JP5098815B2 - Multilayer optical element manufacturing method - Google Patents

Multilayer optical element manufacturing method Download PDF

Info

Publication number
JP5098815B2
JP5098815B2 JP2008139517A JP2008139517A JP5098815B2 JP 5098815 B2 JP5098815 B2 JP 5098815B2 JP 2008139517 A JP2008139517 A JP 2008139517A JP 2008139517 A JP2008139517 A JP 2008139517A JP 5098815 B2 JP5098815 B2 JP 5098815B2
Authority
JP
Japan
Prior art keywords
film
release
multilayer optical
optical film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008139517A
Other languages
Japanese (ja)
Other versions
JP2009288424A (en
Inventor
邦彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008139517A priority Critical patent/JP5098815B2/en
Publication of JP2009288424A publication Critical patent/JP2009288424A/en
Application granted granted Critical
Publication of JP5098815B2 publication Critical patent/JP5098815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、光通信用の光学フィルタとして用いられる多層膜光学素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer optical element used as an optical filter for optical communication, for example.

従来、この種の多層膜光学素子としては、いわゆる基板レス多層膜光学素子(基板を具備せず多層光学膜のみから構成された多層膜光学素子)が知られている(例えば、特許文献1、2参照)。   Conventionally, as this type of multilayer optical element, a so-called substrate-less multilayer optical element (a multilayer optical element composed of only a multilayer optical film without a substrate) is known (for example, Patent Document 1, 2).

この基板レス多層膜光学素子を製造する際には、図2(a)に示すように、ガラス製の基板1の上にアルミニウム製の剥離膜2を真空蒸着で成膜した後、図2(b)に示すように、剥離膜2の上に多層光学膜3をスパッタリング法で成膜する。次に、図2(c)に示すように、多層光学膜3および剥離膜2にダイシングで1本以上(図2(c)では、2本)の分断溝4を形成することにより、多層光学膜3を所定のサイズに切削する。最後に、図2(d)に示すように、基板1、剥離膜2および多層光学膜3をNaOH水溶液に浸漬して剥離膜2を溶解させることにより、多層光学膜3を基板1から分離する。すると、複数個(図2(d)では、3個)の基板レス多層膜光学素子5が得られる。
特開2006−171076号公報 再表2005/001526号公報
When manufacturing this substrate-less multilayer optical element, as shown in FIG. 2 (a), an aluminum release film 2 is formed on a glass substrate 1 by vacuum deposition, and then FIG. As shown in b), a multilayer optical film 3 is formed on the release film 2 by a sputtering method. Next, as shown in FIG. 2C, one or more (two in FIG. 2C) dividing grooves 4 are formed in the multilayer optical film 3 and the release film 2 by dicing, so that the multilayer optical film 3 and the release film 2 are formed. The film 3 is cut into a predetermined size. Finally, as shown in FIG. 2 (d), the multilayer optical film 3 is separated from the substrate 1 by immersing the substrate 1, the release film 2 and the multilayer optical film 3 in an aqueous NaOH solution to dissolve the release film 2. . Then, a plurality (three in FIG. 2D) of substrate-less multilayer optical elements 5 are obtained.
JP 2006-171076 A Table 2005/001526

しかしながら、これでは、基板レス多層膜光学素子5を得る際には、剥離膜2の材料であるアルミニウムの溶解速度が小さいことから、大形(幅広)の基板レス多層膜光学素子5を製造する場合には多大な時間を必要とする。   However, in this case, when the substrate-less multilayer optical element 5 is obtained, the dissolution rate of aluminum, which is the material of the release film 2, is small, and thus a large (wide) substrate-less multilayer optical element 5 is manufactured. In some cases, it takes a lot of time.

なお、こうした不都合を解消すべく、アルミニウムより溶解速度が大きい材料を代用することも考えられるが、その場合、所望の溶解速度をもつ材料を見出すことが必ずしも容易でないことに加えて、新たに別の問題点が生じる恐れがある。例えば、アルミニウムに代えてWO3 を剥離膜2の材料とすれば、溶解速度が桁違いに増大するため、剥離膜2の溶解に伴って急激な応力解放が発生し、基板レス多層膜光学素子5にマイクロクラックが発生することがある。 In order to eliminate such inconvenience, it is conceivable to substitute a material having a higher dissolution rate than aluminum, but in that case, it is not always easy to find a material having a desired dissolution rate. May cause problems. For example, if WO 3 is used as the material of the release film 2 instead of aluminum, the dissolution rate increases by an order of magnitude, so that a rapid stress release occurs with the dissolution of the release film 2, and the substrateless multilayer optical element Micro cracks may occur in 5.

本発明は、このような事情に鑑み、マイクロクラックの発生などの問題点が生じることを回避しつつ大形の基板レス多層膜光学素子を製造することが可能な多層膜光学素子の製造方法を提供することを目的とする。 In view of such circumstances, production how the multilayer film optical element capable of producing a large substrate-less multilayer film optical element while avoiding the problems such as the occurrence of micro-cracks The purpose is to provide.

本発明に係る第1の多層膜光学素子の製造方法は、基板(1)の上に剥離膜(2)を成膜する剥離膜成膜工程と、前記剥離膜の上に多層光学膜(3)を成膜する光学膜成膜工程と、前記剥離膜を溶解させて前記多層光学膜を前記基板から分離する光学膜分離工程とが含まれる多層膜光学素子の製造方法であって、前記剥離膜は、所定の溶解速度をもつ第1剥離層(2a)と、この第1剥離層より小さい溶解速度をもつ第2剥離層(2b)とが積層された構成を有する多層膜光学素子の製造方法としたことを特徴とする。   The first multilayer optical element manufacturing method according to the present invention includes a release film forming step for forming a release film (2) on a substrate (1), and a multilayer optical film (3 on the release film). ), And an optical film separation step of dissolving the release film and separating the multilayer optical film from the substrate, the method for producing a multilayer optical element comprising: The film is manufactured as a multilayer optical element having a configuration in which a first release layer (2a) having a predetermined dissolution rate and a second release layer (2b) having a dissolution rate smaller than the first release layer are laminated. It is characterized by the method.

なお、ここでは、本発明をわかりやすく説明するため、実施の形態を表す図面の符号に対応づけて説明したが、本発明が実施の形態に限定されるものでないことは言及するまでもない。   Here, in order to explain the present invention in an easy-to-understand manner, the description has been made in association with the reference numerals of the drawings representing the embodiments. However, it goes without saying that the present invention is not limited to the embodiments.

本発明によれば、マイクロクラックの発生などの問題点が生じることを回避しつつ大形の基板レス多層膜光学素子を製造することができる。   According to the present invention, a large substrate-less multilayer optical element can be manufactured while avoiding problems such as the occurrence of microcracks.

以下、本発明の実施の形態について説明する。
[発明の実施の形態1]
Embodiments of the present invention will be described below.
Embodiment 1 of the Invention

図1は、本発明の実施の形態1に係る図である。   FIG. 1 is a diagram according to Embodiment 1 of the present invention.

この実施の形態1において、複数個の基板レス多層膜光学素子を製造する際には、次の手順による。   In the first embodiment, when manufacturing a plurality of substrateless multilayer optical elements, the following procedure is used.

まず、剥離膜成膜工程で、図1(a)に示すように、ガラス製の基板1の上に剥離膜2を真空蒸着で成膜する。このとき、剥離膜2としては、所定の溶解速度をもつ第1剥離層2aの上側に、この第1剥離層2aより小さい溶解速度をもつ第2剥離層2bが積層されたものを採用する。ここで、第1剥離層2aは、厚さ20nmのWO3 (酸化タングステン)から構成されており、第2剥離層2bは、厚さ10nmのアルミニウムから構成されている。 First, in the release film forming step, as shown in FIG. 1A, a release film 2 is formed on a glass substrate 1 by vacuum deposition. At this time, as the release film 2, a layer in which a second release layer 2b having a lower dissolution rate than the first release layer 2a is laminated on the first release layer 2a having a predetermined dissolution rate is employed. Here, the first release layer 2a is made of WO 3 (tungsten oxide) having a thickness of 20 nm, and the second release layer 2b is made of aluminum having a thickness of 10 nm.

次に、光学膜成膜工程に移行し、図1(b)に示すように、剥離膜2の上に多層光学膜3をスパッタリング法で所定の膜厚(例えば、12〜30μm)に成膜する。このとき、多層光学膜3は、高屈折率物質(例えば、Nb2 5 、Ta2 5 )と低屈折率物質(例えば、SiO2 )とを交互に積層して形成する。 Next, the process proceeds to an optical film forming step, and as shown in FIG. 1B, a multilayer optical film 3 is formed on the release film 2 to a predetermined film thickness (for example, 12 to 30 μm) by a sputtering method. To do. At this time, the multilayer optical film 3 is formed by alternately stacking a high refractive index material (for example, Nb 2 O 5 , Ta 2 O 5 ) and a low refractive index material (for example, SiO 2 ).

その後、光学膜切削工程に移行し、図1(c)に示すように、多層光学膜3を所定のサイズに切削する。それには、ダイシングにより、多層光学膜3および剥離膜2に1本以上(図1(c)では、2本)の分断溝4を形成する。このとき、各分断溝4は、基板1に達するようにする。すると、多層光学膜3および剥離膜2が所定のサイズに切削された状態となる。   Thereafter, the process proceeds to an optical film cutting step, and the multilayer optical film 3 is cut into a predetermined size as shown in FIG. For this purpose, one or more (two in FIG. 1C) dividing grooves 4 are formed in the multilayer optical film 3 and the release film 2 by dicing. At this time, each dividing groove 4 reaches the substrate 1. Then, the multilayer optical film 3 and the release film 2 are cut into a predetermined size.

最後に、光学膜分離工程に移行し、図1(d)に示すように、多層光学膜3を基板1から分離する。それには、基板1、剥離膜2および多層光学膜3を所定の濃度(例えば、3%)のNaOH水溶液に浸漬する。すると、剥離膜2がNaOH水溶液に溶解するため、多層光学膜3が基板1から分離された状態となる。その結果、複数個(図1(d)では、3個)の基板レス多層膜光学素子5が得られる。   Finally, the process proceeds to the optical film separation step, and the multilayer optical film 3 is separated from the substrate 1 as shown in FIG. For this purpose, the substrate 1, the release film 2 and the multilayer optical film 3 are immersed in an aqueous NaOH solution having a predetermined concentration (for example, 3%). Then, since the release film 2 is dissolved in the NaOH aqueous solution, the multilayer optical film 3 is separated from the substrate 1. As a result, a plurality (three in FIG. 1D) of substrate-less multilayer optical elements 5 are obtained.

このとき、剥離膜2は、溶解速度の異なる2種類の剥離層(第1剥離層2aおよび第2剥離層2b)から構成されているため、これら第1剥離層2a、第2剥離層2bの厚さを適宜設定することにより、剥離膜2全体の溶解速度を多層光学膜3に応じて任意に調整することが可能となる。したがって、剥離膜2の材料としてアルミニウム単体を用いる場合と比べて、剥離膜2の溶解速度を増大させ、その分だけ基板レス多層膜光学素子5のサイズを大形化することができる。それと同時に、剥離膜2の材料としてWO3 単体を用いる場合と異なり、基板レス多層膜光学素子5にマイクロクラックが発生する事態を回避することができる。 At this time, the release film 2 is composed of two types of release layers (the first release layer 2a and the second release layer 2b) having different dissolution rates, so that the first release layer 2a and the second release layer 2b By appropriately setting the thickness, the dissolution rate of the entire release film 2 can be arbitrarily adjusted according to the multilayer optical film 3. Therefore, the dissolution rate of the release film 2 can be increased and the size of the substrate-less multilayer optical element 5 can be increased by that amount compared to the case where aluminum alone is used as the material of the release film 2. At the same time, unlike the case of using WO 3 alone as the material of the release film 2, it is possible to avoid the occurrence of micro cracks in the substrate-less multilayer optical element 5.

ここで、基板レス多層膜光学素子5の製造作業が終了する。   Here, the manufacturing operation of the substrateless multilayer optical element 5 is completed.

このように、この実施の形態1では、基板レス多層膜光学素子5の製造に際して、基板レス多層膜光学素子5にマイクロクラックが発生しない範囲で剥離膜2の溶解速度を増大させることにより、マイクロクラックのない大形の基板レス多層膜光学素子5を製造することが可能となる。   As described above, in the first embodiment, when the substrate-less multilayer optical element 5 is manufactured, the dissolution rate of the release film 2 is increased within a range in which microcracks are not generated in the substrate-less multilayer optical element 5. A large substrate-less multilayer optical element 5 without cracks can be manufactured.

なお、アルミニウムおよびWO3 について、その溶解速度の差を実験で確認するため、基板1上にアルミニウムのみの剥離膜2を形成し、その上に多層光学膜3を形成したサンプルと、アルミニウムのみの剥離膜2に代えてWO3 のみの剥離層を形成したサンプルとをそれぞれ用意した。剥離膜2の厚さは、いずれも10nmとした。それぞれのサンプルにダイシングにより分断溝4を形成した後、濃度3%のNaOH水溶液に浸漬して、各サンプルにおいて、基板1と多層光学膜3とが分離するのに要する時間を調べた。その結果、アルミニウムでは44時間かかったのに対して、WO3 では1.5時間(つまり、アルミニウムの約1/30)であった。このことから、WO3 の溶解速度はアルミニウムの溶解速度の約30倍の速さであることが判明した。 In order to confirm the difference in dissolution rate between aluminum and WO 3 through experiments, a sample in which a release film 2 made of only aluminum is formed on a substrate 1 and a multilayer optical film 3 is formed thereon, Instead of the release film 2, a sample in which a release layer of only WO 3 was formed was prepared. The thickness of each release film 2 was 10 nm. After forming the dividing groove 4 in each sample by dicing, it was immersed in an aqueous NaOH solution having a concentration of 3%, and the time required for the substrate 1 and the multilayer optical film 3 to be separated in each sample was examined. As a result, it took 44 hours for aluminum, and 1.5 hours for WO 3 (that is, about 1/30 of aluminum). From this, it was found that the dissolution rate of WO 3 was about 30 times faster than the dissolution rate of aluminum.

また、光学膜切削工程において、多層光学膜3が所定のサイズに切削されるため、基板レス多層膜光学素子5の製品としての完成度が向上する。   In addition, since the multilayer optical film 3 is cut into a predetermined size in the optical film cutting step, the completeness of the substrate-less multilayer film optical element 5 as a product is improved.

さらに、光学膜分離工程において、剥離膜2の第1剥離層2aが溶解し終わるまで、この第1剥離層2aを剥離膜2の第2剥離層2bによって多層光学膜3から遠ざけることができる。その結果、光学膜成膜工程で多層光学膜3の内部に残留応力が生じていたとしても、この残留応力が一気に解放される事態は発生しないので、この点からも、基板レス多層膜光学素子5にマイクロクラックが発生する事態を回避することができる。
[発明のその他の実施の形態]
Furthermore, in the optical film separation step, the first release layer 2a can be moved away from the multilayer optical film 3 by the second release layer 2b of the release film 2 until the first release layer 2a of the release film 2 is completely dissolved. As a result, even if a residual stress is generated inside the multilayer optical film 3 in the optical film forming step, a situation in which this residual stress is released at a stroke does not occur. It is possible to avoid the occurrence of microcracking in 5.
[Other Embodiments of the Invention]

なお、上述した実施の形態1では、剥離膜2の第1剥離層2aの材料としてWO3 を採用する場合について説明した。しかし、この第1剥離層2aの材料は、WO3 に限るわけではなく、WO3 以外の材料を代用または併用することもできる。 In the first embodiment described above, the case where WO 3 is employed as the material of the first release layer 2a of the release film 2 has been described. However, the material of the first separation layer 2a is not necessarily limited to WO 3, may be substituted or combined materials other than WO 3.

また、上述した実施の形態1では、剥離膜2の第2剥離層2bの材料としてアルミニウムを採用する場合について説明した。しかし、この第2剥離層2bの材料は、アルミニウムに限るわけではなく、アルミニウム以外の材料(亜鉛、スズ、クロムその他の金属など)を代用または併用することもできる。例えば、アルミニウムと亜鉛とを併用して第2剥離層2bを形成しても構わない。   Moreover, in Embodiment 1 mentioned above, the case where aluminum was employ | adopted as a material of the 2nd peeling layer 2b of the peeling film 2 was demonstrated. However, the material of the second release layer 2b is not limited to aluminum, and materials other than aluminum (such as zinc, tin, chrome, and other metals) can be substituted or used together. For example, you may form the 2nd peeling layer 2b using aluminum and zinc together.

さらに、上述した実施の形態1では、第1剥離層2aと第2剥離層2bとを組み合わせた2層構造の剥離膜2について説明したが、この2層構造を含む限り、他の剥離層を付加することも可能である。   Furthermore, in Embodiment 1 described above, the description has been given of the release film 2 having a two-layer structure in which the first release layer 2a and the second release layer 2b are combined. However, as long as this two-layer structure is included, other release layers are used. It is also possible to add.

さらにまた、上述した実施の形態1では、剥離膜2を溶解させるアルカリとしてNaOHを用いる場合について説明したが、NaOH以外のアルカリ(例えば、KOH、Ca(OH)2 など)を代用または併用することもできる。 Furthermore, in Embodiment 1 described above, the case where NaOH is used as the alkali for dissolving the release film 2 has been described. However, an alkali other than NaOH (for example, KOH, Ca (OH) 2, etc.) may be substituted or used in combination. You can also.

また、上述した実施の形態1では、第1剥離層2aと第2剥離層2bとが積層された剥離膜2を用いる場合について説明したが、この「積層」に代えて「混合」を採用しても構わない。すなわち、剥離膜2として、所定の溶解速度をもつ第1の物質と、この第1の物質より小さい溶解速度をもつ第2の物質とが混合された混合物を有するものを用いることも可能である。このような混合物は種々の方法で調製することができる。その一例としては、第1の物質および第2の物質を蒸着源として同時に真空蒸着を行なうことにより、基板上に混合物の層を成膜することが考えられる。このとき、各物質の蒸着の電力を適宜設定することにより、第1の物質と第2の物質との混合比を任意に変更することができる。   In the above-described first embodiment, the case where the release film 2 in which the first release layer 2a and the second release layer 2b are stacked is described. However, “mixing” is used instead of this “stacking”. It doesn't matter. That is, it is also possible to use a release film 2 having a mixture in which a first substance having a predetermined dissolution rate and a second substance having a dissolution rate smaller than the first substance are mixed. . Such a mixture can be prepared in various ways. As an example, it is conceivable to form a mixture layer on the substrate by simultaneously performing vacuum deposition using the first substance and the second substance as a deposition source. At this time, the mixing ratio of the first substance and the second substance can be arbitrarily changed by appropriately setting the power for vapor deposition of each substance.

また、上述した実施の形態1では、光学膜成膜工程と光学膜分離工程との間に光学膜切削工程を設ける場合について説明したが、多層光学膜3を所定のサイズに切削する必要がない場合には、この光学膜切削工程を省くことも勿論できる。   In the first embodiment described above, the case where the optical film cutting step is provided between the optical film forming step and the optical film separating step has been described. However, it is not necessary to cut the multilayer optical film 3 to a predetermined size. In this case, of course, this optical film cutting step can be omitted.

本発明は、エッジフィルタ、B−PON用フィルタ、CWDM用フィルタ、LX4用フィルタ、微小光学フィルタなど各種の多層膜光学素子の製造に広く適用することができる。   The present invention can be widely applied to the production of various multilayer optical elements such as edge filters, B-PON filters, CWDM filters, LX4 filters, and micro optical filters.

本発明の実施の形態1に係る基板レス多層膜光学素子の製造方法を示す工程図であって、(a)は剥離膜成膜工程を示す断面図、(b)は光学膜成膜工程を示す断面図、(c)は光学膜切削工程を示す断面図、(d)は光学膜分離工程を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is process drawing which shows the manufacturing method of the board | substrate less multilayer optical element which concerns on Embodiment 1 of this invention, Comprising: (a) is sectional drawing which shows a peeling film forming process, (b) is an optical film forming process. (C) is sectional drawing which shows an optical film cutting process, (d) is sectional drawing which shows an optical film separation process. 従来の基板レス多層膜光学素子の製造方法を例示する工程図であって、(a)は剥離膜成膜工程を示す断面図、(b)は光学膜成膜工程を示す断面図、(c)は光学膜切削工程を示す断面図、(d)は光学膜分離工程を示す断面図である。It is process drawing which illustrates the manufacturing method of the conventional board | substrateless multilayer optical element, (a) is sectional drawing which shows a peeling film film-forming process, (b) is sectional drawing which shows an optical film film-forming process, (c) ) Is a cross-sectional view showing the optical film cutting step, and (d) is a cross-sectional view showing the optical film separation step.

符号の説明Explanation of symbols

1……基板
2……剥離膜
2a……第1剥離層
2b……第2剥離層
3……多層光学膜
4……分断溝
5……基板レス多層膜光学素子(多層膜光学素子)
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Release film 2a ... 1st release layer 2b ... 2nd release layer 3 ... Multilayer optical film 4 ... Dividing groove 5 ... Substrate-less multilayer film optical element (multilayer film optical element)

Claims (6)

基板の上に剥離膜を成膜する剥離膜成膜工程と、
前記剥離膜の上に多層光学膜を成膜する光学膜成膜工程と、
前記剥離膜を溶解させて前記多層光学膜を前記基板から分離する光学膜分離工程とが含まれる多層膜光学素子の製造方法であって、
前記剥離膜は、所定の溶解速度をもつ第1剥離層と、この第1剥離層より小さい溶解速度をもつ第2剥離層とが積層された構成を有することを特徴とする多層膜光学素子の製造方法。
A release film forming step of forming a release film on the substrate;
An optical film forming step of forming a multilayer optical film on the release film;
An optical film separation step of dissolving the release film and separating the multilayer optical film from the substrate,
The multilayer film optical element is characterized in that the release film has a configuration in which a first release layer having a predetermined dissolution rate and a second release layer having a dissolution rate smaller than the first release layer are laminated. Production method.
前記第2剥離層は、前記多層光学膜と前記第1剥離層との間に介在していることを特徴とする請求項1に記載の多層膜光学素子の製造方法。   The method for producing a multilayer optical element according to claim 1, wherein the second release layer is interposed between the multilayer optical film and the first release layer. 前記第1剥離層の材料は、WO3 であるとともに、
前記第2剥離層の材料は、アルミニウムであることを特徴とする請求項1または2に記載の多層膜光学素子の製造方法。
The material of the first release layer is WO 3 and
The method for manufacturing a multilayer optical element according to claim 1, wherein the material of the second release layer is aluminum.
基板の上に剥離膜を成膜する剥離膜成膜工程と、
前記剥離膜の上に多層光学膜を成膜する光学膜成膜工程と、
前記剥離膜を溶解させて前記多層光学膜を前記基板から分離する光学膜分離工程とが含まれる多層膜光学素子の製造方法であって、
前記剥離膜は、所定の溶解速度をもつ第1の物質と、この第1の物質より小さい溶解速度をもつ第2の物質とが混合された混合物を有することを特徴とする多層膜光学素子の製造方法。
A release film forming step of forming a release film on the substrate;
An optical film forming step of forming a multilayer optical film on the release film;
An optical film separation step of dissolving the release film and separating the multilayer optical film from the substrate,
The release film includes a mixture in which a first substance having a predetermined dissolution rate and a second substance having a dissolution rate smaller than the first substance are mixed. Production method.
前記光学膜成膜工程と前記光学膜分離工程との間に、前記多層光学膜を所定のサイズに切削する光学膜切削工程が含まれることを特徴とする請求項1乃至4のいずれかに記載の多層膜光学素子の製造方法。   The optical film cutting step of cutting the multilayer optical film into a predetermined size is included between the optical film forming step and the optical film separating step. For producing a multilayer optical element. 前記光学膜分離工程において、前記剥離膜をNaOH溶液に浸漬して溶解させることを特徴とする請求項1乃至5のいずれかに記載の多層膜光学素子の製造方法 6. The method for manufacturing a multilayer optical element according to claim 1, wherein in the optical film separation step, the release film is immersed and dissolved in a NaOH solution .
JP2008139517A 2008-05-28 2008-05-28 Multilayer optical element manufacturing method Active JP5098815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139517A JP5098815B2 (en) 2008-05-28 2008-05-28 Multilayer optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139517A JP5098815B2 (en) 2008-05-28 2008-05-28 Multilayer optical element manufacturing method

Publications (2)

Publication Number Publication Date
JP2009288424A JP2009288424A (en) 2009-12-10
JP5098815B2 true JP5098815B2 (en) 2012-12-12

Family

ID=41457713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139517A Active JP5098815B2 (en) 2008-05-28 2008-05-28 Multilayer optical element manufacturing method

Country Status (1)

Country Link
JP (1) JP5098815B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489546B2 (en) * 2009-06-11 2014-05-14 東京応化工業株式会社 Sticking method and sticking device
KR101923794B1 (en) * 2014-02-24 2018-11-29 가부시키가이샤 니콘 Multilayer reflective mirror, method for producing same, and exposure device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233501A (en) * 1990-02-09 1991-10-17 Copal Co Ltd Optical multilayered film filter element and production thereof
WO2005001526A1 (en) * 2003-06-26 2005-01-06 Nikon Corporation Method for producing multilayer optical device
JP2006171076A (en) * 2004-12-13 2006-06-29 Nikon Corp Manufacturing method for optical filter

Also Published As

Publication number Publication date
JP2009288424A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
KR102331865B1 (en) Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP5728223B2 (en) Halftone mask, halftone mask blanks, and method of manufacturing halftone mask
TW565711B (en) Indium-tin oxide thin film filter for dense wavelength division multiplexing
KR101560385B1 (en) Phase-shifting mask blank, and phase-shifting mask and process for producing same
JP2009156954A (en) Wavelength separation film, and optical communication filter using the same
JP5098815B2 (en) Multilayer optical element manufacturing method
US11865829B2 (en) Functional element and method of manufacturing functional element, and electronic apparatus
JP5231956B2 (en) Halftone mask, halftone mask blank, halftone mask manufacturing method, and halftone mask blank manufacturing method
CN100378475C (en) Method for producing multilayer optical device
JP2016195185A (en) Manufacturing method of optical component, optical component, and optical device
KR101840520B1 (en) A Cutting Method of Separator for battery and the Separator for Battery Manufactured by The Same
JP2012093568A (en) Multilayer film filter
JP5422942B2 (en) Method for forming metal oxide film
JP2010271404A (en) Antireflection film
JP2009081318A (en) Semiconductor wafer
CN100356206C (en) Production method for chip-form film-forming component
JP6296191B2 (en) Manufacturing method of glass plate with film and glass plate with film
JP2018024561A (en) Method for producing dielectric multilayer-attached glass plate and film-attached glass plate
JP2006171076A (en) Manufacturing method for optical filter
JP7251099B2 (en) Bandpass filter and manufacturing method thereof
JP2013252993A (en) Method for producing glass plate with film and glass plate with film
JP2003315535A (en) Optical element, method for manufacturing the same, and optical device
US11067727B2 (en) Method of manufacturing a multilayer optical element
JP2006010719A (en) Multilayer optical thin film, method for manufacturing multilayer optical thin film, method for manufacturing optical element, and optical element
JP2015064419A (en) Reflection suppressing film and reflection suppressing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250