JP5103704B2 - Pulsaring and rotation detector - Google Patents

Pulsaring and rotation detector Download PDF

Info

Publication number
JP5103704B2
JP5103704B2 JP2001276196A JP2001276196A JP5103704B2 JP 5103704 B2 JP5103704 B2 JP 5103704B2 JP 2001276196 A JP2001276196 A JP 2001276196A JP 2001276196 A JP2001276196 A JP 2001276196A JP 5103704 B2 JP5103704 B2 JP 5103704B2
Authority
JP
Japan
Prior art keywords
magnetic
pulsar ring
magnetic sensor
ring
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001276196A
Other languages
Japanese (ja)
Other versions
JP2003083765A (en
Inventor
稔博 羽方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2001276196A priority Critical patent/JP5103704B2/en
Publication of JP2003083765A publication Critical patent/JP2003083765A/en
Application granted granted Critical
Publication of JP5103704B2 publication Critical patent/JP5103704B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルサリングおよびこれを用いた回転検出装置に関する。
【0002】
【従来の技術】
自動車のアンチロックブレーキシステムにおいては、車輪の軸受装置に、回転検出装置としてパルサリングと磁気センサとを備えたものがある。この回転検出装置の場合、通常、回転を検出される回転側にパルサリングが、回転を検出する固定側に磁気センサが取り付けられる。パルサリングと磁気センサは、軸方向あるいは径方向で対向配置されている。
【0003】
このような回転検出装置におけるパルサリングの被検知面には、周方向交互にS極とN極とが着磁されて構成され、その回転に伴ない、磁気センサに対してその回転速度に対応して交互に異なる極性の磁力を発生する。そして、磁気センサは、その発生磁力に基づいて回転側における回転状態を検知できるようになっている。
【0004】
【発明が解決しようとする課題】
上記従来のパルサリングは被検知面が外部に露呈しているので、その外表面に鉄粉等の磁性異物が付着することがある。特に、上記従来のパルサリングは、被検知面が着磁ゴム材であるため、磁性異物が付着するととれにくく、この磁性異物の付着量が多くなると、磁力が低下し、磁気センサによる検出精度が低下する傾向となる。
【0005】
したがって、本発明は、パルサリングの被検知面に鉄粉等の磁性異物を付着しにくくし、磁気センサと共に回転検出装置として使用された場合、その回転検出精度を向上することを解決すべき課題とする。
【0006】
【課題を解決するための手段】
本発明のパルサリングは、磁気センサと対となって回転検出装置を構成するパルサリングであって、周方向交互に異なる磁極が設けられかつ円周所定位置に前記磁気センサが対向される被検知面を有し、この被検知面の外表面に、非磁性材が付着され、前記非磁性材の表面の摩擦係数が、前記被検知面の表面の摩擦係数よりも小に設定されるとともに、前記非磁性材の厚さが、前記パルサリングの磁力を弱くするとともに、前記磁気センサの検知精度に影響を与えないように設定されていることを特徴とする。
【0007】
この非磁性材は、膜状であっても板状であってもよい。
【0008】
本発明のパルサリングによれば、被検知面の外表面に、非磁性材が付着されているので、非磁性材の厚み分だけ磁性異物を吸着する磁力は弱くなる。そのため、磁性異物が付着しにくくなる。仮に磁性異物が付着しても、その吸着力は弱くなっているので、回転体の遠心力を受けることで磁性異物はパルサリングから剥れやすくなる。
【0009】
本発明の場合、前記磁極が、磁性粉を分散混入したゴム材を磁化することにより得られるものであっても、回転体の遠心力を受けることで磁性異物はパルサリングから容易に剥されやすくなる。
【0010】
本発明の場合、前記非磁性材の表面の摩擦係数が、前記被検知面の表面の摩擦係数よりも小に設定されているので、磁性異物が付着する表面は滑りやすくなる。その上、非磁性材の厚み分だけ磁力による吸着力は弱くなっているので、さらに磁性異物は付着しにくくなる。仮に磁性異物が付着しても磁性異物はより一層剥れやすくなる。
【0011】
【発明の実施の形態】
本発明の詳細を図面に示す実施形態に基づいて説明する。本発明の軸受装置は、車軸用軸受装置(ハブユニット)に適用して説明されるが、本発明は、車軸用軸受装置に限定されるものではなく他の軸受装置にも適用される。
【0012】
図1ないし図4は、本実施の形態に係り、図1は、ハブユニットの縦断面図、図2は、図1の要部の拡大断面図、図3は、図1の要部の分解斜視図、図4は、図1の要部の作用説明に供する図である。
【0013】
図1において、1はハブユニット、2は車軸、3は車軸ケースである。図1で示されるハブユニット1の左側は、車両アウター側となり、右側は、車両インナー側となる。
【0014】
ハブユニット1は、ハブホイール4と、転がり軸受5とを備えている。
【0015】
ハブホイール4は、不図示の車輪が取り付けられる径方向外向きのフランジ41と、中空の軸部42とを備えている。
【0016】
ハブホイール4の軸部42の外周面には転がり軸受5が外嵌装着されている。
【0017】
転がり軸受5は、複列外向きアンギュラ玉軸受からなり、ハブホイール4の軸部42の小径外周面に圧入外嵌される一方内輪51と、二列の軌道溝を有する単一の外輪52と、二列で配設される複数の玉53と、二つの冠形保持器54、54とを備える。ハブホイール4の軸部42の大径外周面は、転がり軸受5の他方内輪に用いられる。
【0018】
転がり軸受5の外輪52の外周には、径方向外向きのフランジ55が設けられている。転がり軸受5は、このフランジ55を介して車軸ケース3に固定される。
【0019】
また、図1において、6は、環状のパルサリング支持体、7は環状の磁気センサ支持体、8は回転検出装置である。
【0020】
パルサリング支持体6は、転がり軸受5の内輪51の軸端外周面に圧入外嵌される円筒部61と、この円筒部61の軸端から径方向に沿って外方に延びる環状部62とを備える。
【0021】
磁気センサ支持体7は、転がり軸受5の外輪52の軸端外周部に対して圧入外嵌されている車両アウター側に延びる円筒部71と、内・外輪51、52間の環状空間を閉塞する環状部72と、車両インナー側に伸びる円筒部73とを備える。この円筒部73の内周面に車軸2の外周面に接触される弾性リップ74が接着される。円筒部71の円周1箇所に径方向内外に貫通する磁気センサ取付用開口部75が設けられる。
【0022】
回転検出装置8は、アクティブタイプであって、パルサリング10と、磁気センサ20とを備える。
【0023】
パルサリング10は、磁性材を用いて環状に形成され、磁気センサ20と対向する被検知面に周方向交互に互いに異なる磁極であるS極とN極が着磁されている。また、パルサリング10は、磁性粉を分散混入したゴム材を磁化することで得られるものである。
【0024】
磁気センサ20は、周知のホールICとされる。このホールICは、詳細に図示していないが、ICチップを合成樹脂からなる保護カバーでモールドされて構成されている。磁気センサ20の外形は、直方体形状とされており、その上端からコード端21が引き出されている。
【0025】
磁気センサ20の軸方向における車両アウター側に面した側面は、検知面とされ、また、磁気センサ20の上端面は、軸方向に張り出した環状張出片22が形成されている。
【0026】
パルサリング10は、パルサリング支持体6の環状部62に貼着され、また、磁気センサ20は、その検知面がパルサリング10と軸方向で対向するよう、磁気センサ支持体7の開口部75を挿通されて転がり軸受5の外輪52の軸端に取り付けられる。
【0027】
以上の構成において、パルサリング10の被検知面と、磁気センサ20の検知面は、互いに軸方向で対向する。
【0028】
次に、本実施の形態の特徴について説明する。
【0029】
本実施の形態では、パルサリング10の被検知面に、非磁性材11が付着されている。
【0030】
最初に、非磁性材11の厚さtについて説明する。
【0031】
非磁性材11は、その厚さtに対応してパルサリング10が発生する磁力を弱めることで、その表面における磁性異物に対する磁力による吸着力を弱める作用をする。この場合、非磁性材11を通過した後の磁力が小さすぎると、磁気センサ20での検知精度が低下するおそれがある。そこで、非磁性材11は、磁性異物の付着を防止できる一方で、磁気センサ20に対してはその検知精度に影響を与えない所要の厚さtに構成される。
【0032】
次に、非磁性材11の表面の摩擦係数μ2について説明する。
【0033】
非磁性材11の表面の摩擦係数μ2は、パルサリング10の被検知面の摩擦係数μ1よりも小に設定される。
【0034】
非磁性材11の表面の摩擦係数μ2は、小さくなればなるほど非磁性材11の表面は滑りやすくなり、磁性異物は、回転体の遠心力でパルサリングから剥れやすくなるので、非磁性材11の表面の摩擦係数μ2は、小さくなればなるほどよい。
【0035】
そこで、非磁性材11の表面の摩擦係数μ2をパルサリング10の被検知面の摩擦係数μ1より小に設定する方法としては、摩擦係数が小さい素材を非磁性材11として用いる方法と、非磁性材11の表面粗さ(例えばJISB0601の十点平均粗さ)Rzを小さくする方法と、この2つの方法を合わせた方法との3通りの方法ある。
【0036】
最後に、非磁性材11と磁気センサ20との軸方向の対向間隔Aについて説明する。
【0037】
従来(非磁性材11がない場合)は、パルサリング10の被検知面と磁気センサ20との軸方向の対向間隔Bは、必要とされる磁気センサからの出力あるいはハブユニットの種類に従って定められる値であった。
【0038】
非磁性材11を設けた構成では、非磁性材11と磁気センサ20との軸方向の対向間隔Aを、必要とされる磁気センサからの出力あるいはハブユニットの種類に従って定められる値としてもよいし、従来通り、パルサリング10の被検知面と磁気センサ20との軸方向の対向間隔Bを、必要とされる磁気センサからの出力あるいはハブユニットの種類に従って定められる値としてもよい。
【0039】
図4を参照して、動作を説明する。
【0040】
図4で示すように、パルサリング10の非磁性材11に磁性異物Sが付着するとき、この磁性異物Sは、非磁性材11の厚さt分だけ、パルサリング10の被検知面から離れることになる。
【0041】
このとき、パルサリング10の被検知面に、非磁性部材11が無く直接、磁性異物Sが付着した場合に、パルサリング10から磁性異物Sに加わる磁力をF1(直接磁力F1)とし、また、非磁性材11を介して間接的にパルサリング10から磁性異物Sに加わる磁力をF2(間接磁力F2)とする。当然、直接磁力F1>間接磁力F2となる。
【0042】
また、パルサリング10の表面の摩擦係数をμ1、非磁性材11の表面の摩擦係数をμ2とすると、μ1>μ2の関係が成立するから、磁性異物Sは、パルサリング10の表面よりも、非磁性材11の表面の方が、滑りすい。
【0043】
仮に磁性異物Sが付着しても、非磁性材11を介して付着したときの摩擦力μ22は、直接付着したときの摩擦力μ11に比べて、当然、弱くなるので、磁性異物Sは、内輪51の回転と伴なう遠心力Wを受けて、パルサリング10の非磁性材11の表面から容易に剥離する。
【0044】
以上のことから、パルサリング10に非磁性材11を設けることで、磁性異物Sは、パルサリング10の磁力により吸着されにくく、また、非磁性材11の表面は滑りやすいので、結局、磁性異物Sは、遠心力Wを受けて、パルサリング10の非磁性材11表面から容易に剥離する。
【0045】
磁性異物Sがパルサリング10に付着しないことによりパルサリング10の磁力低下を防止できる。
【0046】
なお、本発明は上記実施形態のみに限定されるものではなく、種々な応用や変形が考えられる。
【0047】
(1)上記実施形態では、パルサリング10と磁気センサ20とが軸方向で対向した例を挙げているが、例えば、図5の実施形態のように、径方向で対向させてもよい。パルサリング10およびパルサリング支持体6が円筒形に形成され、パルサリング支持体6の外周面にパルサリング10が貼着されるようにする。
【0048】
パルサリング10の被検知面に、非磁性材11が設けられる。さらに、磁気センサ20の検知面は、径方向下向きにパルサリング10の被検知面に径方向で対向している。
【0049】
(2)上記実施形態では、磁気センサ20を磁気センサ支持体7に対して径方向から着脱するようにした例を挙げているが、図示しないが、軸方向から着脱させるようにしてよい。
【0050】
(3)上記実施形態では、転がり軸受5の車両インナー側端部に回転検出装置8を設けた例を挙げているが、転がり軸受5の車両アウター側端部に回転検出装置8を設ける構成にしてもよい。
【0051】
(4)上記実施形態では、転がり軸受5はハブホイール4の軸部42の外周面を一方の内輪として利用した例を挙げているが、例えば、図6に示す実施形態のように、ハブホイール4と内輪56とを別体とした2つの内輪51、56が並列に設けられたハブユニット100を使用してもよい。
【0052】
このようなハブユニット100の転がり軸受5の車両アウター側端部に対して、本発明の係る回転検出装置8が取り付けられる。
【0053】
磁気センサ20は、転がり軸受5に取付穴を設けて取り付けられる。
【0054】
パルサリング10は、前記内輪56の車両アウター側の外端部に断面L字状のパルサリング支持体6に取り付けられる。パルサリング支持体6の環状板部62の車両アウト面に磁気センサ20と対向するようにパルサリング10が貼着される。このパルサリング10の磁気センサ20と対向する面に非磁性材からなる非磁性材11が設けられる。
【0055】
(5)上記実施形態の場合、パルサリング10と磁気センサ20において、パルサリング10は、パルサリング支持体6を介して内輪51に、また、磁気センサ20は、磁気センサ支持体7を介して外輪52に、それぞれ、固定されている。
【0056】
パルサリング支持体6と内輪51とを含めて軸体とし、磁気センサ支持体7と外輪52とを含めて筒体とすることができる。そして、前記軸体は回転部材側となり、筒体は固定部材側となる。
【0057】
この場合、パルサリング10と磁気センサ20は、相対回転する関係があればよいから、筒体と軸体のいずれか一方を固定部材側、他方を回転部材側とし、その固定部材側または回転部材側の一方にパルサリング10を、他方に磁気センサ20を設けてもよい。
【0058】
(6)上記実施形態では、回転検出装置を、自動車の駆動車軸用のハブユニットに利用した例を挙げているが、図示しないが周知の従動車軸用のハブユニットにも利用することができる。その他、具体例は挙げないが、要するに、本発明の回転検出装置は、産業機械などの相対回転可能に同心配置される筒体と軸体とのうち、回転する側の部材の回転状態を検出する必要のある場所に使用することができる。
【0059】
【発明の効果】
以上のように、請求項1または2の発明によれば、パルサリングの表面に対して所要の厚さの非磁性材が設けられているから、その厚みの分だけ磁性異物に対するパルサリングからの磁力による吸着力は弱くなる。そのため、パルサリングに磁性異物は付着しにくくなり、仮に付着しても吸着力は弱くなっているので、回転体の遠心力を受けることで磁性異物は剥れやすくなる。よって、磁性異物の付着を防止して、軸受装置における回転検出装置の性能を向上させる。
また、非磁性材の表面の摩擦係数が、パルサリングの被検知面の表面の摩擦係数よりも小さいので、非磁性材の表面はパルサリングの被検知面の表面よりも滑りやすくなる。その上、非磁性材の厚み分だけ磁力による吸着力は弱くなっているので、さらに磁性異物は付着しにくくなる。仮に磁性異物が付着しても磁性異物はより一層剥れやすくなる。
【0060】
請求項2の発明によれば、パルサリングが磁性粉を分散混入したゴム材を磁化したものであっても、上記同様、回転体の遠心力を受けることで磁性異物はパルサリングから剥されやすくなる。
【0062】
請求項の発明によれば、上記請求項1または2のパルサリングを備える構成だから、パルサリングと磁気センサの対向隙間に異物が混在しにくくなり、結果的に磁気センサによる検出精度が向上する。
【図面の簡単な説明】
【図1】本発明の実施形態に係るハブユニットの縦断面図
【図2】図1の要部を拡大して示す断面図
【図3】図1の要部を拡大して示す分解斜視図
【図4】図1の要部の作用説明に供する断面図
【図5】本発明の他の実施形態に係るハブユニットの要部を拡大して示す断面図
【図6】本発明のさらに他の実施形態に係るハブユニットの縦断面図
【符号の説明】
5 転がり軸受
8 回転検出装置
10 パルサリング
11 非磁性材
20 磁気センサ
51 内輪
52 外輪
μ1 パルサリングの被検知面の摩擦係数
μ2 非磁性材の表面の摩擦係数
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulsar ring and a rotation detection device using the same.
[0002]
[Prior art]
Some anti-lock braking systems for automobiles include a wheel bearing device including a pulsar ring and a magnetic sensor as a rotation detection device. In the case of this rotation detection device, normally, a pulsar ring is attached to the rotation side where rotation is detected, and a magnetic sensor is attached to the fixed side where rotation is detected. The pulsar ring and the magnetic sensor are arranged to face each other in the axial direction or the radial direction.
[0003]
The surface to be detected for pulsar ring in such a rotation detection device is composed of S poles and N poles alternately magnetized in the circumferential direction, and corresponds to the rotation speed of the magnetic sensor with the rotation. Alternately generate magnetic forces of different polarities. The magnetic sensor can detect the rotation state on the rotation side based on the generated magnetic force.
[0004]
[Problems to be solved by the invention]
In the conventional pulsar ring, since the surface to be detected is exposed to the outside, magnetic foreign matters such as iron powder may adhere to the outer surface. In particular, the conventional pulsar ring has a surface to be detected made of a magnetized rubber material, so it is difficult to remove magnetic foreign matter. If the amount of magnetic foreign matter increases, the magnetic force decreases and the detection accuracy of the magnetic sensor decreases. Tend to.
[0005]
Therefore, the present invention has a problem to be solved that, when used as a rotation detection device together with a magnetic sensor, it makes it difficult for magnetic foreign matters such as iron powder to adhere to the detection surface of the pulsar ring and improves the rotation detection accuracy. To do.
[0006]
[Means for Solving the Problems]
The pulsar ring according to the present invention is a pulsar ring that constitutes a rotation detecting device in a pair with a magnetic sensor, and is provided with a detected surface in which different magnetic poles are provided alternately in the circumferential direction and the magnetic sensor is opposed to a predetermined circumferential position. A non-magnetic material is attached to the outer surface of the detected surface, and the friction coefficient of the surface of the non-magnetic material is set to be smaller than the friction coefficient of the surface of the detected surface. The thickness of the magnetic material is set so as to weaken the magnetic force of the pulsar ring and not to affect the detection accuracy of the magnetic sensor.
[0007]
This nonmagnetic material may be a film or a plate.
[0008]
According to the pulsar ring of the present invention, the nonmagnetic material is attached to the outer surface of the surface to be detected. Therefore, it becomes difficult for magnetic foreign substances to adhere. Even if a magnetic foreign material adheres, the attractive force is weakened, and therefore, the magnetic foreign material is easily peeled off from the pulsar ring by receiving the centrifugal force of the rotating body.
[0009]
In the case of the present invention, even if the magnetic pole is obtained by magnetizing a rubber material in which magnetic powder is dispersed and mixed, the magnetic foreign matter is easily peeled off from the pulsar ring by receiving the centrifugal force of the rotating body. .
[0010]
In the case of the present invention, since the friction coefficient of the surface of the nonmagnetic material is set to be smaller than the friction coefficient of the surface of the detected surface, the surface to which the magnetic foreign matter adheres becomes slippery. In addition, the magnetic attraction force is weakened by the thickness of the non-magnetic material, so that magnetic foreign substances are less likely to adhere. Even if the magnetic foreign matter adheres, the magnetic foreign matter is more easily peeled off.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The details of the present invention will be described based on embodiments shown in the drawings. The bearing device of the present invention is described as applied to an axle bearing device (hub unit). However, the present invention is not limited to an axle bearing device, and may be applied to other bearing devices.
[0012]
1 to 4 relate to the present embodiment, FIG. 1 is a longitudinal sectional view of the hub unit, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG. 3 is an exploded view of the main part of FIG. FIG. 4 is a perspective view and FIG. 4 is a diagram for explaining the operation of the main part of FIG.
[0013]
In FIG. 1, 1 is a hub unit, 2 is an axle, and 3 is an axle case. The left side of the hub unit 1 shown in FIG. 1 is the vehicle outer side, and the right side is the vehicle inner side.
[0014]
The hub unit 1 includes a hub wheel 4 and a rolling bearing 5.
[0015]
The hub wheel 4 includes a radially outward flange 41 to which a wheel (not shown) is attached, and a hollow shaft portion 42.
[0016]
A rolling bearing 5 is fitted on the outer peripheral surface of the shaft portion 42 of the hub wheel 4.
[0017]
The rolling bearing 5 is a double-row outward angular ball bearing, and includes an inner ring 51 that is press-fitted into a small-diameter outer peripheral surface of the shaft portion 42 of the hub wheel 4, and a single outer ring 52 that has two rows of raceway grooves. , A plurality of balls 53 arranged in two rows, and two crown-shaped cages 54, 54. The large-diameter outer peripheral surface of the shaft portion 42 of the hub wheel 4 is used for the other inner ring of the rolling bearing 5.
[0018]
A radially outward flange 55 is provided on the outer periphery of the outer ring 52 of the rolling bearing 5. The rolling bearing 5 is fixed to the axle case 3 via the flange 55.
[0019]
In FIG. 1, 6 is an annular pulsar ring support, 7 is an annular magnetic sensor support, and 8 is a rotation detector.
[0020]
The pulsar ring support 6 includes a cylindrical portion 61 that is press-fitted and fitted to the outer peripheral surface of the shaft end of the inner ring 51 of the rolling bearing 5, and an annular portion 62 that extends outward from the shaft end of the cylindrical portion 61 in the radial direction. Prepare.
[0021]
The magnetic sensor support 7 closes the annular space between the inner and outer rings 51, 52 and the cylindrical part 71 extending on the outer side of the vehicle that is press-fitted to the outer peripheral part of the shaft end of the outer ring 52 of the rolling bearing 5. An annular portion 72 and a cylindrical portion 73 extending toward the vehicle inner side are provided. An elastic lip 74 that is in contact with the outer peripheral surface of the axle 2 is bonded to the inner peripheral surface of the cylindrical portion 73. A magnetic sensor mounting opening 75 penetrating inward and outward in the radial direction is provided at one circumference of the cylindrical portion 71.
[0022]
The rotation detection device 8 is an active type, and includes a pulsar ring 10 and a magnetic sensor 20.
[0023]
The pulsar ring 10 is formed in a ring shape using a magnetic material, and S and N poles, which are magnetic poles that are alternately different in the circumferential direction, are magnetized on a detection surface that faces the magnetic sensor 20. The pulsar ring 10 is obtained by magnetizing a rubber material in which magnetic powder is dispersed and mixed.
[0024]
The magnetic sensor 20 is a known Hall IC. Although not shown in detail, the Hall IC is configured by molding an IC chip with a protective cover made of synthetic resin. The outer shape of the magnetic sensor 20 has a rectangular parallelepiped shape, and the cord end 21 is drawn from the upper end thereof.
[0025]
The side surface facing the vehicle outer side in the axial direction of the magnetic sensor 20 is a detection surface, and the upper end surface of the magnetic sensor 20 is formed with an annular protruding piece 22 protruding in the axial direction.
[0026]
The pulsar ring 10 is attached to the annular portion 62 of the pulsar ring support 6, and the magnetic sensor 20 is inserted through the opening 75 of the magnetic sensor support 7 so that the detection surface thereof faces the pulsar ring 10 in the axial direction. And attached to the shaft end of the outer ring 52 of the rolling bearing 5.
[0027]
In the above configuration, the detection surface of the pulsar ring 10 and the detection surface of the magnetic sensor 20 face each other in the axial direction.
[0028]
Next, features of the present embodiment will be described.
[0029]
In the present embodiment, the nonmagnetic material 11 is attached to the detected surface of the pulsar ring 10.
[0030]
First, the thickness t of the nonmagnetic material 11 will be described.
[0031]
The nonmagnetic material 11 acts to weaken the magnetic force generated by the pulsar ring 10 corresponding to the thickness t, thereby weakening the attractive force due to the magnetic force on the magnetic foreign material on the surface. In this case, if the magnetic force after passing through the nonmagnetic material 11 is too small, the detection accuracy of the magnetic sensor 20 may be reduced. Therefore, the non-magnetic material 11 is configured to have a required thickness t that does not affect the detection accuracy of the magnetic sensor 20 while preventing adhesion of magnetic foreign substances.
[0032]
Next, the friction coefficient μ 2 on the surface of the nonmagnetic material 11 will be described.
[0033]
The friction coefficient μ 2 of the surface of the nonmagnetic material 11 is set to be smaller than the friction coefficient μ 1 of the detected surface of the pulsar ring 10.
[0034]
The smaller the friction coefficient μ 2 of the surface of the non-magnetic material 11 is, the more easily the surface of the non-magnetic material 11 is slipped, and the magnetic foreign matter is easily peeled off from the pulsar ring by the centrifugal force of the rotating body. The smaller the surface friction coefficient μ 2 , the better.
[0035]
Therefore, as a method of setting the friction coefficient μ 2 of the surface of the nonmagnetic material 11 to be smaller than the friction coefficient μ 1 of the detected surface of the pulsar ring 10, a method using a material having a small friction coefficient as the nonmagnetic material 11, There are three methods: a method of reducing the surface roughness (for example, ten-point average roughness of JISB0601) Rz of the magnetic material 11 and a method combining these two methods.
[0036]
Finally, the axial facing distance A between the nonmagnetic material 11 and the magnetic sensor 20 will be described.
[0037]
Conventionally (when there is no nonmagnetic material 11), the axial facing distance B between the detected surface of the pulsar ring 10 and the magnetic sensor 20 is a value determined according to the output from the required magnetic sensor or the type of the hub unit. Met.
[0038]
In the configuration in which the nonmagnetic material 11 is provided, the axial facing distance A between the nonmagnetic material 11 and the magnetic sensor 20 may be a value determined according to the required output from the magnetic sensor or the type of the hub unit. As in the prior art, the axial facing distance B between the detected surface of the pulsar ring 10 and the magnetic sensor 20 may be a value determined according to the output from the required magnetic sensor or the type of the hub unit.
[0039]
The operation will be described with reference to FIG.
[0040]
As shown in FIG. 4, when the magnetic foreign matter S adheres to the nonmagnetic material 11 of the pulsar ring 10, the magnetic foreign matter S is separated from the detected surface of the pulsar ring 10 by the thickness t of the nonmagnetic material 11. Become.
[0041]
At this time, when the magnetic foreign matter S is directly attached to the detected surface of the pulsar ring 10 without the nonmagnetic member 11, the magnetic force applied to the magnetic foreign matter S from the pulsar ring 10 is F 1 (direct magnetic force F 1 ). The magnetic force that is indirectly applied to the magnetic foreign substance S from the pulsar ring 10 via the nonmagnetic material 11 is F 2 (indirect magnetic force F 2 ). Naturally, direct magnetic force F 1 > indirect magnetic force F 2 .
[0042]
Further, the friction coefficient mu 1 of the surface of the pulser ring 10 and the friction coefficient of the surface of the non-magnetic material 11, μ 2, μ 1> μ from 2 relation holds, the magnetic foreign object S is the surface of the pulser ring 10 However, the surface of the nonmagnetic material 11 is slippery.
[0043]
Even if the magnetic foreign matter S adheres, the frictional force μ 2 F 2 when adhering via the nonmagnetic material 11 is naturally weaker than the frictional force μ 1 F 1 when adhering directly. The magnetic foreign matter S is easily separated from the surface of the non-magnetic material 11 of the pulsar ring 10 in response to the centrifugal force W accompanying the rotation of the inner ring 51.
[0044]
From the above, by providing the nonmagnetic material 11 on the pulsar ring 10, the magnetic foreign matter S is hardly attracted by the magnetic force of the pulsar ring 10, and the surface of the nonmagnetic material 11 is slippery. In response to the centrifugal force W, the pulsar ring 10 is easily peeled from the surface of the nonmagnetic material 11.
[0045]
Since the magnetic foreign matter S does not adhere to the pulsar ring 10, it is possible to prevent a decrease in the magnetic force of the pulsar ring 10.
[0046]
In addition, this invention is not limited only to the said embodiment, Various application and deformation | transformation can be considered.
[0047]
(1) In the above embodiment, an example is given in which the pulsar ring 10 and the magnetic sensor 20 are opposed in the axial direction, but they may be opposed in the radial direction as in the embodiment of FIG. The pulsar ring 10 and the pulsar ring support 6 are formed in a cylindrical shape, and the pulsar ring 10 is adhered to the outer peripheral surface of the pulsar ring support 6.
[0048]
A nonmagnetic material 11 is provided on the detected surface of the pulsar ring 10. Furthermore, the detection surface of the magnetic sensor 20 faces the detection surface of the pulsar ring 10 in the radial direction downward in the radial direction.
[0049]
(2) In the above embodiment, an example is given in which the magnetic sensor 20 is attached to and detached from the magnetic sensor support 7 from the radial direction, but although not shown, it may be attached and detached from the axial direction.
[0050]
(3) Although the example which provided the rotation detection apparatus 8 in the vehicle inner side edge part of the rolling bearing 5 is given in the said embodiment, it is set as the structure which provides the rotation detection apparatus 8 in the vehicle outer side edge part of the rolling bearing 5. May be.
[0051]
(4) In the above embodiment, the rolling bearing 5 uses the outer peripheral surface of the shaft portion 42 of the hub wheel 4 as one inner ring. For example, as in the embodiment shown in FIG. A hub unit 100 in which two inner rings 51, 56, each having a separate body 4 and the inner ring 56, are provided in parallel may be used.
[0052]
The rotation detection device 8 according to the present invention is attached to the vehicle outer side end portion of the rolling bearing 5 of such a hub unit 100.
[0053]
The magnetic sensor 20 is attached to the rolling bearing 5 with an attachment hole.
[0054]
The pulsar ring 10 is attached to the pulsar ring support 6 having an L-shaped cross section at the outer end of the inner ring 56 on the vehicle outer side. The pulsar ring 10 is attached to the vehicle out surface of the annular plate portion 62 of the pulsar ring support 6 so as to face the magnetic sensor 20. A nonmagnetic material 11 made of a nonmagnetic material is provided on the surface of the pulsar ring 10 facing the magnetic sensor 20.
[0055]
(5) In the case of the above embodiment, in the pulsar ring 10 and the magnetic sensor 20, the pulsar ring 10 is connected to the inner ring 51 via the pulsar ring support 6, and the magnetic sensor 20 is connected to the outer ring 52 via the magnetic sensor support 7. , Respectively, are fixed.
[0056]
A shaft body including the pulsar ring support 6 and the inner ring 51 can be formed, and a cylinder including the magnetic sensor support 7 and the outer ring 52 can be formed. The shaft body is on the rotating member side, and the cylindrical body is on the fixed member side.
[0057]
In this case, since the pulsar ring 10 and the magnetic sensor 20 only need to have a relative rotation relationship, one of the cylindrical body and the shaft body is the fixed member side, and the other is the rotating member side. One may be provided with a pulsar ring 10 and the other with a magnetic sensor 20.
[0058]
(6) In the above embodiment, the rotation detection device is used as a hub unit for a drive axle of an automobile. However, although not shown, it can also be used for a well-known hub unit for a driven axle. In addition, although a specific example is not given, in short, the rotation detection device of the present invention detects a rotation state of a rotating member among a cylindrical body and a shaft body that are concentrically arranged so as to be relatively rotatable, such as an industrial machine. Can be used wherever you need to.
[0059]
【Effect of the invention】
As described above, according to the first or second aspect of the present invention, the nonmagnetic material having a required thickness is provided on the surface of the pulsar ring. Adsorption power is weakened. For this reason, the magnetic foreign matter is less likely to adhere to the pulsar ring, and even if it is attached, the attractive force is weakened. Therefore, the magnetic foreign matter is easily peeled by receiving the centrifugal force of the rotating body. Therefore, adhesion of a magnetic foreign material is prevented and the performance of the rotation detection device in the bearing device is improved.
In addition, since the friction coefficient of the surface of the nonmagnetic material is smaller than the friction coefficient of the surface of the detected surface of the pulsar ring, the surface of the nonmagnetic material becomes slippery than the surface of the detected surface of the pulsar ring. In addition, the magnetic attraction force is weakened by the thickness of the non-magnetic material, so that magnetic foreign substances are less likely to adhere. Even if the magnetic foreign matter adheres, the magnetic foreign matter is more easily peeled off.
[0060]
According to the invention of claim 2, even if the pulsar ring is made by magnetizing a rubber material in which magnetic powder is dispersed and mixed, the magnetic foreign matter is easily peeled off from the pulsar ring by receiving the centrifugal force of the rotating body as described above.
[0062]
According to the third aspect of the present invention, since the pulsar ring according to the first or second aspect is provided, it is difficult for foreign matters to be mixed in the facing gap between the pulsar ring and the magnetic sensor, and as a result, the detection accuracy by the magnetic sensor is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hub unit according to an embodiment of the present invention. FIG. 2 is a sectional view showing an enlarged main part of FIG. 1. FIG. 3 is an exploded perspective view showing an enlarged main part of FIG. 4 is a cross-sectional view for explaining the operation of the main part of FIG. 1. FIG. 5 is an enlarged cross-sectional view showing the main part of a hub unit according to another embodiment of the present invention. Sectional view of the hub unit according to the embodiment
5 Rolling bearing 8 Rotation detection device 10 Pulsar ring 11 Non-magnetic material 20 Magnetic sensor 51 Inner ring 52 Outer ring μ 1 Friction coefficient of detected surface of pulsar ring μ 2 Friction coefficient of non-magnetic material surface

Claims (3)

磁気センサと対となって回転検出装置を構成するパルサリングであって、
周方向交互に異なる磁極が設けられかつ円周所定位置に前記磁気センサが対向される被検知面を有し、
この被検知面の外表面に、非磁性材が付着され、
前記非磁性材の表面の摩擦係数が、前記被検知面の表面の摩擦係数よりも小に設定されるとともに、
前記非磁性材の厚さが、前記パルサリングの磁力を弱くするとともに、前記磁気センサの検知精度に影響を与えないように設定されている、ことを特徴とするパルサリング。
A pulsar ring that forms a rotation detection device in pairs with a magnetic sensor,
A magnetic pole that is different in the circumferential direction is provided, and has a detected surface that faces the magnetic sensor at a predetermined circumferential position,
A non-magnetic material is attached to the outer surface of the detected surface,
The friction coefficient of the surface of the nonmagnetic material is set to be smaller than the friction coefficient of the surface of the detected surface,
The pulsar ring is characterized in that the thickness of the non-magnetic material is set so as to weaken the magnetic force of the pulsar ring and not affect the detection accuracy of the magnetic sensor.
請求項1に記載のパルサリングにおいて、
前記磁極が、磁性粉を分散混入したゴム材を磁化することにより得られるものである、ことを特徴とするパルサリング。
The pulsar ring according to claim 1,
A pulsar ring, wherein the magnetic pole is obtained by magnetizing a rubber material in which magnetic powder is dispersed and mixed.
相対回転可能に同心状に配置される筒体と軸体とのうち、回転部材側に取り付けられるパルサリングと、非回転部材側に取り付けられて前記パルサリングに対向される磁気センサとからなる回転検出装置であって、
前記パルサリングが、周方向交互に互いに異なる磁極が設けられかつ円周所定位置に前記磁気センサが対向される被検知面を有し、
この被検知面の外表面に、非磁性材が付着され、
前記非磁性材の表面の摩擦係数が、前記被検知面の表面の摩擦係数よりも小に設定されるとともに、
前記非磁性材の厚さが、前記パルサリングの磁力を弱くするとともに、前記磁気センサの検知精度に影響を与えないように設定されていることを特徴とする回転検出装置。
A rotation detection device comprising a pulsar ring attached to the rotating member side and a magnetic sensor attached to the non-rotating member side and opposed to the pulsar ring, out of a cylindrical body and a shaft body that are concentrically disposed so as to be relatively rotatable. Because
The pulsar ring has a detected surface in which magnetic poles different from each other in the circumferential direction are provided and the magnetic sensor is opposed to a predetermined circumferential position,
A non-magnetic material is attached to the outer surface of the detected surface,
The friction coefficient of the surface of the nonmagnetic material is set to be smaller than the friction coefficient of the surface of the detected surface,
The rotation detecting device, wherein the thickness of the non-magnetic material is set so as to weaken the magnetic force of the pulsar ring and not affect the detection accuracy of the magnetic sensor.
JP2001276196A 2001-09-12 2001-09-12 Pulsaring and rotation detector Expired - Fee Related JP5103704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001276196A JP5103704B2 (en) 2001-09-12 2001-09-12 Pulsaring and rotation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001276196A JP5103704B2 (en) 2001-09-12 2001-09-12 Pulsaring and rotation detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011190586A Division JP5240333B2 (en) 2011-09-01 2011-09-01 Hub unit

Publications (2)

Publication Number Publication Date
JP2003083765A JP2003083765A (en) 2003-03-19
JP5103704B2 true JP5103704B2 (en) 2012-12-19

Family

ID=19100938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001276196A Expired - Fee Related JP5103704B2 (en) 2001-09-12 2001-09-12 Pulsaring and rotation detector

Country Status (1)

Country Link
JP (1) JP5103704B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984142B2 (en) * 2007-06-08 2012-07-25 株式会社ジェイテクト Hub unit
WO2008152987A1 (en) * 2007-06-08 2008-12-18 Jtekt Corporation Hub unit
JP5104067B2 (en) * 2007-06-29 2012-12-19 株式会社ジェイテクト Rotation speed detector
CN117108637B (en) * 2023-10-18 2023-12-29 万向钱潮股份公司 Dust cover, dustproof hub bearing and vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128566A (en) * 1993-10-28 1995-05-19 Olympus Optical Co Ltd Moving quantity detector
JP2001241435A (en) * 2000-02-29 2001-09-07 Nsk Ltd Rolling bearing unit with encoder for automobile

Also Published As

Publication number Publication date
JP2003083765A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
EP1810844B1 (en) Rolling bearing system for vehicles
JP2004198378A (en) Anti-friction bearing system
US5850141A (en) Annular speed sensor with a tone ring having both axial and radial magnetic fields
US5624192A (en) Rolling-contact bearing equipped with a built-in device for detecting the speed of rotation
JP3580002B2 (en) Rolling bearing unit with rotation speed detector
JP4019537B2 (en) Rolling bearing with rotational speed detector
JP2000221202A (en) Apparatus for detecting rotational speed
JP2002316508A (en) Rotation supporting device for wheel having encoder
US5938346A (en) Rolling bearing unit with rotating speed sensor
WO2005010382A1 (en) Rolling bearing unit with rotating speed-detecting device
JP3656530B2 (en) Combination seal ring with encoder and rolling bearing unit for wheel support incorporating this
JP5103704B2 (en) Pulsaring and rotation detector
JP2004084848A (en) Roller bearing device
JP5240333B2 (en) Hub unit
JP3451423B2 (en) How to magnetize the tone wheel
JP4604421B2 (en) Rotation support device for wheel with rotation speed detection device and assembly method thereof
JP2004076752A (en) Rolling bearing device
JP4218275B2 (en) Manufacturing method of rolling bearing for axle
JPH1048230A (en) Bearing assembly
JP2000221205A (en) Apparatus for detecting rotational speed
JP4052897B2 (en) Rolling bearing device
JP2003307229A (en) Bearing with built-in pulse forming ring and hub unit bearing
JP2002328133A (en) Bearing for wheel with revolution speed detector
JP4026557B2 (en) Pulsar ring and seal device for rotation detection
JP4492436B2 (en) Magnetic encoder and rolling bearing device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5103704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees