JP5101694B2 - Memsドライバにおいてトラッキングし応答する機械的弛緩 - Google Patents

Memsドライバにおいてトラッキングし応答する機械的弛緩 Download PDF

Info

Publication number
JP5101694B2
JP5101694B2 JP2010516182A JP2010516182A JP5101694B2 JP 5101694 B2 JP5101694 B2 JP 5101694B2 JP 2010516182 A JP2010516182 A JP 2010516182A JP 2010516182 A JP2010516182 A JP 2010516182A JP 5101694 B2 JP5101694 B2 JP 5101694B2
Authority
JP
Japan
Prior art keywords
voltage
reflective layer
movable reflective
display
mems device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010516182A
Other languages
English (en)
Other versions
JP2010533875A (ja
Inventor
ラメズ・ナフマン
クラレンス・チュイ
マニシュ・コザリ
Original Assignee
クォルコム・メムズ・テクノロジーズ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クォルコム・メムズ・テクノロジーズ・インコーポレーテッド filed Critical クォルコム・メムズ・テクノロジーズ・インコーポレーテッド
Publication of JP2010533875A publication Critical patent/JP2010533875A/ja
Application granted granted Critical
Publication of JP5101694B2 publication Critical patent/JP5101694B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/3466Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on interferometric effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/048Preventing or counteracting the effects of ageing using evaluation of the usage time
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

本発明の分野は、微小電気機械システム(MEMS)に関するものである。
微小電気機械システム(MEMS)は、微小な機械要素、アクチュエータおよびエレクトロニクスを含む。微小機械要素は、堆積、エッチング、ならびに/あるいは基板および/もしくは堆積された材料層の一部をエッチング除去するか、または層を追加して、電気デバイスおよび電気機械デバイスを形成する他のマイクロマシニングプロセスを使用して製作可能である。MEMSデバイスの1つのタイプは、干渉変調器と呼ばれる。干渉変調器は、1対の導電性プレートを備えることが可能であり、その一方または両方は、全体的または部分的に透明および/または反射性であることが可能であり、適切な電気信号の印加により、相対的運動ができることが可能である。一方のプレートは、基板上に堆積された静止層を含むことが可能であり、他方のプレートは、空隙によって静止層から分離された金属膜を含むことが可能である。このようなデバイスは広範囲の用途を有し、これらのタイプのデバイスの特性を利用および/または修正することは、当技術分野において有益になり、それにより、それらの特徴は、既存の製品を改良する際に、および未だ開発されていない新規製品を創出する際に活用することが可能になる。
本発明のシステム、方法およびデバイスは、それぞれ、いくつかの態様を有し、その態様のうちのどの1つも、単独ではその望ましい属性のもとにならない。本発明の範囲を限定することなく、そのより卓越した特徴がここに簡潔に論じられることになる。この議論を考慮した後、特に「発明を実施するための形態」と題された項を読んだ後には、本発明の特徴が他のディスプレイデバイスに勝る利点をいかに提供しているかが理解される。
1つの実施形態においては、ディスプレイ内で、および可動反射層を有するMEMSデバイスを駆動するためのデバイスが、1つまたは複数の時間、環境暴露、および少なくとも1つのMEMSデバイスの可動反射層のフレームレートに関する情報を生成するように構成されている感知ユニットと、電圧(該電圧は、該情報に少なくとも部分的に基づいている)を印加して、該少なくとも1つのMEMSデバイスを駆動するように構成されているドライバ回路とを含む。フレームレートに関する情報は、フレームカウントデータを含むことが可能であり、動作時間に関する情報は、機械的デューティサイクルデータを含むことが可能である。感知ユニットは、時間情報を提供するためのタイミングデバイスを含むことが可能である。感知ユニットは、温度センサを含むことが可能であり、ここでは、環境暴露に関する情報は、温度情報を含む。機械的デューティサイクルデータは、約50%、90%もしくは95%以上の機械的デューティサイクルに基づくか、または約50%、10%もしくは5%以下の機械的デューティサイクルに基づくことが可能である。感知ユニットはまた、フレームカウンタを含むことが可能である。
別の実施形態においては、可動反射層を有するMEMSデバイスの駆動電圧を制御する方法が、1つまたは複数の時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報を生成するステップと、該生成された情報に少なくとも部分的に基づいた電圧により該MEMSデバイスを駆動するステップとを含む。方法は、垂線に対して該可動反射層の機械的弛緩を促進するために、少なくとも1つの所定のコンディショニングパラメータにより、所定の時間期間の間、該MEMSデバイスを動作させるステップを含むことが可能である。少なくとも1つの所定のコンディショニングパラメータは、例えば、約50%以上の機械的デューティサイクル、約70°F以上の温度、約15Hz以上のリフレッシュ周波数、約30Hz以上のリフレッシュ周波数、および/または約12時間以上のコンディショニング期間を含むことが可能である。他の実施形態においては、少なくとも1つの所定のコンディショニングパラメータは、約90%(以上)もしくは約97%(以上)の機械的デューティサイクルを含み、かつ/またはコンディショニング期間は、約24時間以上であることが可能である。
別の実施形態においては、ディスプレイ内で、少なくとも1つのMEMSデバイス(該少なくとも1つのMEMSデバイスは、可動反射層を有する)を駆動するための制御デバイスが、1つまたは複数の時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報を生成するための手段と、該情報に少なくとも部分的に基づいた電圧を供給することによって、該MEMSデバイスを駆動するための手段とを含む。生成手段は、1つまたは複数の動作時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報を生成するように構成されている感知ユニットを含むことが可能である。駆動手段は、電圧(該電圧は、該情報に少なくとも部分的に基づいている)を印加して、該MEMSデバイスを駆動するように構成されているドライバ回路を含むことが可能である。
別の実施形態においては、可動反射層を有するMEMSデバイスの駆動電圧を制御するデバイスを製造する方法が、可動反射膜を有するMEMSデバイスを基板上に配設するステップと、電圧を印加して、情報の関数として、該MEMSデバイスを駆動するように構成されているドライバ回路を接続するステップと、感知ユニット(該感知ユニットは、1つまたは複数の動作時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報を生成するように構成されている)を該ドライバ回路に接続するステップとを含む。別の実施形態においては、微小電気機械(MEMS)デバイスは、この製造方法によって製作される。
別の実施形態においては、ディスプレイ内で、MEMSデバイス(該MEMSデバイスは、可動反射層を有する)を駆動するための制御デバイスが、1つまたは複数の時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報を生成するように構成されている感知ユニットと、電圧を印加して、該情報に少なくとも部分的に基づいて、該MEMSデバイスを駆動するように構成されているドライバ回路とを含む。
別の実施形態においては、MEMSデバイスを駆動する方法が、該MEMSデバイスの可動反射層の予測される弛緩に基づいて、所定の時間スケジュールにより、バイアス電圧を抑制するステップを含む。この方法の1つの例では、該バイアス電圧を抑制するステップは、段階的に実行される。
第1の干渉変調器の可動反射層が弛緩位置にあり、第2の干渉変調器の可動反射層が作動位置にある干渉変調器ディスプレイの1つの実施形態の一部分を示す等角図である。 3×3干渉変調器ディスプレイを組み込んだ電子デバイスの1つの実施形態を示すシステムブロック図である。 図1の干渉変調器の1つの例示的な実施形態についての可動ミラー位置対印加電圧の図である。 干渉変調器ディスプレイを駆動するために使用可能である行電圧と列電圧との組を示す図である。 ディスプレイデータのフレームを図2の3×3干渉変調器ディスプレイに書き込むために使用可能である行信号と列信号とについて示す1つの例示的なタイミング図である。 ディスプレイデータのフレームを図2の3×3干渉変調器ディスプレイに書き込むために使用可能である行信号と列信号とについて示す1つの例示的なタイミング図である。 複数の干渉変調器を備える視覚的ディスプレイデバイスの実施形態を示すシステムブロック図である。 複数の干渉変調器を備える視覚的ディスプレイデバイスの実施形態を示すシステムブロック図である。 図1のデバイスの断面図である。 干渉変調器の代替の実施形態の断面図である。 干渉変調器の別の代替の実施形態の断面図である。 干渉変調器のさらなる別の代替の実施形態の断面図である。 干渉変調器の追加の代替の実施形態の断面図である。 時間と駆動電圧との間の関係を示し、かつパネルウィンドウドリフトを示すグラフである。 異なる温度で、使用時間の関数としてのアクチュエーション電圧の変化の関係を示すグラフである。 ドライブ電圧を調整するためのデバイスのブロック図である。 バイアス電圧(Vb)補正がベストケース(BC)モデルと、ワーストケース(WC)モデルとによって規定される実施形態について、時間の関数としてのVb補正の関係を示すグラフである。 Vb補正曲線にコンディショニングの効果を示すグラフである。 ドライブ電圧を調整するためのデバイスの別の実施形態のブロック図である。 MEMSデバイスを駆動するプロセスを示す流れ図である。
以下の詳細な説明は、本発明のある具体的な実施形態に向けられている。しかし、本発明は、多くの別のやり方で実施可能である。この説明では、図面が参照され、ここでは、同様の部分が全体を通じて同様の数字により示されている。以下の説明から明らかになるように、実施形態は、動画(例えばビデオ)か固定画(例えば静止画像)かにかかわらず、およびテキストか図形かにかかわらず、画像を表示するように構成されている任意のデバイスにおいて実装可能である。より具体的には、実施形態は、携帯電話機、無線デバイス、パーソナルデータアシスタント(PDA)、ハンドヘルドまたは携帯型コンピュータ、GPSレシーバ/ナビゲータ、カメラ、MP3プレーヤ、カムコーダ、ゲーム機、腕時計、クロック、計算機、テレビモニタ、フラットパネルディスプレイ、コンピュータモニタ、自動車ディスプレイ(例えばオドメータディスプレイなど)、コックピットの制御部および/またはディスプレイ、カメラ視野のディスプレイ(例えば、車両における後部視野カメラのディスプレイ)、電子写真、電光掲示板または電光サイン、プロジェクタ、建築構造物、包装、および美的構造物(例えば、宝石片の画像ディスプレイ)などの様々な電子デバイス内に実装されることも、またはそれらの電子デバイスと関連付けられることも可能であるが、これらに限定されないことが企図される。本明細書に説明されているものと類似した構造のMEMSデバイスはまた、電子スイッチングデバイスなどの非ディスプレイ用途にも使用可能である。
干渉変調器が、光を変調するために、キャビティ内の2つ(以上)の位置、例えば、部分反射面付近の作動位置と、部分反射面から離れてリリースされた位置との間で動くように印加電圧によって駆動される可動反射層(または膜)を含む。可動反射層は、一般的には金属である導電性材料から製作される。光変調器として通常の使用中、反復の動き/屈曲は、可動反射層の機械的弛緩をもたらす。温度変化もまた、可動反射層層の機械的弛緩に影響を及ぼすことがあり得る。機械的弛緩の結果として、可動反射層をアクチュエートさせるために必要な電圧(Vact)およびリリースするために必要な電圧(Vrel)、ならびにそれを所望の位置にバイアスするために必要な電圧(Vb)は、その動作可能な寿命にわたって変わることが可能である。機械的弛緩はまた、空隙(可動反射層と、リリースされているときの部分反射層との間の距離)の大きさに影響を及ぼすこともあり得、それにより、空隙はより小さくなり、それにつれて、その光変調特性が変わる。
機械的弛緩の影響を克服するために、干渉変調器の寿命時間にわたって、異なる駆動電圧が安定した光変調性能に必要とされる場合がある。本発明のある実施形態は、その動作可能な寿命にわたって、時間の関数として、可動反射層の機械的弛緩に影響を及ぼす少なくとも1つの因子に基づいて、機械的弛緩を明らかにするために、駆動電圧(例えばバイアス電圧)を変える。いくつかの実施形態においては、機械的弛緩をもたらす因子は、時間の関数としてモデル化され、駆動電圧がそのモデルに基づいて調整される。このような因子は、機械的デューティサイクル(例えば、どのくらいの頻度で可動反射層がアクチュエーション位置にあるかという相対的尺度)、干渉変調器のアクチュエーションとリリースのサイクル(例えば、アクチュエートされた-リリースされた-アクチュエートされた)の累積数、および温度を含むことが可能である。いくつかの実施形態においては、1つまたは複数の機械的デューティサイクル、温度、表示されるフレームの数、もしくは時間が、駆動電圧を調整するために使用される。機械的弛緩情報は、その特定の干渉変調器についての測定値から割り出し可能であり、または所定の情報(例えば、あらかじめ行われた測定または試験)に基づくことが可能である。「時間」は、干渉変調器の現時点の寿命時間使用能力を割り出すために使用される時間測定であることが可能である。いくつかの実施形態においては、可動反射層が、特定のレベルの機械的弛緩を達成するように、干渉変調器はコンディショニングされる。コンディショニングは、干渉変調器(複数可)をディスプレイデバイス内に組み込む前に、干渉変調器がその上に製作されるウェハをダイシングする前か後かのいずれかで実行可能である。いくつかの実装形態では、干渉変調器は、ディスプレイデバイス内でコンディショニングされる。いくつかの実施形態においては、コンディショニングは、所定の時間数の間、所定のリフレッシュ周波数(例えば30Hz)で干渉変調器を動作させて、可動層の機械的弛緩を促進することを含むことが可能であり、それは、「通常」動作状態の下で、かなり長い時間期間にわたって普通に起こることになる。コンディショニングはまた、特定の温度(例えば、異常に高い温度)で干渉変調器を動作させること、通常より高い動作電圧を使用してアクチュエーションを駆動すること、および可動反射層が、高い百分率の(例えば、90%を超える)動作時間の間、アクチュエートされるように、したがって、「屈曲」されるように、アクチュエーション状態を制御することを含むことが可能である。コンディショニング後、機械的弛緩に続いて起こる変化は、大幅により小さく、さらなる機械的弛緩を明らかにするための電圧調整もより小さくなり、頻度が少なくなることが可能である。
干渉MEMSディスプレイ要素を備える1つの干渉変調器ディスプレイの実施形態が、図1に示されている。これらのデバイスにおいては、ピクセルは、明状態か暗状態かのいずれかにある。明(「オン」または「開」)状態においては、ディスプレイ要素は、入射可視光の大部分をユーザに反射する。暗(「オフ」または「閉」)状態にある場合、ディスプレイ要素は、入射可視光をユーザにほとんど反射しない。実施形態によっては、「オン」状態および「オフ」状態の光反射特性は、入れ換え可能である。MEMSピクセルは、主に選択されたカラーで反射するように構成可能であり、白黒に加えて、カラーディスプレイを可能にする。
図1は、視覚ディスプレイの一連のピクセル内の2つの隣接するピクセルを示す等角図であり、ここでは、各ピクセルは、MEMS干渉変調器を含む。いくつかの実施形態においては、干渉変調器ディスプレイは、これらの干渉変調器の行/列アレイを含む。各干渉変調器は、少なくとも1つの可変寸法を有する共鳴光学キャビティを形成するように、互いから可変な、かつ制御可能な距離に位置付けられている1対の反射層を含む。1つの実施形態においては、反射層のうちの1つは、2つの位置の間を動くことが可能である。本明細書では弛緩位置と呼ばれる第1の位置においては、可動反射層は、固定された部分反射層から比較的遠い距離に位置付けられている。本明細書では作動位置と呼ばれる第2の位置においては、可動反射層は、部分反射層に、より近く隣接して位置付けられている。2つの層から反射する入射光は、可動反射層の位置に応じて、建設的または破壊的に干渉し、各ピクセルに対して全体的な反射状態または非反射状態のいずれかをもたらす。
図1のピクセルアレイの示されている部分は、2つの隣接する干渉変調器12aおよび12bを含む。左側の干渉変調器12aにおいては、可動反射層14aが、部分反射層を含む光学スタック16aから所定の距離で弛緩位置に示されている。右側の干渉変調器12bにおいては、可動反射層14bは、光学スタック16bに隣接して作動位置に示されている。
光学スタック16aおよび16b(まとめて光学スタック16と呼ばれる)は、本明細書において参照されるように、典型的には、いくつかの融合層から成り、それらの層は、インジウムスズ酸化物(ITO)などの電極層、クロムなどの部分反射層、および透明誘電体を含むことが可能である。したがって、光学スタック16は、電気的に導電性であり、部分的に透明であり、部分的に反射性であり、例えば、上述の1つまたは複数の層を透明基板20上に堆積することによって製作可能である。部分反射層は、様々な金属、半導体、および誘電体などの部分的に反射性である様々な材料から形成可能である。部分反射層は、材料の1つまたは複数の層で形成可能であり、層のそれぞれは、単一の材料または材料の組合せで形成可能である。
いくつかの実施形態においては、光学スタックの層は、平行なストリップにパターニングされ、さらに後述されるディスプレイデバイス内の行電極を形成することが可能である。可動反射層14a、14bは、ポスト18の上面と、ポスト18相互間に堆積された介在する犠牲材料との上に堆積された(行電極16aおよび16bに直交する)堆積金属層または複数の層の一連の平行なストリップとして形成可能である。犠牲材料がエッチング除去されると、可動反射層14a、14bは、光学スタック16a、16bから、規定間隙19だけ分離される。アルミなどの高い導電性および反射性の材料が反射層14に使用可能であり、これらのストリップは、ディスプレイデバイス内に列電極を形成することが可能である。
印加電圧がなければ、キャビティ19は、可動反射層14aと光学スタック16aとの間に残留し、可動反射層14aは、図1のピクセル12aによって示されているように、機械的に弛緩された状態にある。しかし、電位差が、選択された行および列に印加されると、対応するピクセルにおける行電極および列電極の交点に形成されるコンデンサは充電されるようになり、静電気力が、電極をともに引き付ける。電圧が十分に高い場合は、可動反射層14は変形し、光学スタック16に対して押し付けられる。図1の右側のピクセル12bによって示されるように、光学スタック16内の誘電体層(この図には示されていない)は、短絡を防止し、層14と16との間の分離距離を制御することが可能である。この挙動は、印加される電位差の極性にかかわらず同じである。このようにして、反射ピクセル状態と非反射ピクセル状態との関係を制御することが可能である行/列アクチュエーションは、従来のLCDおよび他のディスプレイ技術において使用されるものと多くの点で類似している。
図2から図5Bは、ディスプレイ用途において、干渉変調器のアレイを使用するための1つの例示的なプロセスおよびシステムを示している。
図2は、本発明の態様を組み込むことが可能である電子デバイスの1つの実施形態を示すシステムブロック図である。例示的な実施形態においては、電子デバイスは、ARM、Pentium(登録商標)、Pentium II(登録商標)、Pentium III(登録商標)、Pentium IV(登録商標)、Pentium(登録商標)Pro、8051、MIPS(登録商標)、Power PC(登録商標)、ALPHA(登録商標)などの任意の汎用のシングルチップマイクロプロセッサもしくはマルチチップマイクロプロセッサ、またはデジタル信号プロセッサ、マイクロコントローラなどの任意の専用のマイクロプロセッサ、あるいはプログラマブルゲートアレイであることが可能なプロセッサ21を含む。当技術分野において従来的であるように、プロセッサ21は、1つまたは複数のソフトウェアモジュールを実行するように構成可能である。オペレーティングシステムを実行することに加えて、プロセッサは、ウェブブラウザ、電話機アプリケーション、電子メールプログラム、または任意の他のソフトウェアアプリケーションを含む1つまたは複数のソフトウェアアプリケーションを実行するように構成可能である。
1つの実施形態においては、プロセッサ21はまた、アレイドライバ22と通信するように構成されている。1つの実施形態においては、アレイドライバ22は、信号をディスプレイアレイまたはパネル30に供給する行ドライバ回路24および列ドライバ回路26を含む。図1に示されているアレイの断面は、図2の線1-1によって示される。MEMS干渉変調器の場合、行/列アクチュエーションプロトコルは、図3に示されているこれらのデバイスのヒステリシス特性を利用することが可能である。例えば、可動層を弛緩された状態からアクチュエートされた状態に変形させるためには10ボルト電位差を必要とすることがある。しかし、電圧がその値から減少した場合、電圧は10ボルトより下に戻って降下するが、可動層はその状態を維持する。図3の例示的な実施形態においては、可動層は、電圧が2ボルトより下に降下するまで完全には弛緩しない。したがって、図3に示されている例では、約3から7Vの電圧範囲があり、その範囲内に、デバイスが弛緩された状態またはアクチュエートされた状態のいずれかで安定している印加電圧のウィンドウが存在する。これは、本明細書において、「ヒステリシスウィンドウ」または「安定ウィンドウ」と呼ばれる。図3のヒステリシス特性を有するディスプレイアレイでは、行/列アクチュエーションプロトコルは、行ストロービングの間、アクチュエートされるべきストローブされた行内のピクセルが約10ボルトの電圧差を受けるように、かつ弛緩されるべきピクセルがゼロボルトに近い電圧差を受けるように設計可能である。ストローブの後、ピクセルは、約5ボルトの定常状態電圧差を受け、それにより、ピクセルは、行ストローブがピクセルをどんな状態に置いたとしても、その状態に残留するようになる。書き込まれた後、各ピクセルは、この例では3〜7ボルトの「安定ウィンドウ」の範囲内の電位差を受ける。この特徴は、アクチュエートまたは弛緩された状態のいずれかのこれまでの状態で、同じ印加電圧条件の下、図1に示されているピクセル設計を安定させる。アクチュエートされた状態にあるか、または弛緩された状態にあるかにかかわらず、干渉変調器の各ピクセルが、基本的に、固定反射層および移動反射層によって形成されるコンデンサであるので、この安定状態は、ほとんど電力消費することなく、ヒステリシスウィンドウの範囲内の電圧で保持可能である。印加電圧が固定されるならば、基本的に、電流は、ピクセルに流れ込まない。
典型的なアプリケーションにおいては、ディスプレイフレームが、第1の行内のアクチュエートされたピクセルの所望の組により、列電極の組をアサートすることによって創出可能である。次いで、行パルスが行1の電極に印加され、アサートされた列ラインに対応するピクセルをアクチュエートさせる。次いで、列電極のアサートされた組は、第2の行内のアクチュエートされたピクセルの所望の組に対応するように変更される。次いで、パルスが行2の電極に印加され、アサートされた列電極により、行2内の適切なピクセルをアクチュエートさせる。行1のピクセルは、行2のパルスによって影響されず、そのピクセルが行1のパルスの間に設定された状態に残留する。これは、連続的な方式で一連の行全体について繰り返されて、フレームを生成することが可能である。一般に、フレームは、1秒当たり、ある所望の数のフレームでこのプロセスを継続的に繰り返すことによって、新規ディスプレイデータによりリフレッシュおよび/または更新される。ディスプレイフレームを生成するために、ピクセルアレイの行電極および列電極を駆動するための幅広い様々なプロトコルもよく知られており、本発明とともに使用可能である。
図4、図5A、および図5Bは、図2の3×3アレイ上にディスプレイフレームを創出するための1つの可能なアクチュエーションプロトコルを示している。図4は、図3のヒステリシス曲線を示すピクセルに使用可能である列電圧レベルおよび行電圧レベルの可能な組を示している。図4の実施形態においては、ピクセルをアクチュエートさせることは、適切な列を-Vbiasに、および適切な行を+ΔVに設定することを含み、それはそれぞれ、-5ボルトおよび+5ボルトに対応することが可能である。ピクセルを弛緩することは、適切な列を+Vbiasに、および適切な行を同じ+ΔVに設定することによって達成され、ピクセル全域にゼロボルトの電位差をもたらす。行電圧がゼロボルトに保持されるそれらの行においては、列が+Vbiasであるか、または-Vbiasであるかにかかわらず、ピクセルが元々どんな状態にあったとしても、ピクセルは安定している。また、図4に示されているように、上述されたものとは反対の極性の電圧が使用可能であることが理解され、例えば、ピクセルをアクチュエートさせることは、適切な列を+Vbiasに、および適切な行を-ΔVに設定することを含むことが可能である。この実施形態においては、ピクセルをリリースすることは、適切な列を-Vbiasに、および適切な行を同じ-ΔVに設定することによって達成され、ピクセル全域にゼロボルトの電位差をもたらす。
図5Bは、アクチュエートされたピクセルが非反射である図5Aに示されているディスプレイ配列に結果的になる、図2の3×3アレイに印加される一連の行信号および列信号を示すタイミング図である。図5Aに示されているフレームを書き込む前に、ピクセルは、任意の状態にあってよく、この例では、すべての行は0ボルトであり、すべての列は+5ボルトである。これらの印加電圧により、すべてのピクセルは、それらの現在のアクチュエートされた状態または弛緩された状態で安定している。
図5Aのフレームにおいては、ピクセル(1、1)、(1、2)、(2、2)、(3、2)および(3、3)がアクチュエートされている。これを達成するために、行1についての「ライン時間」の間、列1および列2は、-5ボルトに設定され、列3は、+5ボルトに設定される。すべてのピクセルが3〜7ボルトの安定ウィンドウ内に残留するという理由から、これは、どのピクセルの状態も変えない。行1は、次いで、0から5ボルトまで上がり、ゼロに戻るパルスでストローブされる。これは、(1、1)のピクセルおよび(1、2)のピクセルをアクチュエートさせ、(1、3)のピクセルを弛緩する。アレイ内のその他のピクセルは影響されない。行2を所望されるように設定するために、列2は-5ボルトに設定され、列1および列3は、+5ボルトに設定される。行2に印加された同じストローブは、次いで、ピクセル(2、2)をアクチュエートさせることになり、ピクセル(2、1)およびピクセル(2、3)を弛緩することになる。やはり、アレイのその他のピクセルは、影響されない。行3は、同様に、列2および列3を-5ボルトに、および列1を+5ボルトに設定することによって設定される。行3のストローブは、図5Aに示されているように行3のピクセルを設定する。フレームを書き込んだ後、行電位はゼロであり、列電位は+5ボルトまたは-5ボルトのいずれかに残留することが可能であり、その場合、ディスプレイは、図5Aの配列において安定している。同じ手順が数十または数百の行および列のアレイに対して採用可能であることが理解される。また、行および列のアクチュエーションを実行するために使用される電圧のタイミング、シーケンス、およびレベルは、上で概説された一般的な原理の範囲内で広範囲に変形可能であり、上記の例はほんの一例であり、任意のアクチュエーション電圧方法が、本明細書に説明されているシステムおよび方法とともに使用可能であることは理解される。
図6Aおよび図6Bは、ディスプレイデバイス40の実施形態を示すシステムブロック図である。ディスプレイデバイス40は、例えばセルラ電話機または携帯電話機であることが可能である。しかし、ディスプレイデバイス40の同じコンポーネントまたはそのわずかな変形形態もまた、テレビおよび携帯型メディアプレーヤなどの様々なタイプのディスプレイデバイスを例示するものである。
ディスプレイデバイス40は、ハウジング41、ディスプレイ30、アンテナ43、スピーカ44、入力デバイス48、およびマイクロフォン46を含む。ハウジング41は、一般に、当業者によく知られている様々な製造プロセスのうちのいずれかから形成され、射出成型および真空形成を含む。加えて、ハウジング41は、様々な材料のうちのいずれかから形成可能であり、プラスチック、金属、ガラス、ゴム、およびセラミック、またはそれらの組合せを含むが、これらに限定されない。1つの実施形態においては、ハウジング41は、異なるカラーの、または異なるロゴ、絵柄、もしくは符号を含む他の取り外し可能な部分と交換可能な取り外し可能な部分(図示せず)を含む。
例示的なディスプレイデバイス40のディスプレイ30は、本明細書において説明されているように、双安定ディスプレイを含む様々なディスプレイのうちのいずれかであってよい。他の実施形態においては、ディスプレイ30は、当業者によく知られているように、上述されたプラズマ、EL、OLED、STN LCDまたはTFT LCDなど、フラットパネルディスプレイ、またはCRTもしくは他のチューブデバイスなど、非フラットパネルディスプレイを含む。しかし、本実施形態を説明する目的では、ディスプレイ30は、本明細書に説明されているように、干渉変調器ディスプレイを含む。
例示的なディスプレイデバイス40の1つの実施形態のコンポーネントは、図6Bに概略的に示されている。示されている例示的なディスプレイデバイス40は、ハウジング41を含み、少なくとも部分的にその中に納められた追加のコンポーネントを含むことが可能である。例えば、1つの実施形態においては、例示的なディスプレイデバイス40は、トランシーバ47に結合されているアンテナ43を含むネットワークインターフェース27を含む。トランシーバ47は、プロセッサ21に接続され、そのプロセッサは、コンディショニングハードウェア52に接続されている。コンディショニングハードウェア52は、信号をコンディショニングする(例えば、信号をフィルタリングする)ように構成可能である。コンディショニングハードウェア52は、スピーカ45およびマイクロフォン46に接続されている。プロセッサ21はまた、入力デバイス48およびドライバコントローラ29に接続されている。ドライバコントローラ29は、フレームバッファ28と、アレイドライバ22とに結合されており、そのアレイドライバは、続いてディスプレイアレイ30に結合されている。電源50は、特定の例示的なディスプレイデバイス40の設計によって必要とされるすべてのコンポーネントに電力を供給する。
ネットワークインターフェース27は、アンテナ43およびトランシーバ47を含み、それにより、例示的なディスプレイデイバス40は、ネットワークを介して1つまたは複数のデバイスと通信することが可能である。1つの実施形態においては、ネットワークインターフェース27はまた、プロセッサ21の要求を軽減するためにいくつかの処理能力を有することが可能である。アンテナ43は、信号を送受信するための、当業者には知られている任意のアンテナである。1つの実施形態においては、アンテナは、IEEE802.11(a)、(b)、または(g)を含むIEEE802.11規格により、RF信号を送受信する。別の実施形態においては、アンテナは、BLUETOOTH規格により、RF信号を送受信する。セルラ電話機の場合、アンテナは、CDMA、GSM、AMPS、または無線セル電話ネットワークの範囲内で通信するために使用される他の知られている信号を受信するように設計されている。トランシーバ47は、アンテナ43から受信された信号を前処理し、それにより、その信号は、プロセッサ21によって受信、さらには操作可能になる。トランシーバ47はまた、プロセッサ21から受信された信号を処理し、それにより、その信号は、アンテナ43を介して例示的なディスプレイデバイス40から送信可能になる。
代替の実施形態においては、トランシーバ47は、レシーバによって置き換え可能である。さらなる別の代替の実施形態においては、ネットワークインターフェース27は、画像ソースによって置き換え可能であり、その画像ソースは、プロセッサ21に送られるべき画像データを記憶または生成することが可能である。例えば、画像ソースは、画像データを含むデジタルビデオディスク(DVD)もしくはハードディスクドライブ、または画像データを生成するソフトウェアモジュールであることが可能である。
プロセッサ21は、概して、例示的なディスプレイデバイス40の全体的な動作を制御する。プロセッサ21は、ネットワークインターフェース27または画像ソースからの圧縮された画像データなど、データを受信し、そのデータを生の画像データに、または生の画像データに容易に処理されるフォーマットに処理する。プロセッサ21は次いで、処理されたデータをドライバコントローラ29に、または記憶するためのフレームバッファ28に送信する。生のデータは、典型的には、画像内のそれぞれの場所で画像特性を識別する情報を示す。例えば、このような画像特性は、カラー、彩度、およびグレースケールレベルを含むことが可能である。
1つの実施形態においては、プロセッサ21は、例示的なディスプレイデバイス40の動作を制御するためのマイクロコントローラ、CPU、または論理ユニットを含む。コンディショニングハードウェア52は、概して、信号をスピーカ45に送信するための、および信号をマイクロフォン46から受信するための増幅器およびフィルタを含む。コンディショニングハードウェア52は、例示的なディスプレイデバイス40内のディスクリートコンポーネントであってよく、またはプロセッサ21もしくは他のコンポーネント内に組込まれていてもよい。
ドライバコントローラ29は、プロセッサ21によって生成された生の画像データをプロセッサ21から直接、またはフレームバッファ28からのいずれかで取り込み、アレイドライバ22への高速送信に適切に生の画像データを再フォーマットする。具体的には、ドライバコントローラ29は、ディスプレイアレイ30全体にわたって走査するのに適している時間順序を持つように、生の画像データをラスタ状のフォーマットを有するデータフローに再フォーマットする。次いで、ドライバコントローラ29は、フォーマットされた情報をアレイドライバ22に送る。LCDコントローラなどのドライバコントローラ29は、しばしば、スタンドアロン型集積回路(IC)としてシステムプロセッサ21と関連付けられるが、このようなコントローラは、多くのやり方で実装可能である。それらは、ハードウェアとしてプロセッサ21内に埋め込まれても、ソフトウェアとしてプロセッサ21内に埋め込まれても、またはアレイドライバ22とともにハードウェア内に完全に一体化されてもよい。
典型的には、アレイドライバ22は、フォーマットされた情報をドライバコントローラ29から受け取り、ディスプレイのx-yのピクセルマトリクスから生じる数百、時には数千のリードに、毎秒多くの回数印加される波形の平行な組にビデオデータを再フォーマットする。
1つの実施形態においては、ドライバコントローラ29、アレイドライバ22、およびディスプレイアレイ30は、本明細書に説明されているディスプレイのいずれのタイプにも適切である。例えば、1つの実施形態においては、ドライバコントローラ29は、従来のディスプレイコントローラまたは双安定ディスプレイコントローラ(例えば干渉変調器コントローラ)である。別の実施形態においては、アレイドライバ22は、従来のドライバまたは双安定ディスプレイドライバ(例えば干渉変調ディスプレイ)である。1つの実施形態においては、ドライバコントローラ29は、アレイドライバ22とともに一体化される。このような実施形態は、セルラ電話、腕時計、および他の小面積のディスプレイなどの高集積化システムにおいては一般的である。さらなる別の実施形態においては、ディスプレイアレイ30は、典型的なディスプレイアレイまたは双安定ディスプレイアレイ(例えば、干渉変調器のアレイを含むディスプレイ)である。
入力デバイス48は、ユーザが、例示的なディスプレイデバイス40の動作を制御することを可能にする。1つの実施形態においては、入力デバイス48は、QWERTYキーボードまたは電話機キーパッドなどのキーパッド、ボタン、スイッチ、タッチセンサスクリーン、感圧もしくは感熱の膜を含む。1つの実施形態においては、マイクロフォン46は、例示的なディスプレイデバイス40のための入力デバイスである。マイクロフォン46がデータをデバイスに入力するために使用される場合、音声コマンドが、例示的なディスプレイデバイス40の動作を制御するためにユーザによって供給可能である。
電源50は、当技術分野においてよく知られているような様々なエネルギー貯蔵デバイスを含むことが可能である。例えば、1つの実施形態においては、電源50は、ニッケルカドミウム電池またはリチウムイオン電池など、再充電可能な電池である。別の実施形態においては、電源50は、再生可能なエネルギー源、コンデンサ、またはプラスチック太陽電池および太陽電池ペイントを含む太陽電池である。別の実施形態においては、電源50は、電力を壁コンセントから受け取るように構成されている。
いくつかの実装形態においては、上述されたように、制御プログラム可能性は、電子ディスプレイシステム内のいくつかの場所に配置可能であるドライバコントローラ内に存在する。場合によっては、制御プログラム可能性は、アレイドライバ22内に存在する。当業者は、上述された最適化が、任意の数のハードウェアおよび/またはソフトウェアのコンポーネントにおいて、ならびに様々な構成において実装可能であることを理解する。
上述された原理により動作する干渉変調器の構造の詳細は、幅広く変わることが可能である。例えば、図7A〜図7Eは、可動反射層14およびその支持構造の5つの異なる実施形態を示している。図7Aは、図1の実施形態の断面であり、ここでは、金属材料14のストリップが、直交して延在する支持体18上に堆積される。図7Bにおいては、可動反射層14は、テザー32上に隅部においてのみ支持体に取り付けられている。図7Cにおいては、可動反射層14は、変形可能層34から懸架され、それは、可撓性金属を含むことが可能である。変形可能層34は、変形可能層14の周囲を囲んで基板20に直接的または間接的に接続している。これらの接続部は、本明細書においては支持ポストと呼ばれる。図7Dに示されている実施形態は、支持ポストプラグ42を有し、その上に変形可能層34が置かれている。可動反射層14は、図7A〜図7Cのように、キャビティ全体にわたって懸架されたままであるが、変形可能層34は、変形可能層34と光学スタック16との間の穴を充填することによって、支持ポストを形成するのではない。そうではなく、支持ポストは、支持ポストプラグ42を形成するために使用される平坦化材料で形成される。図7Eに示されている実施形態は、図7Dに示されている実施形態に基づいているが、また、図7A〜図7Cに示されている実施形態ならびに図示されていない追加の実施形態のうちのいずれかにより動作するように適合可能である。図7Eに示されている実施形態においては、金属または他の導電性材料の追加層が、バス構造44を形成するために使用されている。これは、信号が、干渉変調器の背面に沿ってルーチングすることを可能にし、そうでなければ基板20上に形成される必要があったかもしれないいくつかの電極を削除する。
図7に示されているものなどの実施形態においては、干渉変調器は直視デバイスとして機能し、その中で画像は、透明基板20の正面側、変調器が配置されている側とは反対の側から見られる。これらの実施形態においては、反射層14は、変形可能層34を含む、基板20の反対の反射層の側の干渉変調器の一部分を光学的に遮蔽する。これは、遮蔽された範囲が画像品質にマイナスの影響を及ぼすことなく構成され、動作することを可能にする。このような遮蔽は、図7Eにおけるバス構造44を可能にし、それは、アドレッシングおよびそのアドレッシングの結果生じる動きなどの変調器の電気機械的特性から、変調器の光学的特性を分離する能力をもたらす。この分離可能な変調器アーキテクチャは、変調器の電気機械的態様および光学的態様に使用される構造的な設計および材料が、互いに独立して選択され、機能することを可能にする。さらには、図7C〜図7Eに示されている実施形態は、反射層14の光学的特性をその機械的特性から切り離すことから引き出した追加の利点を有し、それは、変形可能層34によって実行される。これは、反射層14に使用される構造的な設計および材料が、光学的特性に対して最適化されることを可能にし、変形可能層34に使用される構造的な設計および材料が所望の機械的特性に対して最適化されることを可能にする。
上述したように、光変調器として通常使用の間、反復性の動き/屈曲は、可動反射層を機械的に弛緩させる可能性がある。機械的弛緩の結果として、可動反射層をアクチュエートさせるのに必要な電圧(Vact)およびリリースするのに必要な電圧(Vrel)、ならびに可動反射層を所望の位置でバイアスするのに必要な電圧(Vb)は、その動作可能な寿命にわたって変わることが可能である。アクチュエーション電圧およびリリース電圧の変動の2つの基本的なソースが存在する。第1は、可逆的な温度効果であり、例えば、より暖かい温度は機械層を軟化させ、アクチュエーション電圧を低下させる。温度が下方へ戻り始めた場合、この効果は逆転し、アクチュエーション電圧はその前の値まで上昇する。第2は、不可逆的なエージング効果であり、機械層は経時的に不可逆的に軟化し、アクチュエーション電圧は一定温度であっても降下する。不可逆的効果は、高温度によって、および頻繁に使用することによって促進可能であり、したがって、正確に補償することは困難である。いくつかのスキームは、アクチュエーション電圧およびリリース電圧を直接測定し、それに応じて、バイアス電圧を設定する。これは、非常に正確であるが、追加の駆動回路という点では費用がかかり、測定時間および電力を必要とする。
経時的なアクチュエーション電圧およびリリース電圧の低下の不可逆的なコンポーネントは、以下のように対数依存性に適合可能である。
deltaV=A+B*log(t+C) [1]
任意の所与のディスプレイについて、アクチュエーション電圧の実際観測された変化に適合するBおよびCに関する値は、温度、ディスプレイ更新の頻度、および変調器が費やすアクチュエートされた状態対リリースされた状態の時間の百分比などの因子に依存することになる。例えば、図9(さらに後述される)は、時間の関数として、97%のアクチュエートされた状態を有し、30Hzのリフレッシュ周波数により更新され、様々な温度で動作するアレイに関するアクチュエーション電圧の変化の試験結果を示している。
低下するアクチュエーション電圧およびリリース電圧、ならびに時間のこの関係を知れば、バイアス電圧の補償スキームが創出可能であり、それは、アレイの機能パラメータまたは環境パラメータの測定をまったく必要としない。
温度の関数としての上述のBおよびCに関する値は、実際の使用中に受けることになると予想されるそれらの温度に対して割出しおよび推定可能である。ディスプレイの将来使用される実際の条件を知ることはできないが、ベストケースおよびワーストケースのシナリオは使用可能である。例えば、アレイがその寿命時間にわたって受けると予想される平均温度は、ウィスコンシンなどの寒冷気候における50度F(以下)から、アリゾナなどの温暖気候における90度F(以上)まで様々である可能性がある。加えて、アレイがめったに更新されず、ほとんどいつもアクチュエートされていないピクセルを有することも、またはアレイが頻繁に更新され、ほとんどいつもアクチュエートされているピクセルを有することもあり得る。上述のBおよびCに関する値は、高い平均温度および多くはアクチュエートされているピクセル(ワーストケースのエージング)の、ならびに寒冷温度および多くはアクチュエートされていないピクセル(ベストケースのエージング)についての条件に関する製造試験データから、割出しおよび推定可能である。これは、時間の関数として、2つのエージング曲線を形成することになり、これらの曲線は、デバイスが受けることになる実際のエージングの上限および下限を一まとめにするのに役立つ。割り出された「ベストケース」および「ワーストケース」の条件により、一まとめにされた上限および下限の範囲内に入るバイアス電圧が、時間の関数として印加可能である。
図8は、アクチュエーション電圧(Vact)803およびリリース電圧(Vrel)806に関する機械的弛緩の効果を示し、それらが両方とも、時間の関数として対数的に低下していることを示している。機械的弛緩が明らかでない場合、アクチュエーション電圧は、それが、更新間にアレイの変調器に印加されたバイアス電圧Vbを下回るまで、干渉変調器の稼働寿命時間の間、下方に動く。これは、画像保持が存在するときに視覚的障害をもたらす「障害時間」である。なくすことは困難であるが、ヒステリシスループの半幅によって規定される電圧「ウィンドウ」809の小部分だけを費やすように、管理可能なレベルに(本明細書において後述され、具体的には図12を参照して)コンディショニングすることにより、機械的弛緩は抑制可能である。その場合、機械的弛緩の残りの効果は、例えば機械的弛緩モデルに基づいて、バイアス電圧を調整することによって明らかにされ得る。
図9は、5つの異なる動作温度において、いくつかの動作可能な時間にわたって干渉変調器の可動層に生じる可能性のある機械的弛緩によってもたらされるアクチュエーション電圧降下の例を示している。類似の電圧降下が、リリース電圧において生じる。図9においては、干渉変調器の動作時間がx軸に示されている。アクチュエーション電圧の変化(Vact/Vact0)(例えば、時間ゼロ(0)で必要なアクチュエーション電圧で割った、干渉変調器の稼働寿命中の特定の点で必要なアクチュエーション電圧)を示すものは、y軸に示されている。
図9に示される5つの曲線は、動作時間約160時間にわたって、異なる温度(60°C、70°C、85°C、95°Cおよび105°C)で動作する干渉変調器についてのアクチュエーション電圧の変化の実験結果を示しており、ここでは、他の動作パラメータ(バイアス電圧(2.4V)、リフレッシュ周波数(30Hz)、および機械的デューティサイクル(97%))は同じであった。機械的デューティサイクルは、どの位の頻度で可動反射層が1つの特定の位置、例えば作動位置にあるかに関係する。例えば、可動反射層が、特定の情報を表示するために、作動位置に60%の時間置かれた場合、機械的デューティサイクルは、60%の値によって特徴付け可能である。アクチュエーションは、可動反射層を機械的に屈曲させるという理由から、より高い機械的デューティサイクルは、可動層の機械的弛緩を増大させる可能性がある。
具体的には、図9の5つの曲線は、所要のアクチュエーション電圧(Vact(t)/Vact(0))が時間とともに低下することを示している。温度は、それぞれの規定された温度において個別の曲線によって示されているように、アクチュエーション電圧に影響を及ぼす。干渉変調器の周囲の動作温度が60°Cを超えて上昇するにつれて、アクチュエーション電圧は低下する。アクチュエーション電圧の低下率の変化(例えば、曲線の傾斜)は、経時的に低下するので、機械的弛緩のために補正することが必要なバイアス電圧の増分変化もまた、経時的に低下する。したがって、バイアス電圧は、典型的には、継続的に調整される必要はなく、そうではなくて、やはり経時的に変化する(例えば、上昇する)ことが可能な増分間隔で、バイアス電圧は補正可能である。
新しいドライバコントローラ、本明細書において説明されている例を用いて、干渉変調器に印加される電圧は、機械層の弛緩モデルに基づいて修正可能である。図10は、ドライブ電圧を1つまたは複数のMEMSデバイスに供給する駆動デバイス805のブロック図である。1つの実施形態においては、駆動デバイス805は、ディスプレイ30内に構成されている複数の干渉変調器に、接続部825を通じてドライブ電圧を供給する。単一の線として示されているが、接続部825は、概して、駆動デバイス805からの列駆動信号および行駆動信号をディスプレイ30の干渉変調器の行および列に伝えることができる複数の接続部を備える。駆動デバイス805は、感知ユニット810およびドライバ回路815を含む。いくつかの実施形態においては、駆動回路815は、感知ユニット810とインターフェースするように構成されている図2に示されているような電子デバイスであることが可能である。駆動デバイス805は、感知ユニット810から受信された1つまたは複数の入力信号に少なくとも部分的に基づいて、駆動電圧を供給する。
感知ユニット810は、アレイ30内に構成されている干渉変調器に供給される駆動電圧を割り出すために使用される1つまたは複数の信号をドライバ回路815に伝える。上に示されたように、可動反射層14(図1)に生じる機械的弛緩により、可動反射層14をアクチュエートさせるために必要な電圧(Vact)およびリリースするために必要な電圧(Vrel)、ならびに反射可動層14を所望の位置(Vb)で維持するために必要な電圧(Vbias)は、干渉変調器の稼働寿命時間の間、変わることが可能である。したがって、駆動デバイス805は、可動反射層の安定した動きおよび安定した光変調性能を達成するために、干渉変調器の寿命時間にわたって、異なる電圧を供給するように構成可能である。図10および図13を参照して、さらに本明細書において後述される感知ユニット810は、アレイの可動層の機械的弛緩に影響を及ぼす1つまたは複数の因子を明らかにするために使用可能である情報を示す1つまたは複数の信号を生成し、供給するように構成されている。情報は、アレイの可動反射層14を動作させることと関連付けられるアクチュエーションデータ、例えば、フレームカウントデータおよび/または機械的デューティサイクルデータを含むことが可能である。情報はまた、干渉変調器の動作条件と関連付けられる情報、例えば、温度を含むことが可能である。典型的な実施形態においては、機械的弛緩に影響を及ぼす1つまたは複数の因子の全効果は、MEMSデバイスの予測稼働寿命に対して割り出される。機械的弛緩を明らかにする対応電圧が、時間の関数として、(例えば、試験により)割り出され、感知ユニット810は、MEMSデバイス稼働寿命の適切な時間の間、割り出された電圧を使用することを示す信号を駆動回路815に供給する。
感知ユニット810は、記憶ユニット915およびタイミングデバイス905と通じている制御ユニット910を備えることが可能である。別個のコンポーネントとして図10には示されているが、いくつかの実施形態においては、記憶ユニット915および/またはタイミングデバイス905は、制御ユニット910内に組み込まれて、タイミングデバイスおよび記憶ユニットの機能も有する制御ユニットを形成することが可能である。概して、制御ユニット910は、タイミングデバイス905から入力を受け取るロジックを含み、その入力を使用して、駆動回路815に供給する信号を割り出し、ここでは、その信号は、記憶ユニット915内に記憶された情報に基づいている。
タイミングデバイス905は、接続された干渉変調器またはディスプレイが、どのくらい動作したかを示すことが可能である情報を提供するように構成されている。タイミング情報の「単位」は、例えば、秒、分、時間、日、週、月、もしくは年、あるいは接続された干渉変調器またはディスプレイが動作している秒、分、時間、日、週、月、もしくは年の数に(少なくとも近似的に)対応する相対的時間「カウント」であることが可能である。タイミングデバイス905は、時間の経過(例えば、アレイの稼働時間)をトラッキングする手段、例えば、結晶共振器、クロック発振器、電圧制御の発振器(VCXO)、温度補償水晶共振器(TCXO)を備えることも、またはそれは、別のタイミングデバイスから受信される入力信号であることも可能である。
記憶ユニット915は、時間の関数として、可動反射層14の機械的弛緩に関する情報を記憶する。このような情報は、様々な情報構造の、例えば、1つまたは複数のルックアップテーブル、インデックス付きアレイ、データベース、データリストなどの記憶ユニット915内に電子的に記憶可能である。RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、または当技術分野で知られている記憶媒体の任意の他の形態が、情報を記憶ユニット915内に記憶するために使用可能である。いくつかの実施形態においては、機械的弛緩に関する情報は、制御ユニット910のメモリの一部分に記憶可能である。
機械的弛緩情報は、アレイがリフレッシュされたか、またはサイクルされた温度、機械的デューティサイクル、および/または時間数(例えば、フレームカウント)に関するデータを含むことが可能である。例えば、いくつかの実施形態においては、記憶された弛緩情報は、時間の関数として、1つまたは複数の温度、機械的デューティサイクル、およびフレームカウントから結果的に生じる機械的弛緩に対応し、それは、所与の稼働時間値(例えば、ルックアップテーブルへの入力)に対して、機械的弛緩値が供給可能になるように順序付けられる。弛緩情報は、1つまたは複数の温度(予測された温度または感知された温度のいずれか)、機械的デューティサイクル、およびフレームリフレッシュと可動層の機械的弛緩を関係付ける機械的弛緩モデルに基づいていることが可能である。
当業者が理解するように、機械的弛緩情報を使用して、バイアス電圧(Vb)を調整するためのスキームの多くの実施形態が存在することが可能である。1つまたは複数の動作時間、環境暴露、およびMEMSデバイスの可動反射層のフレームレートに関する情報が生成可能であり、それを使用して、生成された情報に少なくとも部分的に基づいてMEMSデバイスを駆動することが可能である。いくつかの実施形態においては、バイアス電圧は、時間の関数として、機械的弛緩の所定の推量を明らかにするために調整可能である。1つまたは複数の温度、機械的デューティサイクル、およびフレームリフレッシュレートに基づいたモデルが生成可能であり、それを使用して、生じることになる機械的弛緩を予測することが可能である。温度、機械的デューティサイクル、およびフレームリフレッシュレートの情報は、予測されるデータであっても、実際のデータであっても、または予測されるデータと実際のデータとの組合せであってもよい。場合によっては、パラメータは、干渉変調器を組み込むことになるディスプレイの意図された使途に基づいていることが可能である。例えば、いくつかのモデルにおいては、機械的デューティサイクルは、約50%、90%、または95%以上であると予測可能である。あるいは、いくつかの実施形態においては、機械的デューティサイクルデータは、約50%以下、または約10%もしくは約5%以下の機械的デューティサイクルに基づいている。
いくつかの実施形態においては、モデルは、ルックアップテーブルの記憶ユニット915(例えば、図10)内に記憶されるデータに示され、それにより、任意の特定の時間の間、バイアス電圧補正が時間値を使用して割出し可能になる。典型的には、任意の所要のバイアス電圧補正が、ある所定時間期間(例えば、時間、日、週、月、年など)において、比較的小さな増分変化で行われる。
バイアス電圧補正降下は、連続的であっても、または段階的であってもよい。例えば、ベストケースとワーストケースとの中点が、50,000時間のデバイス寿命時間にわたって、5ボルトから3.5ボルトへのバイアス電圧の低下を伴う場合、15個の0.1ボルト降下が50,000時間の使用にわたって実行可能になる。これらの降下は、開始時にはより頻繁に起こり、デバイス寿命時間の限界時には、機械的弛緩の速度が遅くなる理由から、それほど頻繁に起こらなくなる。
上述のスキームは、タイマだけを必要とする。他のスキームは、ベストケースB値およびワーストケースC値を個々のデバイスの環境および/または使用の履歴に依存させることが可能である。例えば、現在の所望のバイアス電圧降下のレートは、バイアス電圧がこれまでにどの程度補正されているかに基づいて、さらに現在の温度およびフレーム更新レートに関する情報に基づいて算出可能である。
時間の関数として、バイアス電圧補正をもたらすモデルの1つの実施形態が、図11に示されており、それは、時間(x-軸)の関数として、バイアス電圧(y-軸)のグラフを示している。「Vb0」は、時間ゼロ(0)でのバイアス電圧を示す。「最終Vb」は、干渉変調器の寿命の限界点でのバイアス電圧を示す。図11では、バイアス電圧補正が、例えば、破線曲線1115に沿う破線円1120の範囲内で、割り出されたベストケース(「BC」)弛緩シナリオ(曲線1105)と、割り出されたワーストケース(「WC」)弛緩シナリオ(曲線1110)との範囲内に、バイアス電圧を維持することに基づいて予測される。様々な条件の下、干渉変調器を試験することに基づいて、1つまたは複数の機械的デューティサイクル、温度、およびフレーム更新数に関する情報は、特定のシナリオについてのベストケース曲線およびワーストケース曲線を生成するために使用可能である。このような曲線が分かると、BC曲線およびWC曲線の間に入るバイアス電圧補正曲線が生成される。時間の関数として、バイアス電圧補正曲線の値は、数量化可能であり、記憶可能であり、続いて、時間内に、ある点において印加されるべき具体的なバイアス電圧補正を割り出すために使用可能である。例えば、バイアス電圧補正曲線の値は、時間値によって参照されるルックアップテーブルの記憶ユニット915(図10および図13)内に記憶可能であり、次いで、入力をドライバ回路815に供給して、アレイ30内の干渉変調器に印加されるバイアス電圧を制御する(例えば、下げる)制御ユニット910によって使用可能であり、それにより、所要のアクチュエーション電圧は、更新間にアレイの変調器に印加されたバイアス電圧を上回る状態が続く。
BC曲線1105を生成するために使用される「ベストケース」情報は、機械的弛緩を最小限に抑える条件、例えば、低機械的デューティサイクル(「MDC」)、低動作温度、および低速フレームリフレッシュレートと関係している。この具体例では、「ベストケース」情報は、5年にわたるリアルタイム温度、0%MDC、およびゼロ(0)フレームリフレッシュレートを含む。WC曲線1110は、一般的に、機械的弛緩を増大させる条件、例えば、高機械的デューティサイクル、高温度、および高フレームリフレッシュレートを示す「ワーストケース」情報によって生成可能である。この例では、「ワーストケース」情報は、5年にわたるアリゾナの夏期温度(例えば、約120°Fと等しい温度値)、次いで、5年にわたる実際の温度(例えば、温度センサかまたは実際の温度の所定平均かのいずれかを使用して)をシミュレーションするために選択された温度値を含む。「ワーストケース」情報はまた、100%MDCと、干渉変調器の寿命にわたる最大稼働リフレッシュレートから割り出されるフレームカウントとを含むことが可能である。これらの因子は、関連の特定の干渉変調器の試験データに沿って、ベストケースおよびワーストケースについて、時間の関数としての電圧の変化を示すBCΔV曲線1105およびWCΔV曲線1110を生成するために使用される。弛緩についてのウィンドウ量は、図11の曲線1115によって示されているように、WC曲線とBC曲線との間の半分の距離に等しい。この例では、駆動デバイス805は、干渉変調器のヒステリシスウィンドウの範囲内にバイアス電圧を維持するために、曲線1115によりバイアス電圧補正を行うことが可能である。
弛緩情報を使用して、バイアス電圧を調整するための他の可能な実施形態が存在する。別の例では、モデルがゼロパーセント(0%)MDCを有し、フレームカウントを持たないベストケース、および100パーセント(100%)MDCを有し、30Hz周波数でフレームカウントを有するワーストケースについて、干渉変調器の寿命時間にわたって弛緩を予測する。累積リアルタイム温度がまた、感知可能であり、それを使用して、バイアス電圧を調整することが可能である。この例では、駆動デバイス805によって供給されるバイアス電圧は、累積温度の影響を考慮しながら、MDCによって割り出されるベストケースのΔ曲線およびワーストケースのΔ曲線の間にあるように調整可能である。
干渉変調器を「コンディショニングすること」は、「通常」使用の前に可動反射層を機械的に弛緩するように設計されている条件下で、干渉変調器を動作させることを示し、それにより、かなりの量の機械的弛緩が生じるようになる。一般的に、コンディショニングは、製作後、および干渉変調器がその目的製品(例えば、携帯電話機、無線デバイス、パーソナルデータアシスタント、ハンドヘルドまたは携帯型コンピュータ、GPSレシーバ、カメラ、MP3プレーヤ、カムコーダ、腕時計、クロック、計算機、フラットパネルディスプレイなど)内に組込まれる前、ならびに販売される前の時間期間の間に実行される。コンディショニングは機械的弛緩を促進させ、それに相応して、ΔVの変化を促進する。コンディショニング期間の間に、大部分の機械的弛緩が生じている。コンディショニング後、機械的弛緩の後に続いて起こる変化は、著しくより小さく、さらなる機械的弛緩を明らかにするための印加電圧調整もまた、より小さい。したがって、任意のさらなる機械的弛緩は、バイアス電圧を調整すること(例えば、下げること)によって明らかにされ得る。いくつかの実施形態においては、目的製品は、コンディショニングをし易くするために制御ユニットを含むことが可能であり、コンディショニングは、目的製品が通常動作に置かれる前に、その製品に関して実行可能である。
コンディショニングの効果は、図12にグラフで示されている。時間tcで、干渉変調器が特定のパラメータによりコンディショニングを開始する。コンディショニングの期間は、時間t0まで継続する。コンディショニング曲線1205は、コンディショニング期間の間、(比較的)急激なアクチュエーション電圧降下をトラッキングする。時間t0で、干渉変調器は動作に入り、ここでは、コンディショニングにより、より緩やかに変化するアクチュエーション電圧降下を有し、バイアス電圧(Vb)に対して、より小さい補正が必要になる。
高温度、高機械的デューティサイクル、ならびに高アクチュエーション電圧および高リリース電圧を使用することのすべてが、機械的弛緩を促進し、それに相応して、リリース電圧およびアクチュエーション電圧の変化を促進する。いくつかの実施形態においては、MEMSデバイス(例えば、干渉変調器)は、所定のパラメータを使用して「コンディショニング」され、それにより、可動反射層は、所定のレベルの機械的弛緩を達成するようになる。コンディショニングは、例えば、通常の周囲温度環境より高い温度環境で、ある時間期間の間、特定のリフレッシュ周波数で、干渉変調器を動作させること、および可動反射層が半分を超える時間、アクチュエートされる(または「屈曲される」)ように、アクチュエーション状態を制御することを含むことが可能である。いくつかの実施形態においては、コンディショニングパラメータは、70°F以上の温度で、約15Hz以上のフレームレートおよび約50%以上の機械的デューティサイクルを使用して、干渉変調器を動作させることを含む。他の実施形態においては、このようなコンディショニングパラメータは、約30Hz以上のリフレッシュ周波数で、干渉変調器を動作させること、約12時間以上の時間期間の間、干渉変調器を動作させること、(例えば、70°Fを上回る)高温度環境で、干渉変調器を動作させること、通常の動作電圧より高い電圧を使用して、干渉変調器を動作させること、および/または可動反射層が90%を超える時間(例えば、90%のMDC)、アクチュエートされるように、干渉変調器のアクチュエーション状態を制御することを含むことが可能である。いくつかの実施形態においては、コンディショニングパラメータは、24時間(以上)の間、干渉変調器を動作させること、および/または可動反射層が少なくとも97%の時間(例えば、少なくとも97%のMDC)、アクチュエートされるように、干渉変調器のアクチュエーション状態を制御することを含むことが可能である。
図13は、駆動デバイス805の別の実施形態のブロック図である。図13に示されている感知ユニット810は、記憶ユニット915およびタイミングデバイス905に接続されている制御ユニット910を備える。この例では、感知ユニット810はさらに、干渉変調器または干渉変調器の組(例えばディスプレイ30)が、アクチュエートされた状態から弛緩された状態に、そしてアクチュエートされた状態に戻って、または弛緩された状態からアクチュエートされた状態に、そして弛緩された状態に戻って、何回リフレッシュされたか、または「サイクル」されたかを示すフレームカウントデータを生成するフレームカウンタ1305を備える。本明細書に使用されているように、「サイクル」はまた、アクチュエートされたか、または弛緩されたかのいずれかの第1の位置から、第1の位置の反対の第2の位置に可動反射層14を動かすことを含むことが可能である。リフレッシュの数が増加するにつれて、機械的弛緩は増加するので、干渉変調器によってその寿命時間の間に実行されるサイクルの数の情報(または、その予測)を使用して、弛緩を明らかにするように印加電圧を調整することが可能である。
干渉変調器のアレイ上に表示される画像がリフレッシュされると、それぞれの反射性可動層は、機械的または電気的な要因により、可動反射層14の層同士が「貼り付く」ことを防止するために、所望の端部位置にかかわらずサイクル可能である。したがって、全アレイは、ディスプレイの一部分が、フレームリフレッシュ後、前の状態に設定された場合でも、一定のリフレッシュ周波数で更新可能である。結果として、生じたリフレッシュの数の正確なカウントは解明することが困難であるが、典型的に、それは必要ない。いくつかの実施形態においては、フレームカウントジェネレータ1305は、使用されたリフレッシュ周波数に基づいて、フレームカウントの推量、およびタイミングデバイスによって提供される時間測定値を割り出すように構成可能である。例えば、ディスプレイ30が、500時間の間に毎秒15回(例えば15Hz)リフレッシュされた場合、フレームカウントは27,000,000に等しい。記憶ユニット915は、フレームカウントに基づき、かつ時間値によってアクセスされる弛緩データを記憶することが可能である。1つの例では、弛緩データに基づいたフレームカウントは、記憶ユニット915内のルックアップテーブルに記憶される。感知ユニット810は、フレームカウントデータおよび/または機械的デューティサイクルデータを含むアクチュエーションデータに基づく弛緩情報をドライバ回路815に提供するように構成可能である。
図13に示されている感知ユニット810はまた、温度に少なくとも部分的に基づいて、1つまたは複数の干渉変調器のドライブ電圧を調整するために、温度情報入力を制御ユニット910に供給する温度センサ1105を備える。温度センサ1105は、例えばディスプレイ30における温度を感知するために、追加の通信接続部820を使用して、温度センサ1105それ自体か、または遠隔場所かのいずれかにおいて温度情報を割り出すように構成されている。図13の感知ユニット810は、ドライバ回路835に入力を供給して、フレームカウントデータおよび/もしくは機械的デューティサイクルデータを含む情報、ならびに/または温度情報を含む弛緩情報に基づいて、バイアス電圧を補正するように構成可能である。いくつかの弛緩モデルは、(例えば、ベストケースおよびワーストケースの弛緩ケースを割り出すために)予測される温度を使用するが、他のモデルは、実際に感知された温度値、または予測される温度値と実際の温度値との組合せを使用することが可能である。例えば、1つの実施形態は、干渉変調器寿命の最初の5年間は、予測される極限温度値を使用し、次いで、その後は、実際の温度値を使用する。
図14は、可動反射層の機械的弛緩に関して生成された情報に基づいて、MEMSデバイスを駆動するプロセス1400を示す流れ図である。具体的には、ブロック1405で、プロセス1400は、1つまたは複数の動作時間、環境暴露、および干渉変調器MEMSデバイスの可動反射層のフレームレートに関する情報を生成する。感知ユニット810(図10および図13)は、この情報を生成することが可能である。情報は、時間に関するフレームカウントデータおよび/または機械的デューティサイクルデータを含むことができるアクチュエーションデータを含むことが可能である。環境暴露に関する情報は、温度情報を含むことが可能である。いくつかの実施形態においては、時間に関するデータは、機械的デューティサイクルデータを含む。ブロック1410では、プロセス1400は生成された弛緩情報に少なくとも部分的に基づいて、そのMEMSデバイスを駆動する。弛緩情報に基づいて、干渉変調器を駆動するために使用可能である弛緩モデルの例は、図10および図13を参照して説明される。
この用途では、用語「MEMS」の使用は、便宜上のもの、および連続性を求めるものであり、デバイスまたは外観の大きさについてであろうと、製造上の交差についてであろうと、本発明の利用可能性を特定の大きさまたは範囲に限定するものでは一切ない。MEMSデバイスは、大きさまたは範囲の用語、例えば、メートル、センチメートル、ミリメートル、マイクロメートル、ナノメートル、ピコメートルなど、どの用語がよく用いられているかにかかわらず、マクロおよびミクロレベルで製造されるものを含む。
具体的に上述されたプロセスのいずれにおいても、本発明の態様の少なくとも1つから逸脱することなく、1つもしくは複数のステップが追加されても、または説明されたステップが削除されてもよい。当業者は、情報および信号が、様々な別のテクノロジーおよび技術のいずれかを使用して表現可能であることを理解する。例えば、上の説明全体を通じて参照可能であるデータ、命令、コマンド、情報、信号、ビット、符号、およびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光粒子、または任意のそれらの組合せによって表現可能である。本明細書に開示されている例と関係して説明されている様々な例示的な論理ブロック、コンポーネント、モジュール、および回路は、汎用のプロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、ディスクリートなゲートもしくはトランジスタ論理、ディスクリートなハードウェアコンポーネント、または本明細書に説明されている機能を実行するように設計されているこれらの任意の組合せにより、実装可能または実行可能である。汎用プロセッサは、マイクロプロセッサであってよいが、代替では、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態マシンであってよい。プロセッサはまた、コンピューティングデバイスの組合せとして、例えば、DSPとマイクロプロセッサとの組合せとして、複数のマイクロプロセッサの組合せとして、DSPコアと連動する1つもしくは複数のマイクロプロセッサの組合せとして、または任意の他のこのような構成として実装可能である。
当業者は、本明細書に開示されている例と関係して説明されている様々な例示的な論理ブロック、モジュール、およびアルゴリズムステップが、電子ハードウェア、ファームウェア、コンピュータソフトウェア、ミドルウェア、マイクロコード、またはそれらの組合せとして実装可能であることをさらに理解する。ハードウェアとソフトウェアとのこの互換性を明瞭に示すために、様々な例示的なコンポーネント、ブロック、モジュール、回路、およびステップが、それらの機能に関して、概括的に上に説明されてきた。このような機能が、ハードウェアとして実装されるか、またはソフトウェアとして実装されるかは、全システムに課せられる特定のアプリケーションおよび設計の制約による。当業者は、説明されている機能を、それぞれ特定のアプリケーションについて様々なやり方で実装することが可能であるが、このような実装決定が、開示されている方法の範囲からの逸脱を生じさせていると解釈されてはならない。
本明細書に開示されている例と関連して説明されている方法またはアルゴリズムのステップは、ハードウェアで直接実施されても、プロセッサによって実行されるソフトウェアモジュールで実施されても、またはその2つの組合せで実施されてもよい。ソフトウェアモジュールは、RAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD-ROM、または当技術分野で知られている任意の他の形態の記憶媒体内に存在することが可能である。例示的な記憶媒体は、プロセッサが、記憶媒体から情報を読み取ることができ、記憶媒体に情報を書き込むことができるように、プロセッサに結合されている。代替では、記憶媒体は、プロセッサにとっての一部分であってもよい。プロセッサおよび記憶媒体は、特定用途向け集積回路(ASIC)内に存在することが可能である。ASICは、無線モデム内に存在することが可能である。代替では、プロセッサおよび記憶媒体は、無線モデム内のディスクリートなコンポーネントとして存在してもよい。
これらの例に対する様々修正形態は、当業者には容易に明らかになることが可能であり、本明細書に定義されている概括的な原理は、本明細書に説明されている新しい態様の趣旨または範囲から逸脱することなく、他の例に適用可能である。したがって、本開示の範囲は、本明細書に示されている例に限定すべきことを意図するのではなく、本明細書に開示されている原理および新しい特徴と一致した最大幅の範囲を許容すべきものである。したがって、本明細書に説明されている新しい態様は、以下の特許請求の範囲によってのみ定義すべきである。
12a 干渉変調器
12b 干渉変調器
14a 可動反射層
14b 可動反射層
16a 光学スタック
16b 光学スタック
18 ポスト
19 間隙
20 透明基板
21 プロセッサ
22 アレイドライバ
24 行ドライバ回路
26 列ドライバ回路
27 ネットワークインターフェース
28 フレームバッファ
29 ドライバコントローラ
30 ディスプレイアレイ
32 テザー
34 変形可能層
40 ディスプレイデバイス
41 ハウジング
42 支持ポストプラグ
43 アンテナ
44 バス構造
45 スピーカ
46 マイクロフォン
47 トランシーバ
48 入力デバイス
50 電源
52 コンディショニングハードウェア
805 駆動デバイス
810 感知ユニット
815 駆動回路、ドライバ回路
820 通信接続部
825 接続部
905 タイミングデバイス
910 制御ユニット
915 記憶ユニット
1105 温度センサ
1105 ベストケース曲線
1110 ワーストケース曲線
1115 破線曲線
1120 破線円
1205 コンディショニング曲線
1305 フレームカウンタ
1400 プロセス
1405 ブロック
1410 ブロック

Claims (26)

  1. ディスプレイ内で、可動反射層を有する微小電気機械システム(MEMS)デバイスを駆動するための装置であって、前記可動反射層は電圧に応じて駆動可能であり、前記可動反射層の動作は少なくとも部分的に前記MEMSデバイスのエージングに依存し、
    前記MEMSデバイスの前記エージングに影響を与える少なくとも1の要素に対する数量を決定するように構成されている感知ユニットであって、前記要素はフレームカウントデータと機械的デューティサイクルデータの少なくとも1つを含み、
    複数の可動電圧を前記MEMSデバイスに印加して、前記MEMSデバイスを駆動するように構成されており、前記各々の駆動電圧の電圧レベルが前記決定された数量に少なくとも部分的に基づいて選択可能である、ドライバ回路と、
    を備える装置
  2. 前記フレームカウントデータは、アレイがリフレッシュまたはサイクルされた回数に関係している、請求項に記載の装置
  3. 前記感知ユニットが時間情報を提供するためのタイミングデバイスを備える、請求項1に記載の装置
  4. 前記感知ユニットが温度センサをさらに備え、前記要素が温度情報を含む、請求項3に記載の装置
  5. 前記感知ユニットがフレームカウンタを備える、請求項1に記載の装置
  6. 前記要素が温度情報を含み、前記感知ユニットが温度センサを備える、請求項に記載の装置
  7. ディスプレイであって、前記少なくとも1つのMEMSデバイスが前記ディスプレイ内で用いられる、ディスプレイと、
    前記ディスプレイと通信するように構成され、画像データを処理するように構成されているプロセッサと、
    前記プロセッサと通信するように構成されているメモリデバイスと をさらに備える、請求項1に記載の装置
  8. 前記ドライバ回路が少なくとも1つの信号を前記ディスプレイに送るように構成されているか、または前記画像データの少なくとも一部分を前記ドライバ回路に送るように構成されているコントローラをさらに備える、請求項に記載の装置
  9. 入力データを受け取るように、および前記入力データを前記プロセッサに伝えるように構成されている入力デバイスをさらに備える、請求項に記載の装置
  10. 前記画像データを前記プロセッサに送るように構成されている画像ソースモジュールをさらに備える、請求項に記載の装置
  11. 前記画像ソースモジュールが、レシーバ、トランシーバ、およびトランスミッタのうちの少なくとも1つを備える、請求項10に記載の装置
  12. 可動反射層を有する微小電気機械システム(MEMS)デバイスの駆動電圧を制御する方法であって、前記可動反射層は電圧に応じて駆動可能であり、前記可動反射層の動作は少なくとも部分的に前記MEMSデバイスのエージングに依存し、
    前記MEMSデバイスの前記エージングに影響を与える少なくとも1の要素に対する数量を決定するステップであって、前記要素はフレームカウントデータと機械的デューティサイクルデータの少なくとも1つを含み、
    前記MEMSデバイスを駆動する複数の駆動電圧の電圧レベルを選択するステップと、
    前記決定された数量に少なくとも部分的に基づいた電圧により前記MEMSデバイスを駆動するステップと
    を含む方法。
  13. 前記要素が、1つまたは複数の時間、環境暴露、および可動反射層のフレームレートを含む、請求項12に記載の方法。
  14. 前記要素が、温度情報を含む、請求項13に記載の方法。
  15. 垂線に対して前記可動反射層の機械的弛緩を促進するために、少なくとも1つの所定のコンディショニングパラメータにより、所定の時間期間の間、前記MEMSデバイスを動作させるステップをさらに含む、請求項12に記載の方法。
  16. 前記少なくとも1つの所定のコンディショニングパラメータが、約50%以上の機械的デューティサイクルを含む、請求項15に記載の方法。
  17. 前記少なくとも1つの所定のコンディショニングパラメータが、約70°F以上の温度を含む、請求項15に記載の方法。
  18. 前記少なくとも1つの所定のコンディショニングパラメータが、約15Hz以上のリフレッシュ周波数を含む、請求項15に記載の方法。
  19. 前記少なくとも1つの所定のコンディショニングパラメータが、約30Hz以上のリフレッシュ周波数を含む、請求項15に記載の方法。
  20. 前記少なくとも1つの所定のコンディショニングパラメータが、約12時間以上のコンディショニング期間を含む、請求項15に記載の方法。
  21. 前記少なくとも1つの所定のコンディショニングパラメータが、約90%以上の機械的デューティサイクルを含む、請求項15に記載の方法。
  22. 前記少なくとも1つの所定のコンディショニングパラメータが、約24時間以上のコンディショニング期間を含む、請求項15に記載の方法。
  23. 前記少なくとも1つの所定のコンディショニングパラメータが、約97%以上の機械的デューティサイクルを含む、請求項15に記載の方法。
  24. 可動反射層を有する少なくとも1つの微小電気機械(MEMS)デバイスを駆動するための制御装置であって、前記可動反射層は電圧に応じて駆動可能であり、前記可動反射層の動作は少なくとも部分的に前記MEMSデバイスのエージングに依存し、
    前記MEMSデバイスの前記エージングに影響を与える少なくとも1の要素に対する数量を決定する手段であって、前記要素はフレームカウントデータと機械的デューティサイクルデータの少なくとも1つを含み、
    前記数量に少なくとも部分的に基づいた電圧を供給することによって、前記少なくとも1つのMEMSデバイスを駆動するための手段と を備える制御装置
  25. 前記決定手段が、フレームカウントデータと機械的デューティサイクルデータの少なくとも1つを決定するように構成されている感知手段を含む、請求項24に記載の制御装置
  26. 前記駆動手段が、前記数量に少なくとも部分的に基づいた電圧を印加して、前記少なくとも1つのMEMSデバイスを駆動するように構成されているドライバ回路を備える、請求項24に記載の制御装置
JP2010516182A 2007-07-12 2008-07-07 Memsドライバにおいてトラッキングし応答する機械的弛緩 Expired - Fee Related JP5101694B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11/777,123 2007-07-12
US11/777,123 US20090015579A1 (en) 2007-07-12 2007-07-12 Mechanical relaxation tracking and responding in a mems driver
EP08153317.6 2008-03-26
EP08153317A EP2015283A1 (en) 2007-07-12 2008-03-26 Mechanical relaxation tracking and responding in MEMS driver
PCT/US2008/069362 WO2009009502A1 (en) 2007-07-12 2008-07-07 Mechanical relaxation tracking and responding in mems driver

Publications (2)

Publication Number Publication Date
JP2010533875A JP2010533875A (ja) 2010-10-28
JP5101694B2 true JP5101694B2 (ja) 2012-12-19

Family

ID=39820955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010516182A Expired - Fee Related JP5101694B2 (ja) 2007-07-12 2008-07-07 Memsドライバにおいてトラッキングし応答する機械的弛緩

Country Status (7)

Country Link
US (1) US20090015579A1 (ja)
EP (2) EP2015283A1 (ja)
JP (1) JP5101694B2 (ja)
KR (1) KR20100031768A (ja)
CN (1) CN101689358A (ja)
TW (1) TW200912374A (ja)
WO (1) WO2009009502A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595926B2 (en) * 2007-07-05 2009-09-29 Qualcomm Mems Technologies, Inc. Integrated IMODS and solar cells on a substrate
US8988409B2 (en) * 2011-07-22 2015-03-24 Qualcomm Mems Technologies, Inc. Methods and devices for voltage reduction for active matrix displays using variability of pixel device capacitance
US10352989B2 (en) 2014-07-01 2019-07-16 Raja Technologies Inc. System and method of semiconductor characterization
US9002677B1 (en) * 2014-07-01 2015-04-07 Raja Technologies System and method of semiconductor characterization
US10564215B2 (en) 2014-07-01 2020-02-18 Raja Technologies Inc. System and method of semiconductor characterization
US11520436B2 (en) 2020-11-13 2022-12-06 Cirrus Logic, Inc. Sensor signal correction
JP2022115298A (ja) * 2021-01-28 2022-08-09 浜松ホトニクス株式会社 アクチュエータデバイスの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954789A (en) * 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
US5125112A (en) * 1990-09-17 1992-06-23 Motorola, Inc. Temperature compensated current source
US5233459A (en) * 1991-03-06 1993-08-03 Massachusetts Institute Of Technology Electric display device
US6680792B2 (en) * 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
KR100771175B1 (ko) * 2000-03-14 2007-10-30 티피오 홍콩 홀딩 리미티드 동작 전압의 온도 보상 수단을 갖는 비틀린 네마틱 액정 디스플레이 디바이스
US6480645B1 (en) * 2001-01-30 2002-11-12 Tellium, Inc. Sidewall electrodes for electrostatic actuation and capacitive sensing
JP3749147B2 (ja) * 2001-07-27 2006-02-22 シャープ株式会社 表示装置
SG120889A1 (en) * 2001-09-28 2006-04-26 Semiconductor Energy Lab A light emitting device and electronic apparatus using the same
US6859567B2 (en) * 2001-11-30 2005-02-22 Photintech Inc. In-guide control of optical propagation
US6700138B2 (en) * 2002-02-25 2004-03-02 Silicon Bandwidth, Inc. Modular semiconductor die package and method of manufacturing thereof
US20040212026A1 (en) * 2002-05-07 2004-10-28 Hewlett-Packard Company MEMS device having time-varying control
GB0229692D0 (en) * 2002-12-19 2003-01-29 Koninkl Philips Electronics Nv Active matrix display device
US6940285B2 (en) * 2003-06-19 2005-09-06 International Business Machines Corporation Method and apparatus for testing a micro electromechanical device
US7161728B2 (en) * 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US8358296B2 (en) * 2004-01-13 2013-01-22 Hewlett-Packard Development Company, L.P. Temperature compensated MEMS device
US7126741B2 (en) * 2004-08-12 2006-10-24 Hewlett-Packard Development Company, L.P. Light modulator assembly
JP4222277B2 (ja) * 2004-09-02 2009-02-12 セイコーエプソン株式会社 プロジェクタ
US7675669B2 (en) * 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7289256B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
TWI259424B (en) * 2004-09-27 2006-08-01 Au Optronics Corp Method and device for adjusting driving voltage of microelectromechanical optical device and display using the same
US7355779B2 (en) * 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US7834829B2 (en) * 2005-10-03 2010-11-16 Hewlett-Packard Development Company, L.P. Control circuit for overcoming stiction
US7702192B2 (en) * 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display

Also Published As

Publication number Publication date
JP2010533875A (ja) 2010-10-28
EP2015284A1 (en) 2009-01-14
CN101689358A (zh) 2010-03-31
WO2009009502A1 (en) 2009-01-15
US20090015579A1 (en) 2009-01-15
EP2015283A1 (en) 2009-01-14
KR20100031768A (ko) 2010-03-24
TW200912374A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
TWI416471B (zh) 用於驅動微機電系統顯示元件的方法和系統及包含其之顯示器
TWI417846B (zh) 驅動干涉式調變器之方法及系統
JP5101694B2 (ja) Memsドライバにおいてトラッキングし応答する機械的弛緩
JP5102292B2 (ja) Memsディスプレイを駆動するためのシステムおよび方法
JP5073930B2 (ja) Memsディスプレイ素子へデータを書き込む方法及びシステム
TWI411790B (zh) 用於感應一干涉式調變器的觸發及釋放電壓之系統及方法
US20060103643A1 (en) Measuring and modeling power consumption in displays
JP5651678B2 (ja) 選択的ラインスキップにより改善されたフレームレートを有する双安定ディスプレイシステム、及び双安定ディスプレイを動作させる方法
TW200949794A (en) Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same
JP5526041B2 (ja) 干渉変調器ディスプレイの調整方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120703

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees