JP5104805B2 - Light control device - Google Patents

Light control device Download PDF

Info

Publication number
JP5104805B2
JP5104805B2 JP2009087708A JP2009087708A JP5104805B2 JP 5104805 B2 JP5104805 B2 JP 5104805B2 JP 2009087708 A JP2009087708 A JP 2009087708A JP 2009087708 A JP2009087708 A JP 2009087708A JP 5104805 B2 JP5104805 B2 JP 5104805B2
Authority
JP
Japan
Prior art keywords
electrode
signal electrode
substrate
signal
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009087708A
Other languages
Japanese (ja)
Other versions
JP2010237593A (en
Inventor
将之 本谷
正明 須藤
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2009087708A priority Critical patent/JP5104805B2/en
Publication of JP2010237593A publication Critical patent/JP2010237593A/en
Application granted granted Critical
Publication of JP5104805B2 publication Critical patent/JP5104805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光制御デバイスに関し、特に、20GHz以上の広帯域特性を改善した光制御デバイスに関する。   The present invention relates to a light control device, and more particularly to a light control device with improved broadband characteristics of 20 GHz or higher.

光通信分野や光計測分野において、電気光学効果を有する基板上に、光導波路、信号電極及び接地電極を形成し、該信号電極に高周波を印加し、光導波路を伝播する光波を変調する光制御デバイスが多用されている。   In the optical communication field and the optical measurement field, an optical waveguide, a signal electrode, and a ground electrode are formed on a substrate having an electro-optic effect, and a high frequency is applied to the signal electrode to modulate a light wave propagating through the optical waveguide. The device is heavily used.

大量データの高速転送を実現するため、20GHz以上の広帯域特性を有する光制御デバイスが求められている。また、光制御デバイスを駆動するドライバを小型化・低消費電力化などのために、光制御デバイスの駆動電圧の低減が求められている。   In order to realize high-speed transfer of a large amount of data, an optical control device having a broadband characteristic of 20 GHz or more is required. Further, in order to reduce the size and power consumption of a driver for driving the light control device, it is required to reduce the drive voltage of the light control device.

このためには、以下のような種々の課題を解決する必要がある。
(1)光導波路を伝播する光波の速度と、信号電極を伝播する変調信号であるマイクロ波の速度との速度整合を図るため、光波の屈折率とマイクロ波の実効屈折率を一致させること。
(2)光制御デバイスに光ファイバから光波を導入する際、又は、光制御デバイスから光ファイバに光波を導出する際の光の結合効率を向上させること。
(3)信号電極に印加するマイクロ波の伝播損失を抑制するため、信号電極からマイクロ波が漏出することを抑制すると共に、信号電極に入力される前後及び信号電極の電界が導波路に作用する作用部の前後でインピーダンスを整合させ、インピーダンス不整合よるマイクロ波の反射を抑制すること。
(4)信号電極が形成する電界が、効率良く光導波路に印加される構成とすること。
For this purpose, it is necessary to solve the following various problems.
(1) In order to achieve speed matching between the speed of the light wave propagating through the optical waveguide and the speed of the microwave that is the modulation signal propagating through the signal electrode, the refractive index of the light wave and the effective refractive index of the microwave should be matched.
(2) To improve the light coupling efficiency when a light wave is introduced from the optical fiber to the light control device or when a light wave is led from the light control device to the optical fiber.
(3) In order to suppress the propagation loss of the microwave applied to the signal electrode, the microwave is prevented from leaking from the signal electrode, and before and after being input to the signal electrode and the electric field of the signal electrode acts on the waveguide. Impedance is matched before and after the action part to suppress reflection of microwaves due to impedance mismatch.
(4) The electric field formed by the signal electrode is efficiently applied to the optical waveguide.

このため、本発明者らは、鋭意研究を行った結果、LiNbO結晶などの電気光学効果を有する基板において、Z型カット基板を利用し、該基板上にリッジ構造の光導波路を形成すること、そして、実効屈折率やインピーダンスの調整には、該リッジ構造の形状(リッジ部の幅や高さ)や、信号電極や接地電極の形状(信号電極の幅、信号電極と接地電極との間隔、信号電極及び接地電極の高さ)を調整することで最適な数値が得られることを確認している。 For this reason, as a result of intensive studies, the present inventors use a Z-cut substrate in a substrate having an electro-optic effect, such as a LiNbO 3 crystal, and form an optical waveguide having a ridge structure on the substrate. For adjusting the effective refractive index and impedance, the shape of the ridge structure (width and height of the ridge), the shape of the signal electrode and the ground electrode (width of the signal electrode, the distance between the signal electrode and the ground electrode) It has been confirmed that optimum numerical values can be obtained by adjusting the height of the signal electrode and the ground electrode.

他方、差動直交位相偏移変調(DQPSK)や特許文献1の単側波帯変調(SSB)などでの多種多様な光変調を実現するには、図1に示すように、一つのマッハツェンダー型導波路(主マッハツェンダー型導波路)1を構成する2つの分岐導波路2に、別のマッハツェンダー型導波路(副マッハツェンダー型導波路)3を組み込む、ネスト型導波路が利用されている。しかも、副マッハツェンダー型導波路3の4つの分岐導波路4の個々に信号電極5を配置し、光変調を行うことも提案されている。   On the other hand, in order to realize a wide variety of optical modulation such as differential quadrature phase shift keying (DQPSK) and single sideband modulation (SSB) of Patent Document 1, as shown in FIG. Nested waveguides in which another Mach-Zehnder type waveguide (sub-Mach-Zehnder type waveguide) 3 is incorporated in two branching waveguides 2 constituting a type waveguide (main Mach-Zehnder type waveguide) 1 are used. Yes. In addition, it has also been proposed that the signal electrode 5 is arranged in each of the four branch waveguides 4 of the sub Mach-Zehnder type waveguide 3 to perform optical modulation.

図1のような光制御デバイスでは、各導波路を伝播する光波を変調するために設けられる数の信号電極は、信号電極に変調信号を入力する電極パッド部5から変調信号の電界が該導波路に作用する作用部Sの開始点bまでの信号電極の長さIを調整し、各作用部に変調信号が導入されるタイミングを正確に調整することが求められる。このため、図2に示すように、信号電極42の一部Rが折り返される部分が形成され易くなる。   In the light control device as shown in FIG. 1, the number of signal electrodes provided for modulating the light wave propagating through each waveguide is such that the electric field of the modulation signal is introduced from the electrode pad portion 5 for inputting the modulation signal to the signal electrode. It is required to accurately adjust the timing at which the modulation signal is introduced into each action part by adjusting the length I of the signal electrode to the start point b of the action part S acting on the waveguide. For this reason, as shown in FIG. 2, it is easy to form a portion where a part R of the signal electrode 42 is folded.

しかも、光制御デバイスを小型化するためには、信号電極の折り返しの屈曲部での曲率半径が小さくなる傾向となる。本発明者らは、このような急激に曲がる屈曲部Rが信号電極に存在する光制御デバイスを調べたところ、折り返しの屈曲部がない又は曲りが緩やかな信号電極を有する光制御デバイスと比較し、マイクロ波の伝播損失が極めて大きいことを見出した。しかも、マイクロ波が20GHzを超える場合には、この傾向が顕著であり、光制御デバイスの広帯域特性を劣化させる重要な要因となっていることを見出した。   Moreover, in order to reduce the size of the light control device, the radius of curvature at the bent portion of the signal electrode tends to be small. The present inventors examined a light control device in which such a sharply bent portion R exists in the signal electrode, and compared it with a light control device having a signal electrode that has no bent portion or a gentle bend. The microwave propagation loss was found to be extremely large. Moreover, it has been found that this tendency is remarkable when the microwave exceeds 20 GHz, which is an important factor for degrading the broadband characteristics of the light control device.

特開2008−116865号公報JP 2008-116865 A 特開平6−289341号公報JP-A-6-289341

本発明は、上述した問題を解消し、信号電極に折り返しの屈曲部を有する光制御デバイスにおいても20GHz以上の広帯域特性を改善した光制御デバイスを提供することである。   An object of the present invention is to provide a light control device that solves the above-described problems and has an improved broadband characteristic of 20 GHz or more even in a light control device having a folded portion at a signal electrode.

上記課題を解決するため、請求項に係る発明は、電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、該屈曲部を含む信号電極の基板に接する部分の幅が10μm以下であることを特徴とする。 In order to solve the above problems, an invention according to claim 1 is an optical control including a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide. In the device, the modulation electrode is a symmetric or asymmetrical CPW electrode composed of a signal electrode and a ground electrode, and is a working unit that modulates a light wave propagating through the optical waveguide from a signal input end of the signal electrode. The signal electrode up to the start point is defined as an input-side signal electrode portion, and at least a part of the input-side signal electrode portion has a bent portion that turns the wiring, and the thickness of the substrate in the region where the bent portion exists is 30 to 30 mm. 100 μm, and the width of the portion of the signal electrode that contacts the substrate including the bent portion is 10 μm or less.

請求項に係る発明は、電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、該信号電極は、複数の作用部に独立した変調信号を伝送する複数の信号電極から構成され、該屈曲部において、隣接する異なる信号電極の間隔が500μm以下であることを特徴とする。 The invention according to claim 2 is a light control device comprising a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide. A symmetric or asymmetrical CPW electrode composed of a signal electrode and a ground electrode, and a signal electrode from a signal input end of the signal electrode to a starting point of an action part that modulates a light wave propagating through the optical waveguide. The input-side signal electrode portion has at least a bent portion at which the wiring is folded at least at a part of the input-side signal electrode portion, and the thickness of the substrate in the region where the bent portion exists is 30 to 100 μm . Is composed of a plurality of signal electrodes that transmit independent modulation signals to a plurality of action portions, and the interval between adjacent different signal electrodes in the bent portion is 500 μm or less.

請求項に係る発明は、請求項1又は2に記載の光制御デバイスにおいて、該基板はZ型カット基板であり、該光導波路は該作用部においてリッジ構造を有し、該信号電極は該リッジ構造の上に配置されていることを特徴とする。 The invention according to claim 3 is the light control device according to claim 1 or 2 , wherein the substrate is a Z-cut substrate, the optical waveguide has a ridge structure at the action portion, and the signal electrode It is arranged on the ridge structure.

請求項に係る発明により、電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、屈曲部を含む信号電極の基板に接する部分の幅が10μm以下であるため、信号電極に折り返す屈曲部がある光制御デバイスにおいてもマイクロ波の伝播損失を低減でき、広帯域特性の良好な光制御デバイスを提供できる。さらに通常、10μm以下の信号電極では屈曲部でのマイクロ波の伝播損失が大きくなるにも拘らず、本発明の技術的構成を採用することにより、マイクロ波の伝搬損失を抑制した光制御デバイスを得ることができる。 According to the first aspect of the present invention, there is provided a light control device including a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide. A symmetric or asymmetrical CPW electrode composed of a signal electrode and a ground electrode, and a signal electrode from a signal input end of the signal electrode to a starting point of an action part that modulates a light wave propagating through the optical waveguide. The input-side signal electrode portion has at least a bent portion at which the wiring is folded, and the thickness of the substrate in the region where the bent portion exists is 30 to 100 μm. Since the width of the portion of the signal electrode in contact with the substrate is 10 μm or less, the propagation loss of the microwave can be reduced even in the light control device having the bent portion that is folded back to the signal electrode, and the light control device having excellent broadband characteristics. Can provide vice. Further , in general, a signal electrode of 10 μm or less has a light propagation control device that suppresses the propagation loss of the microwave by adopting the technical configuration of the present invention even though the propagation loss of the microwave at the bent portion becomes large. Obtainable.

請求項に係る発明により、電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、信号電極は、複数の作用部に独立した変調信号を伝送する複数の信号電極から構成され、該屈曲部において、隣接する異なる信号電極の間隔が500μm以下であるため、信号電極に折り返す屈曲部がある光制御デバイスにおいてもマイクロ波の伝播損失を低減でき、広帯域特性の良好な光制御デバイスを提供できる。さらに信号電極の配線をコンパクト化することが可能となり、光制御デバイスをより小型化することができる。通常、隣接する異なる信号電極の間隔が500μm以下の場合には、信号電極間のクロストークが発生し易く、伝搬損失が大きくなるが、本発明のように、折り返し屈曲部が存在する領域において、基板の厚みを30〜100μmとすることで、このようなクロストークや伝搬損失を抑制でき、隣接する異なる信号電極の間隔が500μm以下となるような信号電極の配線も可能となる。 According to a second aspect of the present invention, there is provided an optical control device comprising a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide. A symmetric or asymmetrical CPW electrode composed of a signal electrode and a ground electrode, and a signal electrode from a signal input end of the signal electrode to a starting point of an action part that modulates a light wave propagating through the optical waveguide. The input-side signal electrode portion has at least a bent portion at which the wiring is folded, and the thickness of the substrate in the region where the bent portion exists is 30 to 100 μm. is composed of a plurality of signal electrodes for transmitting independent modulated signals into a plurality of working portions, the bent portion, because the spacing between the adjacent different signal electrodes is 500μm or less, the bent portion folded back to the signal electrode Even in a certain light control device, the propagation loss of microwaves can be reduced, and a light control device with good broadband characteristics can be provided. Furthermore, the signal electrode wiring can be made compact, and the light control device can be further miniaturized. Usually, when the interval between adjacent different signal electrodes is 500 μm or less, crosstalk between the signal electrodes is likely to occur and the propagation loss increases, but in the region where the folded bent portion exists as in the present invention, By setting the thickness of the substrate to 30 to 100 μm, such crosstalk and propagation loss can be suppressed, and signal electrode wiring in which the interval between adjacent different signal electrodes is 500 μm or less is also possible.

請求項に係る発明により、基板はZ型カット基板であり、光導波路は作用部においてリッジ構造を有し、信号電極は該リッジ構造の上に配置されているため、より広帯域特性の改善した光制御デバイスを得ることができる。 According to the invention of claim 3 , since the substrate is a Z-shaped cut substrate, the optical waveguide has a ridge structure in the working portion, and the signal electrode is disposed on the ridge structure, the broadband characteristics are further improved. A light control device can be obtained.

ネスト型導波路を有する光制御デバイスの一例を示す図である。It is a figure which shows an example of the light control device which has a nest type | mold waveguide. 信号電極に折り返し屈曲部を有する光制御デバイスの一部を示す図である。It is a figure which shows a part of light control device which has a folding | turning bending part in a signal electrode. 本発明の光制御デバイスの広帯域特性の改善状態を説明する図である。It is a figure explaining the improvement state of the wideband characteristic of the light control device of this invention.

本発明の光制御デバイスについて、以下に詳細に説明する。
本発明の特徴は、電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、該屈曲部が存在する領域の該基板の厚みを30〜100μmとすることである。
The light control device of the present invention will be described in detail below.
A feature of the present invention is that in a light control device having a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide, the modulation electrode includes a signal A symmetric or asymmetrical CPW electrode composed of an electrode and a ground electrode, and the signal electrode from the signal input end of the signal electrode to the starting point of the action part that modulates the light wave propagating through the optical waveguide The signal electrode portion has at least a bent portion at which the wiring is folded, and the thickness of the substrate in a region where the bent portion exists is 30 to 100 μm.

電気光学効果を有する基板の材料としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LiNbO)結晶が好適に利用される。 As the material for the substrate having the electro-optic effect, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, a lithium niobate (LiNbO 3 ) crystal having a high electro-optic effect is preferably used.

光導波路の形成方法としては、Tiなどを熱拡散法やプロトン交換法などで基板表面に拡散させることにより形成することができる。また、特許文献2のように、薄板1の表面に光導波路の形状に合わせてリッジを形成し、光導波路を構成することも可能である。本発明では、広帯域特性を良好にするため、Z型カット基板を利用し、光導波路としてはドライエッチング等でリッジ構造を形成した光導波路が好適に利用される。また、Ti拡散導波路に、さらにリッジ構造を付与することも可能である。   As a method for forming the optical waveguide, it can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method or a proton exchange method. Further, as in Patent Document 2, it is possible to form an optical waveguide by forming a ridge on the surface of the thin plate 1 in accordance with the shape of the optical waveguide. In the present invention, in order to improve the broadband characteristics, a Z-cut substrate is used, and an optical waveguide having a ridge structure formed by dry etching or the like is preferably used as the optical waveguide. Further, a ridge structure can be further added to the Ti diffusion waveguide.

信号電極や接地電極などの変調電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより、一般的に形成される。   Modulation electrodes such as signal electrodes and ground electrodes are generally formed by forming a Ti / Au electrode pattern, a gold plating method, or the like.

信号電極と接地電極との配置状態は、マイクロ波の伝播損失を低減し、製造も容易なように、図2に示すように、基板上で信号電極(41,42)を挟むように接地電極(61〜63)を配置する対称型のコプレーナ電極(CPW電極)又は、基板上で信号電極の片方に接地電極を配置した非対称のコプレーナ電極を用いることがこのましい。   The arrangement state of the signal electrode and the ground electrode is such that the propagation loss of the microwave is reduced, and the ground electrode is sandwiched between the signal electrodes (41, 42) on the substrate as shown in FIG. It is preferable to use a symmetric type coplanar electrode (CPW electrode) in which (61 to 63) are arranged, or an asymmetric coplanar electrode in which a ground electrode is arranged on one of the signal electrodes on the substrate.

信号電極の幅、特に、図1に示すような、信号電極の信号入力端部aから該光導波路を伝播する光波に変調を行う作用部の開始点bまでの入力側信号電極部Iでは、信号電極の幅を10μm以下とする。通常、信号電極の伝搬損失を低減するには、信号電極の幅を大きくすることが好ましい。しかしながら、信号電極の幅を広くすると、光制御デバイスの小型化が難しくなる。また、信号電極毎の入力側信号電極部における変調信号の伝播時間を一致させるため、各信号電極の長さを最適化する必要があるが、信号電極の幅が広くなると、曲げ部分での信号電極の長さが電極の内側と外側では大きく異なり、最適設計をすることが難しくなる。このため、本発明では、信号電極の幅を10μm以下としながら、折り返し屈曲部でのマイクロ波の伝播損失を抑制するため、基板の厚みを30〜100μmとしている。   In the input-side signal electrode part I from the signal input end a of the signal electrode to the start point b of the action part that modulates the light wave propagating through the optical waveguide, as shown in FIG. The width of the signal electrode is 10 μm or less. Usually, in order to reduce the propagation loss of the signal electrode, it is preferable to increase the width of the signal electrode. However, when the width of the signal electrode is increased, it is difficult to reduce the size of the light control device. In addition, the length of each signal electrode needs to be optimized in order to match the propagation time of the modulation signal in the input side signal electrode part for each signal electrode. However, if the width of the signal electrode increases, the signal at the bent portion The length of the electrode differs greatly between the inside and outside of the electrode, making it difficult to make an optimal design. For this reason, in the present invention, the thickness of the substrate is set to 30 to 100 μm in order to suppress the propagation loss of the microwave at the folded and bent portion while the width of the signal electrode is 10 μm or less.

次に、本発明の光制御デバイスにおけるマイクロ波の伝播損失の改善を確認するため、図1に示すような光制御デバイスをZ型カットのLiNbO基板を利用して作成した。その際に、2つの副マッハツェンダー型導波路3の各々について、図2に示すように、副マッハツェンダー型導波路の分岐導波路32,33に信号電極41,42を配置するよう構成した。符号31は、副マッハツェンダー型導波路の入力導波路であり、符号、51,52は信号電極41,42の信号電極に変調信号を入力する電極パッドを示す。 Next, in order to confirm the improvement of the propagation loss of the microwave in the light control device of the present invention, a light control device as shown in FIG. 1 was made using a Z-cut LiNbO 3 substrate. At that time, each of the two sub Mach-Zehnder type waveguides 3 is configured such that the signal electrodes 41 and 42 are arranged in the branching waveguides 32 and 33 of the sub Mach-Zehnder type waveguide as shown in FIG. Reference numeral 31 denotes an input waveguide of a sub Mach-Zehnder type waveguide, and reference numerals 51 and 52 denote electrode pads for inputting a modulation signal to the signal electrodes of the signal electrodes 41 and 42.

光導波路の作用部において、光導波路の形状をリッジ形状とし、リッジの幅を8μmとした。また、リッジ上に信号電極を配置し、信号電極の基板に接した部分の幅は、7μmとし、信号電極の高さは、45μmとし、接地電極も高さも同様とした。信号電極と接地電極との間隔は、50μmとし、電極パッドから作用部の開始点までの長さを50mmとした。   In the working part of the optical waveguide, the shape of the optical waveguide is a ridge shape, and the width of the ridge is 8 μm. The signal electrode was disposed on the ridge, the width of the portion of the signal electrode in contact with the substrate was 7 μm, the height of the signal electrode was 45 μm, and the height of the ground electrode was the same. The distance between the signal electrode and the ground electrode was 50 μm, and the length from the electrode pad to the starting point of the action portion was 50 mm.

図2に示す、折り返し屈曲部Rの前後の信号電極の間隔d1は、500μm以下とし、2つの信号電極41及び42間の距離で、該屈曲部R近傍の距離d2も、500μm以下とした。   The distance d1 between the signal electrodes before and after the folded bent portion R shown in FIG. 2 is 500 μm or less, and the distance d2 between the two signal electrodes 41 and 42 is also 500 μm or less.

信号電極等の配置を同じとし、基板の厚みが異なる2つの光制御デバイス(基板の厚み:1mmと0.1mmの2種類)を作成し、周波数に係る電気応答特性(S21)を試験した。その結果を、図3に示す。なお、LiNbO基板の裏面には、接着層(厚みが約100μm)を介して同じ材料の基板を補強基板として接合した。 Two light control devices (two types of substrate thickness: 1 mm and 0.1 mm) having different substrate thicknesses with the same arrangement of signal electrodes and the like were prepared, and the electrical response characteristics (S21) related to frequency were tested. The result is shown in FIG. Note that the rear surface of the LiNbO 3 substrate, bonding the substrate of the same material through the adhesive layer (thickness of about 100 [mu] m) as a reinforcing substrate.

図3から分かるように、基板の厚みを薄くした光制御デバイス(0.1mm厚み)の方が、20GHz以上でも、従来の光制御デバイス(基板の厚み1mm)のものと比較し、大幅に高周波特性が著しく改善していることが容易に理解される。なお、32GHz付近に大きなディップが存在するが、これはチップ状態でのプローブによる簡易計測のために起きている現象であり、光制御デバイス自体の特性ではない。   As can be seen from FIG. 3, the light control device (0.1 mm thickness) with a thin substrate has a significantly higher frequency than that of the conventional light control device (substrate thickness 1 mm) even at 20 GHz or higher. It can be easily understood that the characteristics are significantly improved. A large dip exists in the vicinity of 32 GHz. This is a phenomenon that occurs due to simple measurement by a probe in a chip state, and is not a characteristic of the light control device itself.

さらに、基板の厚みを変化させて上述した電気応答特性を測定し、折り返し屈曲部を有する信号電極に対して、基板の厚みが及ぼす影響を調べたところ、基板の厚みが30〜100μmの範囲で20GHz以上での高周波特性が改善していることが確認できた。基板の厚みを30μm未満とした場合に高周波特性の改善が期待できない理由として、光波の屈折率とマイクロ波の実効屈折率との差が生じ、光導波路のリッジ形状や信号電極と接地電極の形状などを基板の厚みを考慮して再調整する必要があるためと考えられる。   Further, the electrical response characteristics described above were measured by changing the thickness of the substrate, and when the influence of the thickness of the substrate on the signal electrode having the folded portion was examined, the thickness of the substrate was in the range of 30 to 100 μm. It was confirmed that the high frequency characteristics at 20 GHz or higher were improved. The reason why high frequency characteristics cannot be improved when the thickness of the substrate is less than 30 μm is that a difference between the refractive index of the light wave and the effective refractive index of the microwave occurs, and the ridge shape of the optical waveguide and the shape of the signal electrode and the ground electrode This is because it is necessary to readjust the above in consideration of the thickness of the substrate.

また、本発明の光制御デバイスにおいては、上述のように、信号電極は、複数の作用部に独立した変調信号を伝送する複数の信号電極から構成され、該屈曲部において、隣接する異なる信号電極の間隔(折り返し屈曲部の前後の信号電極の間隔を含む)が500μm以下とした場合でも、基板の厚みを30〜100μmとすることで、信号電極間のクロストークの発生を抑制し、伝搬損失を抑制することが可能となる。これにより、信号電極の配線をコンパクト化することが可能となり、本発明を用いることで、光制御デバイスをより小型化することもできる。   In the light control device of the present invention, as described above, the signal electrode is composed of a plurality of signal electrodes that transmit independent modulation signals to the plurality of action portions, and the adjacent different signal electrodes in the bent portion. Even when the distance between the electrodes (including the distance between the signal electrodes before and after the folded portion) is 500 μm or less, the thickness of the substrate is set to 30 to 100 μm, thereby suppressing the occurrence of crosstalk between the signal electrodes and propagation loss. Can be suppressed. Thereby, the wiring of the signal electrode can be made compact, and the light control device can be further downsized by using the present invention.

以上説明したように、本発明によれば、信号電極に折り返しの屈曲部を有する光制御デバイスにおいても20GHz以上の広帯域特性を改善した光制御デバイスを提供することが可能となる。   As described above, according to the present invention, it is possible to provide a light control device having improved broadband characteristics of 20 GHz or more even in a light control device having a folded portion at a signal electrode.

1 主マッハツェンダー型導波路
2 主分岐導波路
3 副マッハツェンダー型導波路
4,41,42 信号電極
5,51,52 電極パッド
61〜63 接地電極
R 折り返し屈曲部
DESCRIPTION OF SYMBOLS 1 Main Mach-Zehnder type | mold waveguide 2 Main branching waveguide 3 Sub Mach-Zehnder type | mold waveguide 4,41,42 Signal electrode 5,51,52 Electrode pad 61-63 Ground electrode R Folding bending part

Claims (3)

電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、
該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、
該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、
該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、
該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、
該屈曲部を含む信号電極の基板に接する部分の幅が10μm以下であることを特徴とする光制御デバイス。
In a light control device having a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide,
The modulation electrode is a symmetric or asymmetric CPW electrode composed of a signal electrode and a ground electrode;
The signal electrode from the signal input end of the signal electrode to the start point of the action part that modulates the light wave propagating through the optical waveguide is defined as an input-side signal electrode part.
At least a part of the input-side signal electrode part has a bent part for folding the wiring,
The thickness of the substrate in the region where the bent portion exists is 30 to 100 μm,
A light control device characterized in that a width of a portion of the signal electrode in contact with the substrate including the bent portion is 10 μm or less.
電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路を伝播する光波を変調する変調電極とを有する光制御デバイスにおいて、
該変調電極は、信号電極と接地電極から構成される、対称または非対称のCPW電極であり、
該信号電極の信号入力端部から該光導波路を伝播する光波に変調を行う作用部の開始点までの信号電極を入力側信号電極部とし、
該入力側信号電極部の少なくとも一部に、配線を折り返す屈曲部を有し、
該屈曲部が存在する領域の該基板の厚みが30〜100μmであり、
該信号電極は、複数の作用部に独立した変調信号を伝送する複数の信号電極から構成され、該屈曲部において、隣接する異なる信号電極の間隔が500μm以下であることを特徴とする光制御デバイス。
In a light control device having a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode that modulates a light wave propagating through the optical waveguide,
The modulation electrode is a symmetric or asymmetric CPW electrode composed of a signal electrode and a ground electrode;
The signal electrode from the signal input end of the signal electrode to the start point of the action part that modulates the light wave propagating through the optical waveguide is defined as an input-side signal electrode part.
At least a part of the input-side signal electrode part has a bent part for folding the wiring,
The thickness of the substrate in the region where the bent portion exists is 30 to 100 μm,
The signal electrode is composed of a plurality of signal electrodes that transmit independent modulation signals to a plurality of action portions, and an interval between different signal electrodes adjacent to each other in the bent portion is 500 μm or less. .
請求項1又は2に記載の光制御デバイスにおいて、該基板はZ型カット基板であり、該光導波路は該作用部においてリッジ構造を有し、該信号電極は該リッジ構造の上に配置されていることを特徴とする光制御デバイス。 In the optical control device according to claim 1 or 2, the substrate is a Z-type cut substrate, the optical waveguide has a ridge structure in the acting portion, the signal electrode is disposed over the ridge structure A light control device.
JP2009087708A 2009-03-31 2009-03-31 Light control device Expired - Fee Related JP5104805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009087708A JP5104805B2 (en) 2009-03-31 2009-03-31 Light control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087708A JP5104805B2 (en) 2009-03-31 2009-03-31 Light control device

Publications (2)

Publication Number Publication Date
JP2010237593A JP2010237593A (en) 2010-10-21
JP5104805B2 true JP5104805B2 (en) 2012-12-19

Family

ID=43091942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087708A Expired - Fee Related JP5104805B2 (en) 2009-03-31 2009-03-31 Light control device

Country Status (1)

Country Link
JP (1) JP5104805B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5711287B2 (en) 2013-03-26 2015-04-30 住友大阪セメント株式会社 Light control device
CN104977735B (en) * 2014-04-04 2018-06-15 中国科学院理化技术研究所 A kind of method that electrostrictive polymer optical chip is integrated with microwave termination circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002182172A (en) * 2000-10-03 2002-06-26 Fujitsu Ltd Optical modulator
JP2005274889A (en) * 2004-03-24 2005-10-06 Ngk Insulators Ltd Optical waveguide device
JP4771451B2 (en) * 2004-05-18 2011-09-14 日本碍子株式会社 Traveling wave type optical modulator
JP4555715B2 (en) * 2005-03-18 2010-10-06 富士通株式会社 Optical device

Also Published As

Publication number Publication date
JP2010237593A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP4899730B2 (en) Light modulator
US8135242B2 (en) Optical modulator
JP5056040B2 (en) Light modulator
US9568751B2 (en) Optical control device
US8078015B2 (en) Optical modulator
JP5405073B2 (en) Electronic devices
CN102445769A (en) Optical modulator
JP2005037547A (en) Optical modulator
JP3695717B2 (en) Light modulator
US6909817B2 (en) Electro-optic modulators with internal impedance matching
US8311371B2 (en) Optical modulation device
JP4771451B2 (en) Traveling wave type optical modulator
JP3548042B2 (en) Waveguide type optical device
JP5104805B2 (en) Light control device
WO2009096237A1 (en) Optical waveguide device
JPH09304746A (en) Waveguide device
JP4926423B2 (en) Light modulator
JP4910570B2 (en) Optical modulator and optical transmitter
JP2006246509A (en) Connection structure of high-frequency line
JP4991910B2 (en) Light control element
JP4812476B2 (en) Light modulator
JP6088349B2 (en) Traveling-wave electrode light modulator
WO2004086126A1 (en) Waveguide optical modulator
JP5447306B2 (en) Light control element
CN215986791U (en) High-speed modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees