JP5110477B2 - Fiber sheet with liquid-liquid separation function - Google Patents

Fiber sheet with liquid-liquid separation function Download PDF

Info

Publication number
JP5110477B2
JP5110477B2 JP2008261681A JP2008261681A JP5110477B2 JP 5110477 B2 JP5110477 B2 JP 5110477B2 JP 2008261681 A JP2008261681 A JP 2008261681A JP 2008261681 A JP2008261681 A JP 2008261681A JP 5110477 B2 JP5110477 B2 JP 5110477B2
Authority
JP
Japan
Prior art keywords
liquid
fiber sheet
water
separation
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008261681A
Other languages
Japanese (ja)
Other versions
JP2010089013A (en
Inventor
高臣 小林
智彦 楚山
信之 坂爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology
Hokuetsu Kishu Paper Co Ltd
Original Assignee
Nagaoka University of Technology
Hokuetsu Kishu Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology, Hokuetsu Kishu Paper Co Ltd filed Critical Nagaoka University of Technology
Priority to JP2008261681A priority Critical patent/JP5110477B2/en
Publication of JP2010089013A publication Critical patent/JP2010089013A/en
Application granted granted Critical
Publication of JP5110477B2 publication Critical patent/JP5110477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、液体混合物をパーベーパレーション法によって分離するときに用いる分離機能材料、特に水溶性有機溶媒と水との混合物をパーベーパレーション法で選択的に分離するための液液分離機能を有する繊維シートに関する。   The present invention has a separation function material used when a liquid mixture is separated by a pervaporation method, particularly a liquid-liquid separation function for selectively separating a mixture of a water-soluble organic solvent and water by a pervaporation method. It relates to a fiber sheet.

水及び有機物が均一に混合した溶液から、水又は有機物を選択的に分離する方法としては、蒸留による方法が広く使われている。一方、エタノール、イソプロパノール、ブタノール等は、水との混合によって、一定濃度以上では共沸状態となるために、通常の蒸留法で分離することができず、ベンゼンのような有害なエントレーナーを使用した共沸蒸留法を用いる必要がある。しかしながら、共沸蒸留法は、このように有害な第3成分が必要となることに加えて、エネルギーコストも高くなるため、これに代わる分離方法が求められている。   As a method for selectively separating water or organic matter from a solution in which water and organic matter are uniformly mixed, a distillation method is widely used. On the other hand, ethanol, isopropanol, butanol, etc., when mixed with water, become azeotropic at a certain concentration or higher, so they cannot be separated by a normal distillation method and use harmful entrainers such as benzene. It is necessary to use the azeotropic distillation method. However, the azeotropic distillation method requires a harmful third component as described above, and also increases the energy cost. Therefore, an alternative separation method is required.

共沸蒸留法に代わる方法としては、圧力スイング吸着法(PSA法)が提案されている(特許文献1)。これは、含水有機溶剤を親水性ゼオライトの入った容器に注入し、昇圧過程で水分を吸着させた後に取り出し、その後減圧過程で吸着された水分を取り除き、再び含水有機溶剤を注入して水分を取り除くという工程を繰り返すことによって、所望の濃度にまで有機溶剤を濃縮するというものである。この方法は、含水量が1質量%以下の有機溶剤からの脱水には有効であるが、含水量が多い有機溶剤から脱水する場合には、前述の工程を繰り返し行う必要があるため、10質量%程度の含水量の有機溶剤からの脱水には有効ではない。   As an alternative to the azeotropic distillation method, a pressure swing adsorption method (PSA method) has been proposed (Patent Document 1). This is done by injecting a water-containing organic solvent into a container containing hydrophilic zeolite, removing it after adsorbing moisture during the pressurization process, then removing the adsorbed water during the pressure-reduction process, and again injecting the water-containing organic solvent into the water. By repeating the step of removing, the organic solvent is concentrated to a desired concentration. This method is effective for dehydration from an organic solvent having a water content of 1% by mass or less. However, when dehydrating from an organic solvent having a high water content, it is necessary to repeat the above-described steps. It is not effective for dehydration from organic solvents with a water content of about%.

このような状況から、共沸状態の含水有機溶剤からの水分の分離としてパーベーパレーションによる分離方法が注目されている。パーベーパレーション法とは、分離膜、分離機能材料の供給側に混合溶液を流し、透過側を真空に保つことで分離膜、分離機能材料を通して供給液体の特定成分だけを蒸発させて透過側へ分離する、分子レベルでの混合成分の分離・濃縮方法である。   Under such circumstances, a separation method by pervaporation has attracted attention as a separation of water from an azeotropic water-containing organic solvent. In the pervaporation method, the mixed solution is flowed to the supply side of the separation membrane and separation functional material, and the permeation side is kept in a vacuum to evaporate only a specific component of the supply liquid through the separation membrane and the separation functional material to the permeation side. This is a method for separating and concentrating mixed components at the molecular level.

パーベーパレーションに使用される分離機能材料としては、例えば特許文献1には、多孔性ポリエチレン膜にイオン交換基を導入したイオン交換膜、特許文献2にはPVAとポリスチレンスルホン酸との架橋反応物からなる分離膜、特許文献3には芳香族ポリアミド共重合体、特許文献4には酢酸セルロース、硝酸セルロース、再生セルロール、アルキルセルロース、カルボキシメチルセルロースを含有し澱粉と合成熱可塑性ポリマーから構成された分離膜、特許文献5には芳香族ポリイミド、芳香族ポリアミドイミド又はこれらの混合物からなる微多孔質膜上にポリビニルアルコールからなる薄膜層を有する膜、特許文献6にはセルロースエステル混合膜、特許文献7にはカルボキシメチルセルロース膜などの有機合成膜が提案されているが、これらは膜圧が例えば100μm以下で膜厚が薄いため強度が弱く、分離処理を行うときに膜が破損する危険性があった。   Examples of separation functional materials used for pervaporation include an ion exchange membrane in which ion exchange groups are introduced into a porous polyethylene membrane in Patent Document 1, and a cross-linking reaction product of PVA and polystyrene sulfonic acid in Patent Document 2. Separation membrane comprising, an aromatic polyamide copolymer in Patent Document 3, and a separation composed of starch and a synthetic thermoplastic polymer containing cellulose acetate, cellulose nitrate, regenerated cellulose, alkylcellulose, and carboxymethylcellulose in Patent Document 4 Membrane, Patent Document 5 has a film having a thin film layer made of polyvinyl alcohol on a microporous film made of aromatic polyimide, aromatic polyamideimide or a mixture thereof, Patent Document 6 has a cellulose ester mixed film, Patent Document 7 Has proposed organic synthetic membranes such as carboxymethylcellulose membrane, These are film thickness, for example less in film thickness is small because the intensity is weak 100 [mu] m, film was a risk of damage when the separation process.

また、特許文献8にはゼオライト膜、特許文献9には平均粒径0.5〜5μmのゼオライト微粒子60〜95質量部、有機高分子あるいは有機高分子混合物5〜40質量部からなる多孔質支持体などの無機合成膜が提案されている。しかし、これらは、アルミナ、ムライトなど高温での焼成を必要とする高価な無機多孔質支持体を用いるため、分離機能材料としては非常に高価なものであり、種結晶を支持体に擦り付けて水熱合成することでゼオライト膜が得られるが、膜に欠陥や非結晶成分による分離不良が生じる問題があった。また、基本的に無機系であるため、膜の後加工性に乏しく、無理に加工するとクラックの発生、材料の破損などの問題があった。   Patent Document 8 discloses a zeolite membrane, Patent Document 9 discloses a porous support composed of 60 to 95 parts by mass of zeolite fine particles having an average particle size of 0.5 to 5 μm, and 5 to 40 parts by mass of an organic polymer or an organic polymer mixture. An inorganic synthetic film such as a body has been proposed. However, since these use an expensive inorganic porous support that requires firing at a high temperature, such as alumina and mullite, they are very expensive as a functional separation material, and the seed crystal is rubbed against the support. Although a zeolite membrane can be obtained by thermal synthesis, there has been a problem that the membrane has defects and poor separation due to non-crystalline components. Further, since it is basically inorganic, it has poor post-processability of the film, and if it is processed forcibly, there are problems such as generation of cracks and breakage of materials.

また、基本的に前出の有機合成膜、無機合成膜の分離機能材料は、製造するときに環境負荷が大きく、高コストとなる問題があった。有機合成膜には、前出の特許文献4、6、7のようにセルロース誘導体の分離機能材料は従来存在したが、繊維素材で構成された分離機能素材、特に紙のように安価で環境負荷が少なく、後加工性の良好なセルロール繊維そのものを使用したパーベーパレーション用の分離機能材料はこれまで無かった。   In addition, the above-described organic synthetic membrane and inorganic synthetic membrane separation functional materials basically have a problem of high environmental burden and high cost when manufactured. In organic synthetic membranes, separation functional materials for cellulose derivatives existed in the past as described in Patent Documents 4, 6, and 7, but separation functional materials composed of fiber materials, especially cheap and environmentally friendly like paper. Until now, there has been no separation functional material for pervaporation using cellulosic fibers themselves with low post-processability.

一方、従来バルカナイズドファイバーとも呼ばれる素材がある。これは、木材パルプ、綿を原料とする天然繊維素からなる強靭な有機工業材料であり、耐衝撃性、耐摩耗性等の機械的強度に優れ、打抜き、折り曲げ、プレス成形等の加工性が良好である。さらに、耐油性、電気絶縁性にも優れた材料でもある。この優れた機械強度特性、電気絶縁特性、後加工適性によって、従来、照明・テレビ・オーディオ・スペーサー、ワッシャー、電動機のコアエンド・スロットウエッジ・スペーサー、遮断器の消弧板・ヒューズ筒、電子部品の容器・仕切り板、乾電池周辺部品、ノーメックスやペットフィルムと貼合した電気絶縁用としての電気機器部品、又は耐衝撃性、耐磨耗性、耐熱性、樹脂接着性を生かして研磨ディスクや研磨ベルトの基材としての各種パッキング、機械部品、又は耐衝撃性、樹脂加工性、印刷適性、耐老化性等によって化粧板用基材、合板表面材としての建材、又は耐衝撃性、耐久性、非溶融性、電気絶縁性、絞り加工性等によって溶接用マスク、溶接用ホルダー、ヘルメットとしての産業用安全具、又は耐衝撃性、耐研磨性、耐老化性、絞り加工性等によって大型運搬箱、配達箱、スーツケース、文庫、トレー、テープケース、楽器ケース、古紙回収ボックス、カバン芯、靴芯、各種タッグ、武具用品、コスメティーボックス、ボーリング場用各種構造部材としての各種容器・雑貨、又は自然派素材の暖か味と加工性を生かして学校工作の材料・紙クリップ、環境に配慮したファイバーフックとしての教材・文具・服飾、分別回収しやすいラップフィルムやアルミホイルの切刃としての食品包装資材、等の用途がある。この素材は、天然セルロース繊維で構成されているため、廃棄された場合の生分解性及びクリーンな焼却処理適性も有しており、環境に優しい工業材料である。   On the other hand, there is a material conventionally called vulcanized fiber. This is a tough organic industrial material made of natural fiber material made from wood pulp and cotton. It has excellent mechanical strength such as impact resistance and wear resistance, and has workability such as punching, bending and press molding. It is good. Furthermore, it is also a material excellent in oil resistance and electrical insulation. With this excellent mechanical strength, electrical insulation, and post-processing suitability, conventional lighting, TV, audio, spacers, washers, motor core ends, slot wedges, spacers, circuit breaker arc extinguishing plates, fuse cylinders, and electronic components Containers / partition plates, dry cell peripheral parts, electrical equipment parts for electrical insulation bonded to Nomex and PET film, or abrasive disks and abrasive belts that make use of impact resistance, wear resistance, heat resistance, and resin adhesion Various packing as a base material, machine parts, or base material for decorative board, building material as plywood surface material, or impact resistance, durability, non-impact, etc. by impact resistance, resin processability, printability, aging resistance, etc. Industrial safety equipment such as welding masks, welding holders, helmets, or impact resistance, abrasion resistance, aging resistance, depending on meltability, electrical insulation, drawability, etc. For large transport boxes, delivery boxes, suitcases, paperbacks, trays, tape cases, musical instrument cases, waste paper collection boxes, bag cores, shoe cores, various tags, armor equipment, cosmetics boxes, bowling alleys Various containers and miscellaneous goods as various structural members, or the materials and paper clips of school crafts, taking advantage of the warm taste and processability of natural materials, teaching materials, stationery and clothes as environment-friendly fiber hooks, easy-to-separate wraps Applications include food packaging materials as cutting edges for film and aluminum foil. Since this material is composed of natural cellulose fibers, it also has biodegradability when discarded and is suitable for clean incineration, and is an environmentally friendly industrial material.

このバルカナイズドファイバーについては、過去、本出願人が提案したバルカナイズドファイバーを製造する工程において脱塩化亜鉛処理を進めるため、軸方向に振動する振動軸に一段又は多段振動羽根板を回転不能に固定してなる装置を脱塩化亜鉛槽内の洗浄液中に投入し、前記振動羽根板に振動数10〜60Hz、振動幅2〜30mmの振動を与えながら製造する方法(特許文献10)、本出願人が提案した複数枚のファイバー原紙のそれぞれをN−メチルモルフォリン−N−オキシドと極性溶媒の混合液にて膨潤膠化し合紙したバルカナイズドファイバー(特許文献11)、綿及び木材その他セルロースパルプ50〜90wt%と熱融着性繊維10〜50wt%とで構成された原紙を用いた低密度で寸法安定性に優れたバルカナイズドファイバー(特許文献12)などがあるが、いずれも従来の機械強度特性、電気絶縁特性、後加工適性の範疇にあるものであり、使用用途もこれら特性を利用したものにすぎなかった。
特開昭61-161109号公報 特開昭63-54903号公報 特開平01-299606号公報 特開平05-123550号公報 特開平05-168879号公報 特開平06-277473号公報 特開平07-51554号公報 特開2008-31072号公報 特開2008-43864号公報 特開平9-302594号公報 特開平11-247088号公報 特開2006-200044号公報
For this vulcanized fiber, in order to proceed with the zinc chloride treatment in the process of manufacturing the vulcanized fiber proposed by the applicant in the past, a single-stage or multi-stage vibrating blade is fixed to the vibration shaft that vibrates in the axial direction. The present applicant proposes a method of manufacturing a device (10) having a vibration frequency of 10 to 60 Hz and a vibration width of 2 to 30 mm applied to the cleaning liquid in the dechlorination zinc tank. Vulcanized fiber (patent document 11), cotton and wood, and other cellulose pulps 50 to 90 wt% obtained by swelling and gluing each of the plurality of fiber base papers with a mixed solution of N-methylmorpholine-N-oxide and a polar solvent. And vulcanized dough with low density and excellent dimensional stability using base paper composed of 10 to 50 wt% of heat-fusible fiber Iba (Patent Document 12) but the like, all are those with conventional mechanical strength properties, electrical insulating properties, the scope of the post-processing suitability, was only one use application also utilizing these properties.
JP-A-61-161109 Japanese Unexamined Patent Publication No. 63-54903 Japanese Patent Laid-Open No. 01-299606 JP 05-123550 A Japanese Patent Laid-Open No. 05-168879 Japanese Patent Laid-Open No. 06-277473 Japanese Unexamined Patent Publication No. 07-51554 JP 2008-31072 A JP 2008-43864 A Japanese Patent Laid-Open No. 9-302594 Japanese Patent Laid-Open No. 11-247088 JP 2006-200044 A

本発明は、繊維素材、特に安価で環境負荷の少ないセルロール繊維を使用したパーベーパレーション用の分離機能材料である繊維シートを提供することを課題とする。   An object of the present invention is to provide a fiber sheet which is a separation functional material for pervaporation using a fiber material, in particular, cellulose fiber which is inexpensive and has a low environmental load.

この課題は、主体繊維が天然セルロース繊維で構成されている1又は2枚以上の原紙を塩化亜鉛水溶液に浸漬することによって膨潤、溶解、膠化させたことを特徴とする、液液分離機能を有する単層状又は積層状のパーベーパレーション法用の繊維シートによって解決された。 This subject has a liquid-liquid separation function characterized in that one or more base papers whose main fibers are composed of natural cellulose fibers are immersed, swelled, dissolved, and glued in an aqueous zinc chloride solution. It has been solved by a fiber sheet for the pervaporation method having a single layer or a laminate.

本発明の繊維シートによって、安価で環境負荷が少なく、高強度で、後加工の行いやすいパーベーパレーション用の分離機能材料を提供できる。   By the fiber sheet of the present invention, it is possible to provide a separation functional material for pervaporation that is inexpensive, has low environmental impact, has high strength, and is easily post-processed.

次に、本発明を詳細に説明する。   Next, the present invention will be described in detail.

本発明の分離機能を有する繊維シートは、主体繊維が天然セルロース繊維で構成されている原紙を膨潤、溶解、膠化させたものであり、従来、バルカナイズドファイバーとも呼ばれるものである。   The fiber sheet having a separation function of the present invention is obtained by swelling, dissolving, and gluing a base paper whose main fiber is composed of natural cellulose fibers, and is conventionally also called a vulcanized fiber.

本発明者らは、バルカナイズドファイバーとも呼ばれるこの繊維シートの特性を鋭意検討した結果、これまでの機械強度特性、電気絶縁特性、後加工適性で無い、従来知見のなかった液液体分離機能特性、特に液体混合物をパーベーパレーション法で選択性よく分離する機能特性があることを新たに見出し、液体混合物の液液分離へ使用する用途を新たに提供した。   As a result of earnest examination of the characteristics of this fiber sheet, also called vulcanized fiber, the present inventors have found that the mechanical strength characteristics, the electrical insulation characteristics, the post-processing suitability, and the liquid-liquid separation functional characteristics that were not previously known, The present inventors have newly found that there is a functional property of separating a liquid mixture with high selectivity by a pervaporation method, and newly provided an application for use in liquid-liquid separation of a liquid mixture.

本発明の繊維シートは、主体繊維が天然セルロース繊維で構成されている原紙を、塩化亜鉛水溶液に浸漬することによって膨潤、溶解、膠化させる。方法の一つとしては、例えば、1枚又は2枚以上の原紙を塩化亜鉛の濃厚水溶液中に浸漬し、原紙を膨潤、溶解、膠化する工程と、2枚以上の原紙を用いる場合のそれらの原紙を積層する工程と、その後に塩化亜鉛を洗浄液で除去し溶解反応を停止させる脱塩化亜鉛工程を経て乾燥、仕上げする工程とによって製造する方法が挙げられる。別な方法としては、塩化亜鉛水溶液の代わりに、N−メチルモルフォリン−N−オキシド、N−メチルモルフォリン−N−オキシドと極性液体との混合溶液、硫酸などを用いて、原紙を膨潤、溶解、膠化して製造する方法も挙げられる。塩化亜鉛水溶液以外に、セルロース繊維を膨潤、溶解、膠化する薬液であれば本発明の繊維シートを得ることができるが、工業化レベルでは塩化亜鉛水溶液を用いる方法が最も工業化されており、大量生産を行ううえでは最も望ましい。 The fiber sheet of the present invention is swelled, dissolved, and gelatinized by immersing a base paper whose main fiber is composed of natural cellulose fibers in an aqueous zinc chloride solution . As one of the methods, for example, one or two or more base papers are immersed in a concentrated aqueous solution of zinc chloride to swell, dissolve, and gelatinize the base paper, and those in the case of using two or more base papers. And a step of drying and finishing through a step of dezincification in which zinc chloride is removed with a washing liquid to stop the dissolution reaction. As another method, instead of zinc chloride aqueous solution, N-methylmorpholine-N-oxide, a mixed solution of N-methylmorpholine-N-oxide and polar liquid, sulfuric acid or the like is used to swell the base paper, A method of producing by dissolution and gelatinization is also included. In addition to the aqueous zinc chloride solution, the fiber sheet of the present invention can be obtained as long as it is a chemical solution that swells, dissolves, and gelatinizes cellulose fibers, but at the industrialization level, the method using an aqueous zinc chloride solution is the most industrialized and mass production. This is the most desirable.

なお、本発明の繊維シートは、紙厚が厚手のものを得るときは、原紙の複数枚を積層した後、脱塩化亜鉛し、次いで乾燥、仕上げしている。一方、薄手のものを得るときは、1枚の原紙だけで積層工程が不要となる。要求特性に対し、様様な繊維シート厚が可能となる。   In addition, when the fiber sheet of this invention obtains a thing with thick paper thickness, after laminating | stacking several sheets of base paper, it is dechlorinated, then dried and finished. On the other hand, when a thin product is obtained, the laminating process is not required with only one base paper. Various fiber sheet thicknesses are possible for the required properties.

乾燥方法としては、熱風乾燥、マイクロウエーブ乾燥、赤外線乾燥、ロールドライヤー乾燥などが挙げられ、乾燥温度としては、好ましくは70℃から140℃である。より好ましくは、80℃から120℃である。70℃未満では繊維シート内の水が乾燥しきれないでシートに残って乾燥不良となる。140℃を超えると、特にシートを積層した場合において、急激な乾燥のためシート層間に空気がたまって膨れる問題が生じることがある。   Examples of the drying method include hot air drying, microwave drying, infrared drying, and roll dryer drying. The drying temperature is preferably 70 ° C to 140 ° C. More preferably, the temperature is from 80 ° C to 120 ° C. If it is less than 70 ° C., the water in the fiber sheet cannot be completely dried and remains on the sheet, resulting in poor drying. When the temperature exceeds 140 ° C., particularly when the sheets are laminated, there is a problem that air accumulates and swells between the sheet layers due to rapid drying.

本発明の繊維シートの製造に用いる原紙は、綿破布(綿ぼろ)パルプ、リンターなどの木綿繊維、木材繊維の製紙用パルプ、ケナフパルプ、竹パルプ、レーヨンなどの再生セルロース繊維等のセルロース繊維を湿式抄紙によって製造されたものである。原紙に要求される特性としては、塩化亜鉛水溶液に浸漬するときに均一に浸透して反応するように適度な吸水性、透気性及び均一な地合が求められる。また、別機能の付加が求められた場合、本発明の機能特性が損なわれない範囲内で有機化合繊維、無機繊維の配合も可能である。 The base paper used for the production of the fiber sheet of the present invention is made of cotton fibers such as cotton broken cloth (cotton rag) pulp and linter, cellulose fibers such as wood fiber pulp, kenaf pulp, bamboo pulp and rayon. It is manufactured by wet papermaking. The properties required for the base paper are required to have proper water absorption, air permeability and uniform texture so that it can penetrate and react uniformly when immersed in an aqueous zinc chloride solution . Moreover, when addition of another function is calculated | required, the compounding of an organic compound fiber and an inorganic fiber is also possible within the range which does not impair the functional characteristic of this invention.

本発明の繊維シートを用いてパーベーパレーション法の液液分離装置に設置して使用する場合、枚葉シート状だけでなく、スパイラル状、プリーツ状など様様な形状のモジュールに後加工して使用することが可能である。   When using the fiber sheet of the present invention installed in a pervaporation liquid-liquid separation device, it is used after being processed into modules of various shapes such as spiral and pleated as well as single-sheet. Is possible.

本発明の繊維シートを用いて、パーベーパレーション法によって2種以上の液体の混合溶液から少なくとも1種の液体を分離することが可能となる。混合溶液としては、水と有機物との混合溶液、2種以上の有機物の混合溶液が好適に用いられる。特に、蒸留分離のときに共沸蒸留が必要とされるような、水とアルコールの混合溶液に好適に用いられる。   Using the fiber sheet of the present invention, it is possible to separate at least one liquid from a mixed solution of two or more liquids by a pervaporation method. As the mixed solution, a mixed solution of water and an organic material and a mixed solution of two or more organic materials are preferably used. In particular, it is suitably used for a mixed solution of water and alcohol that requires azeotropic distillation during distillation separation.

本発明の繊維シートを使用する際は、事前に繊維シートに常温の水を付与させた状態で混合溶液のパーベーパレーション法分離を行うことが好ましい。さらに好ましくは、繊維シートの水分率として90質量%以上である。水分付与が無いかあるいは水分率90質量%未満の繊維シートでは、分離された水の初期透過がうまく行われない場合がある。   When using the fiber sheet of the present invention, it is preferable to perform pervaporation separation of the mixed solution in a state in which water at room temperature is previously applied to the fiber sheet. More preferably, the moisture content of the fiber sheet is 90% by mass or more. In the case of a fiber sheet having no moisture or a moisture content of less than 90% by mass, the initial permeation of separated water may not be performed well.

水と有機物を含む混合溶液からパーベーパレーション法によって水を選択的に分離する場合、例えば、発酵によって得られるエタノールと水を含む混合溶液からエタノール又は水を選択的に分離するには、従来、蒸留が一般的な分離方法であった。しかし、発酵によって得られるエタノールと水の混合物は多量の水を含むために、蒸留によって分離濃縮するためには、多量のエネルギーが必要となる。このような場合に、本発明の繊維シートを用いると、パーベーパレーション法によって水と有機物の混合物から、目的物だけを選択的に、しかも少ないエネルギーの使用で分離することが可能となる。この場合、透過側には水が選択的に分離され、供給液側に有機物だけが残ることになる。   In the case of selectively separating water from a mixed solution containing water and organic matter by a pervaporation method, for example, in order to selectively separate ethanol or water from a mixed solution containing ethanol and water obtained by fermentation, conventionally, Distillation was a common separation method. However, since a mixture of ethanol and water obtained by fermentation contains a large amount of water, a large amount of energy is required for separation and concentration by distillation. In such a case, when the fiber sheet of the present invention is used, it is possible to selectively separate only the target product from the mixture of water and organic matter by using a pervaporation method and using less energy. In this case, water is selectively separated on the permeate side, and only organic substances remain on the supply liquid side.

本発明の繊維シートの電子顕微鏡写真は、図1の写真に示すとおり、セルロース繊維が溶解して互いに固着しており、シート空隙が非常に小さくなっていることが分かる。一方、図2の写真に示す膨潤、溶解、膠化する前の繊維シート原紙は、セルロース繊維が絡み合っているが溶解固着をしておらず、空隙が大きくなっている。通常の紙は、この原紙のように空隙が大きいので、これをパーベーパレーション法の液液分離に使用しようとすると、供給混合液が紙の空隙をたやすく通過して分離効果が全く得られない。本発明の繊維シートは、繊維が溶解して互いに固着して空隙が非常に小さい状態になっているため、擬似的にセルロース膜に近い状態となって、セルロールとの化学的相溶性が非常に高い供給混合液中の水だけが透過側へ通過できる。ただし、本発明の繊維シートは、従来の分離膜材料とは異なり、図1からわかるとおり、ミクロな微細空隙が存在しているため水の浸透性が良好であるので、繊維シート厚さを通例の分離膜材料より十分厚くすることが可能で、パーベーパレーションのときのシート強度を強くすることができ、使用に際して別に支持体の必要性が全くない。ミクロな微細空隙によって濾過表面積が大きくなるので、分離効率をより高くできる。そして、これまでより非常に安価で環境負荷の少ない分離材料である。   As shown in the photograph of FIG. 1, the electron micrograph of the fiber sheet of the present invention shows that the cellulose fibers are dissolved and fixed to each other, and the sheet gap is very small. On the other hand, in the fiber sheet base paper before swelling, dissolution, and gelatinization shown in the photograph of FIG. 2, the cellulose fibers are intertwined but are not dissolved and fixed, and the voids are large. Ordinary paper has a large gap like this base paper, so if you try to use it for liquid-liquid separation in the pervaporation method, the supply mixture easily passes through the gap in the paper and the separation effect is completely obtained. Absent. Since the fiber sheet of the present invention is in a state where the fibers are dissolved and fixed to each other and the voids are very small, it is in a pseudo state close to a cellulose film, and has a very high chemical compatibility with cellulose. Only water in the high feed mixture can pass to the permeate side. However, unlike the conventional separation membrane material, the fiber sheet of the present invention, as can be seen from FIG. 1, has good water permeability due to the presence of microscopic fine voids. The separation membrane material can be made sufficiently thicker, the sheet strength during pervaporation can be increased, and there is no need for a separate support for use. Since the filtration surface area is increased by the microscopic fine voids, the separation efficiency can be further increased. And it is a separation material that is much cheaper and less environmental impact than before.

[実施例]
次に本発明を実施例に基づき説明するが、本発明は、これらの実施例に限定されるものではない。
[Example]
EXAMPLES Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

(繊維シート用原紙の作成)
セルロースパルプ原料として、針葉樹パルプ70質量%、広葉樹パルプ30質量%に水道水を加えてパルプ固形分濃度2質量%とし、テストビーターでカナディアンフリーネス500mlまで叩解した後、これを水道水でパルプ固形分濃度0.3質量%まで希釈し、手抄装置を用いて抄紙することで湿紙を得た。この湿紙の余分な水分を手抄用プレス装置でゲージ圧4kg/cm2、5分間プレス脱水を行い、緊張乾燥とするために湿紙の片面に金属プレート板を当てた状態で乾燥用金属枠にセットして、これを120℃の循環乾燥機内で1時間乾燥させた。乾燥後の原紙は、坪量90g/m2、厚さ0.16mmであった。
(Creation of fiber sheet base paper)
As a cellulose pulp raw material, tap water is added to 70% by weight of softwood pulp and 30% by weight of hardwood pulp to obtain a pulp solids concentration of 2% by weight. After beating to Canadian freeness 500ml with a test beater, Wet paper was obtained by diluting to a concentration of 0.3% by weight and making paper using a hand-making machine. Excess moisture from the wet paper is dried with a metal plate plate on one side of the wet paper to perform tension dehydration by press dewatering for 5 minutes using a hand-drawing press with a gauge pressure of 4 kg / cm 2 . This was set in a frame and dried in a circulating dryer at 120 ° C. for 1 hour. The base paper after drying had a basis weight of 90 g / m 2 and a thickness of 0.16 mm.

(原紙の膨潤、溶解、膠化による繊維シートの作成)
膨潤膠化用溶液として、塩化亜鉛の濃厚水溶液(液濃度70度ボーメ、液温46℃)を用いた。前記原紙3枚をそれぞれ同溶液中に浸漬してその原紙表面を膨潤、溶解、膠化せしめた後、これら3枚の過剰な膨潤膠化用溶液をふき取ってから加圧積層したのち70℃15分熟成してから、5℃の水中に浸して膨潤膠化用溶液の脱液処理を行い、この積層物の過剰な水をふき取ったのち、表面温度110℃のテーブルロールドライヤーで乾燥して、厚さ0.25mm、密度1.1g/cm3の繊維シートを得た。
(Creation of fiber sheet by swelling, dissolution and gelatinization of base paper)
A concentrated aqueous solution of zinc chloride (liquid concentration: 70 ° Baume, liquid temperature: 46 ° C.) was used as the swelling glue solution. Each of the three base papers was immersed in the same solution to swell, dissolve and glue the surface of the base paper, and after wiping off these three excess swelling gelling solutions, pressure lamination was performed at 70 ° C. 15 After ripening and immersing in water at 5 ° C to remove the solution for swelling gelatinization, after wiping off the excess water of this laminate, it is dried with a table roll dryer with a surface temperature of 110 ° C, A fiber sheet having a thickness of 0.25 mm and a density of 1.1 g / cm 3 was obtained.

(バーベーパレーション法による液液分離特性の評価)
図3に示すような装置を作製し、実施例1の繊維シートのパーベーパレーション挙動を検討した。図3に示すように、フィルターセルとトラップ、ポンプを外形1インチのステンレスパイプでつなぎ、管内をポンプにて排気できるようなラインを作製した。そして、上記のとおり製造した繊維シートを直径4.5cmの円形に切り取ったものをフィルターセルに装着し、エタノール(エチルアルコール)/水=容積比2/1の溶液をポンプにて圧力差1.33×10Pa(100Torr)で操作し、1時間パーベーパレーションを行った。圧力は、バラトロン122AAにて計測し、透過した溶液は液体窒素温度でトラップ内に集め、ガスクロマトグラフ(島津製作所製 GC-14B,TCD検出器、SunpakA50/80 Thermon-1000、150℃)によって透過溶液内のエタノール/水の分析を行った。図4にエタノール/水=2/1のときのガスクロ分析したチャートを示す。繊維シート透過前後で、エタノールのピークが極端に少なくなっており、上記のとおり製造した繊維シートが選択的に分離することがわかる。透過前のガスクロチャートのそれぞれの成分をx、透過後をyとし、wを水、eをエタノールとすると、分離効率αe/w=(x/x)/(y/y)=2.45となり、フィルターセル内のアルコール濃度が高められたことを示している。
(Evaluation of liquid-liquid separation characteristics by bar vaporization)
A device as shown in FIG. 3 was prepared, and the pervaporation behavior of the fiber sheet of Example 1 was examined. As shown in FIG. 3, a filter cell, a trap, and a pump were connected by a stainless steel pipe having an outer diameter of 1 inch, and a line was prepared so that the inside of the pipe could be exhausted by the pump. Then, the fiber sheet produced as described above was cut into a circle having a diameter of 4.5 cm and attached to a filter cell, and a solution of ethanol (ethyl alcohol) / water = volume ratio 2/1 was pumped with a pressure difference of 1. The operation was performed at 33 × 10 4 Pa (100 Torr), and pervaporation was performed for 1 hour. The pressure was measured with a Baratron 122AA, and the permeated solution was collected in a trap at liquid nitrogen temperature and permeated with a gas chromatograph (Shimadzu GC-14B, TCD detector, Sunpak A50 / 80 Thermon-1000, 150 ° C). Analysis of the ethanol / water inside was performed. FIG. 4 shows a gas chromatographic analysis chart when ethanol / water = 2/1. Before and after permeation of the fiber sheet, the ethanol peak is extremely small, and it can be seen that the fiber sheet produced as described above is selectively separated. When each component of the gas chromatograph before permeation is x, after permeation is y, w is water, and e is ethanol, the separation efficiency α e / w = (x w / x e ) / (y w / y e ) = 2.45, indicating that the alcohol concentration in the filter cell was increased.

本発明の繊維シートの電子顕微鏡写真である。It is an electron micrograph of the fiber sheet of the present invention. 膨潤、溶解、膠化する前の繊維シート原紙の電子顕微鏡写真である。It is an electron micrograph of the fiber sheet base paper before swelling, dissolution, and gelatinization. 液液分離特性の評価のための装置の概略図である。It is the schematic of the apparatus for evaluation of a liquid-liquid separation characteristic. エタノール/水=2/1のときの透過前の液及び透過後の分離液のガスクロ分析チャートである。It is a gas chromatographic analysis chart of the liquid before permeation and the separated liquid after permeation when ethanol / water = 2/1.

Claims (1)

主体繊維が天然セルロース繊維で構成されている1又は2枚以上の原紙を塩化亜鉛水溶液に浸漬することによって膨潤、溶解、膠化させたことを特徴とする、液液分離機能を有する単層状又は積層状のパーベーパレーション法用の繊維シート。 A monolayer having a liquid-liquid separation function, characterized in that one or more base papers whose main fibers are composed of natural cellulose fibers are immersed in an aqueous zinc chloride solution to swell, dissolve and gelatinize Fiber sheet for laminated pervaporation process.
JP2008261681A 2008-10-08 2008-10-08 Fiber sheet with liquid-liquid separation function Active JP5110477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261681A JP5110477B2 (en) 2008-10-08 2008-10-08 Fiber sheet with liquid-liquid separation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261681A JP5110477B2 (en) 2008-10-08 2008-10-08 Fiber sheet with liquid-liquid separation function

Publications (2)

Publication Number Publication Date
JP2010089013A JP2010089013A (en) 2010-04-22
JP5110477B2 true JP5110477B2 (en) 2012-12-26

Family

ID=42252259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261681A Active JP5110477B2 (en) 2008-10-08 2008-10-08 Fiber sheet with liquid-liquid separation function

Country Status (1)

Country Link
JP (1) JP5110477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6077432B2 (en) * 2013-11-07 2017-02-08 北越紀州製紙株式会社 Method for producing vulcanized fiber
DE102016215770A1 (en) 2016-08-23 2018-03-01 Siemens Aktiengesellschaft Outflow housing and steam turbine with discharge housing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363122A (en) * 1991-06-07 1992-12-16 Dai Ichi Kogyo Seiyaku Co Ltd Cellulose-based liquid-liquid separating membrane
JPH06254362A (en) * 1993-03-09 1994-09-13 Rengo Co Ltd Separating membrane
JP3496107B2 (en) * 1996-05-09 2004-02-09 北越製紙株式会社 Manufacturing method of vulcanized fiber
JP4070866B2 (en) * 1998-02-27 2008-04-02 北越製紙株式会社 Vulcanized fiber and manufacturing method thereof
JP2006200044A (en) * 2004-12-22 2006-08-03 Toyo Fiber Kk Vulcanized fiber having low density and excellent dimensional stability and method for producing the same

Also Published As

Publication number Publication date
JP2010089013A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
Sharma et al. Nanocellulose‐enabled membranes for water purification: perspectives
JP6363067B2 (en) Method for producing a membrane from fibril cellulose, and fibril cellulose membrane
Mautner et al. Nanopapers for organic solvent nanofiltration
Mautner et al. Cellulose nanopapers as tight aqueous ultra-filtration membranes
CN103534409B (en) Process for treating cellulose and cellulose treated according to the process
JP6169089B2 (en) Method of creating NFC membrane on support
KR20180049064A (en) A selective permeable graphene oxide / polyvinyl alcohol membrane for dehydration
FI115378B (en) Bound fiber coating substrates and process for their preparation
JP6947033B2 (en) Laminated sheet and laminated body
Gopakumar et al. Nanocelluloses as innovative polymers for membrane applications
Hou et al. Preparation and characterization of nanocellulose–polyvinyl alcohol multilayer film by layer-by-layer method
KR20170106954A (en) Self supporting pleatable web and an oil filter including the same
Ma et al. Self-reinforced grease-resistant sheets produced by paper treatment with zinc chloride solution
JP5110477B2 (en) Fiber sheet with liquid-liquid separation function
EP3717100A1 (en) Double-layered cellulose nanofiber material, method of manufacturing, membranes, and use thereof
Badiger et al. Thin film composite sodium alginate membranes for dehydration of acetic acid and isobutanol
Achari et al. Development of zeolite-A incorporated PVA/CS nanofibrous composite membranes using the electrospinning technique for pervaporation dehydration of water/tert-butanol
Ma et al. Effect of NaOH/urea solution on enhancing grease resistance and strength of paper
JP6077432B2 (en) Method for producing vulcanized fiber
JP3229795U (en) Vulcanized fiber battery case
JP2023067831A (en) Oil-resistant sheet and oil-resistant composition
JP6929247B2 (en) Cellulose gel and its manufacturing method
JP2023067830A (en) Gas-barrier sheet
JP6620875B1 (en) Sheet and laminate
WO2002027096A1 (en) Vulcanized fiber and method for production thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250