JP5104097B2 - Fluid transfer device - Google Patents

Fluid transfer device Download PDF

Info

Publication number
JP5104097B2
JP5104097B2 JP2007195618A JP2007195618A JP5104097B2 JP 5104097 B2 JP5104097 B2 JP 5104097B2 JP 2007195618 A JP2007195618 A JP 2007195618A JP 2007195618 A JP2007195618 A JP 2007195618A JP 5104097 B2 JP5104097 B2 JP 5104097B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
divided
substrate
diaphragm
divided electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007195618A
Other languages
Japanese (ja)
Other versions
JP2009030534A (en
Inventor
篤彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007195618A priority Critical patent/JP5104097B2/en
Publication of JP2009030534A publication Critical patent/JP2009030534A/en
Application granted granted Critical
Publication of JP5104097B2 publication Critical patent/JP5104097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は流体移送装置、例えば屈曲変形する圧電素子を用いた流体移送装置に関するものである。   The present invention relates to a fluid transfer device, for example, a fluid transfer device using a piezoelectric element that bends and deforms.

ノートパソコンなどの小型電子機器の冷却水輸送用ポンプや燃料電池の燃料輸送用ポンプなどに、圧電ポンプが用いられている。また、CPU等の冷却用ファンに代わる送風用ポンプ、あるいは燃料電池で発電するのに必要な酸素を供給するための送風用ポンプとしても、圧電ポンプを用いることができる。圧電ポンプは、電圧印加により屈曲変形する圧電素子を用いたポンプであり、構造が簡単で、薄型に構成でき、かつ低消費電力であるという利点がある。   Piezoelectric pumps are used for cooling water transportation pumps for small electronic devices such as notebook computers and fuel transportation pumps for fuel cells. Also, a piezoelectric pump can be used as a blower pump in place of a cooling fan such as a CPU or a blower pump for supplying oxygen necessary for power generation by a fuel cell. A piezoelectric pump is a pump that uses a piezoelectric element that bends and deforms when a voltage is applied, and has an advantage of a simple structure, a thin configuration, and low power consumption.

特許文献1には、低背で軸方向の空気流を発生する単一ファンブレードの圧電ファンが開示されている。この圧電ファンは、ハウジングの内部に、一端部だけで取り付けられたファンブレードを備え、このファンブレードに圧電素子が固定され、圧電素子によってファンブレードを屈曲させる。ファンブレードが屈曲すると、ハウジングに形成された内部空洞を通る軸方向空気流が生成される。   Patent Document 1 discloses a single fan blade piezoelectric fan that generates an axial air flow with a low profile. The piezoelectric fan includes a fan blade attached to only one end inside the housing. A piezoelectric element is fixed to the fan blade, and the fan blade is bent by the piezoelectric element. As the fan blades bend, an axial air flow is generated through an internal cavity formed in the housing.

特許文献2には、簡素な構造で高い効率を有する圧電モータが開示されている。この圧電モータは、平行四辺形の恒弾性体を2枚の圧電セラミックスで挟んだステータと、ステータの平行四辺形の一辺に接する円柱状のロータを備え、ロータが羽根車の回転軸となっている。平行四辺形の圧電セラミックスを駆動すると、縦振動と屈曲振動が結合して平行四辺形の一辺に円運動又は楕円運動が生じ、その振動によってロータが回転する。   Patent Document 2 discloses a piezoelectric motor having a simple structure and high efficiency. This piezoelectric motor includes a stator in which a parallelogram constant elastic body is sandwiched between two piezoelectric ceramics, and a cylindrical rotor in contact with one side of the parallelogram of the stator, and the rotor serves as a rotating shaft of the impeller. Yes. When the parallelogram piezoelectric ceramic is driven, the longitudinal vibration and the bending vibration are combined to generate a circular motion or an elliptical motion on one side of the parallelogram, and the rotor is rotated by the vibration.

しかしながら、特許文献1および2のいずれの場合も、吐出口及び吸入口が常に連通しており、吐出側から吸入側へ空気が漏れる構成となっており、逆流が生じたり、吐出圧力が低いという欠点がある。また、圧電素子以外にファンブレードやロータなどの部品を必要とするので、構造が大型になるという欠点がある。   However, in both cases of Patent Documents 1 and 2, the discharge port and the suction port are always in communication, and air is leaked from the discharge side to the suction side, so that backflow occurs or the discharge pressure is low. There are drawbacks. Moreover, since parts such as a fan blade and a rotor are required in addition to the piezoelectric element, there is a drawback that the structure becomes large.

特許文献3には、複数のピエゾ素子を平面状に円周方向に隔てて配置し、個々のピエゾ素子を電気的に接続し、これらピエゾ素子を非導電性の可撓性材料で一体的にモールドし、このモールド部の中央部に通孔およびこの通孔に一方向にのみ流体を流す逆止弁を設けたポンプ用ピエゾ振動子が開示されている。ところが、この構造の場合、予め個別に製造された複数のピエゾ素子を一体的にモールドしなければならないので、全体として大型になるとともに、各ピエゾ素子に電圧を印加したとき、中心部が一方に突出する状態と他方に突出する状態の間で板厚方向に振動するに過ぎないので、流体を移送するためには逆止弁が必要である。そのため、構造が複雑になるという問題がある。また、ピエゾ素子が板厚方向に往復振動するため、脈動を発生し、連続的な流体の流れを生成できないという問題がある。
特表2000−513070号公報 特開2004−289880号公報 実開昭61−130783号公報
In Patent Document 3, a plurality of piezo elements are arranged in a plane and spaced in the circumferential direction, the individual piezo elements are electrically connected, and these piezo elements are integrally formed of a non-conductive flexible material. A pump piezo vibrator is disclosed in which a mold is provided and a check hole is provided in the center of the mold part and a check valve is provided to allow fluid to flow only in one direction through the hole. However, in the case of this structure, a plurality of individually manufactured piezo elements must be integrally molded, so that the overall size becomes large, and when a voltage is applied to each piezo element, the central portion is on one side. Since it only vibrates in the plate thickness direction between the protruding state and the protruding state, the check valve is necessary to transfer the fluid. Therefore, there is a problem that the structure becomes complicated. Further, since the piezo element reciprocates in the thickness direction, there is a problem that pulsation occurs and a continuous fluid flow cannot be generated.
Special Table 2000-513070 JP 2004-289880 A Japanese Utility Model Publication No. 61-130783

そこで、本発明の目的は、逆止弁がなくても流体を移送でき、構造が簡単かつ小型の流体移送装置を提供することにある。   Therefore, an object of the present invention is to provide a fluid transfer device that can transfer a fluid without a check valve and has a simple structure and a small size.

上記目的を達成するため、本発明は、基板と、この基板上に変位可能に配置された中空円板状の圧電素子とを備えた流体移送装置であって、上記圧電素子は、この圧電素子より大形でかつ弾性変形自在な振動板の中央部上面に貼り付けられ、上記圧電素子より外周側へ延びる振動板の外周部が上記基板に固定されており、上記圧電素子には周方向に分割された複数の分割電極が形成されており、上記分割電極に周方向に順次異なる位相の電圧を印加する電圧印加手段が設けられ、上記分割電極に周方向に順次異なる位相の電圧を印加することにより、上記圧電素子を周方向に波打ち状に屈曲変形させ、上記振動板と基板との間に生成される中央部から外周部まで連通したポケット室を周方向に移動させることにより、遠心力を利用して中央部から外周方向に流体を移送することを特徴とする流体移送装置を提供する。 In order to achieve the above object, the present invention provides a fluid transfer device including a substrate and a hollow disk-shaped piezoelectric element that is displaceably disposed on the substrate, and the piezoelectric element includes the piezoelectric element. The outer peripheral part of the diaphragm that is attached to the upper surface of the central part of the larger and elastically deformable diaphragm and extends to the outer peripheral side from the piezoelectric element is fixed to the substrate, and the piezoelectric element is circumferentially attached to the piezoelectric element. A plurality of divided electrodes are formed, and voltage applying means for sequentially applying voltages having different phases in the circumferential direction is provided to the divided electrodes, and voltages having different phases sequentially being applied to the divided electrodes in the circumferential direction. Thus, the piezoelectric element is bent and deformed in the circumferential direction in a wavy manner, and the centrifugal force generated by moving the pocket chamber communicating from the central part to the outer peripheral part between the diaphragm and the substrate in the circumferential direction is obtained. the using center Providing a fluid transfer device, characterized in that the transfer fluid in the Luo outer circumferential direction.

本発明は、遠心ファンの原理を利用して、圧電素子の中心部から外周方向に遠心力により流体を移送するものである。すなわち、基板上に周方向に分割された複数の分割電極を持つ中空円板状の圧電素子を配置する。圧電素子に電圧を印加しない状態では、基板と圧電素子とはほぼ隙間なく接触しているため、流入口と流出口との間が閉じられる。分割電極に周方向に順次位相をずらした電圧を印加すると、圧電素子には周方向に波打ち状の屈曲変形を生じる。そのため、圧電素子と基板との間にポケット室が生成され、このポケット室が高速で回転するため、その遠心力により、圧電素子の中心部から外周方向への流体の流れが発生する。この流体の流れは、従来の往復式ポンプと異なり脈動が殆どないので、流体を円滑かつ連続的に移送できる。圧電素子と基板との間に中心部から外周部まで流路(ポケット室)が導通しているので、容積型ポンプと比較して大きな流量が得られる。また、本発明は、流入口から吐出口に形成される流体が流れる流路(ポケット室)部分以外の部分は、圧電素子と基板とで周辺がシールされているので、吐出側から流入側へ流体が漏れにくい。これにより圧力を高く維持でき、周辺からの逆流を低減することができる。流体を抱え込んだポケット室を圧電素子自身でシールできるため、流体の漏れが少なく、ポケット室内の流体を確実に移送でき、高い吐出圧力を発生することができる。1枚の圧電素子に複数の分割電極を形成しただけであるため、構造が簡単で、小型・薄型に構成できる。   The present invention utilizes the principle of a centrifugal fan to transfer fluid by centrifugal force from the center of a piezoelectric element toward the outer periphery. That is, a hollow disk-shaped piezoelectric element having a plurality of divided electrodes divided in the circumferential direction is arranged on a substrate. In a state where no voltage is applied to the piezoelectric element, the substrate and the piezoelectric element are in contact with each other with almost no gap, so that the gap between the inlet and the outlet is closed. When a voltage whose phase is sequentially shifted in the circumferential direction is applied to the divided electrodes, the piezoelectric element is wavyly bent in the circumferential direction. For this reason, a pocket chamber is generated between the piezoelectric element and the substrate, and this pocket chamber rotates at a high speed. Therefore, the centrifugal force generates a fluid flow from the center of the piezoelectric element toward the outer periphery. Unlike the conventional reciprocating pump, this fluid flow has almost no pulsation, so that the fluid can be smoothly and continuously transferred. Since the flow path (pocket chamber) is conducted from the central portion to the outer peripheral portion between the piezoelectric element and the substrate, a large flow rate can be obtained as compared with the positive displacement pump. Further, according to the present invention, since the periphery of the portion other than the flow path (pocket chamber) portion where the fluid formed from the inflow port to the discharge port flows is sealed by the piezoelectric element and the substrate, from the discharge side to the inflow side. Fluid does not leak easily. Thereby, a pressure can be maintained high and the backflow from the periphery can be reduced. Since the pocket chamber containing the fluid can be sealed by the piezoelectric element itself, there is little fluid leakage, the fluid in the pocket chamber can be reliably transferred, and a high discharge pressure can be generated. Since only a plurality of divided electrodes are formed on one piezoelectric element, the structure is simple, and it can be configured to be small and thin.

本発明の流体移送装置によって移送できる流体としては、液体でもよいし気体(例えば空気)でもよい。特に、圧電素子を高周波数で駆動する場合には、気体を用いるのがよい。空気の場合、半導体素子の冷却用ブロアや、燃料電池の空気極で発生する水を蒸発させる送風用ブロアなどの用途に用いることができる。   The fluid that can be transferred by the fluid transfer device of the present invention may be a liquid or a gas (for example, air). In particular, when the piezoelectric element is driven at a high frequency, it is preferable to use gas. In the case of air, it can be used for applications such as a blower for cooling a semiconductor element and a blower for evaporating water generated at the air electrode of a fuel cell.

望ましい実施形態によれば、上記複数の分割電極は、上記中空円板状の圧電素子の周方向に等角度で分割されたものであり、圧電素子を屈曲変形させる際に、全周での位相差を4π+2nπ(n=0,1,2…)とし、等角度に分割された複数の分割電極に上記位相差を等配分するのがよい。この場合には、圧電素子の変形が軸対称変形になるので、駆動に伴って圧電素子に傾きが発生しない。また、駆動に伴って、凸変形部分と凹変形部分の変位差がほぼ一定に維持されるため、圧電素子全体の重心移動がほとんど発生しないような支持が可能であり、振動が抑えられる。   According to a preferred embodiment, the plurality of divided electrodes are divided at an equal angle in the circumferential direction of the hollow disk-shaped piezoelectric element, and when the piezoelectric element is bent and deformed, the position around the entire circumference is determined. The phase difference is 4π + 2nπ (n = 0, 1, 2,...), And the phase difference is preferably equally distributed to a plurality of divided electrodes divided at equal angles. In this case, since the deformation of the piezoelectric element is an axially symmetric deformation, the piezoelectric element is not inclined with the driving. Further, since the displacement difference between the convex deformation portion and the concave deformation portion is maintained substantially constant with driving, it is possible to support such that the center of gravity of the entire piezoelectric element hardly moves, and vibration is suppressed.

好ましい実施の形態によれば、圧電素子を、この圧電素子より大形でかつ弾性変形自在な振動板の中央部上面に貼り付け、圧電素子より外周側へ延びる振動板の外周部を基板に固定した構造とするのがよい。基板上に圧電素子を直接配置することも可能であるが、圧電素子が放射方向の稜線を持つように屈曲変形する場合は、圧電素子の外周部や内周部を基板に固定することができず、圧電素子を安定に保持することが難しい。これに対し、圧電素子を弾性変形自在な振動板の上に貼り付け、この振動板の外周部を基板に固定すれば、圧電素子の変形を許容しながら基板に対して安定に取り付けることができる。振動板としては薄肉な金属板でもよいし、樹脂板でもよい。   According to a preferred embodiment, the piezoelectric element is affixed to the upper surface of the central part of the diaphragm that is larger than the piezoelectric element and is elastically deformable, and the outer peripheral part of the diaphragm extending outward from the piezoelectric element is fixed to the substrate. It is good to have the structure. Although it is possible to place the piezoelectric element directly on the substrate, when the piezoelectric element is bent and deformed so as to have a radial ridgeline, the outer periphery and inner periphery of the piezoelectric element can be fixed to the substrate. Therefore, it is difficult to stably hold the piezoelectric element. On the other hand, if the piezoelectric element is affixed on an elastically deformable diaphragm and the outer periphery of the diaphragm is fixed to the substrate, the piezoelectric element can be stably attached to the substrate while allowing deformation of the piezoelectric element. . The diaphragm may be a thin metal plate or a resin plate.

好ましい実施の形態によれば、基板および振動板のいずれか一方の中心部に流体の流入口を形成し、基板および振動板のいずれか一方の外周部であってかつ基板と振動板との固定部より内側位置に流体の流出口を形成するのがよい。上記のように圧電素子を振動板の上に貼り付け、振動板の外周部を基板に固定した構造の場合に、基板および振動板のいずれか一方の中心部に流体の流入口を形成し、基板および振動板のいずれか一方の外周部に流体の流出口を形成することで、圧電素子に孔を設ける必要がなく、圧電素子が効率よく変形できる。   According to a preferred embodiment, a fluid inlet is formed at the center of one of the substrate and the diaphragm, and the outer periphery of either the substrate or the diaphragm is fixed to the substrate and the diaphragm. It is preferable to form a fluid outlet at a position inside the portion. In the case of a structure in which the piezoelectric element is attached onto the diaphragm as described above and the outer periphery of the diaphragm is fixed to the substrate, a fluid inlet is formed at the center of either the substrate or the diaphragm, By forming the fluid outlet in the outer periphery of either the substrate or the diaphragm, there is no need to provide holes in the piezoelectric element, and the piezoelectric element can be efficiently deformed.

圧電素子としてはバイモルフ構造の積層型圧電素子を用いてもよいし、単板構造の圧電素子を用いてもよい。積層構造の圧電素子の場合、分割された複数の分割電極と分割されていない全面電極とを、圧電体層を間にして交互に積層したものでもよいし、複数の第1の分割電極と、第1の分割電極に対して位相をずらして設けた複数の第2の分割電極とを、圧電体層を間にして交互に積層したものでもよい。前者の場合には、一方の電極をべた電極(全面電極)にできるため、電極パターンが一種類で済む。後者の場合には、前者に比べて1面当たりの分極電極の数を少なくでき、各分割電極に印加される電圧を低くできるという利点がある。単板構造の圧電素子の場合、それ自身では屈曲変形しないので、金属板などの振動板の上に貼り付けてユニモルフ構造とすればよい。   As the piezoelectric element, a laminated piezoelectric element having a bimorph structure may be used, or a piezoelectric element having a single plate structure may be used. In the case of a piezoelectric element having a multilayer structure, a plurality of divided electrodes and non-divided full-surface electrodes may be alternately stacked with a piezoelectric layer interposed therebetween, or a plurality of first divided electrodes, A plurality of second divided electrodes provided with a phase shift with respect to the first divided electrodes may be alternately stacked with piezoelectric layers therebetween. In the former case, since one electrode can be a solid electrode (entire electrode), only one type of electrode pattern is required. In the latter case, the number of polarization electrodes per surface can be reduced compared to the former, and there is an advantage that the voltage applied to each divided electrode can be lowered. In the case of a piezoelectric element having a single plate structure, the piezoelectric element itself does not bend and deform. Therefore, it may be attached to a vibration plate such as a metal plate to form a unimorph structure.

上記説明では、固定された基板に対して圧電素子を変位可能に配置したが、基板として圧電素子を用いてもよい。すなわち、2枚の円板状圧電素子を対向して配置し、これら圧電素子を対称的に屈曲変位させるようにしてもよい。この場合には、ポケット室の容積が2倍になるので、流体の吐出圧力だけでなく、吐出流量も増大させることが可能になる。なお、2枚の圧電素子だけで流体移送装置を構成してもよいが、各圧電素子を振動板に貼り付け、これら振動板の外周部同士を接着することで、流体移送装置を構成する方がよい。   In the above description, the piezoelectric element is disposed so as to be displaceable with respect to the fixed substrate. However, a piezoelectric element may be used as the substrate. That is, two disk-shaped piezoelectric elements may be arranged to face each other, and these piezoelectric elements may be bent and displaced symmetrically. In this case, since the volume of the pocket chamber is doubled, not only the fluid discharge pressure but also the discharge flow rate can be increased. Note that the fluid transfer device may be configured with only two piezoelectric elements, but the fluid transfer device is configured by attaching each piezoelectric element to the diaphragm and bonding the outer peripheral portions of these diaphragms together. Is good.

以上のように、本発明によれば、基板上に周方向に複数の分割電極が形成された中空円板状の圧電素子を配置し、各分割電極に周方向に順次異なる位相の電圧を印加するようにしたので、圧電素子が周方向に波うち状の屈曲変形をする。そして、圧電素子と基板との間に生成されるポケット室が周方向に回転して、遠心力により中央部から外周方向に流体を移送するので、脈動が少なく連続的に流体を移送できる。圧電素子に印加する周波数を調整することで、流体の性質に応じた遠心力を得ることができ、流量増大を図ることができる。また、本流体移送装置は1つの円板状圧電素子と基板とで構成され、逆止弁も不要であるので、構造が簡単になり、小型・薄型化できる。さらに、非駆動時には圧電素子が平板状となり、流入口と流出口との間の流路を閉じるので、非駆動時の流体の漏れを無くすことができる。   As described above, according to the present invention, a hollow disk-shaped piezoelectric element in which a plurality of divided electrodes are formed in the circumferential direction is arranged on a substrate, and voltages having different phases are sequentially applied to the divided electrodes in the circumferential direction. As a result, the piezoelectric element undergoes a wave-like bending deformation in the circumferential direction. And since the pocket chamber produced | generated between a piezoelectric element and a board | substrate rotates to the circumferential direction, a fluid is transferred to an outer peripheral direction from a center part with a centrifugal force, Therefore A fluid can be transferred continuously with few pulsations. By adjusting the frequency applied to the piezoelectric element, a centrifugal force corresponding to the properties of the fluid can be obtained, and the flow rate can be increased. In addition, since the fluid transfer device is composed of one disk-shaped piezoelectric element and a substrate and does not require a check valve, the structure is simplified, and the size and thickness can be reduced. Furthermore, since the piezoelectric element has a flat plate shape when not driven and the flow path between the inlet and the outlet is closed, fluid leakage when not driven can be eliminated.

以下に、本発明の好ましい実施の形態を、実施例に基づいて説明する。   Hereinafter, preferred embodiments of the present invention will be described based on examples.

図1〜図3は本発明にかかる流体移送装置の第1実施例を示し、ここでは空気供給用マイクロブロアとして用いた例を示す。図1は本実施例のマイクロブロアAの全体斜視図、図2はその分解斜視図、図3は図1のIII −III 線断面図である。   1 to 3 show a first embodiment of a fluid transfer device according to the present invention, and here, an example in which it is used as a micro blower for air supply is shown. 1 is an overall perspective view of the micro-blower A of the present embodiment, FIG. 2 is an exploded perspective view thereof, and FIG. 3 is a sectional view taken along line III-III in FIG.

本実施例のマイクロブロアAは、固定板である基板10と、その上に変位自在に配置された円板状の振動板20と、振動板20の上面に貼り付けられた中空円板状(円環状)の圧電素子30とで構成されている。振動板20の外周部全周が接着剤11(図2に斜線で示す)により基板10に固定されている。なお、接着に代えてカシメ、溶接、ネジ止め、ろう付等にて固定してもよい。基板10と振動板20とが同一直径の円板で構成され、圧電素子30は振動板20より小径に設定されている。基板10は、剛性のある金属板または樹脂板などよりなり、振動板20と接する上面が平面の板材で構成されている。接着剤11が塗布された外周部よりやや内径側の基板10の部位には複数の流出口12が形成されている。この実施例では、流出口12が複数の円弧状スリット穴で形成されているが、単一の穴でもよく、形状はスリット状に限らず丸穴でもよい。振動板20は基板10より薄肉な金属板または樹脂シートよりなり、圧電素子30の屈曲変形に追従して変形できる弾性体がよい。振動板20の中心部には流入穴21が形成されている。なお、流入口21を基板10の中心部に設けてもよい。圧電素子30の外径寸法は接着剤11の塗布領域より小さく、圧電素子30の変位が接着剤11によって拘束されないようにしてある。この実施例では、圧電素子30の外周縁が流出口12より内径側に位置しているが、流出口12より外径側に位置していてもよい。圧電素子30の中心部には、振動板20の流入穴21より大径な開口部34が形成されている。   The micro blower A of the present embodiment includes a substrate 10 that is a fixed plate, a disc-shaped diaphragm 20 that is displaceably disposed thereon, and a hollow disc-like shape that is attached to the upper surface of the diaphragm 20 ( And an annular) piezoelectric element 30. The entire outer periphery of the diaphragm 20 is fixed to the substrate 10 with an adhesive 11 (indicated by hatching in FIG. 2). In addition, it may be fixed by caulking, welding, screwing, brazing or the like instead of adhesion. The substrate 10 and the diaphragm 20 are made of discs having the same diameter, and the piezoelectric element 30 is set to have a smaller diameter than the diaphragm 20. The substrate 10 is made of a rigid metal plate, a resin plate, or the like, and is made of a plate material having a flat upper surface in contact with the vibration plate 20. A plurality of outflow ports 12 are formed in a portion of the substrate 10 on the inner diameter side slightly from the outer peripheral portion where the adhesive 11 is applied. In this embodiment, the outlet 12 is formed by a plurality of arc-shaped slit holes, but it may be a single hole, and the shape is not limited to the slit shape but may be a round hole. The vibration plate 20 is made of a metal plate or resin sheet that is thinner than the substrate 10 and is preferably an elastic body that can be deformed following the bending deformation of the piezoelectric element 30. An inflow hole 21 is formed at the center of the diaphragm 20. Note that the inlet 21 may be provided at the center of the substrate 10. The outer diameter dimension of the piezoelectric element 30 is smaller than the application area of the adhesive 11 so that the displacement of the piezoelectric element 30 is not restrained by the adhesive 11. In this embodiment, the outer peripheral edge of the piezoelectric element 30 is located on the inner diameter side from the outflow port 12, but may be located on the outer diameter side from the outflow port 12. An opening 34 having a diameter larger than that of the inflow hole 21 of the diaphragm 20 is formed at the center of the piezoelectric element 30.

図4,図5は圧電素子30の断面構造およびその電極構造を示す。図4,図5に示すように、圧電素子30は2層の圧電体層31a,31bを全面電極32を間にして積層したものであり、2層の圧電体層31a,31bは、矢印Pで示すように全領域にわたって同一方向に分極されている。表裏の主面には幅狭なギャップ部を介して周方向に8分割された分割電極33a〜33hが形成されている。分割電極33a〜33hは45°ピッチで形成されている。8個の分割電極33a〜33hのうち、対角位置にある分割電極同士が相互に接続され、かつ表裏対向する分割電極同士が相互に接続されて電圧印加手段1と接続されている。そのため、図5では、分割電極33aと33eに電圧印加手段1から電圧E1が印加され、分割電極33bと33fに電圧E2が印加され、分割電極33cと33gに電圧E3が印加され、分割電極33dと33hに電圧E4が印加される。全面電極32はグランドつまり0vに接続されている。   4 and 5 show the sectional structure of the piezoelectric element 30 and its electrode structure. As shown in FIGS. 4 and 5, the piezoelectric element 30 is formed by laminating two piezoelectric layers 31a and 31b with the entire surface electrode 32 therebetween, and the two piezoelectric layers 31a and 31b are indicated by an arrow P. As shown in the figure, the entire region is polarized in the same direction. Divided electrodes 33a to 33h are formed on the main surfaces of the front and back sides and are divided into eight in the circumferential direction through a narrow gap portion. The divided electrodes 33a to 33h are formed at a 45 ° pitch. Of the eight divided electrodes 33a to 33h, the divided electrodes at diagonal positions are connected to each other, and the divided electrodes facing each other are connected to each other and connected to the voltage applying means 1. For this reason, in FIG. 5, the voltage E1 is applied to the divided electrodes 33a and 33e, the voltage E2 is applied to the divided electrodes 33b and 33f, the voltage E3 is applied to the divided electrodes 33c and 33g, and the divided electrode 33d. And the voltage E4 is applied to 33h. The full surface electrode 32 is connected to the ground, that is, 0v.

図6は圧電素子30の8個に分割された1つの領域30aに電圧を印加した時の変形の一例を示す。分割電極と全面電極との間に一方向の電圧を印加すると、図6の(a)のように上向きにかつ放射方向(半径方向)の稜線を持つように変形し、電圧印加を中止すると図6の(b)のように平坦状になり、逆方向の電圧を印加すると、図6の(c)のように下向きにかつ放射方向(半径方向)の稜線を持つように変形する。このように圧電素子30の各部分がバイモルフとして駆動されるため、圧電素子30が貼り付けられた振動板20も圧電素子30に追従して変形する。なお、圧電素子30は積層されたバイモルフ構造に限る必要はなく、図5に示すような分割電極パターンを一面に、全面電極パターンを他面にそれぞれ形成した単板圧電素子を振動板20に接着したユニモルフ構造であってもよい。   FIG. 6 shows an example of deformation when a voltage is applied to one region 30 a divided into eight pieces of the piezoelectric element 30. When a voltage in one direction is applied between the divided electrode and the entire surface electrode, the electrode is deformed so as to have a ridge line in the upward direction and in the radial direction (radial direction) as shown in FIG. 6 (b), when a reverse voltage is applied, it is deformed to have a ridge line in the downward direction and in the radial direction (radial direction) as shown in FIG. 6 (c). Thus, since each part of the piezoelectric element 30 is driven as a bimorph, the diaphragm 20 to which the piezoelectric element 30 is attached also deforms following the piezoelectric element 30. The piezoelectric element 30 is not necessarily limited to the laminated bimorph structure, and a single-plate piezoelectric element in which a divided electrode pattern as shown in FIG. The unimorph structure may be used.

図7は、電圧印加手段1から各分割電極に印加される電圧E1〜E4の振幅および位相を示す。図7から明らかなように、各分割電極には位相がπ/2異なり振幅が等しい正弦波電圧E1〜E4が印加される。隣の分割電極に対して位相がπ/2進んだ正弦波の電界を印加することにより、圧電素子30の対角位置にある領域には同一の電界が印加され、それらの領域では同一の変形が実現される。   FIG. 7 shows the amplitudes and phases of the voltages E1 to E4 applied from the voltage applying means 1 to the divided electrodes. As is apparent from FIG. 7, sinusoidal voltages E1 to E4 having a phase of π / 2 and an equal amplitude are applied to each divided electrode. By applying a sinusoidal electric field whose phase is advanced by π / 2 to the adjacent divided electrode, the same electric field is applied to the regions at the diagonal positions of the piezoelectric element 30, and the same deformation is caused in those regions. Is realized.

図8は、図5及び図7に示されるように圧電素子に電圧を印加した場合のある瞬間の各領域の変位方向を+,0,−で表したものである。+方向を紙面表方向とすると、−方向は紙面裏方向となる。対角位置の2つの領域が+方向に最大限屈曲した場合、それと直交する2つの領域では−方向に最大限屈曲し、その間の4つの領域は上記両方向の変形を中和するように変形する。このような変形が周回しながら連続的に発生する。   FIG. 8 shows the displacement direction of each region at a certain moment when a voltage is applied to the piezoelectric element as shown in FIGS. 5 and 7 by +, 0, and −. If the + direction is the front surface direction, the-direction is the back direction. When two regions at the diagonal position are bent to the maximum in the + direction, the two regions orthogonal to the two regions are bent to the maximum in the-direction, and the four regions therebetween are deformed so as to neutralize the deformation in both directions. . Such deformation occurs continuously while circling.

図2のように、圧電素子30を貼り付けた振動板20とを基板10と組み合わせた場合、振動板20が圧電素子30に追従して変形するので、振動板20と基板10とが対角の2か所で接触し、それと直角な方向では、基板10と振動板20が最も大きく離間し、ポケット室S(図3の(b)参照)が形成される。印加電圧の位相を変化させると、接触箇所は回転し、印加電圧の位相が2πrad変化すると、接触箇所はπrad回転する。印加電圧の角速度を大きくし、接触箇所の回転角速度を大きくしていくと、基板10と振動板20との間のポケット室Sに挟まれた空気は、遠心力により、中心から外周に向かって流れるようになる。そのため、振動板20の中心部に設けた流入口21から流体が吸い込まれ、基板10の外周部に設けた流出口12から排出することができる。この流れは、往復駆動式の従来のポンプとは異なり、殆ど脈動を発生させず、連続的な流れを生成できる。また、分割電極数を8個とし、隣合う電極の位相差をπ/2としているので、対角の2箇所で必ず基板10と接触し、駆動に伴って傾きが発生しない。しかも、圧電素子全体の重心移動がほとんど発生しないので、遠心ファンとして安定した送風性能を達成できる。なお、上記実施例のように圧電素子30を振動板20によって基板10に弾性保持した場合には、分割電極数および電圧位相が上記のような設定でなくても、圧電素子30が傾くことがない。   As shown in FIG. 2, when the diaphragm 20 with the piezoelectric element 30 attached is combined with the substrate 10, the diaphragm 20 deforms following the piezoelectric element 30, so that the diaphragm 20 and the substrate 10 are diagonal. The substrate 10 and the diaphragm 20 are separated most greatly in a direction perpendicular to the two, and a pocket chamber S (see FIG. 3B) is formed. When the phase of the applied voltage is changed, the contact location is rotated, and when the phase of the applied voltage is changed by 2π rad, the contact location is rotated by π rad. When the angular velocity of the applied voltage is increased and the rotational angular velocity of the contact portion is increased, the air sandwiched between the pocket chambers S between the substrate 10 and the diaphragm 20 is moved from the center toward the outer periphery by centrifugal force. It begins to flow. Therefore, the fluid can be sucked from the inlet 21 provided at the center of the diaphragm 20 and discharged from the outlet 12 provided at the outer peripheral portion of the substrate 10. Unlike the conventional pump of the reciprocating drive type, this flow hardly generates pulsation and can generate a continuous flow. In addition, since the number of divided electrodes is eight and the phase difference between adjacent electrodes is π / 2, the substrate 10 is always in contact at two diagonal positions, and no tilt occurs with driving. In addition, since the center of gravity of the entire piezoelectric element hardly moves, stable air blowing performance can be achieved as a centrifugal fan. When the piezoelectric element 30 is elastically held on the substrate 10 by the diaphragm 20 as in the above embodiment, the piezoelectric element 30 may tilt even if the number of divided electrodes and the voltage phase are not set as described above. Absent.

上記実施例では、分割電極数を8個としたため、ある瞬間の+方向に最大限屈曲した領域と、−方向に最大限屈曲した領域とが直交する位置となったが、分割電極数によっては、必ずしも+方向に最大限屈曲した領域と−方向に最大限屈曲した領域とが直交する位置に存在するわけではない。また、分割電極数を8個としたが、例えば分割電極数12個とし、隣合う電極の位相差をπ/2とした場合には、周方向の3箇所で基板10に接触するので、圧電素子30がより安定した姿勢で変形できる。なお、分割電極数は任意に増大させることができるが、例えば隣合う電極の位相差をπ/2とした場合には、分割電極数を4の倍数(8以上)とするのがよい。   In the above embodiment, since the number of divided electrodes is eight, the region bent to the maximum in the + direction at a certain moment and the region bent to the maximum in the-direction are orthogonal to each other, but depending on the number of divided electrodes, However, the region bent to the maximum in the + direction and the region bent to the maximum in the-direction do not necessarily exist at the orthogonal positions. In addition, although the number of divided electrodes is eight, for example, when the number of divided electrodes is twelve and the phase difference between adjacent electrodes is π / 2, the substrate 10 is contacted at three locations in the circumferential direction. The element 30 can be deformed in a more stable posture. The number of divided electrodes can be increased arbitrarily. For example, when the phase difference between adjacent electrodes is π / 2, the number of divided electrodes is preferably a multiple of 4 (8 or more).

図9は本発明の第2実施例を示す。この実施例では、第1実施例とは異なり、圧電素子30の分割電極として2種類の異なるパターンを使用している。すなわち、図9の(a)に示すように、90°ピッチで分割された第1の分割電極パターン35a〜35dと、図9の(b)に示すように、90°ピッチで分割され、第1の分割電極パターンに対して位相をπ/4ずらして設けた第2の分割電極パターン36a〜36dとを、圧電体層を間にして交互に積層したものである。図9において、e1〜e4は各分割電極に印加される電圧を示す。   FIG. 9 shows a second embodiment of the present invention. In this embodiment, unlike the first embodiment, two different patterns are used as the divided electrodes of the piezoelectric element 30. That is, as shown in FIG. 9A, the first divided electrode patterns 35a to 35d divided at a 90 ° pitch and the first divided electrode patterns 35a to 35d divided at a 90 ° pitch as shown in FIG. Second divided electrode patterns 36a to 36d provided with a phase shifted by π / 4 with respect to one divided electrode pattern are alternately stacked with piezoelectric layers interposed therebetween. In FIG. 9, e1 to e4 indicate voltages applied to the divided electrodes.

図10は分割電極に印加される電圧e1〜e4の振幅および位相を示す。図10に示すように、各分割電極には位相がπ/2異なり振幅が等しい正弦波電圧e1〜e4が印加されるため、圧電素子30には第1実施例と同様な変位が発生する。第1実施例では、分割電極33a〜33eと全面電極32(0v)との間にπ/2ずつ位相をずらした電圧E1〜E4を印加したが、第2実施例では圧電体層を挟んで対向する分割電極間にπ/2ずつ位相をずらした電圧e1〜e4を印加するので、電圧e1〜e4の振幅を電圧E1〜E4に比べて低くすることができる。また、一面に形成される分割電極の数が第1実施例に比べて少なくなる、換言すれば分割電極を仕切るギャップ部の数を少なくできるので、圧電素子30を効果的に屈曲させることができる。   FIG. 10 shows the amplitudes and phases of the voltages e1 to e4 applied to the divided electrodes. As shown in FIG. 10, sinusoidal voltages e1 to e4 having a phase of π / 2 and an equal amplitude are applied to the divided electrodes, and thus the piezoelectric element 30 is displaced similarly to the first embodiment. In the first embodiment, voltages E1 to E4 having phases shifted by π / 2 are applied between the divided electrodes 33a to 33e and the entire surface electrode 32 (0v), but in the second embodiment, the piezoelectric layer is sandwiched. Since the voltages e1 to e4 whose phases are shifted by π / 2 are applied between the opposed divided electrodes, the amplitudes of the voltages e1 to e4 can be made lower than the voltages E1 to E4. In addition, the number of divided electrodes formed on one surface is smaller than that of the first embodiment, in other words, the number of gap portions partitioning the divided electrodes can be reduced, so that the piezoelectric element 30 can be bent effectively. .

図11は本発明の第3実施例の圧電マイクロブロアBを示す。第1,第2実施例では、固定平板である基板の上に圧電素子を対向して配置した例を示したが、この実施例は2枚の圧電素子40,50を対向して配置したものである。この例では、圧電素子40,50をそれぞれ振動板41,51の上に貼り付け、振動板41,51の外周部同士を接着してある。一方の振動板41の中心部に流入穴42を設け、他方の振動板51の外周部に流出孔52を設けた場合には、圧電マイクロブロアBの表側の中心部から流体を吸い込み、裏側の周辺部から流体を吐出することができる。この場合には、一対の圧電素子40,50の対向する部分が対称的に変位するように電圧を印加することにより、流体を抱え込むポケット部の体積を固定平板を用いた場合に比べて2倍にできるので、流量が増加するという利点がある。   FIG. 11 shows a piezoelectric micro blower B according to a third embodiment of the present invention. In the first and second embodiments, the example in which the piezoelectric elements are arranged opposite to each other on the substrate which is a fixed flat plate is shown. However, in this embodiment, two piezoelectric elements 40 and 50 are arranged to face each other. It is. In this example, the piezoelectric elements 40 and 50 are attached on the vibration plates 41 and 51, respectively, and the outer peripheral portions of the vibration plates 41 and 51 are bonded to each other. When an inflow hole 42 is provided in the center of one diaphragm 41 and an outflow hole 52 is provided in the outer periphery of the other diaphragm 51, fluid is sucked from the center on the front side of the piezoelectric microblower B, and Fluid can be discharged from the peripheral part. In this case, by applying a voltage so that the opposing portions of the pair of piezoelectric elements 40 and 50 are displaced symmetrically, the volume of the pocket portion holding the fluid is doubled compared to the case where a fixed plate is used. Therefore, there is an advantage that the flow rate is increased.

上記実施例では、圧電素子を振動板に貼り付けたものを基板上に配置したが、振動板を省略して基板上に直接配置してもよい。但し、その場合には、圧電素子が基板上で移動しないように、何らかの与圧手段によって保持しておく必要がある。
上記実施例では、圧電素子として2層の圧電体層を積層した構造について説明したが、3層以上の圧電体層を積層したものでもよい。薄層化して多数積層した場合には、印加電圧をさらに下げることができる。
また、積層構造とは、単層構造の圧電体を焼成し、表裏面に電極を形成した後、相互に接着したものでもよいし、電極を形成した複数のセラミックグリーンシートを積層し、その後で焼成したものでもよい。積層構造の場合、積層された各圧電体層の分極方向は同一方向に限らず、それぞれの屈曲領域がバイモルフとして駆動するように、適切な方向に分極すればよい。
上記実施例では、本流体移送装置を空気のような圧縮性流体の移送用マイクロブロアとして用いた例を示したが、液体のような非圧縮性流体にも適用することができる。
In the above embodiment, the piezoelectric element attached to the vibration plate is disposed on the substrate. However, the vibration plate may be omitted and disposed directly on the substrate. However, in that case, it is necessary to hold the piezoelectric element by some pressurizing means so that the piezoelectric element does not move on the substrate.
In the above embodiment, the structure in which two piezoelectric layers are stacked as the piezoelectric element has been described. However, a structure in which three or more piezoelectric layers are stacked may be used. When a large number of thin layers are laminated, the applied voltage can be further lowered.
Also, the laminated structure may be a single-layered piezoelectric body fired, electrodes formed on the front and back surfaces, and then adhered to each other, or a plurality of ceramic green sheets on which electrodes are formed are laminated, and then It may be fired. In the case of a laminated structure, the polarization directions of the laminated piezoelectric layers are not limited to the same direction, but may be polarized in an appropriate direction so that each bent region is driven as a bimorph.
In the above embodiment, the fluid transfer device is used as a microblower for transferring a compressible fluid such as air. However, the present invention can also be applied to an incompressible fluid such as a liquid.

本発明の第1実施例の圧電マイクロブロアの全体斜視図である。1 is an overall perspective view of a piezoelectric micro blower according to a first embodiment of the present invention. 図1に示す圧電マイクロブロアの分解斜視図である。It is a disassembled perspective view of the piezoelectric micro blower shown in FIG. 図1の静止時のIII −III 線断面図および駆動時のIII −III 線断面図である。FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 and a cross-sectional view taken along line III-III during driving. 図1に示す圧電マイクロブロアに用いられる圧電素子の断面である。It is a cross section of the piezoelectric element used for the piezoelectric micro blower shown in FIG. 図4に示す圧電素子の電極パターンおよび配線図である。It is an electrode pattern and wiring diagram of the piezoelectric element shown in FIG. 図4に示す圧電素子の一つの領域の屈曲変形を示す図である。It is a figure which shows the bending deformation of one area | region of the piezoelectric element shown in FIG. 図4に示す圧電素子に印加される各電圧の位相を示す図である。It is a figure which shows the phase of each voltage applied to the piezoelectric element shown in FIG. 図4に示す圧電素子の各領域の変位方向を示す平面図である。It is a top view which shows the displacement direction of each area | region of the piezoelectric element shown in FIG. 圧電素子の電極パターンの第2実施例を示す図である。It is a figure which shows 2nd Example of the electrode pattern of a piezoelectric element. 図9に示す圧電素子に印加される各電圧の位相を示す図である。It is a figure which shows the phase of each voltage applied to the piezoelectric element shown in FIG. 圧電素子の第3実施例の断面図である。It is sectional drawing of 3rd Example of a piezoelectric element.

符号の説明Explanation of symbols

A,B 圧電マイクロブロア
1 電圧印加手段
10 基板(固定板)
11 接着部
12 流出口
20 振動板
21 流入口
30 圧電素子
31a,31b 圧電体層
32 全面電極
33a〜33h 分割電極
35a〜35d,36a〜36d 分割電極
A, B Piezoelectric micro blower 1 Voltage application means 10 Substrate (fixed plate)
DESCRIPTION OF SYMBOLS 11 Adhesion part 12 Outflow port 20 Diaphragm 21 Inflow port 30 Piezoelectric element 31a, 31b Piezoelectric layer 32 Whole surface electrode 33a-33h Split electrode 35a-35d, 36a-36d Split electrode

Claims (6)

基板と、この基板上に変位可能に配置された中空円板状の圧電素子とを備えた流体移送装置であって、
上記圧電素子は、この圧電素子より大形でかつ弾性変形自在な振動板の中央部上面に貼り付けられ、上記圧電素子より外周側へ延びる振動板の外周部が上記基板に固定されており、
上記圧電素子には周方向に分割された複数の分割電極が形成されており、
上記分割電極に周方向に順次異なる位相の電圧を印加する電圧印加手段が設けられ、
上記分割電極に周方向に順次異なる位相の電圧を印加することにより、上記圧電素子を周方向に波打ち状に屈曲変形させ、上記振動板と基板との間に生成される中央部から外周部まで連通したポケット室を周方向に移動させることにより、遠心力を利用して中央部から外周方向に流体を移送することを特徴とする流体移送装置。
A fluid transfer device comprising a substrate and a hollow disk-shaped piezoelectric element disposed on the substrate so as to be displaceable,
The piezoelectric element is affixed to the upper surface of the central portion of a diaphragm that is larger and elastically deformable than the piezoelectric element, and the outer peripheral portion of the diaphragm that extends outward from the piezoelectric element is fixed to the substrate.
The piezoelectric element is formed with a plurality of divided electrodes divided in the circumferential direction,
Voltage application means for sequentially applying voltages having different phases in the circumferential direction to the divided electrodes is provided,
By sequentially applying voltages having different phases in the circumferential direction to the divided electrodes, the piezoelectric element is bent and deformed in a wavy shape in the circumferential direction, and from the central part to the outer peripheral part generated between the diaphragm and the substrate. by moving the pocket chamber which communicates with the circumferential direction, the fluid transfer device, characterized in that the transfer fluid in the outer peripheral direction from the central portion by utilizing the centrifugal force.
上記複数の分割電極は、上記中空円板状の圧電素子の周方向に等角度で分割されたものであり、上記圧電素子を屈曲変形させる際に、全周での位相差は4π+2nπ(n=0,1,2…)であり、等角度に分割された複数の分割電極に上記位相差が等配分されることを特徴とする請求項1に記載の流体移送装置。   The plurality of divided electrodes are divided at equal angles in the circumferential direction of the hollow disk-shaped piezoelectric element. When the piezoelectric element is bent and deformed, the phase difference in the entire circumference is 4π + 2nπ (n = 2. The fluid transfer device according to claim 1, wherein the phase difference is equally distributed to a plurality of divided electrodes divided at equal angles. 上記基板および振動板のいずれか一方の中心部に流体の流入口が形成され、上記基板および振動板のいずれか一方の外周部であってかつ上記基板と振動板との固定部より内側位置に流体の流出口が形成されていることを特徴とする請求項1又は2に記載の流体移送装置。 A fluid inflow port is formed at a central portion of one of the substrate and the diaphragm, and is an outer peripheral portion of one of the substrate and the diaphragm and at a position inside the fixing portion between the substrate and the diaphragm. the fluid transfer device according to claim 1 or 2, characterized in that the outlet of the fluid is formed. 上記圧電素子は、分割された複数の分割電極と分割されていない全面電極とを、圧電体層を間にして交互に積層したものであることを特徴とする請求項1ないしのいずれか1項に記載の流体移送装置。 The piezoelectric element, and a whole surface electrode is not divided and divided plurality of divided electrodes, any one of claims 1 to 3, characterized in that is obtained by laminating alternately to between the piezoelectric layers 1 The fluid transfer device according to item. 上記圧電素子は、分割された複数の第1の分割電極と、分割されかつ上記第1の分割電極に対して位相をずらして設けた複数の第2の分割電極とを、圧電体層を間にして交互に積層したものであることを特徴とする請求項1ないし3のいずれか1項に記載の流体移送装置。   The piezoelectric element includes a plurality of divided first divided electrodes and a plurality of second divided electrodes that are divided and provided with a phase shifted with respect to the first divided electrodes. The fluid transfer device according to any one of claims 1 to 3, wherein the fluid transfer devices are alternately stacked. 上記基板は上記圧電素子と振動板とで構成され、上記一対の圧電素子の対向する分割電極同士が同一位相となるように、上記分割電極に周方向に順次異なる位相の電圧を印加することにより、上記一対の圧電素子を屈曲変形させ、一対の圧電素子の間に生成されるポケット室を周方向に移動させることにより、中央部から外周方向に流体を移送することを特徴とする請求項1ないしのいずれか1項に記載の流体移送装置。 The substrate includes the piezoelectric element and the diaphragm, and sequentially applies voltages having different phases in the circumferential direction to the divided electrodes so that the opposed divided electrodes of the pair of piezoelectric elements have the same phase. The fluid is transferred from the central portion to the outer peripheral direction by bending and deforming the pair of piezoelectric elements and moving a pocket chamber generated between the pair of piezoelectric elements in the circumferential direction. 6. The fluid transfer device according to any one of items 5 to 5 .
JP2007195618A 2007-07-27 2007-07-27 Fluid transfer device Active JP5104097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195618A JP5104097B2 (en) 2007-07-27 2007-07-27 Fluid transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195618A JP5104097B2 (en) 2007-07-27 2007-07-27 Fluid transfer device

Publications (2)

Publication Number Publication Date
JP2009030534A JP2009030534A (en) 2009-02-12
JP5104097B2 true JP5104097B2 (en) 2012-12-19

Family

ID=40401305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195618A Active JP5104097B2 (en) 2007-07-27 2007-07-27 Fluid transfer device

Country Status (1)

Country Link
JP (1) JP5104097B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457080B2 (en) * 2009-06-10 2014-04-02 Juki株式会社 Electronic component mounting equipment
US11098347B2 (en) 2014-07-08 2021-08-24 National Institute Of Advanced Industrial Science And Technology Nucleic acid amplification device, nucleic acid amplification method, and chip for nucleic acid amplification
CN110131144B (en) * 2019-06-13 2024-02-27 吉林大学 Valveless piezoelectric air pump with flexible staggered blades based on turbine structure
CN111946613B (en) * 2020-08-25 2022-02-22 扬州大学 Design method of micro disc pump based on laminar boundary layer and rotating magnetic field

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0381585A (en) * 1989-08-24 1991-04-05 Mitsubishi Kasei Corp Piezoelectric pump
JPH0579459A (en) * 1991-09-18 1993-03-30 Yokogawa Electric Corp Micropump

Also Published As

Publication number Publication date
JP2009030534A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP4873075B2 (en) Fluid transfer device
JP4730437B2 (en) Piezoelectric pump
US7972124B2 (en) Piezoelectric micro-blower
US10502199B2 (en) Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
EP2090781B1 (en) Piezoelectric micro-blower
EP2557312B1 (en) Fluid pump
US9109592B2 (en) Piezoelectric micro-blower
Feng et al. Piezoelectrically actuated dome-shaped diaphragm micropump
JP5170250B2 (en) Piezoelectric pump
US8454327B2 (en) Piezoelectric micropump
JP5104097B2 (en) Fluid transfer device
EP2888478A1 (en) Systems and methods for regulating the resonant frequency of a disc pump cavity
US11441555B2 (en) Pump
US20080038125A1 (en) Piezoelectric pump and piezoelectric vibrator
JP2007071070A (en) Diaphragm pump
JP2012107636A (en) Piezoelectric micropump
JP2009097393A (en) Piezoelectric micro blower
JP5459123B2 (en) Pump device and diaphragm actuator
JP2004353638A (en) Micropump
US11879449B2 (en) Piezoelectric pump with vibrating plate, protrusion and valve arrangement
JP2009293507A (en) Piezoelectric pump
CN114962227A (en) Piezoelectric driving gas micropump with double vibration layers and preparation method thereof
CN117028214A (en) Piezoelectric pump vibration substrate structure and piezoelectric micropump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3