JP5103706B2 - Semiconductor device having ferroelectric capacitor and manufacturing method thereof - Google Patents

Semiconductor device having ferroelectric capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP5103706B2
JP5103706B2 JP2004223051A JP2004223051A JP5103706B2 JP 5103706 B2 JP5103706 B2 JP 5103706B2 JP 2004223051 A JP2004223051 A JP 2004223051A JP 2004223051 A JP2004223051 A JP 2004223051A JP 5103706 B2 JP5103706 B2 JP 5103706B2
Authority
JP
Japan
Prior art keywords
film
ferroelectric
semiconductor device
interface
ferroelectric capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004223051A
Other languages
Japanese (ja)
Other versions
JP2006041425A (en
Inventor
正雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004223051A priority Critical patent/JP5103706B2/en
Publication of JP2006041425A publication Critical patent/JP2006041425A/en
Application granted granted Critical
Publication of JP5103706B2 publication Critical patent/JP5103706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

本発明は、不揮発性半導体メモリなどを構成するのに好適な強誘電体キャパシタをもつ半導体装置及びその製造方法の改良に関する。   The present invention relates to a semiconductor device having a ferroelectric capacitor suitable for constituting a nonvolatile semiconductor memory and the like, and an improvement of a manufacturing method thereof.

一般に、自発分極をもつ強誘電体をキャパシタの誘電体として用いた強誘電体キャパシタをもつ不揮発性メモリ、即ち、強誘電体メモリ(ferroelectrics random access memory: FRAM)は、次世代のメモリとして、非接触のICカードなどへの応用が期待されている。   Generally, a non-volatile memory having a ferroelectric capacitor using a ferroelectric material having spontaneous polarization as a capacitor dielectric, that is, a ferroelectric memory (FRAM) is a non-volatile memory as a next generation memory. Application to contact IC cards is expected.

通常、強誘電体は印加電圧を遮断しても残留分極の方向は保存されるので、その性質を利用して“0”と“1”とを判別し、データの不揮発性を実現している。   Usually, the direction of remanent polarization is preserved even when the applied voltage is cut off, so that the ferroelectricity distinguishes between “0” and “1” and realizes data non-volatility. .

現在、半導体基板上に強誘電体膜を堆積する技法としては、スパッタリング法、ゾルゲル法、ゾルゲル法の一種である化学溶液堆積(chemical solution deposition:CSD)法、有機金属化学気相蒸着法などが採用されている(例えば、特許文献1を参照。)。   Currently, techniques for depositing a ferroelectric film on a semiconductor substrate include sputtering, sol-gel, chemical solution deposition (CSD), which is a kind of sol-gel, and metal organic chemical vapor deposition. (For example, refer to Patent Document 1).

キャパシタに於ける誘電体膜は、薄く形成するほど、より低い電圧で分極を反転させることが可能である。微弱な電波しか期待できない非接触のICカード等に応用する場合には、必要とする動作電圧が低くて済むのであれば通信距離は長くなる筈であるから、実用上好ましいこととなる。   The thinner the dielectric film in the capacitor, the more the polarization can be reversed at a lower voltage. When applied to a non-contact IC card or the like where only weak radio waves can be expected, the communication distance should be long if the required operating voltage is low, which is preferable in practice.

ところで、強誘電体膜の膜厚が薄くなると洩れ電流が問題になってくる。洩れ電流が大きくなると、キャパシタに於ける強誘電体膜に電圧がかかり難くなるので、データ書き換え特性やデータ保持特性が悪くなる。従って、洩れ電流は可能な限り低く抑えることが必要である。   By the way, when the thickness of the ferroelectric film is reduced, leakage current becomes a problem. When the leakage current is increased, it is difficult to apply a voltage to the ferroelectric film in the capacitor, so that the data rewriting characteristics and the data retention characteristics are deteriorated. Therefore, it is necessary to keep the leakage current as low as possible.

従来、強誘電体の主成分を構成する陽イオンに比較して大きい価数を有するイオンを添加して洩れ電流を低減する技術が知られているが、イオンの添加量を増加させてゆくと、強誘電体の分極量も低下する為、大きな分極量と低い洩れ電流を両立させることは困難である。
特開平5−259391号公報
Conventionally, a technique for reducing leakage current by adding ions having a higher valence than the cation constituting the main component of the ferroelectric is known. However, if the amount of ions added is increased, Further, since the polarization amount of the ferroelectric material is also reduced, it is difficult to achieve both a large polarization amount and a low leakage current.
JP-A-5-259391

本発明では、大きな分極量を維持し、且つ、リーク電流が低く、しかも、より薄い強誘電体膜で構成された強誘電体キャパシタをもつ半導体装置を提供しようとする。   An object of the present invention is to provide a semiconductor device having a ferroelectric capacitor that maintains a large amount of polarization, has a low leakage current, and is formed of a thinner ferroelectric film.

本発明に依る半導体装置及びその製造方法では、半導体基板上に二つの電極及び該二つの電極間に挟まれたPbZr x Ti 1-x 3 (0<x<1)からなる強誘電体膜で構成された強誘電体キャパシタが形成された半導体装置に於いて、該強誘電体キャパシタに於ける少なくとも一方の電極と強誘電体膜との界面に於ける強誘電体膜側にNb 5+ を該界面近傍から0.2μmを超える深さに至るまで濃度が連続して漸減するように含有させてなることが基本になっている。 The semiconductor device and its manufacturing method according to the present invention, a ferroelectric film composed of PbZr x Ti 1-x O 3 sandwiched between two electrodes and the two electrodes on a semiconductor substrate (0 <x <1) in in the semiconductor device configured ferroelectric capacitor has been formed, the Nb 5+ to in ferroelectric film side at the interface between the in the ferroelectric capacitor at least one of the electrodes and the ferroelectric film Basically, it is contained so that the concentration decreases gradually from the vicinity of the interface to a depth exceeding 0.2 μm .

前記手段を採ることに依り、大きな分極量を維持し、リーク電流が低く、より薄い強誘電体膜をもつ強誘電体キャパシタが得られ、従って、低電圧で動作可能な強誘電体メモリをもつ半導体装置を実現することができる。   By adopting the above-mentioned means, a ferroelectric capacitor having a large amount of polarization, a low leakage current, and a thinner ferroelectric film can be obtained. Therefore, a ferroelectric memory that can operate at a low voltage is provided. A semiconductor device can be realized.

本発明者は、キャパシタに於ける強誘電体−電極界面近傍に、強誘電体を構成する陽イオンより大きい価数の陽イオンが高濃度に分布する領域を形成することで、強誘電体キャパシタのリーク電流を低減できることを見い出した。   The inventor forms a region in which a cation having a higher valence than the cation constituting the ferroelectric is distributed at a high concentration in the vicinity of the ferroelectric-electrode interface in the capacitor. It was found that the leakage current can be reduced.

チタン酸ジルコン酸鉛(PbZrx Ti1-x 3 :PZT)は鉛2価イオンと、チタン及びジルコニウムの4価イオンの陽イオンで構成されているぺロブスカイト構造を有する強誘電体であって、FRAMのキャパシタ材料として用いられている。 Lead zirconate titanate (PbZr x Ti 1-x O 3: PZT) is a ferroelectric having a lead divalent ions, a perovskite structure made up of cations tetravalent ions of titanium and zirconium It is used as a capacitor material for FRAM.

これまで、FRAMの製造工程に於ける劣化を低減したり、或いは、信頼性を向上させる為、La、Sr、Caなどを均一に添加することが行われているが、一般に、ドーパントの添加量が増加するほど強誘電体のスイッチングに依って得られる電荷(QSW)は低下することが知られている。QSWは大きい方が、参照電圧とのマージンを広く採ることができるので、低電圧動作には好適である。 So far, La, Sr, Ca, etc. have been added uniformly in order to reduce deterioration in the manufacturing process of FRAM or improve reliability. It is known that the charge (Q SW ) obtained by the switching of the ferroelectric decreases as the value increases. A larger Q SW is suitable for low-voltage operation because a wider margin with respect to the reference voltage can be taken.

ドーパントを含まないPZTと、5mol%のニオブ(5価の陽イオン)を添加した溶液を用い、CSD法を適用し、PZTキャパシタを作成した。スピンコートを3回行い、3回ともドーパント無しのPZT溶液を用いた本発明に依らない試料(試料1、ドーパント無し)、最初のみNbを含む溶液を用い、他をドーパント無しのPZT溶液を用いた本発明の試料(試料2、下部電極界面に添加)、最後のみNbを含む溶液を用い、他をドーパント無しのPZT溶液を用いた本発明の試料(試料3、上部電極界面に添加)、全てNbを含む溶液を用いた本発明に依らない試料(試料4、全てに添加)の各試料の特性を比較して表1に纏めた。

Figure 0005103706
A PZT capacitor was prepared by applying the CSD method using a solution containing PZT containing no dopant and 5 mol% niobium (pentavalent cation). Spin coating was performed three times, and a sample not using the PZT solution without dopant (sample 1, no dopant) was used for all three times, a solution containing Nb was used only at the beginning, and a PZT solution without dopant was used for the other. Sample of the present invention (sample 2, added to the lower electrode interface), a sample of the present invention using a solution containing Nb only at the end and a PZT solution without a dopant (sample 3, added to the upper electrode interface), Table 1 shows a comparison of the characteristics of each of the samples (sample 4, added to all) that do not depend on the present invention and use a solution containing all Nb.
Figure 0005103706

表1からすると、ドーパント無しのスイッチング電荷量が最も大きく、全体に添加した場合が最もスイッチング電荷が小さく、PZTの電極界面にNbを添加した場合は、それより分極量の低下が小さく、下部電極界面に添加した場合及び上部電極界面に添加した場合を比較すると、上部電極界面に添加した方がより小さくなって好ましいこと、が看取される。   According to Table 1, the switching charge amount without dopant is the largest, the switching charge is the smallest when added to the whole, and when Nb is added to the electrode interface of PZT, the decrease in the polarization amount is smaller than that. When the case of adding to the interface and the case of adding to the upper electrode interface are compared, it can be seen that the addition to the upper electrode interface is smaller and preferable.

図1は本発明に依らないドーパント無しの試料(試料1)、下部電極界面に添加した本発明の試料(試料2)、上部電極界面に添加した本発明の試料(試料3)の各試料に関する洩れ電流特性を表す線図である。   FIG. 1 relates to each sample of a sample without a dopant (sample 1) not depending on the present invention, a sample of the present invention added to the lower electrode interface (sample 2), and a sample of the present invention added to the upper electrode interface (sample 3). It is a diagram showing a leakage current characteristic.

図1からすると、ドーパント無しの試料1は洩れ電流が大きく、下部電極界面に添加した試料2では、上部電極に正電圧を印加したとき、洩れ電流に大きな変化は無いが、負電圧を印加したとき、洩れ電流は低減される。上部電極界面に添加した試料3では、正或いは負の何れの電圧を印加しても洩れ電流は低減されることが看取される。   According to FIG. 1, sample 1 without dopant has a large leakage current, and sample 2 added to the lower electrode interface has a large change in leakage current when a positive voltage is applied to the upper electrode, but a negative voltage is applied. Sometimes the leakage current is reduced. It can be seen that in the sample 3 added to the upper electrode interface, the leakage current is reduced when either positive or negative voltage is applied.

前記したところから、上部電極界面に強誘電体の主成分を構成する陽イオンより価数の大きいイオンを添加することで、分極量を大きく維持したまま、洩れ電流を低減できることが理解されよう。   From the above, it will be understood that leakage current can be reduced while maintaining a large polarization amount by adding ions having a higher valence than the cation constituting the main component of the ferroelectric to the upper electrode interface.

図2乃至図5は本発明一実施例である半導体装置を製造する工程を説明する為の工程要所に於ける半導体装置を表す要部切断側面図であり、以下、これ等の図を参照しつつ説明する。   FIG. 2 to FIG. 5 are side sectional views showing a main part of the semiconductor device in the main points of the process for explaining the process of manufacturing the semiconductor device according to one embodiment of the present invention. However, it will be explained.

図2参照
図2には、ゲート電極で代表される電界効果トランジスタQ1、Q2などが作り込まれたウエーハ21を示してある。尚、21Aは絶縁膜、21Bは導電プラグ、22はウエーハ21を覆う保護膜を表している。
See FIG. 2 FIG. 2 shows a wafer 21 in which field effect transistors Q1, Q2 and the like typified by gate electrodes are formed. Reference numeral 21A denotes an insulating film, 21B denotes a conductive plug, and 22 denotes a protective film that covers the wafer 21.

(1)
ドライエッチング法を適用することに依り、ウエーハ21を覆う保護膜22のエッチングを行って除去する。
(1)
By applying the dry etching method, the protective film 22 covering the wafer 21 is etched and removed.

図3参照
(2)
CVD(chemical vapour deposition)法を適用することに依り、SiO2 からなる絶縁膜23を形成する。
See Fig. 3 (2)
By applying a CVD (Chemical Vapor Deposition) method, the insulating film 23 made of SiO 2 is formed.

(3)
CMP(chemical mechanical polishing)法を適用することに依り、絶縁膜23の研磨を行って平坦化する。
(3)
The insulating film 23 is polished and planarized by applying a CMP (chemical mechanical polishing) method.

(4)
スパッタリング法を適用することに依り、絶縁膜23上に厚さ60nmのチタン膜24及び厚さ200nmの白金膜25を順に成膜する。
(4)
By applying the sputtering method, a titanium film 24 having a thickness of 60 nm and a platinum film 25 having a thickness of 200 nm are sequentially formed on the insulating film 23.

(5)
CSD法を適用することに依り、白金膜25上に強誘電体膜26を形成する。具体的には、先ず、白金膜25上に市販のCSD溶液であるPbZr0.45Ti0.553 溶液をスピンコートし、温度350℃のホットプレート上に2分間載置して熱分解を行う。そして、このプロセスを2回繰り返す。
(5)
A ferroelectric film 26 is formed on the platinum film 25 by applying the CSD method. Specifically, first, a PbZr 0.45 Ti 0.55 O 3 solution, which is a commercially available CSD solution, is spin-coated on the platinum film 25 and placed on a hot plate at a temperature of 350 ° C. for 2 minutes for thermal decomposition. This process is then repeated twice.

次いで、前記CSD溶液を価数が大きい陽イオンとしてニオブ(Nb)を添加したPbZr0.42Ti0.55Nb0.053 溶液に変更し、これをPbZr0.45Ti0.553 膜上にスピンコートし、温度350℃のホットプレート上に2分間載置して熱分解を行う。 Next, the CSD solution is changed to a PbZr 0.42 Ti 0.55 Nb 0.05 O 3 solution to which niobium (Nb) is added as a cation having a large valence, and this is spin-coated on a PbZr 0.45 Ti 0.55 O 3 film at a temperature of 350 Place on a hot plate at 2 ° C. for 2 minutes for thermal decomposition.

次いで、温度650℃の酸素フロー中に於いて10分の加熱を行って結晶化アニールする。この工程(5)を経ることで強誘電体膜26が形成される。   Next, crystallization annealing is performed by heating for 10 minutes in an oxygen flow at a temperature of 650 ° C. Through this step (5), the ferroelectric film 26 is formed.

(6)
スパッタリング法を適用することに依り、厚さ100nmの酸化イリジウム膜27を形成する。その後、温度600℃の酸素フロー中で30分のアニールを行うことで、強誘電体に生じたスパッタリングダメージを回復させる。
(6)
By applying a sputtering method, an iridium oxide film 27 having a thickness of 100 nm is formed. Thereafter, annealing damage is performed for 30 minutes in an oxygen flow at a temperature of 600 ° C., thereby recovering sputtering damage generated in the ferroelectric.

図4参照
(7)
リソグラフィ技術、及び、ドライエッチング法を適用することに依り、酸化イリジウム膜27、強誘電体膜26、白金膜25、チタン膜24のエッチングを行い、上部電極27E、キャパシタ形状の強誘電体膜26C、下部電極24Eを形成して強誘電体キャパシタとする。
Refer to FIG. 4 (7)
By applying a lithography technique and a dry etching method, the iridium oxide film 27, the ferroelectric film 26, the platinum film 25, and the titanium film 24 are etched to form an upper electrode 27E and a capacitor-shaped ferroelectric film 26C. Then, the lower electrode 24E is formed to form a ferroelectric capacitor.

(8)
CVD法を適用することに依り、SiO2 からなる絶縁膜28を形成する。絶縁膜28は強誘電体キャパシタを埋め込むのに充分な厚さとする。
(8)
By applying the CVD method, an insulating film 28 made of SiO 2 is formed. The insulating film 28 has a thickness sufficient for embedding the ferroelectric capacitor.

図5参照
(9)
レジストプロセス及びドライエッチング法を適用することに依り、絶縁膜28の所要位置にビアホールを形成し、次いで、そのビアホールを埋め且つ表面に展延する金属タングステン膜を形成する。
Refer to FIG. 5 (9)
By applying a resist process and a dry etching method, a via hole is formed at a required position of the insulating film 28, and then a metal tungsten film filling the via hole and extending to the surface is formed.

(10)
CMP法を適用することに依り、工程(9)で形成した金属タングステン膜の研磨を行って導電プラグ29を形成する。
(10)
By applying the CMP method, the conductive plug 29 is formed by polishing the metal tungsten film formed in the step (9).

(11)
スパッタリング法、レジストプロセス、ドライエッチング法を適用することに依り、導電プラグ29にコンタクトするアルミニウムからなる配線30を形成して半導体装置を完成する。
(11)
By applying a sputtering method, a resist process, or a dry etching method, a wiring 30 made of aluminum in contact with the conductive plug 29 is formed to complete the semiconductor device.

前記のようにして得られた半導体装置に於ける強誘電体キャパシタは、強誘電体膜26Cと上部電極27Eとの界面に於ける強誘電体膜26側にNbからなる5価イオンが高濃度で存在し、Nb無添加、或いは、Nbを強誘電体膜26全体に添加した場合に比較して分極が大きく、そして、洩れ電流は少ないことが確認されている。   The ferroelectric capacitor in the semiconductor device obtained as described above has a high concentration of pentavalent ions made of Nb on the side of the ferroelectric film 26 at the interface between the ferroelectric film 26C and the upper electrode 27E. It is confirmed that the polarization is large and the leakage current is small as compared with the case where Nb is not added or Nb is added to the entire ferroelectric film 26.

実施例2の工程は、実施例1の工程と対比すると、厚さ60nmのチタン膜24を形成するまでは同じであるから説明を省略し、次の段階から説明する。
(1)
スパッタリング法を適用することに依り、チタン膜上に厚さ200nmのイリジウム膜を形成する。
The process of the second embodiment is the same as the process of the first embodiment until the titanium film 24 having a thickness of 60 nm is formed. Therefore, the description thereof will be omitted, and the description will be made from the next stage.
(1)
By applying the sputtering method, an iridium film having a thickness of 200 nm is formed on the titanium film.

(2)
MOCVD法を適用することに依り、イリジウム膜上にPbZr0.45Ti0.553 膜を成膜する。
(2)
A PbZr 0.45 Ti 0.55 O 3 film is formed on the iridium film by applying the MOCVD method.

次いで、MOCVD法を適用することに依り、価数の大きい陽イオンとして厚さ10nmの酸化ニオブ膜を成膜する。尚、この場合の成膜方法としては、MOCVD法をスパッタリング法に代替することもできる。   Next, a niobium oxide film having a thickness of 10 nm is formed as a cation having a large valence by applying the MOCVD method. In this case, as a film forming method, the MOCVD method can be replaced with a sputtering method.

次いで、熱処理を行って、酸化ニオブをPZT膜中に拡散する。尚、この工程(2)を経ることで強誘電体膜が形成される。   Next, heat treatment is performed to diffuse niobium oxide into the PZT film. A ferroelectric film is formed through this step (2).

(3)
スパッタリング法を適用することに依り、強誘電体膜上に厚さ100nmの酸化イリジウム膜を形成する。
(3)
By applying the sputtering method, an iridium oxide film having a thickness of 100 nm is formed on the ferroelectric film.

(4)
リソグラフィ技術、及び、ドライエッチング法を適用することに依り、酸化イリジウム膜、強誘電体膜、イリジウム膜、チタン膜のエッチングを行い、酸化イリジウムからなる上部電極、キャパシタ形状の強誘電体膜、イリジウム膜及びチタン膜からなる下部電極を形成して強誘電体キャパシタとする。
(4)
By applying lithography technology and dry etching method, iridium oxide film, ferroelectric film, iridium film, titanium film are etched, upper electrode made of iridium oxide, capacitor-shaped ferroelectric film, iridium A lower electrode made of a film and a titanium film is formed to form a ferroelectric capacitor.

(5)
CVD法を適用することに依り、強誘電体キャパシタを埋めるSiO2 からなる絶縁膜を形成し、この後、実施例1と同様にして導電プラグ、配線などを形成して半導体装置を完成する。
(5)
By applying the CVD method, an insulating film made of SiO 2 filling the ferroelectric capacitor is formed, and thereafter, conductive plugs, wirings and the like are formed in the same manner as in Example 1 to complete the semiconductor device.

実施例2の半導体装置に於ける強誘電体キャパシタは、前記説明した実施例1と同様、強誘電体膜と上部電極との界面に於ける強誘電体膜側にNbからなる5価イオンが高濃度で存在し、Nb無添加、或いは、Nbを強誘電体膜全体に添加した場合に比較して分極が大きく、そして、洩れ電流は少ないことを確認した。   In the ferroelectric capacitor in the semiconductor device of Example 2, pentavalent ions made of Nb are present on the ferroelectric film side at the interface between the ferroelectric film and the upper electrode, as in Example 1 described above. It was confirmed that there was a high concentration, the polarization was large, and the leakage current was small compared with the case where Nb was not added or Nb was added to the entire ferroelectric film.

実施例3を実施例1或いは2と対比すると、絶縁膜23を形成して平坦化するまでの工程は同じであるから、次の段階から説明する。
(1)
スパッタリング法を適用することに依り、絶縁膜上に厚さ10nmのチタン膜、厚さ150nmのイリジウム膜を順に形成する。
When the third embodiment is compared with the first or second embodiment, the process from the formation of the insulating film 23 to the planarization is the same.
(1)
By applying the sputtering method, a titanium film having a thickness of 10 nm and an iridium film having a thickness of 150 nm are sequentially formed over the insulating film.

(2)
原料をPb(DPM)2、Zr(DMHD)4、Ti(Oi−Pr)2(DPM)2、Nb(DPM)4の各酢酸ブチル溶液を原料とする溶液気化MOCVD法を適用することに依り、イリジウム膜上に強誘電体膜を形成する。
(2)
Depending on the application of the solution vaporization MOCVD method using butyl acetate solutions of Pb (DPM) 2, Zr (DMHD) 4, Ti (Oi-Pr) 2 (DPM) 2, and Nb (DPM) 4 as raw materials. A ferroelectric film is formed on the iridium film.

具体的に説明すると、プロセスチャンバ内に於いて、ウェーハを620℃に加熱しながら、厚さ100nmのPbZr0.45Ti0.553 膜を成膜する。 More specifically, a PbZr 0.45 Ti 0.55 O 3 film having a thickness of 100 nm is formed while heating the wafer to 620 ° C. in the process chamber.

次いで、前記原料に2.5at%のNbイオンが含有されるように流量を調整しながらPZT原料とNb原料をプロセスチャンバ内に送り込み、厚さ20nmのNbドープPbZr0.45Ti0.553 膜を連続して成膜する。 Next, the PZT raw material and the Nb raw material are fed into the process chamber while adjusting the flow rate so that the raw material contains 2.5 at% Nb ions, and a 20 nm thick Nb-doped PbZr 0.45 Ti 0.55 O 3 film is continuously formed. To form a film.

(3)
スパッタリング法を適用することに依り、強誘電体膜上に厚さ100nmの酸化イリジウム膜を形成する。
(3)
By applying the sputtering method, an iridium oxide film having a thickness of 100 nm is formed on the ferroelectric film.

(4)
リソグラフィ技術、及び、ドライエッチング法を適用することに依り、酸化イリジウム膜、強誘電体膜、イリジウム膜、チタン膜のエッチングを行い、酸化イリジウムからなる上部電極、キャパシタ形状の強誘電体膜、イリジウム膜及びチタン膜からなる下部電極を形成して強誘電体キャパシタとする。
(4)
By applying lithography technology and dry etching method, iridium oxide film, ferroelectric film, iridium film, titanium film are etched, upper electrode made of iridium oxide, capacitor-shaped ferroelectric film, iridium A lower electrode made of a film and a titanium film is formed to form a ferroelectric capacitor.

(5)
CVD法を適用することに依り、SiO2 からなる絶縁膜を形成し、この後、実施例1と同様にして導電プラグ、配線などを形成して強誘電体キャパシタをもつ半導体装置を完成する。
(5)
By applying the CVD method, an insulating film made of SiO 2 is formed, and thereafter, conductive plugs, wirings and the like are formed in the same manner as in Example 1 to complete a semiconductor device having a ferroelectric capacitor.

実施例3の半導体装置に於ける強誘電体キャパシタは、前記説明した実施例1或いは実施例2と同様、強誘電体膜と上部電極との界面に於ける強誘電体膜側にNbからなる5価イオンが高濃度で存在し、Nb無添加、或いは、Nbを強誘電体膜全体に添加した場合に比較して分極が大きく、そして、洩れ電流は少ないことを確認した。   The ferroelectric capacitor in the semiconductor device of Example 3 is made of Nb on the ferroelectric film side at the interface between the ferroelectric film and the upper electrode, as in Example 1 or Example 2 described above. It was confirmed that pentavalent ions exist at a high concentration, Nb was not added, or Nb was added to the entire ferroelectric film, and the polarization was large and the leakage current was small.

図6は本発明に依り上部電極界面のPZT膜側にニオブイオンをドープした場合の厚さ方向に於ける各イオンの深さプロファイルを表す線図である。   FIG. 6 is a diagram showing the depth profile of each ion in the thickness direction when niobium ions are doped on the PZT film side of the upper electrode interface according to the present invention.

図について留意すべきことは、縦軸は2次イオン強度であって濃度ではないこと、各イオンで検出し易さが相違する為、各イオン間に定量性はないこと、例えば、化学式からは酸素イオンは鉛イオンの約3倍であるが強度は異なること、深さ方向はエッチングレートから算出しているので、PZTの膜厚から予想される界面(0.24μm)と検出された界面深さとは必ずしも一致しないことである。また、深さゼロが上部電極との界面を示している。   It should be noted about the figure that the vertical axis is the secondary ion intensity and not the concentration, and because the ease of detection of each ion is different, there is no quantitativeness between each ion, for example, from the chemical formula The oxygen ion is about 3 times the lead ion, but the strength is different, and the depth direction is calculated from the etching rate, so the interface depth expected from the PZT film thickness (0.24 μm) and the detected interface depth Is not necessarily the same. A depth of zero indicates an interface with the upper electrode.

図からすると、上部電極界面、即ち、PZT膜表面にニオブイオンが高濃度でドーピングされていることが看取できよう。   From the figure, it can be seen that the upper electrode interface, that is, the surface of the PZT film is doped with niobium ions at a high concentration.

本発明に於いては、前記説明した実施例を含め、多くの形態で実施することができ、以下、それを付記として例示する。   In the present invention, the present invention can be implemented in many forms including the above-described embodiment, which will be exemplified below as supplementary notes.

(付記1)
半導体基板上に二つの電極及び該二つの電極間に挟まれたPbZr x Ti 1-x 3 (0<x<1)からなる強誘電体膜で構成された強誘電体キャパシタが形成された半導体装置に於いて、
該強誘電体キャパシタに於ける少なくとも一方の電極と強誘電体膜との界面に於ける強誘電体膜側にNb 5+ を該界面近傍から0.2μmを超える深さに至るまで濃度が連続して漸減するように含有させてなること
を特徴とする強誘電体キャパシタをもつ半導体装置。
(Appendix 1)
PbZr sandwiched between two electrodes and the two electrodes on a semiconductor substrate x Ti 1-x O 3 ( 0 <x <1) a ferroelectric capacitor composed of a ferroelectric film made of formed In semiconductor devices,
Concentration the interface Nb 5+ on in the ferroelectric film side of the ferroelectric capacitor at least one of the electrode and the ferroelectric film down to a depth of more than 0.2μm from the interface vicinity semiconductor equipment having a ferroelectric capacitor, wherein a continuously formed by incorporating to gradually decrease.

(付記
前記Nb 5+ 最高濃度となる位置が、電極と強誘電体膜との界面に於ける強誘電体膜側に在ることを特徴とする付記1記載の強誘電体キャパシタをもつ半導体装置。
(Appendix 2 )
Maximum concentration and a position of the Nb 5+ is a semiconductor equipment having a ferroelectric capacitor according to appendix 1, characterized in that located in at ferroelectric film side at the interface between the electrode and the ferroelectric film .

(付記
前記Nb 5+ 濃度が主成分の全体に対して5mol%以下であること
を特徴とする付記1記載の強誘電体キャパシタをもつ半導体装置。
(Appendix 3 )
The semiconductor device having a ferroelectric capacitor according to appendix 1, wherein the concentration of the Nb 5+ is less than 5 mol% relative to the total of the main component.

(付記
PbZr x Ti 1-x 3 (0<x<1)からなる強誘電体膜、酸化ニオブ膜、電極を順に形成し、
強誘電体膜と電極との界面に於ける強誘電体膜側にNb 5+ を該界面近傍から0.2μmを超える深さに至るまで濃度が連続して漸減するように含有させて強誘電体キャパシタを形成することを特徴とする強誘電体キャパシタをもつ半導体装置の製造方法。
(Appendix 4 )
A ferroelectric film composed of PbZr x Ti 1-x O 3 (0 <x <1), a niobium oxide film , and an electrode are formed in this order.
It is contained so that the concentration of Nb 5+ on in the ferroelectric film side at the interface between the ferroelectric film and the electrode up to a depth of more than 0.2μm from the interface vicinity is gradually reduced continuously A method of manufacturing a semiconductor device having a ferroelectric capacitor, comprising forming a ferroelectric capacitor .

(付記
前記強誘電体膜を形成する際、化学溶液堆積法、化学気相蒸着法、スパッタリング法から選択した方法を適用して成膜すること
を特徴とする付記4に記載の強誘電体キャパシタをもつ半導体装置の製造方法。
(Appendix 5 )
5. The ferroelectric capacitor according to appendix 4, wherein the ferroelectric film is formed by applying a method selected from a chemical solution deposition method, a chemical vapor deposition method, and a sputtering method. A method for manufacturing a semiconductor device.

本発明に依らないドーパント無しの試料(試料1)、下部電極界面に添加した本発明の試料(試料2)、上部電極界面に添加した本発明の試料(試料3)の各試料に関する洩れ電流特性を表す線図である。Leakage current characteristics for each sample of the sample without the dopant (Sample 1) not depending on the present invention, the sample of the present invention added to the lower electrode interface (Sample 2), and the sample of the present invention added to the upper electrode interface (Sample 3) FIG. 本発明一実施例である半導体装置を製造する工程を説明する為の工程要所に於ける半導体装置を表す要部切断側面図である。It is a principal part cutting side view showing the semiconductor device in the process important point for demonstrating the process of manufacturing the semiconductor device which is one Example of this invention. 本発明一実施例である半導体装置を製造する工程を説明する為の工程要所に於ける半導体装置を表す要部切断側面図である。It is a principal part cutting side view showing the semiconductor device in the process important point for demonstrating the process of manufacturing the semiconductor device which is one Example of this invention. 本発明一実施例である半導体装置を製造する工程を説明する為の工程要所に於ける半導体装置を表す要部切断側面図である。It is a principal part cutting side view showing the semiconductor device in the process important point for demonstrating the process of manufacturing the semiconductor device which is one Example of this invention. 本発明一実施例である半導体装置を製造する工程を説明する為の工程要所に於ける半導体装置を表す要部切断側面図である。It is a principal part cutting side view showing the semiconductor device in the process important point for demonstrating the process of manufacturing the semiconductor device which is one Example of this invention. 本発明に依り上部電極界面のPZT膜側にニオブイオンをドープした場合の厚さ方向に於ける各イオンの深さプロファイルを表す線図である。It is a diagram showing the depth profile of each ion in the thickness direction when the niobium ions are doped on the PZT film side of the upper electrode interface according to the present invention.

符号の説明Explanation of symbols

21 ウェーハ
21A 絶縁膜
21B 導電プラグ
22 保護膜
23 絶縁膜
24 チタン膜
24E 下部電極
25 白金膜
25E 下部電極
26 強誘電体膜
26C キャパシタ形状の強誘電体膜
27 酸化イリジウム膜
27E 上部電極
28 絶縁膜
29 導電プラグ
30 配線
21 Wafer 21A Insulating film 21B Conductive plug 22 Protective film 23 Insulating film 24 Titanium film 24E Lower electrode 25 Platinum film 25E Lower electrode 26 Ferroelectric film 26C Capacitor-shaped ferroelectric film 27 Iridium oxide film 27E Upper electrode 28 Insulating film 29 Conductive plug 30 Wiring

Claims (5)

半導体基板上に二つの電極及び該二つの電極間に挟まれたPbZrx Ti1-x3 (0<x<1)からなる強誘電体膜で構成された強誘電体キャパシタが形成された半導体装置に於いて、
該強誘電体キャパシタに於ける少なくとも一方の電極と該強誘電体膜との界面に於ける該強誘電体膜側にNb 5+ を該界面近傍から0.2μmをえる深さに至るまで濃度が連続して漸減するように含有させてなること
を特徴とする強誘電体キャパシタをもつ半導体装置。
PbZr sandwiched between two electrodes and the two electrodes on a semiconductor substrate x Ti 1-x O 3 ( 0 <x <1) a ferroelectric capacitor composed of a ferroelectric film made of formed In semiconductor devices,
Concentration Nb 5+ to in ferroelectric film side at the interface between the ferroelectric capacitor at least one of the electrodes and the ferroelectric film from the interface vicinity until the 0.2μm ultra El depth A semiconductor device having a ferroelectric capacitor, characterized in that it is contained so as to gradually decrease.
前記界面は前記強誘電体キャパシタの上部電極と前記強誘電体膜との界面であること
を特徴とする請求項1記載の強誘電体キャパシタをもつ半導体装置。
2. The semiconductor device having a ferroelectric capacitor according to claim 1 , wherein the interface is an interface between an upper electrode of the ferroelectric capacitor and the ferroelectric film.
前記電極は白金またはインジウムを含むこと
を特徴とする請求項1または請求項2に記載の強誘電体キャパシタをもつ半導体装置。
The semiconductor device having a ferroelectric capacitor according to claim 1, wherein the electrode contains platinum or indium.
前記Nb 5+ 最高濃度となる位置が、前記電極と前記強誘電体膜との界面に於ける前記強誘電体膜側に在ること
を特徴とする請求項1記載の強誘電体キャパシタをもつ半導体装置。
2. The ferroelectric capacitor according to claim 1, wherein the position where the highest concentration of Nb 5+ is present is on the ferroelectric film side at the interface between the electrode and the ferroelectric film. Semiconductor device.
PbZr x Ti 1-x 3 (0<x<1)からなる強誘電体膜、酸化ニオブ膜、電極を順に形成し、
該強誘電体膜と該電極との界面に於ける該強誘電体膜側にNb 5+ を該界面近傍から0.2μmをえる深さに至るまで濃度が連続して漸減するように含有させて強誘電体キャパシタを形成することを特徴とする強誘電体キャパシタをもつ半導体装置の製造方法。
A ferroelectric film composed of PbZr x Ti 1-x O 3 (0 <x <1), a niobium oxide film , and an electrode are formed in this order.
It is contained as the ferroelectric film and the concentration Nb 5+ to in ferroelectric film side at the interface between the electrode from the interface vicinity until the 0.2μm ultra El depth is gradually reduced continuously A method of manufacturing a semiconductor device having a ferroelectric capacitor, comprising forming a ferroelectric capacitor.
JP2004223051A 2004-07-30 2004-07-30 Semiconductor device having ferroelectric capacitor and manufacturing method thereof Expired - Fee Related JP5103706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223051A JP5103706B2 (en) 2004-07-30 2004-07-30 Semiconductor device having ferroelectric capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223051A JP5103706B2 (en) 2004-07-30 2004-07-30 Semiconductor device having ferroelectric capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006041425A JP2006041425A (en) 2006-02-09
JP5103706B2 true JP5103706B2 (en) 2012-12-19

Family

ID=35906057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223051A Expired - Fee Related JP5103706B2 (en) 2004-07-30 2004-07-30 Semiconductor device having ferroelectric capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5103706B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126252B2 (en) * 2010-03-08 2013-01-23 セイコーエプソン株式会社 Capacitor, ferroelectric memory device, actuator, and liquid jet head
JP6036460B2 (en) 2013-03-26 2016-11-30 三菱マテリアル株式会社 Method for forming PNbZT ferroelectric thin film
JP2015065430A (en) * 2013-08-27 2015-04-09 三菱マテリアル株式会社 PNbZT THIN FILM MANUFACTURING METHOD

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206788A (en) * 1991-12-12 1993-04-27 Ramtron Corporation Series ferroelectric capacitor structure for monolithic integrated circuits and method
KR100360468B1 (en) * 1995-03-20 2003-01-24 삼성전자 주식회사 manufacturing method of ferroelectric film, capacator adopting the film and menufacturing method of the capacator
JP3258899B2 (en) * 1996-03-19 2002-02-18 シャープ株式会社 Ferroelectric thin film element, semiconductor device using the same, and method of manufacturing ferroelectric thin film element
JPH104181A (en) * 1996-06-17 1998-01-06 Sharp Corp Ferroelectric element and semiconductor device
JP2002525876A (en) * 1998-09-24 2002-08-13 テルコーディア テクノロジーズ インコーポレイテッド Ferroelectric thin film with low tetragonality
JP4578774B2 (en) * 2003-01-08 2010-11-10 富士通株式会社 Method for manufacturing ferroelectric capacitor

Also Published As

Publication number Publication date
JP2006041425A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
US6649957B2 (en) Thin film polycrystalline memory structure
JP4998461B2 (en) Semiconductor device and manufacturing method thereof
JP4884104B2 (en) Semiconductor device including capacitor and manufacturing method thereof
JP4299959B2 (en) Manufacturing method of semiconductor device
JP2015149354A (en) Semiconductor device and method of manufacturing the same
KR100785837B1 (en) Semiconductor device and method for manufacturing the same
JP2009272319A (en) Ferroelectric memory device and method of manufacturing same
JP4445091B2 (en) Ferroelectric memory element
JP2008135543A (en) Nonvoltatile memory device and manufacturing method thereof
JP2007317765A (en) Ferroelectric memory, and its manufacturing method
JP2003218325A (en) Ferroelectric film forming method and semiconductor device manufacturing method
JP4537899B2 (en) Film-forming method and semiconductor device manufacturing method
JP5103706B2 (en) Semiconductor device having ferroelectric capacitor and manufacturing method thereof
JP4823895B2 (en) Semiconductor device and manufacturing method thereof
JP5561300B2 (en) Manufacturing method of semiconductor device
US6855973B2 (en) Semiconductor memory device including a capacitor an upper electrode of which being resistant of exfoliation
US6958501B2 (en) Contact-making structure for a ferroelectric storage capacitor and method for fabricating the structure
JP2005093605A (en) Semiconductor device and its manufacturing method
US11393833B2 (en) Ferroelectric random access memory device with seed layer
US20220320123A1 (en) Ferroelectric random access memory device with seed layer
JP2003152167A (en) Capacitor of semiconductor element and its manufacturing method
KR100896027B1 (en) Semiconductor device and process for fabricating the same
CN100355042C (en) Method of making layered superlattice material with ultra-thin top layer
JP2007184440A (en) Ferroelectric capacitor and manufacturing method thereof
JP4697437B2 (en) Ferroelectric memory and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees