JP5103052B2 - Oxidation catalyst of exhaust gas purification system for diesel engine - Google Patents

Oxidation catalyst of exhaust gas purification system for diesel engine Download PDF

Info

Publication number
JP5103052B2
JP5103052B2 JP2007108603A JP2007108603A JP5103052B2 JP 5103052 B2 JP5103052 B2 JP 5103052B2 JP 2007108603 A JP2007108603 A JP 2007108603A JP 2007108603 A JP2007108603 A JP 2007108603A JP 5103052 B2 JP5103052 B2 JP 5103052B2
Authority
JP
Japan
Prior art keywords
catalyst
oxidation
exhaust gas
catalyst component
oxidation catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007108603A
Other languages
Japanese (ja)
Other versions
JP2008264636A (en
Inventor
暢也 岩見
和弘 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Roki Co Ltd
Original Assignee
Tokyo Roki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Roki Co Ltd filed Critical Tokyo Roki Co Ltd
Priority to JP2007108603A priority Critical patent/JP5103052B2/en
Publication of JP2008264636A publication Critical patent/JP2008264636A/en
Application granted granted Critical
Publication of JP5103052B2 publication Critical patent/JP5103052B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、ディーゼルエンジン用排ガス浄化システムの酸化触媒に関する。   The present invention relates to an oxidation catalyst for an exhaust gas purification system for a diesel engine.

ディーゼルエンジン(Diesel Engine)から排出される排ガス(約170℃〜約300℃)には、HC(炭化水素)やNOなどの環境汚染物質が含まれているので、環境保全を図るべく、各種のDE排ガス規制が定められている。これらのDE排ガス規制に対応するためには、排ガスからHC及びNOを十分に除去する必要がある。そのために、近年、ディーゼルエンジンのエンジン特性に応じて、強制再生システムや尿素SCRシステムなどが採用されている。これらのシステムでは、各種の酸化触媒が用いられており、これらの酸化触媒には、HCの酸化反応を促進させるHC酸化性能、又はNOをNOに転化させる酸化反応を促進させるNO転化特性のいずれかが要求されている。 The exhaust gas (about 170 ° C to about 300 ° C) discharged from the diesel engine contains environmental pollutants such as HC (hydrocarbon) and NO 2. DE emission regulations are established. In order to comply with these DE exhaust gas regulations, it is necessary to sufficiently remove HC and NO 2 from the exhaust gas. Therefore, in recent years, a forced regeneration system, a urea SCR system, or the like has been adopted depending on the engine characteristics of the diesel engine. In these systems, various oxidation catalysts are used, and these oxidation catalysts include HC oxidation performance that promotes HC oxidation reaction, or NO 2 conversion characteristics that promote oxidation reaction that converts NO to NO 2. Either is requested.

ところで、DE排ガス規制は、今後、更に厳しくなることが予想されている。そこで、近年、これらのHC酸化性能及びNO転化特性を併有する酸化触媒の開発が試みられている。そして、HC酸化性能にはPt/Pd系の触媒成分が優れており、NO転化特性にはPt系触媒成分が優れていることが知られていることから、従来より、この特性を利用した各種の酸化触媒が提案されている。かかる従来技術として、例えば、これらの触媒成分をスラリー状にして混合したものを触媒担体である多孔質基材に担持させた酸化触媒や、これらの触媒成分を触媒担体に多層コート状に担持させた酸化触媒がある(例えば、図1(b)参照)。 By the way, DE exhaust gas regulations are expected to become even stricter in the future. Therefore, in recent years, an attempt has been made to develop an oxidation catalyst having both these HC oxidation performance and NO 2 conversion characteristics. Since Pt / Pd-based catalyst components are excellent for HC oxidation performance and Pt-based catalyst components are known to be excellent for NO 2 conversion characteristics, this characteristic has been used conventionally. Various oxidation catalysts have been proposed. As such conventional techniques, for example, an oxidation catalyst in which a mixture of these catalyst components in a slurry form is supported on a porous substrate as a catalyst carrier, or these catalyst components are supported on a catalyst carrier in a multilayer coat form. There is an oxidation catalyst (see, for example, FIG. 1B).

しかしながら、従来技術にあっては、次のような問題があった。すなわち、従来技術の如く、Pt系の触媒成分及びPt/Pd系の触媒成分をスラリー状にして混合したものを触媒担体に担持させたり、或いはこれらの触媒成分を触媒担体に多層コート状に担持させてしまうと、各触媒成分の性能が相互に打ち消されてしまう。つまり、従来技術にあっては、HC酸化性能及びNO転化特性が低下してしまい、これらのHC酸化性能及びNO転化特性をうまく両立させることができなかった。 However, the prior art has the following problems. That is, as in the prior art, a mixture of Pt-based catalyst components and Pt / Pd-based catalyst components in the form of a slurry is supported on a catalyst carrier, or these catalyst components are supported on a catalyst carrier in a multilayer coating. Otherwise, the performance of each catalyst component will be canceled out. That is, in the prior art, the HC oxidation performance and the NO 2 conversion characteristics are deteriorated, and it has not been possible to achieve a good balance between the HC oxidation performance and the NO 2 conversion characteristics.

本発明は、かかる問題に鑑みてなされたものであり、HC酸化性能及びNO転化特性をうまく両立させることが可能なディーゼルエンジン用排ガス浄化システムの酸化触媒を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an oxidation catalyst of the HC oxidation performance and NO 2 conversion characteristics can be successfully both diesel engine exhaust gas purification system.

本発明者らは、上記課題を解決するために、鋭意研究を試みたところ、次の(1)及び(2)の点に着眼し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied, and have focused on the following points (1) and (2) to complete the present invention.

すなわち、本発明者らは、(1)多孔質基材の排ガス流入側の表面は、排ガスの乱流作用により、触媒成分と反応物質との接触頻度が特に高く、しかも、(2)排ガス中に含まれるNOをNOに転化する反応速度は遅く、他方、排ガス中に含まれるHCを酸化する反応速度は速いことに着眼した。 That is, the present inventors (1) the surface of the porous substrate on the exhaust gas inflow side has a particularly high contact frequency between the catalyst component and the reactant due to the turbulent action of the exhaust gas, and (2) It was noted that the reaction rate for converting NO contained in NO to NO 2 was slow, while the reaction rate for oxidizing HC contained in the exhaust gas was fast.

そして、これらの着眼点を踏まえ、本発明では、多孔質基材の全表面に、反応速度が遅いNO転化反応に関与する触媒成分、すなわちNO転化特性に優れたPt系の触媒成分を配置した。その上で、触媒成分と反応物質との接触頻度が特に高い多孔質基材の排ガス流入側の表面には、反応速度の速いHCの酸化反応に関与する触媒成分、すなわちHC酸化性能に優れたPt/Pd系の触媒成分を集中して配置した。 In view of these points, in the present invention, a catalyst component involved in the NO 2 conversion reaction having a low reaction rate, that is, a Pt-based catalyst component excellent in NO 2 conversion characteristics is applied to the entire surface of the porous substrate. Arranged. In addition, on the exhaust gas inflow side surface of the porous base material in which the contact frequency between the catalyst component and the reactant is particularly high, the catalyst component involved in the oxidation reaction of HC having a high reaction rate, that is, excellent HC oxidation performance. Pt / Pd catalyst components were concentrated and arranged.

要するに、本発明は、ディーゼルエンジンから排出された排ガスを浄化するためのディーゼルエンジン用排ガス浄化システムの酸化触媒であって、多孔質基材の全表面に、プラチナ(Pt)を含有する一方でパラジウム(Pd)を含有しない触媒成分(以下「Pt系の触媒成分」という。)が担持され、且つ当該触媒成分が担持された多孔質基材の排ガス流入側の表面にのみ、プラチナ(Pt)及びパラジウム(Pd)の双方を含有する触媒成分(以下「Pt/Pd系の触媒成分」という。)が担持されていることを特徴とするものである。   In short, the present invention is an oxidation catalyst for an exhaust gas purification system for a diesel engine for purifying exhaust gas discharged from a diesel engine. A catalyst component not containing (Pd) (hereinafter referred to as “Pt-based catalyst component”) is supported, and platinum (Pt) and platinum (Pt) and only on the exhaust gas inflow side surface of the porous substrate on which the catalyst component is supported A catalyst component containing both palladium (Pd) (hereinafter referred to as “Pt / Pd catalyst component”) is supported.

これにより、酸化触媒全体としてのNO転化特性を維持しつつ、さらにHC酸化性能の向上を図ることが可能となる。すなわち、HC酸化性能に優れたPt/Pd系の触媒成分は、多孔質基材の全表面領域のうち、特にHC酸化反応が起こりやすい排ガス流入側の表面領域に担持されているので、HC酸化性能を十分に発揮することとなる。しかも、Pt/Pd系の触媒成分は、多孔質基材の排ガス流入側の表面領域にのみ局所的に担持されているにすぎない。従って、このPt/Pd系の触媒成分が、多孔質基材の全表面領域に担持された触媒成分の特性、すなわちPt系の触媒成分によるNO転化特性を、大幅に阻害することはないので、NO転化特性が十分に維持されることとなる。以上より、本発明によれば、これらのHC酸化性能及びNO転化特性をうまく両立させることが可能となる。 This makes it possible to further improve the HC oxidation performance while maintaining the NO 2 conversion characteristics of the entire oxidation catalyst. That is, since the Pt / Pd-based catalyst component having excellent HC oxidation performance is supported on the surface area on the exhaust gas inflow side where the HC oxidation reaction is likely to occur, among the entire surface area of the porous base material, The performance will be fully demonstrated. Moreover, the Pt / Pd-based catalyst component is only locally supported only on the surface region on the exhaust gas inflow side of the porous substrate. Therefore, the Pt / Pd-based catalyst component does not significantly impair the characteristics of the catalyst component supported on the entire surface region of the porous substrate, that is, the NO 2 conversion characteristic by the Pt-based catalyst component. , NO 2 conversion characteristics will be sufficiently maintained. As described above, according to the present invention, these HC oxidation performance and NO 2 conversion characteristics can be well balanced.

本発明のディーゼルエンジン用排ガス浄化システムの酸化触媒によれば、HC酸化性能及びNO転化特性をうまく両立させることが可能となる。 According to the oxidation catalyst of the exhaust gas purification system for a diesel engine of the present invention, it is possible to successfully achieve both HC oxidation performance and NO 2 conversion characteristics.

まず、図1を参照しながら、従来技術と比較しつつ、本実施形態の酸化触媒100の構成について説明する。図1は、本実施形態及び従来技術の各酸化触媒において、その多孔質基材に触媒成分を担持させた状態を示す概略図であり、(a)は本実施形態の酸化触媒100、(b)は従来技術の酸化触媒200を示す。   First, the configuration of the oxidation catalyst 100 of the present embodiment will be described with reference to FIG. FIG. 1 is a schematic view showing a state in which a catalyst component is supported on a porous substrate in each oxidation catalyst of the present embodiment and the prior art. FIG. 1A is an oxidation catalyst 100 of the present embodiment, ) Shows a prior art oxidation catalyst 200.

図1(a)に示すように、本実施形態の酸化触媒100は、多孔質基材の全表面に、プラチナ(Pt)を含有する一方でパラジウム(Pd)を含有しない触媒成分(以下「Pt系の触媒成分」という。)10を担持させ、且つ当該触媒成分10が担持された多孔質基材の排ガス流入側の表面にのみ、さらにプラチナ及びパラジウム(Pt/Pd)の双方を含有する触媒成分(以下「Pt/Pd系の触媒成分」という。)20を担持させたものである。   As shown in FIG. 1 (a), the oxidation catalyst 100 of the present embodiment includes a catalyst component (hereinafter referred to as “Pt”) that contains platinum (Pt) but does not contain palladium (Pd) on the entire surface of the porous substrate. A catalyst component containing 10) and containing only platinum and palladium (Pt / Pd) only on the exhaust gas inflow side surface of the porous substrate on which the catalyst component 10 is supported. The component 20 (hereinafter referred to as “Pt / Pd catalyst component”) 20 is supported.

他方、図1(b)に示すように、従来技術の酸化触媒200は、多孔質基材の全表面に、Pt系の触媒成分10及びPt/Pd系の触媒成分20をスラリー状にして混合したものを触媒担体に担持させたもの、或いは、これらの触媒成分10,20を触媒担体に多層コート状に担持させたものである。   On the other hand, as shown in FIG. 1 (b), the oxidation catalyst 200 of the prior art mixes the Pt-based catalyst component 10 and the Pt / Pd-based catalyst component 20 in a slurry state on the entire surface of the porous substrate. The catalyst component is supported on a catalyst carrier, or these catalyst components 10 and 20 are supported on a catalyst carrier in a multilayer coat form.

ところで、多孔質基材の排ガス流入側の表面は、排ガスの乱流作用により、触媒成分と反応物質との接触頻度が特に高い。また、排ガス中に含まれるNOをNOに転化する反応速度は遅く、他方、排ガス中に含まれるHCを酸化する反応速度は速い。そこで、本実施形態では、多孔質基材の全表面に、反応速度が遅いNO転化反応に関与する触媒成分、すなわちNO転化特性に優れたPt系の触媒成分10を配置することとした。その上で、触媒成分と反応物質との接触頻度が特に高い多孔質基材の排ガス流入側の表面には、反応速度の速いHCの酸化反応に関与する触媒成分、すなわちHC酸化性能に優れたPt/Pd系の触媒成分20を集中して配置することとした。 By the way, the surface of the porous substrate on the exhaust gas inflow side has a particularly high contact frequency between the catalyst component and the reactant due to the turbulent action of the exhaust gas. Also, the reaction rate for converting NO contained in the exhaust gas to NO 2 is slow, while the reaction rate for oxidizing HC contained in the exhaust gas is fast. Therefore, in this embodiment, the catalyst component involved in the NO 2 conversion reaction having a low reaction rate, that is, the Pt-based catalyst component 10 having excellent NO 2 conversion characteristics is arranged on the entire surface of the porous substrate. . In addition, on the exhaust gas inflow side surface of the porous base material in which the contact frequency between the catalyst component and the reactant is particularly high, the catalyst component involved in the oxidation reaction of HC having a high reaction rate, that is, excellent HC oxidation performance. The Pt / Pd-based catalyst component 20 is arranged in a concentrated manner.

要するに、本実施形態の酸化触媒100では、まず、NO転化特性に優れたPt系の触媒成分10を、多孔質基材の全表面にコーティングし、その上で、HC酸化性能に優れたPt/Pd系の触媒成分20を、当該多孔質基材の排ガス流入側の表面に重ねてコーティングしたものである。本実施形態において、Pt/Pd系の触媒成分20をコーティングする領域は、多孔質基材の排ガス流入側の端部からの領域が当該多孔質基材の全体に対して5〜15%(体積比)の範囲内となる領域が好ましい。当該領域が5%未満の場合には、Pt/Pd系の触媒成分20を担持させた領域が狭すぎて、Pt/Pd系の触媒成分20の作用によるHC酸化性能が不十分となってしまう。他方、当該領域が15%を超える場合には、Pt/Pd系の触媒成分20を担持させた領域が広すぎて、Pt/Pd系の触媒成分20がPt系の触媒成分10の作用を打ち消してしまい、Pt系の触媒成分10の作用によるNO転化特性が不十分となってしまう。 In short, in the oxidation catalyst 100 of the present embodiment, first, the Pt-based catalyst component 10 excellent in NO 2 conversion characteristics is coated on the entire surface of the porous substrate, and then Pt excellent in HC oxidation performance is obtained. A / Pd-based catalyst component 20 is coated on the exhaust gas inflow side surface of the porous substrate. In the present embodiment, the region coated with the Pt / Pd-based catalyst component 20 is such that the region from the end on the exhaust gas inflow side of the porous substrate is 5 to 15% (volume) with respect to the entire porous substrate. Ratio) is preferable. If the region is less than 5%, the region where the Pt / Pd-based catalyst component 20 is supported is too narrow, and the HC oxidation performance due to the action of the Pt / Pd-based catalyst component 20 becomes insufficient. . On the other hand, when the region exceeds 15%, the region where the Pt / Pd catalyst component 20 is supported is too wide, and the Pt / Pd catalyst component 20 cancels the action of the Pt catalyst component 10. As a result, the NO 2 conversion characteristics due to the action of the Pt-based catalyst component 10 become insufficient.

次に、図2を参照しながら、従来技術と比較しつつ、本実施形態の酸化触媒100の作用効果について説明する。図2は、本実施形態及び従来技術等の各酸化触媒において、HC酸化性能及びNO転化特性の相関関係を示す図である。なお、同図に示す各性能は、排ガス温度が170〜300℃における性能を示すものであり、縦軸のHC酸化性能は、HCが50%浄化したときの温度(「HC T50」)を示し、横軸のNO転化特性は、排ガス温度が250℃のときのNOからNOへの転化率(「NO C250」)を示すものである。 Next, the effect of the oxidation catalyst 100 of this embodiment is demonstrated, comparing with a prior art, referring FIG. FIG. 2 is a diagram showing a correlation between HC oxidation performance and NO 2 conversion characteristics in each oxidation catalyst of the present embodiment and the prior art. Each performance shown in the figure shows the performance when the exhaust gas temperature is 170 to 300 ° C., and the HC oxidation performance on the vertical axis shows the temperature when HC is purified by 50% (“HC T50”). The NO 2 conversion characteristic on the horizontal axis indicates the conversion rate from NO to NO 2 (“NO 2 C250”) when the exhaust gas temperature is 250 ° C.

図2に示すように、本実施形態の酸化触媒100は、従来技術の酸化触媒200と比べ、HC酸化性能の点で優れ、しかも、NO転化特性の点でも優れている。 As shown in FIG. 2, the oxidation catalyst 100 of the present embodiment is superior in terms of HC oxidation performance and also in terms of NO 2 conversion characteristics as compared with the oxidation catalyst 200 of the prior art.

すなわち、従来技術の酸化触媒200の場合には、多孔質基材の全表面にPt/Pd系の触媒成分のみをコーティングしたもの(以下「Pt/Pd触媒」という。)と比べ、NO転化特性の点では優れた結果を示すものの、HC酸化性能の点では劣る結果を示すこととなる。また、従来技術の酸化触媒200の場合には、多孔質基材の全表面にPt系の触媒成分のみをコーティングしたもの(以下「Pt触媒」という。)と比べ、HC酸化性能の点では優れた結果を示すものの、NO転化特性の点では劣る結果を示すこととなる。 That is, in the case of the oxidation catalyst 200 of the prior art, NO 2 conversion is performed as compared with a case where only the Pt / Pd catalyst component is coated on the entire surface of the porous substrate (hereinafter referred to as “Pt / Pd catalyst”). Although it shows excellent results in terms of characteristics, it shows inferior results in terms of HC oxidation performance. In addition, the oxidation catalyst 200 of the prior art is superior in terms of HC oxidation performance compared to a case where only the Pt-based catalyst component is coated on the entire surface of the porous substrate (hereinafter referred to as “Pt catalyst”). However, the results are inferior in terms of NO 2 conversion characteristics.

これに対し、本実施形態の酸化触媒100の場合には、Pt/Pd触媒と比べ、NO転化特性の点で優れた結果を示すとともに、HC酸化性能の点でも、このPt/Pd触媒とほぼ同等の結果を示すこととなる。また、本実施形態の酸化触媒100の場合には、Pt触媒と比べ、HC酸化性能の点で優れた結果を示すとともに、NO転化特性の点でも、このPt触媒とほぼ同等の結果を示すこととなる。そして、本実施形態の酸化触媒100は、HC酸化性能及びNO転化特性いずれの点でも、従来技術の酸化触媒200よりも優れた作用効果を奏することとなる。 In contrast, in the case of the oxidation catalyst 100 of the present embodiment, compared to the Pt / Pd catalyst, the oxidation catalyst 100 shows excellent results in terms of NO 2 conversion characteristics, and also in terms of HC oxidation performance, The result will be almost equivalent. Further, in the case of the oxidation catalyst 100 of the present embodiment, the result is superior in terms of HC oxidation performance as compared with the Pt catalyst, and also in terms of NO 2 conversion characteristics, the result is almost equivalent to that of this Pt catalyst. It will be. Then, the oxidation catalyst 100 of the present embodiment, in terms of both HC oxidation performance and NO 2 conversion characteristics, and thus exert an excellent function and effect than the oxidation catalyst 200 of the prior art.

===実施例===
次に、図3及び図4を参照しながら、従来例と比較しつつ、本発明の実施例について説明する。図3は、本実施例及び従来例等の各酸化触媒において、HC酸化性能(HCの浄化率(%))と排ガス温度との関係を示すグラフ、図4は、本実施例及び従来例等の各酸化触媒において、NO転化特性(NOの転化率(%))と排ガス温度との関係を示すグラフである。
=== Example ===
Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a graph showing the relationship between the HC oxidation performance (HC purification rate (%)) and the exhaust gas temperature in each oxidation catalyst of the present example and the conventional example, and FIG. 4 shows the present example and the conventional example. 6 is a graph showing the relationship between NO 2 conversion characteristics (NO 2 conversion (%)) and exhaust gas temperature in each of the oxidation catalysts.

本実施例及び従来例では、酸化触媒として、いずれも図1に示すものを使用した。すなわち、本実施例では、酸化触媒として、多孔質基材の全表面にPt触媒成分を担持させ、且つ多孔質基材の排ガス流入側の端部からの領域が、当該多孔質基材の全領域に対して10%(体積比)となる領域にのみ、Pt/Pd触媒成分を担持させたものを使用した。一方、従来例では、酸化触媒として、Pt,Pt/Pdの各触媒成分を巣スラリー状にして混合したものを、多孔質基材の全表面に担持させたものを使用した。   In this example and the conventional example, the oxidation catalyst shown in FIG. 1 was used. That is, in this example, as the oxidation catalyst, the Pt catalyst component is supported on the entire surface of the porous substrate, and the region from the end of the porous substrate on the exhaust gas inflow side is the entire region of the porous substrate. Only a region where the Pt / Pd catalyst component was supported was used in a region that was 10% (volume ratio) with respect to the region. On the other hand, in the conventional example, an oxidation catalyst in which Pt and Pt / Pd catalyst components were mixed in a nest slurry and supported on the entire surface of the porous substrate was used.

また、本実施例及び従来例では、HC酸化性能及びNO転化特性を次のようにして評価した。すなわち、本実施例及び従来例では、いずれも直径1インチ×長さ2インチのコーディライト製ハニカム担体に、前述した触媒成分をコーティングしたものをサンプルとして用いた。そして、このサンプルに排ガスを模擬した混合ガスを流通させ、その混合ガスを+30℃/minで昇温させて、それぞれの温度帯でのHC酸化性能及びNO転化特性を評価した。その際の評価条件を表1に示す。
In this example and the conventional example, the HC oxidation performance and the NO 2 conversion characteristics were evaluated as follows. That is, in this example and the conventional example, a cordierite honeycomb carrier having a diameter of 1 inch and a length of 2 inches was coated with the catalyst component described above as a sample. Then, the sample is passed through a mixed gas simulating an exhaust gas, the mixture gas + 30 ° C. / allowed to warm min, and was evaluated HC oxidation performance and NO 2 conversion characteristics at the respective temperature zones. Table 1 shows the evaluation conditions at that time.

<HC酸化性能>
図3に示すように、HC酸化性能について見ると、排ガス温度が170℃未満及び300℃を超える領域では、本実施例の酸化触媒は、従来例の酸化触媒とほぼ同等の結果を示したにすぎなかった。
<HC oxidation performance>
As shown in FIG. 3, regarding the HC oxidation performance, in the region where the exhaust gas temperature is less than 170 ° C. and more than 300 ° C., the oxidation catalyst of this example showed almost the same result as the oxidation catalyst of the conventional example. It wasn't too much.

より具体的に説明すると、排ガス温度が170℃未満の領域では、本実施例の酸化触媒、従来例の酸化触媒、Pt触媒、及びPt/Pd触媒は、いずれもHC酸化性能の指標であるHCの浄化率(%)が、ほぼ0%の低い値を示した。他方、排ガス温度が300℃を超える領域では、これらの触媒は、いずれもHCの浄化率(%)が、ほぼ100%の高い値を示した。   More specifically, in the region where the exhaust gas temperature is less than 170 ° C., the oxidation catalyst of this example, the oxidation catalyst of the conventional example, the Pt catalyst, and the Pt / Pd catalyst are all HC oxidation performance indicators. The purification rate (%) was low, almost 0%. On the other hand, in the region where the exhaust gas temperature exceeds 300 ° C., all of these catalysts showed a high value of almost 100% in the HC purification rate (%).

ところが、排ガス温度が170℃〜300℃の領域では、本実施例の酸化触媒は、従来例の酸化触媒と比べ、HC酸化性能の点で優れた結果を示した。すなわち、排ガス温度が170℃〜300℃の領域では、従来例の酸化触媒の場合には、Pt触媒より優れた結果を示したものの、Pt/Pd触媒より劣る結果を示した。これに対し、本実施例の酸化触媒の場合には、Pt触媒よりも優れた結果を示し、しかも、Pt/Pd触媒とほぼ同等の優れた結果を示した。   However, in the region where the exhaust gas temperature is 170 ° C. to 300 ° C., the oxidation catalyst of this example showed superior results in terms of HC oxidation performance as compared with the oxidation catalyst of the conventional example. That is, in the exhaust gas temperature range of 170 ° C. to 300 ° C., the oxidation catalyst of the conventional example showed a result superior to the Pt catalyst, but inferior to the Pt / Pd catalyst. In contrast, in the case of the oxidation catalyst of the present example, a result superior to that of the Pt catalyst was exhibited, and an excellent result substantially equivalent to that of the Pt / Pd catalyst was exhibited.

<NO転化特性>
また、図4に示すように、NO転化特性について見ると、排ガス温度が170℃未満及び300℃を超える領域では、本実施例の酸化触媒は、従来例の酸化触媒とほぼ同等の結果を示したにすぎなかった。
<NO 2 conversion characteristics>
Further, as shown in FIG. 4, regarding the NO 2 conversion characteristics, in the region where the exhaust gas temperature is less than 170 ° C. and more than 300 ° C., the oxidation catalyst of this example has almost the same result as the oxidation catalyst of the conventional example. It was only shown.

より具体的に説明すると、排ガス温度が170℃未満の領域では、本実施例の酸化触媒、従来例の酸化触媒、Pt触媒、及びPt/Pd触媒は、いずれもNO転化特性の指標であるNOの転化率(%)が、ほぼ0%の低い値を示した。他方、排ガス温度が300℃を超える領域では、これらの触媒は、いずれもNOの転化率(%)が、80%前後の高い値を示した。但し、これらの触媒は、いずれも排ガス温度が350℃を超える領域では、当該転化率(%)が減少傾向を示し、排ガス温度が400℃付近では、当該転化率(%)が70%程度まで減少した。 More specifically, in the region where the exhaust gas temperature is less than 170 ° C., the oxidation catalyst of this example, the oxidation catalyst of the conventional example, the Pt catalyst, and the Pt / Pd catalyst are all indexes of NO 2 conversion characteristics. The NO 2 conversion (%) showed a low value of almost 0%. On the other hand, in the region where the exhaust gas temperature exceeds 300 ° C., these catalysts all showed high values of NO 2 conversion (%) of around 80%. However, in these catalysts, the conversion rate (%) tends to decrease when the exhaust gas temperature exceeds 350 ° C., and when the exhaust gas temperature is around 400 ° C., the conversion rate (%) reaches about 70%. Diminished.

ところが、排ガス温度が170℃〜300℃の領域では、本実施例の酸化触媒は、従来例の酸化触媒と比べ、HC酸化性能の点で優れた結果を示した。すなわち、排ガス温度が170℃〜300℃の領域では、従来例の酸化触媒の場合には、Pt/Pd触媒よりも優れた結果を示したものの、Pt触媒よりは劣る結果を示した。これに対し、本実施例の酸化触媒の場合には、Pt/Pd触媒よりも優れた結果を示し、しかも、Pt触媒とほぼ同等の優れた結果を示した。   However, in the region where the exhaust gas temperature is 170 ° C. to 300 ° C., the oxidation catalyst of this example showed superior results in terms of HC oxidation performance as compared with the oxidation catalyst of the conventional example. That is, in the exhaust gas temperature range of 170 ° C. to 300 ° C., the oxidation catalyst of the conventional example showed a result superior to the Pt / Pd catalyst, but inferior to the Pt catalyst. On the other hand, in the case of the oxidation catalyst of the present example, a result superior to that of the Pt / Pd catalyst was shown, and an excellent result almost equivalent to that of the Pt catalyst was shown.

以上の通り、本実施例の酸化触媒は、従来例の酸化触媒と比べ、HC酸化性能及びNO転化特性いずれの点でも優れた作用効果を奏する。従って、本発明の酸化触媒によれば、HC酸化性能及びNO転化特性をうまく両立させることが可能となる。 As described above, the oxidation catalyst of this example exhibits superior effects in both the HC oxidation performance and the NO 2 conversion characteristics as compared with the conventional oxidation catalyst. Therefore, according to the oxidation catalyst of the present invention, the HC oxidation performance and the NO 2 conversion characteristics can both be successfully achieved.

本実施形態及び従来技術の各酸化触媒において、その多孔質基材に触媒成分を担持させた状態を示す概略図である。It is the schematic which shows the state which made the porous base material carry | support the catalyst component in each oxidation catalyst of this embodiment and a prior art. 本実施形態及び従来技術等の各酸化触媒において、HC酸化性能(「HC T50」)及びNO転化特性(「NO C250」)の相関関係を示す図である。In this embodiment and each oxidation catalyst of the prior art such as a diagram showing the correlation between the HC oxidation performance ( "HC T50") and NO 2 conversion characteristics ( "NO 2 C250"). 本実施例及び従来例等の各酸化触媒において、HC酸化性能と排ガス温度との関係を示すグラフである。It is a graph which shows the relationship between HC oxidation performance and exhaust gas temperature in each oxidation catalyst of a present Example and a prior art example. 本実施例及び従来例等の各酸化触媒において、NO転化特性と排ガス温度との関係を示すグラフである。In this example and the oxidation catalyst in the prior art such as is a graph showing the relationship between the NO 2 conversion characteristics and the exhaust gas temperature.

符号の説明Explanation of symbols

10 Pt系の触媒成分
20 Pt/Pd系の触媒成分
100 本実施形態の酸化触媒
200 従来技術の酸化触媒
10 Pt-based catalyst component 20 Pt / Pd-based catalyst component 100 Oxidation catalyst 200 of the present embodiment Prior art oxidation catalyst

Claims (1)

ディーゼルエンジンから排出された排ガスを浄化するためのディーゼルエンジン用排ガス浄化システムの酸化触媒であって、
ハニカム担体の全表面に、プラチナを含有する一方でパラジウムを含有しない触媒成分が担持され、且つ当該触媒成分が担持されたハニカム担体の排ガス流入側の端部からの領域が、該ハニカム担体の全領域に対して体積比で5〜15%の範囲内となる領域の表面にのみ、プラチナ及びパラジウムの双方を含有する触媒成分が担持されていることを特徴とするディーゼルエンジン用排ガス浄化システムの酸化触媒。
An oxidation catalyst for an exhaust gas purification system for a diesel engine for purifying exhaust gas discharged from a diesel engine,
On the entire surface of the honeycomb carrier, a catalyst component containing platinum but not containing palladium is supported, and a region from the exhaust gas inflow side end portion of the honeycomb carrier on which the catalyst component is supported is the entire surface of the honeycomb carrier. Oxidation of an exhaust gas purification system for a diesel engine, characterized in that a catalyst component containing both platinum and palladium is supported only on the surface of a region that falls within a range of 5 to 15% by volume with respect to the region. catalyst.
JP2007108603A 2007-04-17 2007-04-17 Oxidation catalyst of exhaust gas purification system for diesel engine Active JP5103052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108603A JP5103052B2 (en) 2007-04-17 2007-04-17 Oxidation catalyst of exhaust gas purification system for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108603A JP5103052B2 (en) 2007-04-17 2007-04-17 Oxidation catalyst of exhaust gas purification system for diesel engine

Publications (2)

Publication Number Publication Date
JP2008264636A JP2008264636A (en) 2008-11-06
JP5103052B2 true JP5103052B2 (en) 2012-12-19

Family

ID=40044905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108603A Active JP5103052B2 (en) 2007-04-17 2007-04-17 Oxidation catalyst of exhaust gas purification system for diesel engine

Country Status (1)

Country Link
JP (1) JP5103052B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115600A (en) * 2008-11-13 2010-05-27 Mitsubishi Fuso Truck & Bus Corp Oxidation catalyst and apparatus for treating exhaust gas by using the same
US8637426B2 (en) * 2009-04-08 2014-01-28 Basf Corporation Zoned catalysts for diesel applications
EP2623183B1 (en) * 2012-02-03 2015-08-26 Umicore AG & Co. KG Catalytically active particulate filter and use of same
JP6716067B2 (en) * 2014-08-19 2020-07-01 ヤンマーパワーテクノロジー株式会社 Diesel oxidation catalyst

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234936A (en) * 1985-04-09 1986-10-20 Mazda Motor Corp Catalyst for purifying exhaust gas of engine
JP3327054B2 (en) * 1995-06-07 2002-09-24 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP3791947B2 (en) * 1995-09-27 2006-06-28 東京濾器株式会社 Exhaust gas purification catalyst
JP2004124859A (en) * 2002-10-04 2004-04-22 Nissan Motor Co Ltd Exhaust emission control system
JP2005248787A (en) * 2004-03-03 2005-09-15 Mitsubishi Fuso Truck & Bus Corp Exhaust cleaner
DE102004040549B4 (en) * 2004-08-21 2017-03-23 Umicore Ag & Co. Kg Catalytically coated particle filter and its use

Also Published As

Publication number Publication date
JP2008264636A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4682151B2 (en) Exhaust gas purification catalyst
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
US8858904B2 (en) Catalyzed soot filter
US8709365B2 (en) Particulate filter with hydrogen sulphide block function
JP4935219B2 (en) Exhaust gas purification catalyst
US9370769B2 (en) Diesel oxidation catalyst
WO2008054017A1 (en) Exhaust gas purifying catalyst
JP2011512249A (en) CSF with low platinum / palladium ratio
JP2009273988A (en) Catalyst for cleaning exhaust gas
JP5103052B2 (en) Oxidation catalyst of exhaust gas purification system for diesel engine
KR20170018914A (en) Exhaust gas treatment system
JP2014117701A (en) Internal combustion engine gas purification catalyst
JPWO2018199249A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP6735912B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2019060250A (en) Oxidation catalyst device for exhaust emission control
CN109310991B (en) Diesel oxidation catalytic converter
JP2009000648A (en) Exhaust gas cleaning catalyst
US20190224649A1 (en) Catalyst for reduction of nitrogen oxides
JP5094049B2 (en) Exhaust gas purification catalyst
JP6266215B2 (en) Gas purification catalyst for internal combustion engine
JP5604497B2 (en) Exhaust gas purification catalyst
JP2016500331A (en) Zoned diesel oxidation catalyst
WO2021166699A1 (en) Exhaust gas purification catalyst device
JP2003080081A (en) Catalyst for cleaning exhaust gas
JP2009061437A (en) Catalyst for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5103052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250