit, low temperature toughness in high heat input welding was low. The comparative example No. Although Ni was added to No. 56, since Mn was below the lower limit, the low temperature toughness in high heat input welding was low.

次に、比較例のNo.42、No.48及びNo.57は、Bが上限値を超えているため、片面溶接の初層で高温割れが発生した。なお、前記比較例No.57はNiが添加されているため、大入熱溶接での低温靭性が良好であった。比較例のNo.32及びNo.34は、Bが下限値を下回っているため、大入熱溶接での低温靭性が低かった。   Next, No. of the comparative example. 42, no. 48 and no. In No. 57, since B exceeded the upper limit, hot cracking occurred in the first layer of single-sided welding. The comparative example No. Since No. 57 was added with Ni, the low temperature toughness in high heat input welding was good. Comparative Example No. 32 and no. No. 34 had a low temperature toughness in high heat input welding because B was below the lower limit.

次に、比較例のNo.22、No.31、No.38、No.40及びNo.52は、MgOが規定値を超えているため、立向上進溶接でビード形状が凸状で不良であった。なお、前記比較例No.31はNiが添加されており、大入熱溶接での低温靭性が良好であった。また、前記比較例No.38はAlが上限値を上回っているため、スパッタ発生量が多く、Al及びAlのトータル(b)が上限値を上回っているため、アーク安定性、及びスラグの剥離性が悪かった。 Next, No. of the comparative example. 22, no. 31, no. 38, no. 40 and no. In No. 52, MgO exceeded the specified value, so that the bead shape was convex and poor in the vertical improvement welding. The comparative example No. No. 31 was added with Ni and had good low temperature toughness in high heat input welding. In addition, the comparative example No. In No. 38, since Al exceeded the upper limit, the amount of spatter was large, and the total of Al and Al 2 O 3 (b) exceeded the upper limit, so the arc stability and slag peelability were poor. .

これに対し、表5に示すように、実施例No.1〜実施例No.18は、立向上進溶接において溶融金属の垂れ落ちなく高溶接電流にて良好な溶接を行うことができ、また、片面溶接において初層での耐高温割れ性に優れており、さらに、溶着量を多くした大入熱溶接において低温靭性に優れた溶接金属を得ることができた。また、耐低温割れ性についても良好であった。   On the other hand, as shown in Table 5, Example No. 1 to Example No. No. 18 can perform good welding at high welding current without dripping of molten metal in vertical improvement welding, and is excellent in hot crack resistance in the first layer in single-sided welding. In the high heat input welding with a large amount, a weld metal excellent in low temperature toughness could be obtained. Further, the low temperature cracking resistance was also good.

Claims (3)

軟鋼又は合金鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量あたり、TiO:4.5〜7.0質量%、Ti:0.11〜0.29質量%、Mg:0.30〜0.70質量%、C:0.02〜0.08質量%、Si:0.35〜0.75質量%、Mn:2.20〜2.85質量%、B:0.002〜0.010質量%を含有するとともに、前記Mgの含有量を[Mg]とし、MgOの含有量を[MgO]とすると、前記Mgの含有量に対してMgOが、[MgO]+[Mg]×1.66:≦2.5質量%の関係を満たすことを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。 In a flux-cored wire for gas shielded arc welding formed by filling a mild steel or alloy steel outer sheath with flux, TiO 2 : 4.5 to 7.0 mass%, Ti: 0.11 to 0.29 per total mass of the wire Mass%, Mg: 0.30-0.70 mass%, C: 0.02-0.08 mass%, Si: 0.35-0.75 mass%, Mn: 2.20-2.85 mass% , B: 0.002 to 0.010% by mass, Mg content is [Mg], and MgO content is [MgO]. When MgO content is MgO, [MgO] + [Mg] × 1.66: A flux-cored wire for gas shielded arc welding, which satisfies the relationship of ≦ 2.5% by mass. さらに、ワイヤ全質量あたり、Al:≦0.5質量%(ただし、0を含む)を満たし、前記Alの含有量を[Al]とし、Alの含有量を[Al]とすると、前記Alの含有量に対して、[Al]+[Al]×1.89:0.5〜1.0質量%の関係を満たすようにAlを含有することを特徴とする請求項1記載のガスシールドアーク溶接用フラックス入りワイヤ。 Further, Al: ≦ 0.5 mass% (including 0) is satisfied per total mass of the wire, the Al content is [Al], and the Al 2 O 3 content is [Al 2 O 3 ]. Then, Al 2 O 3 should be contained so as to satisfy the relationship of [Al 2 O 3 ] + [Al] × 1.89: 0.5 to 1.0 mass% with respect to the content of Al. The flux-cored wire for gas shielded arc welding according to claim 1. さらに、ワイヤ全質量あたり、Ni:0.2〜1.0質量%を含有することを特徴とする請求項1又は2記載のガスシールドアーク溶接用フラックス入りワイヤ。   Furthermore, Ni: 0.2-1.0 mass% is contained per wire total mass, The flux-cored wire for gas shield arc welding of Claim 1 or 2 characterized by the above-mentioned.
JP2007231673A 2007-09-06 2007-09-06 Flux-cored wire for gas shielded arc welding Active JP5111028B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007231673A JP5111028B2 (en) 2007-09-06 2007-09-06 Flux-cored wire for gas shielded arc welding
CN2008101448946A CN101380706B (en) 2007-09-06 2008-07-31 Flux-cored wire for gas-shielded arc welding
SG200806318-2A SG150482A1 (en) 2007-09-06 2008-08-26 Flux-cored wire for gas-shielded arc welding
KR1020080087190A KR100998839B1 (en) 2007-09-06 2008-09-04 Flux-cored wire for gas-shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007231673A JP5111028B2 (en) 2007-09-06 2007-09-06 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2009061474A JP2009061474A (en) 2009-03-26
JP5111028B2 true JP5111028B2 (en) 2012-12-26

Family

ID=40460853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007231673A Active JP5111028B2 (en) 2007-09-06 2007-09-06 Flux-cored wire for gas shielded arc welding

Country Status (4)

Country Link
JP (1) JP5111028B2 (en)
KR (1) KR100998839B1 (en)
CN (1) CN101380706B (en)
SG (1) SG150482A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5244035B2 (en) * 2009-06-22 2013-07-24 株式会社神戸製鋼所 Weld metal
JP5416605B2 (en) 2010-02-02 2014-02-12 株式会社神戸製鋼所 Flux cored wire
JP5415998B2 (en) * 2010-03-11 2014-02-12 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP5450260B2 (en) * 2010-05-27 2014-03-26 株式会社神戸製鋼所 Weld metal with excellent hot crack resistance
CN102528332B (en) * 2010-12-20 2015-02-04 昆山京群焊材科技有限公司 High-strength low-temperature-resistant TiO2-series CO2 gas-shielded low-hydrogen type flux-cored wire
KR101220618B1 (en) * 2010-12-27 2013-01-10 주식회사 포스코 Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same
CN102152027B (en) * 2011-03-17 2013-01-23 北京工业大学 Recycled gas-shielded flux cored wire component and preparation method thereof
WO2014081246A1 (en) * 2012-11-22 2014-05-30 주식회사 포스코 Welded joint of extremely low-temperature steel, and welding materials for preparing same
JP6382117B2 (en) 2015-01-16 2018-08-29 日鐵住金溶接工業株式会社 Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP6437327B2 (en) 2015-01-28 2018-12-12 日鐵住金溶接工業株式会社 Flux-cored wire for carbon dioxide shielded arc welding
JP2017094360A (en) 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Flux-cored wire for shield-arc welding using argon-carbon dioxide gas mixture
JP2018039026A (en) * 2016-09-06 2018-03-15 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding, and weld metal
CN106624449B (en) * 2017-01-18 2020-01-10 武汉铁锚焊接材料股份有限公司 Flux-cored wire for heat treatment of ocean engineering large and thick plates and preparation method and application thereof
JP6786427B2 (en) 2017-03-21 2020-11-18 日鉄溶接工業株式会社 Flux-filled wire for gas shielded arc welding
JP7215911B2 (en) * 2018-01-16 2023-01-31 株式会社神戸製鋼所 Flux-cored wire for gas-shielded arc welding
CN108526664A (en) * 2018-06-27 2018-09-14 中国有色金属工业第六冶金建设有限公司 One kind being suitable for Q460C high-strength steel butt weld welding methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719330A (en) * 1981-06-03 1988-01-12 Alloy Rods Corporation Welding electrode
CN1013086B (en) * 1988-08-12 1991-07-10 国家机械工业委员会哈尔滨焊接研究所 A kind of high-basicity sintered flux
JP2908585B2 (en) * 1991-04-09 1999-06-21 日鐵溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP3203527B2 (en) * 1993-02-15 2001-08-27 新日本製鐵株式会社 Flux-cored wire for gas shielded arc welding
JP3377271B2 (en) * 1993-12-10 2003-02-17 新日本製鐵株式会社 Flux-cored wire for gas shielded arc welding
JP3788691B2 (en) 1998-08-31 2006-06-21 株式会社神戸製鋼所 Flux-cored wire for horizontal fillet gas shielded arc welding
KR100427546B1 (en) * 2001-09-06 2004-04-30 고려용접봉 주식회사 Basic flux cored wire
JP4259887B2 (en) 2003-01-31 2009-04-30 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for corrosion resistant steel

Also Published As

Publication number Publication date
CN101380706A (en) 2009-03-11
JP2009061474A (en) 2009-03-26
CN101380706B (en) 2010-12-22
KR100998839B1 (en) 2010-12-06
SG150482A1 (en) 2009-03-30
KR20090026070A (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP5111028B2 (en) Flux-cored wire for gas shielded arc welding
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
KR100920550B1 (en) Flux-cored wire for titania-based gas shielded arc welding
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP5438663B2 (en) Flux cored wire
JP2010110817A (en) Low-hydrogen coated electrode
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
JP5400461B2 (en) Flux cored wire
EP2952287B1 (en) Covered electrode
KR101583197B1 (en) Bonded flux for submerged arc welding
JP5438664B2 (en) Flux cored wire
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP2010017717A (en) Flux-filled wire
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6257489B2 (en) Gas shield arc welding method
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
KR101286502B1 (en) Titania type flux cored wire having excellent crack resistance
JP3458452B2 (en) High heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP3547282B2 (en) Low hydrogen coated arc welding rod
JPH05269593A (en) Flux cored wire for gas shielded metal-arc welding
KR102664069B1 (en) Flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150