JP5098380B2 - Pulse measuring device and control method thereof - Google Patents

Pulse measuring device and control method thereof Download PDF

Info

Publication number
JP5098380B2
JP5098380B2 JP2007064654A JP2007064654A JP5098380B2 JP 5098380 B2 JP5098380 B2 JP 5098380B2 JP 2007064654 A JP2007064654 A JP 2007064654A JP 2007064654 A JP2007064654 A JP 2007064654A JP 5098380 B2 JP5098380 B2 JP 5098380B2
Authority
JP
Japan
Prior art keywords
light
frequency
measuring device
unit
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007064654A
Other languages
Japanese (ja)
Other versions
JP2008220723A (en
Inventor
茂美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007064654A priority Critical patent/JP5098380B2/en
Publication of JP2008220723A publication Critical patent/JP2008220723A/en
Application granted granted Critical
Publication of JP5098380B2 publication Critical patent/JP5098380B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、光学式の脈拍計測装置及びその制御方法に関する。   The present invention relates to an optical pulse measuring device and a control method thereof.

従来より、光学的センシングによる脈拍計測装置が知られている。この種の光学式脈拍計測装置には、フィルタを用いて計測信号内の脈拍成分を抽出するものがあり、例えば、発光素子をduty駆動して受光側で増幅した後にローパスフィルタによって脈拍波形を再現する技術(例えば、特許文献1参照)、受光後に脈拍周波数帯域を通過するバンドパスフィルタによって脈拍波形を抽出する技術(例えば、特許文献2、3参照)、及び、受光した光の変調成分だけを復調して外乱光の影響を除去する技術(例えば、特許文献4参照)がある。   Conventionally, a pulse measuring device using optical sensing is known. Some optical pulse measuring devices of this type use a filter to extract the pulse component in the measurement signal. For example, the pulse waveform is reproduced by a low-pass filter after the light emitting element is duty driven and amplified on the light receiving side. Technology (for example, refer to Patent Document 1), technology for extracting a pulse waveform by a bandpass filter that passes through a pulse frequency band after light reception (for example, refer to Patent Documents 2 and 3), and modulation components of received light only. There is a technique for demodulating and removing the influence of disturbance light (see, for example, Patent Document 4).

また、この種の光学式脈拍計測装置には、計測信号内の雑音(体動成分)を検出するものがあり、例えば、波長の異なる2つの発光素子と、第1波長光、第2波長光、非発光を繰り返した際の各受光信号を各々積分する複数の積分手段とを備え、非発光時の雑音レベルが許容範囲内か否かを判断する技術(例えば、特許文献5参照)、及び、脈拍信号を通過させるフィルタ(0.5Hz〜2.3Hz)と、脈拍よりも低い周波数の信号成分を通過させる雑音成分通過フィルタとを備え、雑音発生期間検出と雑音発生検出のときに脈波信号を通過させるフィルタの出力を遮断する技術(例えば、特許文献6参照)がある。さらに、この種の脈拍計測装置には、複数のセンサを用いて脈拍と体動を検出するものが提案されている(例えば、特許文献7、8、9)。
実開昭53−76697号公報 特開2001−145606号公報 特開2004−202190号公報 特許第2693958号公報 特許第3291581号公報 特開平1−288230号公報 特開平7−88092号公報 特開2005−28157号公報 特開平11−276448号公報
In addition, this type of optical pulse measuring device includes one that detects noise (body motion component) in a measurement signal. For example, two light emitting elements having different wavelengths, first wavelength light, and second wavelength light are included. A technique for determining whether or not the noise level at the time of non-light emission is within an allowable range (see, for example, Patent Document 5), and a plurality of integration means for integrating each received light signal when non-light emission is repeated, and , A filter (0.5 Hz to 2.3 Hz) for passing a pulse signal and a noise component passing filter for passing a signal component having a frequency lower than the pulse, and a pulse wave at the time of noise generation period detection and noise generation detection There is a technique for blocking the output of a filter that allows a signal to pass (see, for example, Patent Document 6). Further, this type of pulse measuring device has been proposed that detects a pulse and body movement using a plurality of sensors (for example, Patent Documents 7, 8, and 9).
Japanese Utility Model Publication No. 53-76697 Japanese Patent Laid-Open No. 2001-145606 JP 2004-202190 A Japanese Patent No. 2,693,958 Japanese Patent No. 3291581 JP-A-1-288230 JP-A-7-88092 JP 2005-28157 A Japanese Patent Laid-Open No. 11-276448

しかし、従来の構成では、体動による検出部位(血流部位)との間の密着性の変化によって外乱光が侵入したり、外乱光が生体(手首や指)を通過すること等によって脈拍波形の周波数に近い雑音成分(体動成分)が存在した場合、かかる雑音成分を除去できない問題があった。
また、上記特許文献5、7〜9記載の技術は、複数の発光素子、複数の受光素子或いは専用の体動センサを備えるため、構成部品の数が多くなってしまう問題もある。また、この種の脈拍計測装置は外光の有無に関係なく使用可能に構成することが望ましい。
However, in the conventional configuration, a pulse waveform is generated when disturbance light enters due to a change in adhesion with a detection site (blood flow site) due to body movement, or when disturbance light passes through a living body (a wrist or a finger). When there is a noise component (body motion component) close to the frequency, there is a problem that such a noise component cannot be removed.
Moreover, since the technique of the said patent document 5, 7-9 is provided with a some light emitting element, a some light receiving element, or a dedicated body motion sensor, there also exists a problem which the number of components will increase. Further, it is desirable that this type of pulse measuring device be configured to be usable regardless of the presence or absence of external light.

本発明は、上述した事情に鑑みてなされたものであり、外光を受光不能な状況でも脈拍検出精度が高く、かつ、発光素子及び受光素子の数を低減可能な脈拍計測装置及びその制御方法を提供することにある。   The present invention has been made in view of the circumstances described above, and has a high pulse detection accuracy even in a situation where external light cannot be received, and a pulse measuring device capable of reducing the number of light emitting elements and light receiving elements, and a control method therefor Is to provide.

上述課題を解決するため、本発明は、脈拍計測装置において、生体の検出部位に向け、所定の時間間隔で光を照射する単一の発光素子と、前記光を前記生体を介して受光可能に配置され、受光量に応じた受光信号を生成する単一の受光素子と、前記受光素子と前記生体との間に延在する透明又は半透明の透光部材であって、脈拍計測装置周囲の外光を透過させて前記生体で反射させ、その反射光を、前記受光素子に受光可能にする透光部材と、前記受光信号から、前記時間間隔に対応する前記発光素子の発光周波数を含む第1周波数範囲の第1信号成分を抽出する第1フィルタと、前記受光信号から、前記生体の脈動の周波数より低い第2周波数範囲の第2信号成分を抽出する第2フィルタと、前記第1信号成分に周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第2信号成分に周波数解析を施して前記生体の体動スペクトルを特定する処理を実行する周波数解析部と、前記周波数解析部が体動スペクトルを特定できない場合に、前記外光の代わりとなる疑似外光を前記透光部材を介して前記生体に向けて出射し、その反射光を、前記生体の体動に応じた光量で前記受光素子に受光させる疑似外光照射部と、前記周波数解析部が体動スペクトルを特定した場合に、前記第1信号成分に含まれる周波数スペクトルのうち、前記体動スペクトルを除く周波数スペクトルの周波数に基づいて脈拍数を特定する脈拍数特定部とを備えることを特徴とする。 In order to solve the above-described problems, the present invention provides a pulse measuring device, wherein a single light-emitting element that emits light at a predetermined time interval toward a detection portion of a living body, and the light can be received through the living body. is disposed, and a single light receiving element for generating a light receiving signal corresponding to the amount of received light, wherein a transparent or semi-transparent light transmitting member extending between the light-receiving element and the biological, pulse rate measuring apparatus around A light-transmitting member that transmits external light of the light and reflects the light by the living body, and allows the light-receiving element to receive the reflected light, and includes the light-emitting frequency of the light-emitting element corresponding to the time interval from the light-receiving signal. A first filter for extracting a first signal component in a first frequency range; a second filter for extracting a second signal component in a second frequency range lower than the frequency of pulsation of the living body from the received light signal; Apply frequency analysis to signal components to When specifying the wave number spectrum and performing frequency analysis on the second signal component to specify the body motion spectrum of the living body, and when the frequency analysis unit cannot specify the body motion spectrum, Pseudo external light that is emitted from the external light instead of the external light is emitted toward the living body via the translucent member, and the reflected light is received by the light receiving element with a light amount corresponding to the body movement of the biological body. When the irradiation unit and the frequency analysis unit specify the body motion spectrum, the pulse that specifies the pulse rate based on the frequency spectrum frequency excluding the body motion spectrum out of the frequency spectrum included in the first signal component And a number specifying unit.

この発明によれば、第1フィルタによって、生体を通った発光素子の光だけの第1信号成分を抽出して血流の変動に表れる脈動成分及び体動成分を取り出すことができると共に、第2フィルタによって外光の受光量変化に表れる体動成分を取り出すことができる。このため、第1信号成分に含まれる周波数スペクトルから脈拍成分の周波数スペクトルを精度良く特定でき、脈拍検出精度が向上し、発光素子及び受光素子の数も低減される。また、体動スペクトルを特定できない場合に、受光素子が生体の体動に連動して受光可能な疑似外光を照射する疑似外光照射部を備えるので、外光を受光不能な状況でも疑似外光の受光量変化に表れる体動成分を取り出すことができ、脈拍を精度良く検出することができる。   According to this invention, the first filter can extract the first signal component of only the light emitted from the light emitting element that has passed through the living body to extract the pulsation component and the body motion component that appear in the fluctuation of the blood flow. The body motion component that appears in the change in the amount of received external light can be extracted by the filter. For this reason, the frequency spectrum of the pulse component can be accurately identified from the frequency spectrum included in the first signal component, the pulse detection accuracy is improved, and the number of light emitting elements and light receiving elements is also reduced. In addition, when the body motion spectrum cannot be specified, the light receiving element includes a pseudo external light irradiating unit that emits pseudo external light that can be received in conjunction with the body motion of the living body. The body motion component that appears in the change in the amount of received light can be extracted, and the pulse can be detected with high accuracy.

上記構成において、前記受光素子は、太陽光の直射によっても当該受光素子が電気的に飽和しないレベルに光を抑制する光学フィルタを備えることが好ましい。上記構成において、前記疑似外光照射部は、単一の疑似外光用発光素子と、前記周波数解析部が体動スペクトルを特定できない場合に、前記疑似外光用発光素子を駆動する疑似外光用駆動部とを有することが好ましい。この構成によれば、この脈拍検出には、単一の発光素子と単一の受光素子と単一の疑似外光用発光素子を用いるだけなので、脈拍検出精度が高いにも拘わらず、発光素子及び受光素子の数を低減することができる。
上記構成において、前記第1フィルタは、前記発光周波数を略中心周波数としたバンドパスフィルタであることが好ましい。この構成によれば、生体を通った発光素子の光だけの第1信号成分を精度良く取り出すことができる。
The said structure WHEREIN: It is preferable that the said light receiving element is provided with the optical filter which suppresses light to the level which the said light receiving element does not electrically saturate by direct sunlight. In the above configuration, the pseudo-external light irradiation unit includes a single pseudo-external light light-emitting element and pseudo-external light that drives the pseudo-external light light-emitting element when the frequency analysis unit cannot identify a body motion spectrum. It is preferable to have a drive unit for use. According to this configuration, since the pulse detection uses only a single light emitting element, a single light receiving element, and a single pseudo external light emitting element, the light emitting element is used despite high pulse detection accuracy. In addition, the number of light receiving elements can be reduced.
The said structure WHEREIN: It is preferable that a said 1st filter is a band pass filter which made the said light emission frequency substantially the center frequency. According to this configuration, it is possible to accurately extract the first signal component of only the light of the light emitting element that has passed through the living body.

また、上記構成において、前記第2フィルタは、前記生体の体動周波数範囲を通過させるローパスフィルタであることが好ましい。この構成によれば、外光の受光量変化に表れる体動成分を精度良く取り出すことができる。
た、前記発光周波数を1kHzを超える周波数にすることが好ましい。この構成によれば、赤外線方式の家電リモコンで一般に使用される周波数信号を上記第1フィルタで取り除くことができる。
Moreover, the said structure WHEREIN: It is preferable that a said 2nd filter is a low-pass filter which allows the body movement frequency range of the said biological body to pass through. According to this arrangement, Ru can retrieve accurately body movement component that appears in the received light quantity changes in ambient light.
Also, it is preferable that the light emitting frequency in a frequency exceeding 1 kHz. According to this configuration, a frequency signal generally used in an infrared home appliance remote controller can be removed by the first filter.

また、上記構成において、前記第1フィルタが抽出した信号成分の包絡線を検波する検波部を有し、前記周波数解析部は、前記検波部の出力信号に周波数解析を施して、脈動成分及び体動成分に対応する周波数スペクトルを特定することが好ましい。この場合、前記検波部は、前記第1フィルタが抽出した信号間の極大値同士或いは極小値同士をピークホールドし、それらを結んで前記包絡線を形成してもよい。   Further, in the above-described configuration, the detector has a detection unit that detects an envelope of the signal component extracted by the first filter, and the frequency analysis unit performs frequency analysis on the output signal of the detection unit to obtain a pulsation component and a body. It is preferable to specify a frequency spectrum corresponding to the dynamic component. In this case, the detection unit may peak-hold the local maximum values or the local minimum values between the signals extracted by the first filter, and connect them to form the envelope.

また、上記構成において、前記周波数解析部に入力する信号を、前記第1フィルタが抽出した第1信号成分と、前記第2フィルタが抽出した信号成分とに選択的に切り換える入力選択部を有することが好ましい。この構成によれば、一つの周波数解析部を、第1信号成分及び第2信号成分に周波数解析を施すものとして共用することができ、構成部品を低減することができる。
また、上記構成において、前記発光素子は、単一ピーク波長の赤外光又は単一ピーク波長の赤色光を照射することが好ましい。この構成によれば、体内で吸収されにくい光を照射することができる。
Further, in the above configuration, an input selection unit that selectively switches a signal input to the frequency analysis unit between a first signal component extracted by the first filter and a signal component extracted by the second filter. Is preferred. According to this configuration, one frequency analysis unit can be shared as one that performs frequency analysis on the first signal component and the second signal component, and the number of components can be reduced.
In the above structure, the light-emitting element preferably emits infrared light having a single peak wavelength or red light having a single peak wavelength. According to this configuration, it is possible to irradiate light that is difficult to be absorbed in the body.

また、上記構成において、前記第1フィルタ及び第2フィルタが抽出した信号成分を各々増幅する増幅部と、増幅後の各信号成分の信号レベルに応じて各々の増幅率を可変制御する増幅率変更部とを備えることが好ましい。この構成によれば、周波数解析処理するのに適切な信号レベルに調整することができる。   Further, in the above configuration, an amplification unit that amplifies the signal components extracted by the first filter and the second filter, and an amplification factor change that variably controls each amplification factor according to the signal level of each amplified signal component It is preferable to provide a part. According to this configuration, it is possible to adjust to a signal level suitable for frequency analysis processing.

また、本発明は、生体の検出部位に向け、所定の時間間隔で光を照射する単一の発光素子と、前記光を前記生体を介して受光可能に配置され、受光量に応じた受光信号を生成する単一の受光素子と、前記受光素子と前記生体との間に延在する透明又は半透明の透光部材であって、脈拍計測装置周囲の外光を透過させて前記生体で反射させ、その反射光を、前記受光素子に受光可能にする透光部材とを備える脈拍計測装置の制御方法であって、生体の検出部位に向け、前記単一の発光素子から所定の時間間隔で光を照射し、前記単一の受光素子により前記光を前記生体を介して受光し、受光量に応じた受光信号を生成し、第1フィルタにより、前記受光信号から、前記時間間隔に対応する発光周波数を含む第1周波数範囲の第1信号成分を抽出し、第2フィルタにより、前記受光信号から、前記生体の脈動の周波数より低い第2周波数範囲の第2信号成分を抽出し、周波数解析部により、前記第1信号成分に周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第2信号成分に周波数解析を施して前記生体の体動スペクトルを特定する処理を実行し、前記体動スペクトルを特定できない場合に、疑似外光照射部により、前記外光の代わりとなる疑似外光を前記透光部材を介して前記生体に向けて出射し、その反射光を、前記生体の体動に応じた光量で前記受光素子に受光させ、前記体動スペクトルを特定した場合に、前記第1信号成分に含まれる周波数スペクトルのうち、前記体動スペクトルを除くスペクトルの周波数に基づいて脈拍数を特定することを特徴とする。 The present invention also provides a single light emitting element that emits light at a predetermined time interval toward a detection site of a living body, and a light receiving signal that is disposed so as to be able to receive the light through the living body, and that corresponds to the amount of light received. and a single light receiving element for generating, said a transparent or semi-transparent light transmitting member extending between the light-receiving element and the living body, in the living body by transmitting external light around pulse rate measuring device A method for controlling a pulse measuring device comprising a translucent member that reflects and allows the reflected light to be received by the light receiving element, toward a detection site of a living body, at a predetermined time interval from the single light emitting element The first light receiving element receives the light through the living body, generates a light reception signal corresponding to the amount of light received, and corresponds to the time interval from the light reception signal by the first filter. The first signal component in the first frequency range including the emission frequency The second filter extracts a second signal component in a second frequency range lower than the pulsation frequency of the living body from the light reception signal, and a frequency analysis unit performs frequency analysis on the first signal component to obtain a plurality of frequency components. When specifying the frequency spectrum, performing a process of specifying the body motion spectrum of the living body by performing frequency analysis on the second signal component, when the body motion spectrum cannot be specified, by the pseudo external light irradiation unit, Pseudo external light in place of external light is emitted toward the living body through the translucent member, and the reflected light is received by the light receiving element with a light amount corresponding to the body movement of the living body. When the spectrum is specified, the pulse rate is specified based on the frequency of the spectrum excluding the body motion spectrum among the frequency spectrum included in the first signal component.

この発明によれば、第1フィルタによって、生体を通った発光素子の光だけの第1信号成分を抽出して血流の変動に表れる脈動成分及び体動成分を取り出すことができると共に、第2フィルタによって外光の受光量変化に表れる体動成分を取り出すことができるので、第1信号成分に含まれる周波数スペクトルから脈拍成分の周波数スペクトルを精度良く特定でき、脈拍検出精度が向上し、発光素子及び受光素子の数も低減される。また、体動スペクトルを特定できない場合に、疑似外光照射部により受光素子が生体の体動に連動して受光可能な疑似外光を照射するので、外光が受光不能な場合には疑似外光の受光量変化に表れる体動成分を取り出すことができ、脈拍を精度良く検出することができる。   According to this invention, the first filter can extract the first signal component of only the light emitted from the light emitting element that has passed through the living body to extract the pulsation component and the body motion component that appear in the fluctuation of the blood flow. Since the body motion component appearing in the change in the amount of received external light can be extracted by the filter, the frequency spectrum of the pulse component can be accurately identified from the frequency spectrum included in the first signal component, the pulse detection accuracy is improved, and the light emitting element In addition, the number of light receiving elements is also reduced. In addition, when the body motion spectrum cannot be specified, the pseudo external light irradiating unit emits pseudo external light that can be received in conjunction with the body motion of the living body. The body motion component that appears in the change in the amount of received light can be extracted, and the pulse can be detected with high accuracy.

また、本発明は、以上説明した脈拍計測装置及びその制御方法に適用する他、この発明を実施するための制御プログラムを電気通信回線を介して一般ユーザに配布したり、そのようなプログラムを、磁気記録媒体、光記録媒体、半導体記録媒体といった、コンピュータに読み取り可能な記録媒体に格納して一般ユーザに配布する、といった態様でも実施され得る。   Further, the present invention is applied to the pulse measuring device and its control method described above, and a control program for carrying out the present invention is distributed to general users via an electric communication line, or such a program is The present invention can also be implemented in such a manner that it is stored in a computer-readable recording medium such as a magnetic recording medium, an optical recording medium, or a semiconductor recording medium and distributed to general users.

本発明によれば、第1フィルタによって、生体を通った発光素子の光だけの第1信号成分を抽出して血流の変動に表れる脈動成分及び体動成分を取り出すと共に、第2フィルタによって外光の受光量変化に表れる体動成分を取り出し、第1信号成分に含まれる周波数スペクトルから脈拍成分の周波数スペクトルを特定できない場合は、生体の体動に連動して受光可能な疑似外光を照射するので、外光を受光不能な状況でも脈拍検出精度が高く、かつ、発光素子及び受光素子の数を低減することができる。   According to the present invention, the first filter extracts only the first signal component of the light emitted from the light emitting element through the living body to extract the pulsation component and the body motion component that appear in the blood flow fluctuation, and the second filter removes the pulsation component and the body motion component. Extract the body motion component that appears in the change in the amount of received light, and if the frequency spectrum of the pulse component cannot be identified from the frequency spectrum included in the first signal component, irradiate pseudo external light that can be received in conjunction with the body motion of the living body Therefore, even in a situation where external light cannot be received, the pulse detection accuracy is high, and the number of light emitting elements and light receiving elements can be reduced.

以下、図面を参照して本発明の実施形態を詳述する。
<第1実施形態>
図1は、本発明の第1実施形態に係る脈拍計測装置を示す図である。この脈拍計測装置1は、腕時計型に構成され、装置本体10と、この装置本体10の6時位置及び12時位置から延びてユーザの腕(手首)に巻回されるリストバンド(帯状体)11とを備え、ジョギングやランニング等の運動を行う際にユーザが容易に装着可能に構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram showing a pulse measuring device according to the first embodiment of the present invention. The pulse measuring device 1 is configured in a wristwatch shape, and a wristband (band-like body) that extends from the device body 10 and the 6 o'clock position and the 12 o'clock position of the device body 10 and is wound around a user's arm (wrist). 11 and is configured so that the user can easily wear it when performing exercises such as jogging and running.

装置本体10は、脈拍数や時刻等の各種情報を表示する表示部15と、ユーザが各種指示を行うための操作部として機能する複数の操作スイッチ16A、16B、16Cとを有し、その内部に、生体情報検出部20等を構成する各種電気部品や当該脈拍計測装置1の動作電力を供給する電池等を備えている。
操作スイッチ16Aは、脈拍計測を開始/停止させる操作子であり、例えば、操作スイッチ16Aを操作する毎に、動作モードが脈拍計測モード(図1参照)と、時刻表示モードとに切り替わる。また、操作スイッチ16Bは、時刻設定等の各種セットアップの開始指示や動作モードの変更指示を行う操作子であり、操作スイッチ16Cは、セットアップのクリアや図示せぬライトをオンさせる操作子である。なお、図示の例では、操作スイッチ16A〜16Cが押下式スイッチの場合を示しているが、静電式やメンブレン電極を用いたタッチ式スイッチでもよい。
The apparatus main body 10 includes a display unit 15 that displays various information such as a pulse rate and time, and a plurality of operation switches 16A, 16B, and 16C that function as operation units for a user to perform various instructions. In addition, various electrical components constituting the biological information detection unit 20 and the like, a battery for supplying operating power of the pulse measuring device 1 and the like are provided.
The operation switch 16A is an operator for starting / stopping pulse measurement. For example, every time the operation switch 16A is operated, the operation mode is switched between a pulse measurement mode (see FIG. 1) and a time display mode. The operation switch 16B is an operation element for instructing start of various setups such as time setting and an operation mode change instruction, and the operation switch 16C is an operation element for clearing the setup and turning on a light (not shown). In the example shown in the figure, the operation switches 16A to 16C are shown as push-type switches, but may be electrostatic switches or touch switches using membrane electrodes.

生体情報検出部20は、ユーザの腕(手首:血流部位)Xの表面に配置され、図2(A)に示すように、一個の発光素子21と、一個の受光素子22とを備えて構成される光学式センサである。発光素子21は、700nm以上の光L1を出射するLED、具体的には、単一ピーク波長の可視光に比べて体内で吸収されにくい赤外光、又は、単一ピーク波長の赤色光を出射するLEDが適用される。この発光素子21は、図2(B)に示すように、装置本体10の裏側に設けられた透明カバー(図示略)を介してユーザの腕Xに向けて光L1を照射する。   The biological information detection unit 20 is disposed on the surface of the user's arm (wrist: blood flow site) X, and includes one light emitting element 21 and one light receiving element 22 as shown in FIG. An optical sensor configured. The light emitting element 21 emits light L1 having a wavelength of 700 nm or more. Specifically, the light emitting element 21 emits infrared light that is not easily absorbed in the body compared to visible light having a single peak wavelength, or red light having a single peak wavelength. LED is applied. As shown in FIG. 2B, the light emitting element 21 emits light L1 toward the user's arm X through a transparent cover (not shown) provided on the back side of the apparatus body 10.

受光素子22は、発光素子21の波長領域内の光及び外光L3を受光可能なフォトトランジスタ(例えば、受光波長領域が700nm以上のフォトトランジスタ)が適用され、太陽光の直射によっても受光素子22が電気的に飽和しないレベルに光を抑制する光学フィルタ22Aを備えている。この受光素子22は、図2(A)に示すように、装置本体10の筐体の中心を外した位置に設けられ、図2(B)に示すように、装置本体10の裏側に設けられた透明カバー(図示略)を介して腕Xの血管K等で反射された反射光L2を受光し、受光量に応じた信号レベルの受光信号S1を出力する。   As the light receiving element 22, a phototransistor capable of receiving light in the wavelength region of the light emitting element 21 and external light L3 (for example, a phototransistor having a light receiving wavelength region of 700 nm or more) is applied. Is provided with an optical filter 22A that suppresses light to a level that does not electrically saturate. The light receiving element 22 is provided at a position where the center of the casing of the apparatus main body 10 is removed as shown in FIG. 2A, and is provided on the back side of the apparatus main body 10 as shown in FIG. The reflected light L2 reflected by the blood vessel K or the like of the arm X is received through the transparent cover (not shown), and a received light signal S1 having a signal level corresponding to the amount of received light is output.

ここで、発光素子21から照射された光L1は、血管Kを流れる血流に応じて吸光度が変化するため、その反射光L2(透過光)の光量が血流に応じて変化する。この場合、血管K内の血流は、脈動だけでなく、体動(腕振り等の身体自体の動きや手首等の関節を曲げたときに変化する皮膚表面の動きがある)によっても変化するため、血管Kに届いた光L1の反射光L2は、脈動及び体動に応じて光量が変化することになる。
受光素子22の受光波長領域を700nm以上にした理由は、発光素子21の光L1の反射光を確実に受光し、かつ、太陽光や照明光等の外光L3についても受光可能にするためである。なお、本実施形態では、反射光を受光する反射型に構成する場合について説明するが、これに限らず、この生体情報検出部20により指等の血管から脈拍を検出する場合は、生体(指等)の通過光を受光する透過型に構成してもよい。
また、上述したように、本構成では、受光素子22に外光L3を受光可能な素子を使用したため、太陽光や照明光等の外光L3を受光波長帯域に含まない受光素子を使用した従来の光学式脈拍計測装置に比して、汎用の受光素子を広く適用することができる。また、この受光素子22には、汎用のフォトトランジスタに限らず、汎用のフォトダイオード等の広く流通する光電センサを適用することができる。
Here, since the light intensity of the light L1 emitted from the light emitting element 21 changes according to the blood flow flowing through the blood vessel K, the amount of reflected light L2 (transmitted light) changes according to the blood flow. In this case, the blood flow in the blood vessel K changes not only due to pulsation but also due to body movement (the movement of the body itself such as arm swinging or the movement of the skin surface that changes when a joint such as a wrist is bent). Therefore, the amount of the reflected light L2 of the light L1 that has reached the blood vessel K changes according to pulsation and body movement.
The reason why the light receiving wavelength region of the light receiving element 22 is set to 700 nm or more is to reliably receive the reflected light of the light L1 of the light emitting element 21 and to be able to receive external light L3 such as sunlight or illumination light. is there. In the present embodiment, a case where the reflection type is configured to receive reflected light will be described. However, the present invention is not limited to this, and in the case where a pulse is detected from a blood vessel such as a finger by the biological information detection unit 20, Or the like).
Further, as described above, in this configuration, since an element capable of receiving the external light L3 is used as the light receiving element 22, a conventional light receiving element that does not include the external light L3 such as sunlight or illumination light in the light receiving wavelength band is used. Compared to the optical pulse measuring device, a general-purpose light receiving element can be widely applied. The light receiving element 22 is not limited to a general-purpose phototransistor but can be a widely distributed photoelectric sensor such as a general-purpose photodiode.

この脈拍計測装置1のリストバンド11は、図2(B)に示すように、装置本体10の裏側に延在し、装置本体10の裏側部11A及びこの裏側部11Aに連続する連続部11B、11Cが、透明樹脂又は半透明樹脂等の透光部材で形成されている。このため、脈拍計測装置1をユーザの腕Xに装着した場合、上記透光部材からなる裏側部11A及び連続部11B、11Cが、受光素子22と生体(腕X)との間に位置し、受光素子22と生体(腕X)との間に外光L3を導入し易くすることができる。従って、図2(B)に示すように、ランニング時のユーザの腕振り等によってリストバンド11(生体情報計測部20)と腕Xとの間に所定の隙間Yが空いた状態では、太陽光や照明光等の外光L3が、上記隙間Y、上記裏側部11A及び連続部11B、11Cを通過して、腕X等で反射した後に受光素子22で受光されることとなる。但し、上記隙間Yが空いた場合でも、脈拍計測装置1の姿勢や外光L3の入射角度によっては外光L3が受光素子22に殆ど受光されない場合がある。
一方、リストバンド11(生体情報計測部20)と腕Xとの間に殆ど隙間が空いていない状態では、外光L3がリストバンド11や装置本体10のケースで遮られて受光素子22に殆ど受光されない。なお、外光L3の特に赤外光成分及び赤色光成分については、腕X等の生体で吸収されにくいために生体(腕X、生体表面(皮膚等))を通過し易く、かかる外光L3の生体通過光についても受光素子22で受光される場合がある。
As shown in FIG. 2 (B), the wristband 11 of the pulse measuring device 1 extends to the back side of the device body 10, and includes a back side portion 11A of the device body 10 and a continuous portion 11B continuous to the back side portion 11A. 11C is formed of a translucent member such as a transparent resin or a translucent resin. For this reason, when the pulse measuring device 1 is mounted on the user's arm X, the back side portion 11A and the continuous portions 11B and 11C made of the translucent member are located between the light receiving element 22 and the living body (arm X), External light L3 can be easily introduced between the light receiving element 22 and the living body (arm X). Therefore, as shown in FIG. 2B, when a predetermined gap Y is left between the wristband 11 (biological information measurement unit 20) and the arm X due to the user's arm swinging or the like during running, And external light L3 such as illumination light passes through the gap Y, the back side portion 11A, and the continuous portions 11B and 11C, and is reflected by the arm X or the like and then received by the light receiving element 22. However, even when the gap Y is vacant, the external light L3 may be hardly received by the light receiving element 22 depending on the posture of the pulse measuring device 1 and the incident angle of the external light L3.
On the other hand, when there is almost no gap between the wristband 11 (biological information measuring unit 20) and the arm X, the external light L3 is blocked by the wristband 11 or the case of the apparatus main body 10 and is almost blocked by the light receiving element 22. No light is received. Note that the infrared light component and the red light component of the external light L3 are particularly difficult to be absorbed by the living body such as the arm X, and therefore easily pass through the living body (arm X, surface of the living body (skin etc.)). The light passing through the living body may be received by the light receiving element 22.

すなわち、これら透光部材で形成された裏側部11A及び連続部11B、11Cは、外光L3を受光素子22の受光面側に導入させる外光導入部30として機能する。以下の説明では、これらを外光導入部30と表記する。
なお、外光導入部30は、透光部材に限らず、リストバンド11に形成された開口にしてもよく、要は、外光L3を、体動に応じて受光量が異なるように受光素子22に導入可能であれば、任意に設計可能である。また、リストバンド11は、外光導入部30以外を着色部材にしても良いし、或いは、外光導入部30以外も透光部材にしてもよい。
That is, the back side portion 11 </ b> A and the continuous portions 11 </ b> B and 11 </ b> C formed by these translucent members function as the external light introducing portion 30 that introduces the external light L <b> 3 to the light receiving surface side of the light receiving element 22. In the following description, these will be referred to as the external light introducing unit 30.
The external light introduction unit 30 is not limited to the translucent member, and may be an opening formed in the wristband 11. In short, the light receiving element is configured so that the amount of received external light L3 varies depending on body movement. If it can be introduced into the system 22, any design is possible. In addition, the wristband 11 may be a colored member other than the external light introduction unit 30 or may be a translucent member other than the external light introduction unit 30.

上述のように、本実施形態では、外光導入部30を設けることによって、外光L3が体動に応じて受光素子22で受光可能に構成される。ところが、太陽光や照明光が殆ど存在しない環境、例えば、夜間の時間帯や曇りの日には、受光素子22では外光L3が殆ど受光されない事態が生じる。このため、本構成では、図2(A)及び図2(B)に示すように、外光L3の代わりとなる光(以下、疑似外光という)L5を照射する疑似外光照射部25を設けている。
詳述すると、疑似外光照射部25は、図2(A)に示すように、装置本体10内に一個の疑似外光用発光素子26を有し、この疑似外光用発光素子26には、受光素子22で受光可能な疑似外光L5を出射するLEDが適用され、具体的には、発光素子21と同様の光(700nm以上の光)を出射するLED、より具体的には、単一ピーク波長の可視光に比べて体内で吸収されにくい赤外光、又は、単一ピーク波長の赤色光を出射するLEDが適用される。
As described above, in the present embodiment, the external light introduction unit 30 is provided so that the external light L3 can be received by the light receiving element 22 according to body movement. However, in an environment where there is almost no sunlight or illumination light, for example, at night time or on a cloudy day, the light receiving element 22 hardly receives the external light L3. For this reason, in this configuration, as shown in FIGS. 2A and 2B, a pseudo external light irradiation unit 25 that irradiates light L5 (hereinafter referred to as pseudo external light) instead of the external light L3 is provided. Provided.
More specifically, as shown in FIG. 2A, the pseudo external light irradiation unit 25 has one pseudo external light emitting element 26 in the apparatus body 10, and the pseudo external light emitting element 26 includes The LED that emits pseudo external light L5 that can be received by the light receiving element 22 is applied, specifically, an LED that emits the same light as the light emitting element 21 (light of 700 nm or more), more specifically, a single LED. An LED that emits infrared light that is not easily absorbed in the body compared to visible light having one peak wavelength or red light having a single peak wavelength is used.

この疑似外光用発光素子26は、装置本体10の外周部に寄せて配置されており、これによって装置本体10裏側における外光L3の進入口近傍に位置する。そして、この疑似外光用発光素子26は、装置本体10の裏側の透明カバー及び上記外光導入部30を介してユーザの腕Xに向けて疑似外光L5を出射する。
また、この疑似外光L5の出射方向は、受光素子22側に向けられ、かつ、腕Xに対する入射角度が大きく設定される。このため、疑似外光L5は、外光L3と略同じ入射角度で腕Xに入射し、腕Xの表面で略全反射して、リストバンド11と腕Xとの間に所定の隙間Yの変化に応じて受光素子22に届く光量が変化することになる。これによって、疑似外光照射部25は、受光素子22が生体の体動に連動して受光可能な疑似外光L5を照射する。
The pseudo-external light emitting element 26 is disposed close to the outer peripheral portion of the apparatus main body 10, thereby being positioned near the entrance of the external light L 3 on the back side of the apparatus main body 10. The pseudo external light emitting element 26 emits pseudo external light L5 toward the user's arm X via the transparent cover on the back side of the apparatus main body 10 and the external light introducing unit 30.
The emission direction of the pseudo external light L5 is directed to the light receiving element 22 side, and the incident angle with respect to the arm X is set large. For this reason, the pseudo external light L5 is incident on the arm X at substantially the same incident angle as the external light L3, is substantially totally reflected on the surface of the arm X, and has a predetermined gap Y between the wristband 11 and the arm X. The amount of light reaching the light receiving element 22 changes according to the change. Thereby, the pseudo external light irradiation unit 25 irradiates the pseudo external light L5 that the light receiving element 22 can receive in conjunction with the body movement of the living body.

図3は脈拍計測装置1のブロック図であり、図4はその回路構成を示す図である。図3において、発光制御部50は、発光素子21の発光制御を行うものであり、図示せぬ発振回路の発振信号(例えば32kHz)を分周(1/16分周)して得た2kHzの信号を入力し、この2kHzの信号がHレベルのときに発光素子21に駆動電力を供給し、Lレベルのときに駆動電力の供給を停止し、これによって、2kHzデューティ比50%に対応する時間間隔で発光/消灯を繰り返させる。つまり、この脈拍計測装置1では、2kHzを発光の時間間隔を規定する発光周波数(間欠駆動周波数とも言う)としている。   FIG. 3 is a block diagram of the pulse measuring device 1, and FIG. 4 is a diagram showing a circuit configuration thereof. In FIG. 3, the light emission control unit 50 performs light emission control of the light emitting element 21. The light emission control unit 50 divides an oscillation signal (for example, 32 kHz) of an oscillation circuit (not shown) by 2 kHz (1/16 division). When a signal is input, the driving power is supplied to the light emitting element 21 when the 2 kHz signal is at the H level, and the driving power supply is stopped when the 2 kHz signal is at the L level, and thereby a time corresponding to a 2 kHz duty ratio of 50%. Repeat lighting / extinguishing at intervals. That is, in this pulse measuring device 1, 2 kHz is set as the light emission frequency (also referred to as intermittent drive frequency) that defines the time interval of light emission.

電流電圧変換部51は、受光素子22から出力される受光信号S1を電流/電圧変換するものであり、図4に示すように、オペアンプ51Aの出力と入力−を抵抗51Bを介して接続すると共にコンデンサ51Cを並列接続して構成され、受光量に比例した電流を電圧に変換してオペアンプ51Aにより増幅して出力する。   The current-voltage conversion unit 51 performs current / voltage conversion on the light reception signal S1 output from the light receiving element 22, and connects the output of the operational amplifier 51A and the input − through a resistor 51B as shown in FIG. A capacitor 51C is connected in parallel, a current proportional to the amount of received light is converted into a voltage, amplified by an operational amplifier 51A, and output.

この電流電圧変換部51で変換された受光信号S2は、帯域通過フィルタ部(第1フィルタ)52と低域通過フィルタ部(第2フィルタ)53とに各々出力される。
帯域通過フィルタ部52は、電流電圧変換部51から出力される受光信号S2から、上記発光周波数(2kHz)を含む第1周波数範囲の信号成分(第1信号成分)を抽出するものである。より具体的には、帯域通過フィルタ部52は、上記発光周波数を中心周波数(f0)とし、かつ、低域通過フィルタ部53を通過する低周波数範囲より高い周波数範囲(本構成では、1kHz以上)の信号成分を通過させる。これによって、生体を通った光(光L1の反射光L2)の信号成分を取り出すことができ、言い換えれば、血流の変動(脈動及び体動による変動)に応じて振幅レベルが変動する信号成分を取り出すことができる。
The light reception signal S2 converted by the current-voltage conversion unit 51 is output to a band-pass filter unit (first filter) 52 and a low-pass filter unit (second filter) 53, respectively.
The band pass filter unit 52 extracts a signal component (first signal component) in a first frequency range including the light emission frequency (2 kHz) from the light reception signal S2 output from the current-voltage conversion unit 51. More specifically, the band-pass filter unit 52 uses the emission frequency as the center frequency (f0) and has a higher frequency range than the low frequency range that passes through the low-pass filter unit 53 (1 kHz or more in this configuration). The signal component of is passed. As a result, the signal component of the light passing through the living body (the reflected light L2 of the light L1) can be extracted. In other words, the signal component whose amplitude level varies according to the blood flow variation (variation due to pulsation and body movement). Can be taken out.

この帯域通過フィルタ部52は、図4に示すように、オペアンプ52Aの出力と入力−を抵抗52Bを介して接続すると共にコンデンサ52C、52Dを介して接続し、かつ、入力−への入力側に抵抗52E、52Fを接続した多重帰還型アクティブフィルタ回路で構成される。このため、パッシブフィルタ回路で構成する場合に比して、得られる周波数特性の自由度が高く、かつ、増幅を行うことができるといった利点がある。
ここで、帯域通過フィルタ部52の通過周波数を1kHz以上にした理由は、赤外線方式の家電リモコンで一般に使用される1kHz以下の周波数信号(ノイズ成分に相当)を除くためである。
As shown in FIG. 4, the band-pass filter unit 52 connects the output of the operational amplifier 52A and the input − through the resistor 52B, and connects through the capacitors 52C and 52D, and on the input side to the input −. It is composed of a multiple feedback active filter circuit to which resistors 52E and 52F are connected. For this reason, compared with the case where it comprises with a passive filter circuit, there exists an advantage that the freedom degree of the frequency characteristic obtained is high and can be amplified.
Here, the reason why the pass frequency of the band pass filter unit 52 is set to 1 kHz or more is to remove a frequency signal (corresponding to a noise component) of 1 kHz or less that is generally used in an infrared home appliance remote controller.

低域通過フィルタ部53は、電流電圧変換部51から出力される受光信号から、脈動の周波数より低い第2周波数範囲の信号成分を抽出するものであり、言い換えれば、体動に応じて受光素子22に入射した外光L3による体動成分を抽出可能なフィルタに構成されている。
ここで、体動成分(歩行時やランニング時等の腕振り等の身体運動や手首等の関節を曲げたときに変化する皮膚表面の動きがある)は、通常0Hzよりも大きく10Hz以下の範囲となるため、この低域通過フィルタ部53は、例えば、カットオフ周波数(fc)が10Hzのフィルタに構成される。この低域通過フィルタ部53は、図4に示すように、抵抗53A、53B、コンデンサ53C、53D及びオペアンプ53Eを組み合わせたアクティブフィルタ回路で構成され、パッシブフィルタ回路で構成する場合に比して、得られる周波数特性の自由度が高く、かつ、増幅を行うことが可能である。
The low-pass filter unit 53 extracts a signal component in the second frequency range lower than the pulsation frequency from the light reception signal output from the current-voltage conversion unit 51. In other words, the light-receiving element according to the body motion 22 is configured as a filter capable of extracting a body motion component due to the external light L3 incident on the lens 22.
Here, the body motion component (the body motion such as arm swing during walking or running or the movement of the skin surface that changes when the wrist joint is bent) is usually greater than 0 Hz and less than or equal to 10 Hz. Therefore, the low-pass filter unit 53 is configured as a filter having a cutoff frequency (fc) of 10 Hz, for example. As shown in FIG. 4, the low-pass filter unit 53 is composed of an active filter circuit in which resistors 53A and 53B, capacitors 53C and 53D, and an operational amplifier 53E are combined. The obtained frequency characteristics have a high degree of freedom and can be amplified.

図3に示すように、帯域通過フィルタ部52の後段(出力側)には、増幅率変更部54によって増幅率を変更可能な増幅部(第1増幅部)55と、検波部(第1検波部)56とが順に接続され、低域通過フィルタ部53の後段(出力側)には、増幅率変更部57によって増幅率を変更可能な増幅部(第2増幅部)58が接続される。   As shown in FIG. 3, an amplification unit (first amplification unit) 55 whose amplification factor can be changed by an amplification factor changing unit 54 and a detection unit (first detection unit) are arranged at the subsequent stage (output side) of the bandpass filter unit 52. 56) are connected in order, and an amplification unit (second amplification unit) 58 whose amplification factor can be changed by the amplification factor changing unit 57 is connected to the subsequent stage (output side) of the low-pass filter unit 53.

増幅部55及び増幅率変更部54は、帯域通過フィルタ部52を通過した受光信号S3を演算処理部60で演算処理(周波数解析処理)するのに適切な信号レベルに増幅するためのものである。この増幅部55及び増幅率変更部54は、図4に示すように、抵抗55A、55Bを前後に配置したオペアンプ55Cの出力と入力−をつなぐ帰還経路に、抵抗54A、55C、54Cを各々スイッチング素子54D、54E、54Fを介して接続可能に構成した回路に構成され、演算処理部60の制御の下、各スイッチング素子54D〜54Fのオン/オフが制御されることによって増幅率を変更する。   The amplifying unit 55 and the amplification factor changing unit 54 are for amplifying the received light signal S3 having passed through the band-pass filter unit 52 to a signal level suitable for arithmetic processing (frequency analysis processing) by the arithmetic processing unit 60. . As shown in FIG. 4, the amplifying unit 55 and the amplification factor changing unit 54 switch the resistors 54A, 55C, and 54C in a feedback path that connects the output and the input − of the operational amplifier 55C in which the resistors 55A and 55B are arranged at the front and rear. The circuit is configured to be connectable via the elements 54D, 54E, and 54F, and the amplification factor is changed by controlling the on / off of each of the switching elements 54D to 54F under the control of the arithmetic processing unit 60.

検波部56は、増幅部55で増幅された受光信号S3の包絡線を検波するものであり、図4に示すように、入力信号をショットキーダイオード56Aに通し、抵抗56Bとコンデンサ56Cの並列回路で受ける回路が適用される。この抵抗56Bとコンデンサ56Cの時定数を適切に設計することで、その出力波形を入力波形の包絡線に近い波形にすることができる。   The detector 56 detects the envelope of the received light signal S3 amplified by the amplifier 55. As shown in FIG. 4, the input signal is passed through a Schottky diode 56A, and a parallel circuit of a resistor 56B and a capacitor 56C. The circuit received in is applied. By appropriately designing the time constants of the resistor 56B and the capacitor 56C, the output waveform can be made close to the envelope of the input waveform.

なお、上記検波部56に代えて、上記受光信号S3の極大値同士或いは極小値同士をピークホールドし、それらを結んで包絡線を検波する検波部を設けるようにしてもよい。この場合、この検波部は、上記受光信号S3をアナログデジタル変換した波形データを取得するデジタルメモリスコープを備え、このデジタルメモリスコープに取得された波形データの極大値同士或いは極小値同士をピークホールドして得た包絡線を取得するようにすればよい。このように、極大値同士或いは極小値同士を結んだ包絡線を得ることにより、ノイズ成分の影響を低減して包絡線を検波することができる。この場合、この包絡線には、脈動そのものの波形ではなく、脈動の1/2周波数の波形が含まれることになる。   Instead of the detection unit 56, a detection unit may be provided for peak-holding the local maximum values or the local minimum values of the light reception signal S3 and connecting them to detect the envelope. In this case, the detection unit includes a digital memory scope that acquires waveform data obtained by analog-to-digital conversion of the received light signal S3, and peaks and holds the local maximum values or the local minimum values of the waveform data acquired in the digital memory scope. What is necessary is just to acquire the obtained envelope. In this way, by obtaining an envelope connecting the maximum values or the minimum values, the influence of the noise component can be reduced and the envelope can be detected. In this case, the envelope does not include the waveform of the pulsation itself, but includes a waveform of ½ frequency of the pulsation.

増幅部58及び増幅率変更部57は、低域通過フィルタ部53を通過した受光信号S4を演算処理部60で演算処理(周波数解析処理)するのに適切な信号レベルに増幅するためのものであり、上記増幅部55及び増幅率変更部54と同様の回路が適用される。つまり、増幅部58及び増幅率変更部57は、図4に示すように、抵抗58A、58Bを前後に配置したオペアンプ58Cの出力と入力−をつなぐ帰還経路に、抵抗57A、57C、57Cを各々スイッチング素子57D、57E、57Fを介して接続可能に構成した回路に構成され、演算処理部60の制御の下、各スイッチング素子57D〜57Fのオン/オフが制御されることによって増幅率を変更する。   The amplifying unit 58 and the amplification factor changing unit 57 are for amplifying the received light signal S4 that has passed through the low-pass filter unit 53 to a signal level suitable for arithmetic processing (frequency analysis processing) by the arithmetic processing unit 60. Yes, the same circuit as the amplifying unit 55 and the amplification factor changing unit 54 is applied. In other words, as shown in FIG. 4, the amplifying unit 58 and the amplification factor changing unit 57 are provided with resistors 57A, 57C, and 57C in a feedback path that connects the output and the input − of the operational amplifier 58C in which resistors 58A and 58B are arranged at the front and rear, respectively. The circuit is configured to be connectable via the switching elements 57D, 57E, and 57F, and the amplification factor is changed by controlling the on / off of each of the switching elements 57D to 57F under the control of the arithmetic processing unit 60. .

入力選択部61は、演算処理部60の制御の下、増幅部55で増幅された受光信号S3、及び、増幅部58で増幅された受光信号S4のいずれかをA/D変換部62に切換出力するものであり、図3に示すように、増幅部55及び58の出力側にスイッチング素子61A、61Bを各々配置し、一方のスイッチング素子61Aには、演算処理部60からA/D入力選択信号SSを出力してオンオフを切り換え、他方のスイッチング素子61Bには、上記A/D入力選択信号SSの信号レベルをインバータ61Cにより反転させて供給してオフオンを切り換える回路が適用される。
A/D変換部62は、受光信号S3の包絡線信号S3A又は受光信号S4のいずれかを入力し、アナログデジタル変換して演算処理部60に出力する。
The input selection unit 61 switches either the light reception signal S3 amplified by the amplification unit 55 or the light reception signal S4 amplified by the amplification unit 58 to the A / D conversion unit 62 under the control of the arithmetic processing unit 60. As shown in FIG. 3, switching elements 61A and 61B are arranged on the output sides of the amplifying units 55 and 58, respectively, and the A / D input selection from the arithmetic processing unit 60 is performed on one switching element 61A. A circuit for switching on / off by applying the signal level of the A / D input selection signal SS inverted by an inverter 61C is applied to the other switching element 61B.
The A / D conversion unit 62 receives either the envelope signal S3A or the light reception signal S4 of the light reception signal S3, performs analog-digital conversion, and outputs it to the arithmetic processing unit 60.

疑似外光照射部25は、疑似外光用発光素子26及び疑似外光用駆動部27で構成され、疑似外光用駆動部27は、演算処理部60の制御の下、疑似外光用発光素子26の発光制御を行うものである。この疑似外光用駆動部27は、図4に示すように、トランジスタ27Aのコレクタを抵抗27Bを介して疑似外光用発光素子26に接続し、このトランジスタ25Aのエミッタを接地し、ベースに抵抗27Cを介して演算処理部60からの制御信号(オンオフを指示する信号)が入力される構成の回路が適用され、上記制御信号に基づいて疑似外光用発光素子26を選択的に駆動する。   The pseudo external light irradiation unit 25 includes a pseudo external light emitting element 26 and a pseudo external light drive unit 27, and the pseudo external light drive unit 27 emits light for pseudo external light under the control of the arithmetic processing unit 60. The light emission control of the element 26 is performed. As shown in FIG. 4, the pseudo-external light drive unit 27 connects the collector of the transistor 27A to the pseudo-external light light-emitting element 26 via a resistor 27B, grounds the emitter of the transistor 25A, and connects the resistance to the base. A circuit having a configuration in which a control signal (signal to turn on / off) from the arithmetic processing unit 60 is input via the 27C is applied, and the pseudo external light emitting element 26 is selectively driven based on the control signal.

演算処理部60は、CPU、ROM及びRAM(本例では、FFT用RAM1と、FFT用RAM2とを有する)等を備えたコンピュータ構成を備え、CPUがROMに格納された制御プログラムを実行することにより、入力したデータの周波数解析処理(FFT処理)を行う周波数解析部、周波数解析結果に基づき脈拍数を特定する脈拍数特定部、特定した脈拍数を表示部15に表示させる処理等の脈拍計測装置1の各部を制御する制御部として機能する。   The arithmetic processing unit 60 includes a computer configuration including a CPU, a ROM, and a RAM (in this example, including an FFT RAM 1 and an FFT RAM 2), and the CPU executes a control program stored in the ROM. , Such as a frequency analysis unit that performs frequency analysis processing (FFT processing) of input data, a pulse rate specification unit that specifies a pulse rate based on the frequency analysis result, and a pulse measurement such as processing that causes the display unit 15 to display the specified pulse rate It functions as a control unit that controls each unit of the device 1.

なお、本実施形態では、演算処理部60がソフトウェア処理により周波数解析部、脈拍数特定部及び制御部として機能する場合を説明するが、これに限らず、これら周波数解析部、脈拍数特定部及び制御部を構成するハードウェア回路によって構成してもよい。また、この演算処理部60には、図示せぬ発振回路の発振信号の分周信号(1Hz信号)に基づいて時刻を計時する時計回路も内蔵されている。時計回路の構成は公知の構成を適用すればよいため、詳細な説明は省略する。   In the present embodiment, a case where the arithmetic processing unit 60 functions as a frequency analysis unit, a pulse rate specifying unit, and a control unit by software processing will be described. However, the present invention is not limited to this, and the frequency analysis unit, the pulse rate specifying unit, and You may comprise by the hardware circuit which comprises a control part. The arithmetic processing unit 60 also incorporates a clock circuit that measures time based on a frequency-divided signal (1 Hz signal) of an oscillation signal (not shown) of an oscillation circuit. Since a known configuration may be applied to the configuration of the timepiece circuit, detailed description is omitted.

次に、この脈拍計測装置1の脈拍計測時の動作を説明する。図5はこの場合の動作を示すフローチャートである。
ユーザが操作スイッチ16Aを操作して脈拍計測の開始を指示すると、まず、演算処理部60内のCPU(以下、制御部という)は、図示せぬ発振回路の発振信号を分周した出力(本例では32Hzの信号)の割り込みを許可し(ステップSP1)、この32Hz割り込みをトリガーとしてA/D変換部62の取り込みと、入力選択部61による入力切り換えを行う。また、制御部は、変数Nを値0に設定し(ステップS2)、その後、発光制御部50により2kHz(発光周波数)のデューティ比50%の時間間隔で発光素子21の発光制御を開始させる。
Next, the operation | movement at the time of the pulse measurement of this pulse measuring device 1 is demonstrated. FIG. 5 is a flowchart showing the operation in this case.
When the user operates the operation switch 16A to instruct the start of pulse measurement, first, a CPU in the arithmetic processing unit 60 (hereinafter referred to as a control unit) outputs an output (this book) obtained by dividing an oscillation signal of an oscillation circuit (not shown). In the example, an interrupt of 32 Hz signal) is permitted (step SP 1), and the A / D conversion unit 62 is taken in and the input selection unit 61 performs input switching using the 32 Hz interrupt as a trigger. In addition, the control unit sets the variable N to a value of 0 (step S2), and then causes the light emission control unit 50 to start light emission control of the light emitting element 21 at a time interval of 2 kHz (light emission frequency) with a duty ratio of 50%.

このため、受光素子22から受光信号S1が出力され、電流電圧変換部51によって電流電圧変換されて、図6(A)に示すように、2kHzの変調波である受光信号S2が出力される。そして、この受光信号S2は、2kHzを中心周波数とする帯域通過フィルタ部52を通過することによって、図6(B)に示すように、2kHzの変調成分を示す受光信号S3が出力される。次に、受光信号S3に対し、検波部56が検波処理を施すことによって、図6(C)に示すように、受光信号S3の包絡線を示す包絡線信号S3Aが出力される。
この包絡線信号S3Aの波形には、脈動成分(脈波形)と体動成分(体動波形)の情報が含まれている。
For this reason, the light receiving signal S1 is output from the light receiving element 22, and is converted into a current voltage by the current-voltage converting unit 51, and a light receiving signal S2 that is a modulated wave of 2 kHz is output as shown in FIG. Then, the light reception signal S2 passes through the band-pass filter 52 having a center frequency of 2 kHz, so that a light reception signal S3 indicating a modulation component of 2 kHz is output as shown in FIG. 6B. Next, when the detection unit 56 performs detection processing on the light reception signal S3, an envelope signal S3A indicating an envelope of the light reception signal S3 is output as shown in FIG. 6C.
The waveform of the envelope signal S3A includes information on the pulsation component (pulse waveform) and the body motion component (body motion waveform).

また、受光信号S2が、10Hz以下を通過する低域通過フィルタ部53を通過することによって、脈動成分が取り除かれた受光信号S4が取得され、この受光信号S4の波形には、体動成分とノイズ成分(体動に依存しない外乱光成分など)の情報が含まれる。
次に、上記ステップS2の処理実行後、制御部は、A/D入力選択信号SSをHレベルに設定し、32Hz割り込みフラグがオンになるまで待機する(ステップSP4)。なお、この32Hz割り込みフラグとは、上記32Hzの割り込み信号の1周期(1/32秒)が経過したか否かを判定するためのフラグであり、言い換えれば、A/D変換部62の取り込みと入力切り換えとを行うタイミングを検出するフラグである。
In addition, the light reception signal S2 passes through the low-pass filter unit 53 that passes 10 Hz or less, thereby obtaining the light reception signal S4 from which the pulsation component has been removed. The waveform of the light reception signal S4 includes the body motion component and Information on noise components (such as disturbance light components that do not depend on body movement) is included.
Next, after executing the process of step S2, the control unit sets the A / D input selection signal SS to the H level and waits until the 32 Hz interrupt flag is turned on (step SP4). The 32 Hz interrupt flag is a flag for determining whether or not one period (1/32 second) of the 32 Hz interrupt signal has elapsed. In other words, the 32 Hz interrupt flag is taken in by the A / D converter 62. This is a flag for detecting the timing of input switching.

A/D入力選択信号SSがHレベルに設定された場合、入力選択部61のスイッチング素子61Aが開状態に設定されると共に、スイッチング素子61Bが閉状体に設定されるため、包絡線信号S3AがA/D変換部62に出力され、ここでアナログデジタル変換されて演算処理部60に出力される。
そして、制御部は、32Hz割り込みフラグがオンになると(ステップSP5:YES)、32Hz割り込みフラグをクリアして(ステップSP6)、デジタルデータ(包絡線の波形データ)をFFT用RAM1に格納する(ステップSP7)。
When the A / D input selection signal SS is set to the H level, the switching element 61A of the input selection unit 61 is set to an open state and the switching element 61B is set to a closed body, so that the envelope signal S3A is It is output to the A / D converter 62, where it is analog-digital converted and output to the arithmetic processor 60.
When the 32 Hz interrupt flag is turned on (step SP5: YES), the control unit clears the 32 Hz interrupt flag (step SP6) and stores digital data (envelope waveform data) in the FFT RAM 1 (step SP6). SP7).

続いて、制御部は、A/D入力選択信号SSをLレベルに切り換え、入力選択部61のスイッチング素子61Aを閉状態に切り換えると共に、スイッチング素子61Bを開状態に切り換える。このため、低域通過フィルタ部53を通過した受光信号S4が、A/D変換部62に入力されてアナログデジタル変換されて演算処理部60に出力される。そして、制御部は、32Hz割り込みフラグがオンになると(ステップSP8:YES)、32Hz割り込みフラグをクリアして(ステップSP9)、デジタルデータ(受光信号S4の波形データ)をFFT用RAM2に格納する(ステップSP10)。   Subsequently, the control unit switches the A / D input selection signal SS to the L level, switches the switching element 61A of the input selection unit 61 to the closed state, and switches the switching element 61B to the open state. For this reason, the received light signal S4 that has passed through the low-pass filter unit 53 is input to the A / D conversion unit 62, converted from analog to digital, and output to the arithmetic processing unit 60. When the 32 Hz interrupt flag is turned on (step SP8: YES), the control unit clears the 32 Hz interrupt flag (step SP9) and stores the digital data (waveform data of the light reception signal S4) in the FFT RAM 2 ( Step SP10).

次に、制御部は、変数Nに値1を加算し(ステップSP11)、変数Nが値256に達したか否かを判定する(ステップSP12)。このとき、値256に達していない場合は(ステップSP12:NO)、ステップSP3の処理へ移行して、包絡線の波形データの取り込みと、受光信号S4の波形データの取り込みとを再び開始させる。これによって、これらデータの取り込みは変数Nが値256に達するまで繰り返され、FFT用RAM1及びFFT用RAM2に、各16Hz256ポイントの波形データを格納するまで上記データの取り込みを繰り返す。   Next, the control unit adds 1 to the variable N (step SP11), and determines whether or not the variable N has reached the value 256 (step SP12). At this time, if the value 256 has not been reached (step SP12: NO), the process proceeds to step SP3, and the acquisition of the waveform data of the envelope and the acquisition of the waveform data of the light reception signal S4 are started again. As a result, the acquisition of these data is repeated until the variable N reaches the value 256, and the acquisition of the data is repeated until the waveform data of each 16 Hz 256 points is stored in the FFT RAM 1 and the FFT RAM 2.

続いて、変数Nが値256に達すると(ステップSP12:YES)、制御部は、FFT用RAM1に格納された波形データ(受光信号S3の包絡線の波形データ)に対し、FFT(高速フーリエ変換)処理(周波数解析)を実行することにより(ステップSP13)、図7(A)に示すように、該波形に含まれる複数の周波数スペクトル(ローカルピーク)を特定可能な第1の周波数解析結果を得る。
次いで、制御部は、FFT用RAM2に格納された波形データ(受光信号S4の波形データ)に対し、同様のFFT(高速フーリエ変換)処理(周波数解析)を実行することにより(ステップSP14)、図7(B)に示すように、該波形に含まれる1又は複数の周波数スペクトル(ローカルピーク)を特定可能な第2の周波数解析結果を得る。
Subsequently, when the variable N reaches the value 256 (step SP12: YES), the control unit performs FFT (Fast Fourier Transform) on the waveform data (the waveform data of the envelope of the light reception signal S3) stored in the FFT RAM 1. ) By executing the process (frequency analysis) (step SP13), as shown in FIG. 7A, the first frequency analysis result that can specify a plurality of frequency spectra (local peaks) included in the waveform is obtained. obtain.
Next, the control unit performs similar FFT (Fast Fourier Transform) processing (frequency analysis) on the waveform data (waveform data of the light reception signal S4) stored in the FFT RAM 2 (step SP14), As shown in FIG. 7B, a second frequency analysis result that can identify one or a plurality of frequency spectra (local peaks) included in the waveform is obtained.

ここで、上述したように、FFT用RAM1に格納された波形データには、脈動成分(脈波形)と体動成分(体動波形)の情報が含まれることから、図7(A)に示す2つの周波数スペクトルf1、f2は、脈動成分と体動成分とに相当することが判る。しかし、この情報だけでは、どちらの周波数スペクトルf1、f2が脈動成分であるかを特定することが困難である。
一方、FFT用RAM2に格納された波形データには、上述したように、体動成分とノイズ成分が含まれ、脈動成分(脈波形)が含まれないことから、図7(B)に示す大きな周波数スペクトルf3、f4、f5は、体動成分とノイズ成分のいずれかであることが判る。
Here, as described above, the waveform data stored in the FFT RAM 1 includes information on the pulsation component (pulse waveform) and the body motion component (body motion waveform). It can be seen that the two frequency spectra f1 and f2 correspond to a pulsation component and a body motion component. However, it is difficult to specify which frequency spectrum f1, f2 is a pulsating component only with this information.
On the other hand, since the waveform data stored in the FFT RAM 2 includes the body motion component and the noise component and does not include the pulsation component (pulse waveform) as described above, the large waveform shown in FIG. It can be seen that the frequency spectra f3, f4, and f5 are either body motion components or noise components.

このため、制御部は、上記第1の周波数解析結果と上記第2の周波数解析結果を比較することによって、両方の周波数解析結果に含まれる同一周波数の周波数スペクトルf2、f3を体動成分(体動スペクトル)と特定し、第1の周波数解析結果に含まれるが、第2の周波数解析結果には含まれない周波数スペクトルf1を脈動成分(脈動スペクトル)と特定する処理を実行する(ステップSP15)。   For this reason, the control unit compares the first frequency analysis result and the second frequency analysis result, thereby obtaining the frequency spectra f2 and f3 of the same frequency included in both frequency analysis results as body motion components (body Dynamic spectrum) and is included in the first frequency analysis result but is not included in the second frequency analysis result, and a process of specifying the frequency spectrum f1 as a pulsation component (pulsation spectrum) is executed (step SP15). .

続いて、制御部は、体動成分を検出できたか否かを判定し(ステップSP16)、体動成分を検出できた場合は(ステップSP16:YES)、周波数スペクトルf1の周波数を一分間当たりの振幅回数に換算して脈拍数を算出し、算出した脈拍数を表示部15に表示させ(ステップS17)、ステップSP2の処理に移行する。   Subsequently, the control unit determines whether or not the body motion component has been detected (step SP16). If the body motion component has been detected (step SP16: YES), the frequency of the frequency spectrum f1 is determined per minute. The pulse rate is calculated in terms of the number of amplitudes, the calculated pulse rate is displayed on the display unit 15 (step S17), and the process proceeds to step SP2.

一方、体動成分を検出できなかった場合(ステップSP16:NO)、制御部は、疑似外光照射部25によって疑似外光L5を照射中か否かを判定し(ステップSP18)、疑似外光照射中でなければ(ステップSP18:NO)、疑似外光用駆動部27により疑似外光用発光素子26を駆動させて疑似外光L5を照射させる(ステップSP19)。そして、制御部は、疑似外光L5照射後にステップSP2の処理に移行し、脈拍数の再検出処理(ステップSP2〜SP17)を行う。
このため、夜間の時間帯や曇りの日で外光L3が受光不能な状況では、外光L3の代わりとなる疑似外光L5が照射され、上記第2の周波数解析結果に体動成分に相当する周波数スペクトル(上記f3に相当)が表れることとなる。従って、制御部は、上記第1の周波数解析結果と上記第2の周波数解析結果を比較することによって体動成分を検出でき、脈拍数を精度良く検出することができる。
On the other hand, when the body movement component cannot be detected (step SP16: NO), the control unit determines whether or not the pseudo external light irradiation unit 25 is irradiating the pseudo external light L5 (step SP18), and pseudo external light. If the irradiation is not in progress (step SP18: NO), the pseudo-external light driving unit 27 drives the pseudo-external light-emitting element 26 to irradiate the pseudo external light L5 (step SP19). And a control part transfers to the process of step SP2 after pseudo external light L5 irradiation, and performs the redetection process (steps SP2-SP17) of a pulse rate.
For this reason, in the situation where the external light L3 cannot be received in the night time zone or on a cloudy day, the pseudo external light L5 is used instead of the external light L3, and the second frequency analysis result corresponds to the body motion component. Frequency spectrum (corresponding to the above f3) appears. Therefore, the control unit can detect the body motion component by comparing the first frequency analysis result and the second frequency analysis result, and can detect the pulse rate with high accuracy.

また、ステップS18の判定で、疑似外光照射中であった場合には(ステップSP18:YES)、制御部は、ステップSP2の処理へ移行し、再度上記ステップSP2〜SP16の処理を実行し、脈拍数の再検出処理を行う。これによって、たまたま体動成分が検出されなかった場合には、次回以降に体動成分が検出された時点で、脈拍数を精度良く検出することができる。
なお、このフローチャートでは、疑似外光L5の照射中にも拘わらず、体動成分を取得できない場合には(ステップSP18:YES)、脈拍数の再検出処理を実行する場合について述べたが、これに限らず、かかる場合は、体動がない状況、つまり、ユーザが運動していない状況とも判断できるため、上記第1の周波数解析結果のみに基づいて脈拍数を推定してその脈拍数を表示するようにしてもよい。
If it is determined in step S18 that pseudo-external light irradiation is being performed (step SP18: YES), the control unit proceeds to the process in step SP2, and executes the processes in steps SP2 to SP16 again. Re-detect the pulse rate. As a result, if no body motion component happens to be detected, the pulse rate can be accurately detected when the body motion component is detected next time.
In this flowchart, the case where the pulse rate re-detection process is executed when the body motion component cannot be acquired despite the irradiation of the pseudo external light L5 (step SP18: YES) is described. In such a case, since it can be determined that there is no body movement, that is, a situation where the user is not exercising, the pulse rate is estimated based on only the first frequency analysis result and the pulse rate is displayed. You may make it do.

具体的には、例えば、第1の周波数解析結果から得られる周波数スペクトル(ローカルピーク)が一つであり、かつ、脈拍の周波数範囲内であった場合には、その周波数スペクトルを脈動成分と特定し、かかる周波数スペクトルから脈拍数を算出して表示する方法がある。また、例えば、第1の周波数解析結果から得られる周波数スペクトル(ローカルピーク)が複数であった場合には、これらの周波数スペクトルのうち、その周波数が脈拍の周波数範囲内の周波数スペクトルを抽出し、この周波数スペクトルから脈拍数を算出して表示する方法がある。   Specifically, for example, when the frequency spectrum (local peak) obtained from the first frequency analysis result is one and within the frequency range of the pulse, the frequency spectrum is identified as the pulsation component. There is a method of calculating and displaying the pulse rate from the frequency spectrum. In addition, for example, when there are a plurality of frequency spectra (local peaks) obtained from the first frequency analysis result, the frequency spectrum within the frequency range of the pulse is extracted from these frequency spectra, There is a method of calculating and displaying the pulse rate from this frequency spectrum.

以上説明した動作は、ユーザから脈拍計測の停止が指示されるまで継続的に繰り返され、リアルタイムの脈拍数を表示部15に表示することができる。以上が、脈拍計測時の動作である。なお、上述したように、周波数スペクトルf2、f3を体動成分、周波数スペクトルf1を脈動成分と特定できた場合には、周波数スペクトルf4、f5、f6はノイズ成分であると特定できる。このため、これらノイズ成分を記憶して以降はノイズと推定する学習処理を行うことで、以降の検出精度向上に役立てることが可能である。   The operation described above is continuously repeated until a stop of pulse measurement is instructed by the user, and the real-time pulse rate can be displayed on the display unit 15. The above is the operation at the time of pulse measurement. As described above, when the frequency spectra f2 and f3 can be specified as body motion components and the frequency spectrum f1 as pulsation components, the frequency spectra f4, f5, and f6 can be specified as noise components. For this reason, by storing these noise components and then performing a learning process for estimating noise components, it is possible to help improve detection accuracy thereafter.

一方、ユーザから脈拍計測の停止が指示され、時刻表示の開始が指示された場合には、制御部は、時計回路で計時されている時刻を取得して表示部15に表示させる。この場合、発光素子21の駆動、受光素子22からの電流電圧変換部51への信号出力、及び、疑似外光用発光素子26の駆動等を停止し、電力消費量の節約を図るようにしている。   On the other hand, when the stop of pulse measurement is instructed by the user and the start of time display is instructed, the control unit acquires the time measured by the clock circuit and displays it on the display unit 15. In this case, driving of the light emitting element 21, signal output from the light receiving element 22 to the current-voltage conversion unit 51, driving of the pseudo external light emitting element 26, and the like are stopped to save power consumption. Yes.

以上説明したように、本実施形態の脈拍計測装置1は、所定の時間間隔(発光周波数に対応)で光L1を照射する単一の発光素子21と、その光L1を生体を介して受光すると共に、体動によって腕Xと生体情報計測部20との間に形成された隙間Yを通って外部が入射した外光L3を受光可能な単一の受光素子22と、受光素子22が出力する受光信号から、上記時間間隔に対応する発光周波数を中心周波数とする第1周波数範囲の第1信号成分を抽出する帯域通過フィルタ部52と、上記受光信号から、脈動の周波数より低い第2周波数範囲の第2信号成分を抽出する低域通過フィルタ部53とを備えるので、帯域通過フィルタ部52によって、生体を通った光(光L1の反射光L2)だけの信号成分を取り出して血流の変動に表れる脈動成分及び体動成分を取り出すことができると共に、低域通過フィルタ部53によって外光L3の受光量変化に表れる体動成分を取り出すことができる。   As described above, the pulse measuring device 1 of the present embodiment receives a single light emitting element 21 that irradiates the light L1 at a predetermined time interval (corresponding to the light emission frequency) and the light L1 through the living body. At the same time, a single light receiving element 22 capable of receiving external light L3 incident from the outside through a gap Y formed between the arm X and the biological information measuring unit 20 by body movement, and the light receiving element 22 outputs the light. A band-pass filter unit 52 for extracting a first signal component in a first frequency range having a light emission frequency corresponding to the time interval as a center frequency from the received light signal, and a second frequency range lower than the pulsation frequency from the received light signal. And a low-pass filter unit 53 for extracting the second signal component of the signal, the band-pass filter unit 52 extracts the signal component of only the light that has passed through the living body (reflected light L2 of the light L1), and fluctuations in blood flow. The pulse that appears in It is possible to take out the component and the body motion component, by a low-pass filter unit 53 can take out the body motion components appearing in the received light quantity changes in external light L3.

従って、帯域通過フィルタ部52を通過した信号成分から脈動成分と体動成分とのいずれかに対応する周波数スペクトルf1、f2を特定し、かつ、低域通過フィルタ部53を通過した信号成分から体動成分f3の周波数スペクトルを特定する演算処理部60を設け、この演算処理部60が、第1信号成分に含まれるが、第2信号成分には含まれない周波数スペクトルf1を脈動スペクトルと特定してこの脈動スペクトルの周波数に基づいて脈拍数を算出するので、脈動成分f1及び体動成分f2(=f3)を精度良く検出することができ、脈拍検出精度及び体動検出精度を向上させることができる。   Therefore, the frequency spectra f1 and f2 corresponding to either the pulsation component or the body motion component are identified from the signal component that has passed through the band pass filter unit 52, and the body from the signal component that has passed through the low pass filter unit 53. An arithmetic processing unit 60 for specifying the frequency spectrum of the dynamic component f3 is provided, and the arithmetic processing unit 60 specifies the frequency spectrum f1 included in the first signal component but not included in the second signal component as the pulsation spectrum. Since the pulse rate is calculated based on the frequency of the pulsation spectrum, the pulsation component f1 and the body motion component f2 (= f3) can be detected with high accuracy, and the pulse detection accuracy and the body motion detection accuracy can be improved. it can.

しかも、本構成では、外光L3に代わる疑似外光L5を照射する疑似外光照射部25を備えるので、演算処理部60が体動成分(体動スペクトル)を特定できない場合に、疑似外光照射部25から疑似外光L5を照射させることにより、外光L3が受光不能な状況でも、低域通過フィルタ部53によって体動成分(体動スペクトル)を取り出すことができる。従って、時間帯及び場所を選ばず脈拍数を精度良く検出することが可能になる。
さらに、本構成では、生体情報検出部20が、発光素子21及び受光素子22を各々一個ずつ備えるだけでよく、その他には、疑似外光照射部25が、疑似外光用発光素子26を一個備えるだけでよいので、従来のものと比較して、脈拍検出精度が高いにも拘わらず、発光素子及び受光素子の数を低減することができる。
Moreover, in this configuration, since the pseudo external light irradiation unit 25 that irradiates the pseudo external light L5 instead of the external light L3 is provided, the pseudo external light can be used when the arithmetic processing unit 60 cannot identify the body motion component (body motion spectrum). By irradiating the pseudo external light L5 from the irradiation unit 25, a body motion component (body motion spectrum) can be extracted by the low-pass filter unit 53 even in a situation where the external light L3 cannot be received. Therefore, the pulse rate can be detected with high accuracy regardless of the time zone and place.
Furthermore, in this configuration, the living body information detection unit 20 only needs to include one light emitting element 21 and one light receiving element 22, respectively. In addition, the pseudo external light irradiation unit 25 includes one light emitting element 26 for pseudo external light. Since it only needs to be provided, the number of light emitting elements and light receiving elements can be reduced although the pulse detection accuracy is higher than the conventional one.

また、本構成では、リストバンド11に、ユーザの体動によって受光素子22への外光入射光量が変化するように外光L3を導入する外光導入部30を設けたので、受光素子22が体動に応じた入射光量で外光L3をより確実に受光することができる。
なお、この外光導入部30を設けない構成にすることも可能である。外光導入部30を設けない構成でも、腕時計型の脈拍計測装置1といった身体装着タイプでは、ユーザの腕振り等の運動によって生体情報計測部20と腕Xとの間等に所定の隙間Yが空くため、この隙間Yを通過した外光L3が受光素子22で受光される場合があるからである。また、外光L3が生体(腕X、生体表面(皮膚等))を通過して受光素子22に届く場合もあるため、これによっても外光L3が受光素子22で受光される場合が考えられる。但し、外光L3を確実に受光素子22に受光させるには、外光導入部30を設けた方が確実であることは明らかである。
Further, in this configuration, the wristband 11 is provided with the external light introduction unit 30 that introduces the external light L3 so that the amount of incident external light incident on the light receiving element 22 is changed by the user's body movement. The external light L3 can be more reliably received with the amount of incident light corresponding to the body movement.
It is also possible to adopt a configuration in which the external light introducing unit 30 is not provided. Even in a configuration in which the external light introducing unit 30 is not provided, in a body-mounted type such as the wristwatch-type pulse measuring device 1, a predetermined gap Y is provided between the biological information measuring unit 20 and the arm X by the user's movement such as arm swinging. This is because the external light L3 that has passed through the gap Y may be received by the light receiving element 22 because it is vacant. In addition, since the external light L3 may reach the light receiving element 22 through the living body (arm X, biological surface (skin etc.)), the external light L3 may be received by the light receiving element 22 due to this. . However, it is clear that the provision of the external light introducing portion 30 is more reliable in order for the light receiving element 22 to reliably receive the external light L3.

また、本構成では、図2(A)に示すように、受光素子22を装置本体10の中心を外した位置に設置することによって装置本体10の重心位置を中心位置からずらすようにしている。これによって、ユーザの腕振り等の運動によって生体情報計測部20と腕Xとの間に隙間Yが空き易くなり、外光L3を受光素子22で受光され易くして体動の検出精度を高めることができる。   Further, in this configuration, as shown in FIG. 2A, the center of gravity of the apparatus main body 10 is shifted from the center position by installing the light receiving element 22 at a position away from the center of the apparatus main body 10. Accordingly, a gap Y is easily formed between the biological information measuring unit 20 and the arm X due to a user's movement such as swinging the arm, and the external light L3 is easily received by the light receiving element 22 to improve detection accuracy of body movement. be able to.

さらに、本構成では、生体を通った光(光L1の反射光L2)だけの信号成分を取り出す第1フィルタを帯域通過フィルタ部52に構成したので、ノイズ成分に相当する高周波成分を予め除去することが可能である。
また、帯域通過フィルタ部52を通過した第1信号成分と、低域通過フィルタ部53を通過した第2信号成分とを、A/D変換部62に切換出力する入力選択部61を設けたので、これら信号成分の信号処理に使用するA/D変換部62及び演算処理部60(周波数解析部)を各々一つで共用でき、その分、構成部品を低減することができる。
なお、上記実施形態では、発光周波数を2kHzとする場合を例示したが、これに限らない。例えば、発振回路に時計用に一般に使用される水晶発振回路を使用した場合、その分周周波数である2048Hz或いは1024Hzの整数倍の周波数を使用することが好ましい。
Furthermore, in this configuration, since the first filter that extracts only the signal component of the light passing through the living body (the reflected light L2 of the light L1) is configured in the band-pass filter unit 52, the high-frequency component corresponding to the noise component is removed in advance. It is possible.
In addition, since the input selection unit 61 that switches and outputs the first signal component that has passed through the band-pass filter unit 52 and the second signal component that has passed through the low-pass filter unit 53 to the A / D conversion unit 62 is provided. The A / D conversion unit 62 and the arithmetic processing unit 60 (frequency analysis unit) used for signal processing of these signal components can be shared by one, and the number of components can be reduced accordingly.
In the above-described embodiment, the case where the light emission frequency is 2 kHz is exemplified, but the present invention is not limited to this. For example, when a crystal oscillation circuit generally used for a watch is used as the oscillation circuit, it is preferable to use a frequency that is an integer multiple of 2048 Hz or 1024 Hz, which is the frequency division frequency.

<第2実施形態>
図8は第2実施形態に係る脈拍計測装置1のブロック図である。この脈拍計測装置1は、帯域通過フィルタ部52を通過した信号(包絡線信号S3A)専用のA/D変換部62A及び第1周波数解析部(FFT)70Aを備え、かつ、低域通過フィルタ部53を通過した信号(受光信号S4)専用のA/D変換部62B及び第2周波数解析部(FFT)70Bを備える点が、第1実施形態に係る脈拍計測装置1と異なる。これ以外の構成は第1実施形態と略同一の構成であるため、同一の符号を付して示し、重複する説明は省略する。
Second Embodiment
FIG. 8 is a block diagram of the pulse measuring device 1 according to the second embodiment. The pulse measuring device 1 includes an A / D conversion unit 62A dedicated to a signal (envelope signal S3A) that has passed through the band-pass filter unit 52 and a first frequency analysis unit (FFT) 70A, and a low-pass filter unit. The pulse measuring device 1 according to the first embodiment is different from the pulse measuring device 1 according to the first embodiment in that an A / D conversion unit 62B and a second frequency analysis unit (FFT) 70B dedicated to the signal (light reception signal S4) that has passed through 53 are provided. Since the configuration other than this is substantially the same as that of the first embodiment, the same reference numerals are given, and redundant description is omitted.

A/D変換部62Aは、帯域通過フィルタ部52を通過して検波部56から出力される受光信号S3の包絡線信号S3Aを入力し、これをアナログデジタル変換して第1周波数解析部70Aに出力する。そして、第1周波数解析部70Aは、入力した包絡線信号S3Aのデータに対してFFT(高速フーリエ変換)処理を施し、この周波数解析結果を演算処理部60に出力する。   The A / D conversion unit 62A inputs the envelope signal S3A of the received light signal S3 that passes through the bandpass filter unit 52 and is output from the detection unit 56, and analog-digital converts this to the first frequency analysis unit 70A. Output. Then, the first frequency analysis unit 70A performs an FFT (Fast Fourier Transform) process on the input envelope signal S3A data, and outputs the frequency analysis result to the arithmetic processing unit 60.

また、A/D変換部62Bは、低域通過フィルタ部53を通過した受光信号S4を入力し、これをアナログデジタル変換して第2周波数解析部70Bに出力する。そして、第2周波数解析部70Bは、入力した受光信号S4のデータに対してFFT(高速フーリエ変換)処理を施し、この周波数解析結果を演算処理部60に出力する。   The A / D conversion unit 62B receives the received light signal S4 that has passed through the low-pass filter unit 53, converts the received signal S4 from analog to digital, and outputs the converted signal to the second frequency analysis unit 70B. Then, the second frequency analysis unit 70B performs an FFT (Fast Fourier Transform) process on the input data of the received light signal S4, and outputs the frequency analysis result to the arithmetic processing unit 60.

このように、本実施形態では、帯域通過フィルタ部52を通過した信号専用のA/D変換部62A及び第1周波数解析部70Aを設けると共に、低域通過フィルタ部53を通過した信号専用のA/D変換部62A及び第2周波数解析部70Bを備えるので、計算量の多い周波数解析処理を、専用の周波数解析部70A、70Bで行うことができ、演算処理部60(CPU)の負担を軽減することができる。これによって、演算処理部60内のCPUに演算能力が比較的低いものを採用することができ、また、汎用の周波数解析用のICチップを周波数解析部70A、70Bとして使用することができる。   As described above, in the present embodiment, the A / D conversion unit 62A and the first frequency analysis unit 70A dedicated to the signal that has passed through the bandpass filter unit 52 are provided, and the A dedicated to the signal that has passed through the low-pass filter unit 53 is provided. Since the A / D conversion unit 62A and the second frequency analysis unit 70B are provided, the frequency analysis processing with a large amount of calculation can be performed by the dedicated frequency analysis units 70A and 70B, thereby reducing the burden on the arithmetic processing unit 60 (CPU). can do. As a result, it is possible to employ a CPU having a relatively low calculation capability for the CPU in the calculation processing unit 60, and it is possible to use general-purpose frequency analysis IC chips as the frequency analysis units 70A and 70B.

<第3実施形態>
図9は第3実施形態に係る脈拍計測装置1のブロック図である。この脈拍計測装置1は、ユーザの指X2に向けて発光素子21の光L1を照射し、その反射光L2を受光素子22で受光する光学式の脈拍計測装置であり、外光導入部30、増幅率変更部54及び57を備えない点が、上記第2実施形態に係る脈拍計測装置1と異なる。それ以外の構成は、これ以外の構成は第2実施形態と略同一の構成であるため、同一の符号を付して示し、重複する説明は省略する。
この脈拍計測装置1においては、増幅部55及び58の増幅率が予め定めた一定値に固定される。この固定値は、様々な環境において脈波を計測した場合に最も適切であった値に設定される。この構成によれば、増幅部55及び58の増幅率を変更する増幅率変更部等を備えない分、上記第1実施形態及び第2実施形態よりも構成部品を低減することができ、また、演算処理部60(CPU)の負担を軽減することができる。
<Third Embodiment>
FIG. 9 is a block diagram of the pulse measuring device 1 according to the third embodiment. The pulse measuring device 1 is an optical pulse measuring device that irradiates the user's finger X2 with the light L1 of the light emitting element 21 and receives the reflected light L2 with the light receiving element 22, and includes an external light introducing unit 30, The difference from the pulse measuring device 1 according to the second embodiment is that the amplification factor changing units 54 and 57 are not provided. Since the other configuration is substantially the same as that of the second embodiment, the same reference numerals are given, and redundant description is omitted.
In this pulse measuring device 1, the amplification factors 55 and 58 are fixed to a predetermined constant value. This fixed value is set to a value that is most appropriate when pulse waves are measured in various environments. According to this configuration, it is possible to reduce the number of components compared to the first embodiment and the second embodiment because the amplification factor changing unit or the like for changing the amplification factor of the amplification units 55 and 58 is not provided. The burden on the arithmetic processing unit 60 (CPU) can be reduced.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述の実施形態では、脈拍計測処理を実行するための制御プログラムを脈拍計測装置1内に予め記憶しておく場合について説明したが、この制御プログラムを、磁気記録媒体、光記録媒体、半導体記録媒体等のコンピュータが読み取り可能な記録媒体に格納し、コンピュータが記録媒体からこの制御プログラムを読み取って実行するようにしてもよい。また、この制御プログラムを通信ネットワーク上の配信サーバ等からダウンロードできるようにしてもよい。
また、上述の実施形態では、本発明を腕時計型の脈拍計測装置に適用する場合について説明したが、これに限らない。例えば、発光素子21と受光素子22とを備えた光学式センサユニット(生体情報検出部に相当)を人や動物等の生体の血流部位に取り付け、それ以外の構成は、別体とした脈拍計測装置等に広く適用が可能である。また、脈拍検出の血流部位は、手首、指に限らず、耳部等でもよい。
In addition, this invention is not limited to the above-mentioned embodiment, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.
For example, in the above-described embodiment, the case where the control program for executing the pulse measurement process is stored in the pulse measurement device 1 in advance has been described. However, the control program is stored in a magnetic recording medium, an optical recording medium, a semiconductor, and the like. It may be stored in a computer-readable recording medium such as a recording medium, and the computer may read and execute the control program from the recording medium. The control program may be downloaded from a distribution server on the communication network.
Moreover, although the above-mentioned embodiment demonstrated the case where this invention was applied to a wristwatch-type pulse measuring device, it is not restricted to this. For example, an optical sensor unit (corresponding to a biological information detection unit) provided with a light emitting element 21 and a light receiving element 22 is attached to a blood flow site of a living body such as a person or an animal, and the other configurations are separate pulses. It can be widely applied to measuring devices and the like. In addition, the blood flow site for pulse detection is not limited to the wrist and fingers, but may be the ear.

本発明の第1実施形態に係る脈拍計測装置を示す図である。It is a figure which shows the pulse measuring device which concerns on 1st Embodiment of this invention. (A)は脈拍計測装置の発光素子、受光素子及び疑似外光用発光素子のレイアウトを示す平面図であり、(B)はその側断面図である。(A) is a top view which shows the layout of the light emitting element of a pulse measuring device, a light receiving element, and the light emitting element for pseudo external light, (B) is the sectional side view. 脈拍計測装置のブロック図である。It is a block diagram of a pulse measuring device. 脈拍計測装置の回路構成を示す図である。It is a figure which shows the circuit structure of a pulse measuring device. 脈拍計測時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of a pulse measurement. (A)〜(D)は脈拍計測装置における各部の信号波形を示す図である。(A)-(D) are figures which show the signal waveform of each part in a pulse measuring device. (A)は帯域通過フィルタ部を通過した信号の周波数解析結果を示す図であり、(B)は低域通過フィルタ部を通過した信号の周波数解析結果を示す図である。(A) is a figure which shows the frequency analysis result of the signal which passed the band pass filter part, (B) is a figure which shows the frequency analysis result of the signal which passed the low-pass filter part. 本発明の第2実施形態に係る脈拍計測装置のブロック図である。It is a block diagram of the pulse measuring device concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る脈拍計測装置のブロック図である。It is a block diagram of the pulse measuring device concerning a 3rd embodiment of the present invention.

符号の説明Explanation of symbols

1…脈拍計測装置、10…装置本体、11…リストバンド、15…表示部、20…生体情報検出部、21…発光素子、22…受光素子、30…外光導入部、50…発光制御部、51…電流電圧変換部、52…帯域通過フィルタ部(第1フィルタ)、53…低域通過フィルタ部(第2フィルタ)、54、57…増幅率変更部、55、58…増幅部、56…検波部、60…演算処理部、61…入力選択部、62…A/D変換部、f1〜f6…周波数スペクトル。   DESCRIPTION OF SYMBOLS 1 ... Pulse measuring device, 10 ... Apparatus main body, 11 ... Wristband, 15 ... Display part, 20 ... Biological information detection part, 21 ... Light emitting element, 22 ... Light receiving element, 30 ... External light introduction part, 50 ... Light emission control part , 51 ... current-voltage converter, 52 ... band-pass filter (first filter), 53 ... low-pass filter (second filter), 54, 57 ... amplification factor changing unit, 55, 58 ... amplifying unit, 56 ... detection unit, 60 ... calculation processing unit, 61 ... input selection unit, 62 ... A / D conversion unit, f1-f6 ... frequency spectrum.

Claims (12)

生体の検出部位に向け、所定の時間間隔で光を照射する単一の発光素子と、
前記光を前記生体を介して受光可能に配置され、受光量に応じた受光信号を生成する単一の受光素子と、
前記受光素子と前記生体との間に延在する透明又は半透明の透光部材であって、脈拍計測装置周囲の外光を透過させて前記生体で反射させ、その反射光を、前記受光素子に受光可能にする透光部材と、
前記受光信号から、前記時間間隔に対応する前記発光素子の発光周波数を含む第1周波数範囲の第1信号成分を抽出する第1フィルタと、
前記受光信号から、前記生体の脈動の周波数より低い第2周波数範囲の第2信号成分を抽出する第2フィルタと、
前記第1信号成分に周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第2信号成分に周波数解析を施して前記生体の体動スペクトルを特定する処理を実行する周波数解析部と、
前記周波数解析部が体動スペクトルを特定できない場合に、前記外光の代わりとなる疑似外光を前記透光部材を介して前記生体に向けて出射し、その反射光を、前記生体の体動に応じた光量で前記受光素子に受光させる疑似外光照射部と、
前記周波数解析部が体動スペクトルを特定した場合に、前記第1信号成分に含まれる周波数スペクトルのうち、前記体動スペクトルを除く周波数スペクトルの周波数に基づいて脈拍数を特定する脈拍数特定部と
を備えることを特徴とする脈拍計測装置。
A single light emitting element that emits light at a predetermined time interval toward a detection site of a living body,
A single light receiving element that is arranged to receive the light via the living body and generates a light reception signal corresponding to the amount of light received;
Wherein a transparent or semi-transparent light transmitting member extending between the light-receiving element and the living body by transmitting external light around pulse rate measuring device is reflected by the living body, the reflected light, the light receiving A translucent member that allows the element to receive light;
A first filter for extracting a first signal component in a first frequency range including a light emission frequency of the light emitting element corresponding to the time interval from the light reception signal;
A second filter for extracting a second signal component in a second frequency range lower than the pulsation frequency of the living body from the received light signal;
A frequency analysis unit that performs frequency analysis on the first signal component to identify a plurality of frequency spectra, and performs a frequency analysis on the second signal component to identify a body motion spectrum of the living body;
When the frequency analysis unit cannot identify a body motion spectrum, pseudo external light serving as a substitute for the external light is emitted toward the living body through the translucent member, and the reflected light is emitted from the body motion of the living body. A pseudo external light irradiator that causes the light receiving element to receive light with a light amount according to
A pulse rate specifying unit for specifying a pulse rate based on the frequency of the frequency spectrum excluding the body motion spectrum out of the frequency spectrum included in the first signal component when the frequency analysis unit specifies the body motion spectrum; A pulse measuring device comprising:
請求項1に記載の脈拍計測装置において、
前記受光素子は、太陽光の直射によっても当該受光素子が電気的に飽和しないレベルに光を抑制する光学フィルタを備えていることを特徴とする脈拍計測装置。
In the pulse measuring device according to claim 1,
The pulse measuring device, wherein the light receiving element includes an optical filter that suppresses light to a level at which the light receiving element is not electrically saturated even by direct sunlight.
請求項1又は2に記載の脈拍計測装置において、
前記疑似外光照射部は、単一の疑似外光用発光素子と、前記周波数解析部が体動スペクトルを特定できない場合に、前記疑似外光用発光素子を駆動する疑似外光用駆動部とを有することを特徴とする脈拍計測装置。
In the pulse measuring device according to claim 1 or 2,
The pseudo external light irradiating unit includes a single pseudo external light emitting element, and a pseudo external light driving unit that drives the pseudo external light emitting element when the frequency analysis unit cannot identify a body motion spectrum. A pulse measuring device characterized by comprising:
請求項1乃至3のいずれか一項に記載の脈拍計測装置において、
前記第1フィルタは、前記発光周波数を略中心周波数としたバンドパスフィルタであることを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 3,
The pulse measuring device according to claim 1, wherein the first filter is a band-pass filter having the emission frequency as a substantially central frequency.
請求項1乃至4のいずれか一項に記載の脈拍計測装置において、
前記第2フィルタは、前記生体の体動周波数範囲を通過させるローパスフィルタであることを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 4,
The pulse measuring device according to claim 2, wherein the second filter is a low-pass filter that allows the body motion frequency range of the living body to pass through.
請求項1乃至5のいずれか一項に記載の脈拍計測装置において、
前記発光周波数を1kHzを超える周波数にしたことを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 5,
A pulse measuring apparatus characterized in that the emission frequency is set to a frequency exceeding 1 kHz.
請求項1乃至6のいずれか一項に記載の脈拍計測装置において、
前記第1フィルタが抽出した信号成分の包絡線を検波する検波部を有し、前記周波数解析部は、前記検波部の出力信号に周波数解析を施して、脈動成分及び体動成分に対応する周波数スペクトルを特定することを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 6,
A detection unit that detects an envelope of the signal component extracted by the first filter, and the frequency analysis unit performs frequency analysis on the output signal of the detection unit to correspond to a pulsation component and a body motion component. A pulse measuring device characterized by specifying a spectrum.
請求項7に記載の脈拍計測装置において、
前記検波部は、前記第1フィルタが抽出した信号間の極大値同士或いは極小値同士をピークホールドし、それらを結んで前記包絡線を形成することを特徴とする脈拍計測装置。
In the pulse measuring device according to claim 7,
The pulse detector according to claim 1, wherein the detection unit peaks and holds local maximum values or local minimum values between signals extracted by the first filter and connects them to form the envelope.
請求項1乃至8のいずれか一項に記載の脈拍計測装置において、
前記周波数解析部に入力する信号を、前記第1フィルタが抽出した第1信号成分と、前記第2フィルタが抽出した第2信号成分とに選択的に切り換える入力選択部を有することを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 8,
An input selection unit that selectively switches a signal input to the frequency analysis unit between a first signal component extracted by the first filter and a second signal component extracted by the second filter. Pulse measuring device.
請求項1乃至9のいずれか一項に記載の脈拍計測装置において、
前記発光素子は、単一ピーク波長の赤外光又は単一ピーク波長の赤色光を照射することを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 9,
The pulse measuring device, wherein the light emitting element emits infrared light having a single peak wavelength or red light having a single peak wavelength.
請求項1乃至10のいずれか一項に記載の脈拍計測装置において、
前記第1フィルタ及び第2フィルタが抽出した信号成分を各々増幅する増幅部と、増幅後の各信号成分の信号レベルに応じて各々の増幅率を可変制御する増幅率変更部とを備えることを特徴とする脈拍計測装置。
In the pulse measuring device according to any one of claims 1 to 10,
Further comprising an amplifier unit for amplifying each of said first filter and the signal component second filter is extracted, and the amplification factor changes section for variably controlling the respective amplification factor in accordance with a signal level of each signal component of the amplified A pulse measuring device characterized by the above.
生体の検出部位に向け、所定の時間間隔で光を照射する単一の発光素子と、前記光を前記生体を介して受光可能に配置され、受光量に応じた受光信号を生成する単一の受光素子と、前記受光素子と前記生体との間に延在する透明又は半透明の透光部材であって、脈拍計測装置周囲の外光を透過させて前記生体で反射させ、その反射光を、前記受光素子に受光可能にする透光部材とを備える脈拍計測装置の制御方法であって、
生体の検出部位に向け、前記単一の発光素子から所定の時間間隔で光を照射し、
前記単一の受光素子により前記光を前記生体を介して受光し、受光量に応じた受光信号を生成し、
第1フィルタにより、前記受光信号から、前記時間間隔に対応する発光周波数を含む第1周波数範囲の第1信号成分を抽出し、
第2フィルタにより、前記受光信号から、前記生体の脈動の周波数より低い第2周波数範囲の第2信号成分を抽出し、
周波数解析部により、前記第1信号成分に周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第2信号成分に周波数解析を施して前記生体の体動スペクトルを特定する処理を実行し、
前記体動スペクトルを特定できない場合に、疑似外光照射部により、前記外光の代わりとなる疑似外光を前記透光部材を介して前記生体に向けて出射し、その反射光を、前記生体の体動に応じた光量で前記受光素子に受光させ、
前記体動スペクトルを特定した場合に、前記第1信号成分に含まれる周波数スペクトルのうち、前記体動スペクトルを除くスペクトルの周波数に基づいて脈拍数を特定する
ことを特徴とする脈拍計測装置の制御方法。
A single light emitting element that irradiates light at a predetermined time interval toward the detection site of the living body, and a single light emitting element that is arranged so as to be able to receive the light through the living body and generates a light reception signal corresponding to the amount of light received a light receiving element, wherein a transparent or semi-transparent light transmitting member extending between the light-receiving element and the living body, it is reflected by the living body by transmitting external light around pulse rate measuring device, the reflected light A method for controlling a pulse measuring device comprising a translucent member that allows the light receiving element to receive light,
Aiming at a detection site of a living body, irradiating light from the single light emitting element at a predetermined time interval,
The light is received through the living body by the single light receiving element, and a light reception signal corresponding to the amount of light received is generated,
The first filter extracts a first signal component in a first frequency range including a light emission frequency corresponding to the time interval from the light reception signal,
The second filter extracts a second signal component in a second frequency range lower than the pulsation frequency of the living body from the light reception signal,
The frequency analysis unit performs frequency analysis on the first signal component to specify a plurality of frequency spectra, and performs frequency analysis on the second signal component to specify the body motion spectrum of the living body,
When the body motion spectrum cannot be specified, the pseudo external light irradiation unit emits pseudo external light instead of the external light toward the living body through the translucent member, and the reflected light is emitted from the living body. The light receiving element receives light with a light amount corresponding to the body movement of
When the body motion spectrum is specified, the pulse rate is specified based on the frequency of the spectrum excluding the body motion spectrum out of the frequency spectrum included in the first signal component. Method.
JP2007064654A 2007-03-14 2007-03-14 Pulse measuring device and control method thereof Expired - Fee Related JP5098380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064654A JP5098380B2 (en) 2007-03-14 2007-03-14 Pulse measuring device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064654A JP5098380B2 (en) 2007-03-14 2007-03-14 Pulse measuring device and control method thereof

Publications (2)

Publication Number Publication Date
JP2008220723A JP2008220723A (en) 2008-09-25
JP5098380B2 true JP5098380B2 (en) 2012-12-12

Family

ID=39840008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064654A Expired - Fee Related JP5098380B2 (en) 2007-03-14 2007-03-14 Pulse measuring device and control method thereof

Country Status (1)

Country Link
JP (1) JP5098380B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP3357419A1 (en) * 2009-02-25 2018-08-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
JP2012143316A (en) * 2011-01-07 2012-08-02 Rohm Co Ltd Pulse wave sensor
US9113793B2 (en) 2010-12-10 2015-08-25 Rohm Co., Ltd. Pulse wave sensor
JP5582051B2 (en) * 2011-02-03 2014-09-03 セイコーエプソン株式会社 Pulse wave measuring device and program
JP7039925B2 (en) * 2017-10-26 2022-03-23 セイコーエプソン株式会社 Bioanalyzer

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518889U (en) * 1974-07-05 1976-01-22
JPS60135029A (en) * 1983-12-23 1985-07-18 松下電工株式会社 Blood stream and pulse detection apparatus
JPH05207978A (en) * 1992-01-24 1993-08-20 Nec Corp Instrument for measuring fluctuation in blood pressure in non-restrained training
JP3291581B2 (en) * 1994-02-14 2002-06-10 日本光電工業株式会社 Oxygen saturation measurement device and signal processing method
JPH08187231A (en) * 1995-01-11 1996-07-23 Seiko Epson Corp Pulse wave measuring device
JPH10211176A (en) * 1997-01-31 1998-08-11 Seiko Epson Corp Reflected light detector and pulse wave detector
JPH10216114A (en) * 1997-02-06 1998-08-18 Nippon Colin Co Ltd Degree of oxygen saturation measuring apparatus
JP3728895B2 (en) * 1997-08-26 2005-12-21 セイコーエプソン株式会社 Exercise intensity detector
EP0941694B1 (en) * 1997-09-05 2007-08-22 Seiko Epson Corporation Method for configuring a reflected light sensor
JPH11276448A (en) * 1998-03-31 1999-10-12 Seiko Epson Corp Signal extract device and signal extract method
JP3727592B2 (en) * 2002-01-07 2005-12-14 株式会社ケーアンドエス Blood pressure measurement device
JP2003339678A (en) * 2002-05-30 2003-12-02 Minolta Co Ltd Instrument for measuring blood state
JP2004202190A (en) * 2002-11-08 2004-07-22 Minolta Co Ltd Biological information measuring device
JP3760920B2 (en) * 2003-02-28 2006-03-29 株式会社デンソー Sensor
JP4385677B2 (en) * 2003-08-05 2009-12-16 セイコーエプソン株式会社 Biological information measuring device
JP4419540B2 (en) * 2003-12-01 2010-02-24 株式会社デンソー Pulse wave detector
JP2006141902A (en) * 2004-11-24 2006-06-08 Hitachi Ltd Safety confirmation apparatus, safety confirmation method and safety confirmation system
JP3940150B2 (en) * 2005-03-03 2007-07-04 シチズンホールディングス株式会社 Caffres electronic blood pressure monitor

Also Published As

Publication number Publication date
JP2008220723A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP5098380B2 (en) Pulse measuring device and control method thereof
JP5374835B2 (en) Biological information measuring apparatus and control method thereof
CN102008299B (en) Method and device for measuring the pulse by means of light waves with two wavelengths
US11179051B2 (en) Pulse spectroscopy
JP6686108B2 (en) Device, system and method for heart rate signal detection and processing
JP3969412B2 (en) Biological information measuring device
JP4345459B2 (en) Biological condition detection device
JP3760920B2 (en) Sensor
WO1999012469A1 (en) Reflection photodetector and biological information measuring instrument
CN106923809B (en) Circuit and method for photoplethysmography sensor
US10499821B2 (en) Optical heart rate sensor
US10912469B2 (en) Electronic fitness device with optical cardiac monitoring
CA2995809C (en) Device for non-invasive measurement of blood sugar levels
JPH11276448A (en) Signal extract device and signal extract method
JP5578100B2 (en) Pulse wave measuring device and program
US20160213267A1 (en) Apparatus and method for measuring photoplethysmogram
JP2018502623A (en) Optical vital sign sensor
JP2008220722A (en) Pulse measuring apparatus and its controlling method
JP5127526B2 (en) Pulse wave measuring device and pulse wave measuring method
JP2012205642A (en) Sphygmograph, and signal processing method
KR20060096842A (en) System and method for arterial pulse sensing
TWI640295B (en) Photoelectric heart rate detection system
JP2016131796A (en) Biological information detecting device
JP2016007337A (en) Pulse wave sensor
Wong Rapid prototyping of a low-power, wireless, reflectance photoplethysmography system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees