JP5374835B2 - Biological information measuring apparatus and control method thereof - Google Patents

Biological information measuring apparatus and control method thereof Download PDF

Info

Publication number
JP5374835B2
JP5374835B2 JP2007150236A JP2007150236A JP5374835B2 JP 5374835 B2 JP5374835 B2 JP 5374835B2 JP 2007150236 A JP2007150236 A JP 2007150236A JP 2007150236 A JP2007150236 A JP 2007150236A JP 5374835 B2 JP5374835 B2 JP 5374835B2
Authority
JP
Japan
Prior art keywords
light
frequency
biological information
light receiving
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007150236A
Other languages
Japanese (ja)
Other versions
JP2008301934A5 (en
JP2008301934A (en
Inventor
茂美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007150236A priority Critical patent/JP5374835B2/en
Publication of JP2008301934A publication Critical patent/JP2008301934A/en
Publication of JP2008301934A5 publication Critical patent/JP2008301934A5/ja
Application granted granted Critical
Publication of JP5374835B2 publication Critical patent/JP5374835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological information measuring apparatus capable of suppressing the saturation of the output of a light receiving element, then, accurately measuring biological information such as pulses, and a control method therefor. <P>SOLUTION: The biological information measuring apparatus is equipped with: a light emitting element 21 for emitting light at a prescribed light emitting frequency to the detection region of an organism; the light receiving element 22 capable of receiving the emitted light through the organism and receiving external light in linkage with the body motion of the organism and generating light receiving signals on the basis of a light receiving quantity changed according to the pulsation and body motion of the organism; a liquid crystal filter 31 disposed on the light receiving part side of the light receiving element 22 and capable of freely varying the transmission quantity of the light to the light receiving part; a light transmission quantity control part for controlling the light transmission quantity of the liquid crystal filter 31 and suppressing the light receiving quantity of the light receiving element 22 to a saturation level or below; and a biological information specifying part for specifying body motion components and pulsation components on the basis of the signal components of a first frequency range including the light emitting frequency and the signal components of a second frequency range lower than the first frequency range in the light receiving signals. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、光学式の生体情報計測装置及びその制御方法に関する。   The present invention relates to an optical biological information measuring device and a control method thereof.

従来、発光素子の光を生体の検出部位に向けて照射し、その光を受光して脈拍情報を得る光学的センシングによる脈拍計測装置がある。この種の光学式の脈拍計測装置には、太陽光や照明光等の外光の影響を除去する技術が各種提案されており、例えば、発光素子をduty駆動して受光側で増幅した後にローパスフィルタによって脈拍波形を再現する技術(例えば、特許文献1参照)、受光後に脈拍周波数帯域を通過するバンドパスフィルタによって脈拍波形を抽出する技術(例えば、特許文献2、3参照)、及び、受光した光の変調成分だけを復調して外光の影響を除去する技術(例えば、特許文献4参照)がある。   2. Description of the Related Art Conventionally, there is a pulse measuring device by optical sensing that irradiates light from a light emitting element toward a detection part of a living body and receives the light to obtain pulse information. Various techniques for removing the influence of external light such as sunlight and illumination light have been proposed for this type of optical pulse measuring device. For example, a low-pass after a light emitting element is driven on a light receiving side and amplified on the light receiving side. A technique for reproducing a pulse waveform with a filter (for example, see Patent Document 1), a technique for extracting a pulse waveform with a band-pass filter that passes through a pulse frequency band after light reception (for example, see Patent Documents 2 and 3), and light reception There is a technique for demodulating only the light modulation component to remove the influence of external light (for example, see Patent Document 4).

また、この種の光学式脈拍計測装置には、計測信号内の雑音(外光等)を検出するために、例えば、波長の異なる2つの発光素子と、第1波長光、第2波長光、非発光を繰り返した際の各受光信号を各々積分する複数の積分手段とを備え、非発光時の雑音レベルが許容範囲内か否かを判断する技術(例えば、特許文献5参照)、及び、脈拍信号を通過させるフィルタ(0.5Hz〜2.3Hz)と、脈拍よりも低い周波数の信号成分を通過させる雑音成分通過フィルタとを備え、雑音発生期間検出と雑音発生検出のときに脈波信号を通過させるフィルタの出力を遮断する技術(例えば、特許文献6参照)がある。さらに、この種の脈拍計測装置には、複数のセンサを用いて脈拍と体動を検出するものが提案されている(例えば、特許文献7、8、9)。
実開昭53−76697号公報 特開2001−145606号公報 特開2004−202190号公報 特許第2693958号公報 特許第3291581号公報 特開平1−288230号公報 特開平7−88092号公報 特開2005−28157号公報 特開平11−276448号公報
Further, in this type of optical pulse measuring device, in order to detect noise (external light or the like) in a measurement signal, for example, two light emitting elements having different wavelengths, a first wavelength light, a second wavelength light, A plurality of integration means for integrating each received light signal when non-light emission is repeated, a technique for determining whether or not the noise level at the time of non-light emission is within an allowable range (for example, see Patent Document 5), and A filter (0.5 Hz to 2.3 Hz) for passing a pulse signal and a noise component passing filter for passing a signal component having a frequency lower than that of the pulse are provided, and the pulse wave signal is detected during noise generation period detection and noise generation detection. There is a technique (for example, refer to Patent Document 6) that cuts off the output of a filter that passes the filter. Further, this type of pulse measuring device has been proposed that detects a pulse and body movement using a plurality of sensors (for example, Patent Documents 7, 8, and 9).
Japanese Utility Model Publication No. 53-76697 Japanese Patent Laid-Open No. 2001-145606 JP 2004-202190 A Japanese Patent No. 2,693,958 Japanese Patent No. 3291581 JP-A-1-288230 JP-A-7-88092 JP 2005-28157 A Japanese Patent Laid-Open No. 11-276448

しかし、従来の構成では、強い外光が入射すると受光素子の出力が飽和してしまい、その間は正確な脈拍計測ができなくなってしまうおそれがある。また、外光が間欠的に受光されて脈拍波形の周波数に近い雑音成分が存在した場合、かかる雑音成分を除去できなかったり、複数の発光素子、複数の受光素子或いは専用の体動センサを備えるため、構成部品が多くなってしまったりする問題もあった。   However, in the conventional configuration, when strong external light is incident, the output of the light receiving element is saturated, and there is a possibility that accurate pulse measurement cannot be performed during that time. In addition, when external light is intermittently received and there is a noise component close to the frequency of the pulse waveform, the noise component cannot be removed, or a plurality of light emitting elements, a plurality of light receiving elements, or a dedicated body motion sensor is provided. Therefore, there is a problem that the number of components increases.

本発明は、上述した事情に鑑みてなされたものであり、受光素子の出力の飽和を抑制して脈拍等の生体情報を正確に計測可能な生体情報計測装置及びその制御方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and provides a biological information measuring apparatus and a control method thereof that can accurately measure biological information such as a pulse by suppressing saturation of the output of a light receiving element. is there.

上述課題を解決するため、本発明は、生体情報計測装置において、生体の検出部位に向けて光を照射する発光素子と、前記生体を介して前記光を受光して受光信号を生成する受光素子と、前記受光素子に入射する光の透過量を増減させる光透過量可変フィルタと、前記光透過量可変フィルタの光透過量を制御する光透過量制御部と、前記受光信号に基づいて、脈動成分を特定する生体情報特定部とを備えることを特徴とする。 To solve the above problems, the present invention provides a biological information measuring device, generates a light emitting element for irradiating light toward the detection site of a living body, a light receiving signal by receiving the light through the living body light an element, the amount of light transmission variable filter to increase or decrease the transmission amount of light incident on the light receiving element, and the light transmission amount control unit for controlling the amount of light transmission of the light transmission variable filter, based on the light receiving signal , characterized in that it comprises a biological information identification unit for identifying the pulsating component.

この発明によれば、受光素子の飽和を抑制することができる。このため、受光信号に基づいて、脈動成分を特定する生体情報特定部によって、受光素子の出力の飽和を抑制して正確な脈拍計測を行うことができる。
上記構成において、前記光透過量制御部は、前記受光素子の受光量が飽和レベル以下になるまで、前記光透過量可変フィルタの光透過量を最大透過状態よりも下げることが好ましい。この構成によれば、受光素子の飽和を抑制することができる。
また、前記生体情報特定部は、前記受光信号のうち、前記光の周波数を含む第1周波数範囲の第1信号成分と、前記第1周波数範囲より低い第2周波数範囲の第2信号成分とに基づいて、前記脈動成分を特定してもよい。この構成によれば、生体を通った発光素子の光に相当する第1信号成分から血流の変動に表れる脈動成分及び体動成分に対応する周波数スペクトルを特定できると共に、外光に相当する第2信号成分から体動成分に対応する周波数スペクトルを特定でき、脈波スペクトル及び体動スペクトルを精度良く検出することができる。
According to the present invention, it is possible to suppress the saturation of the light receiving element. Therefore, based on the light reception signal, with the biological information specifying unit for specifying a pulsating component, can be performed measuring accurate pulse rate monitor to suppress saturation of the output of the light receiving element.
In the above configuration, it is preferable that the light transmission amount control unit lowers the light transmission amount of the light transmission amount variable filter from the maximum transmission state until the light reception amount of the light receiving element becomes equal to or lower than a saturation level. According to this configuration, saturation of the light receiving element can be suppressed.
The biological information specifying unit may include a first signal component in a first frequency range that includes the frequency of the light and a second signal component in a second frequency range that is lower than the first frequency range. Based on this, the pulsation component may be specified. According to this configuration, the frequency spectrum corresponding to the pulsation component and the body motion component appearing in the blood flow fluctuation can be specified from the first signal component corresponding to the light of the light emitting element that has passed through the living body, and the first corresponding to the external light. The frequency spectrum corresponding to the body motion component can be specified from the two signal components, and the pulse wave spectrum and the body motion spectrum can be detected with high accuracy.

上記構成において、前記生体情報特定部は、前記第1信号成分に周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第2信号成分に周波数解析を施して体動スペクトルを特定する処理を実行する周波数解析部と、前記周波数解析部が前記体動スペクトルを特定した場合に、前記第1信号成分に含まれる前記周波数スペクトルのうち、前記体動スペクトルを除く周波数スペクトルを脈波スペクトルと特定し、当該脈波スペクトルから脈拍数を特定する脈拍数特定部とを有することが好ましい。この構成によれば、生体を通った発光素子の光に相当する第1信号成分から血流の変動に表れる脈動成分及び体動成分に対応する周波数スペクトルを特定できると共に、外光に相当する第2信号成分から体動成分に対応する周波数スペクトルを特定でき、脈波スペクトル及び体動スペクトルを精度良く検出することができる。 In the above configuration, the biological information identification unit performs a process of identifying a plurality of frequency spectra by performing frequency analysis on the first signal component, and identifying a body motion spectrum by performing frequency analysis on the second signal component. a frequency analysis section for executing, when the frequency analysis unit has identified the body motion spectrum, among the frequency spectrum contained in the first signal component, a frequency spectrum excluding the body motion spectrum and pulse wave spectrum specific and preferably has a pulse rate specifying section for specifying the pulse rate from the pulse wave spectrum. According to this configuration, the frequency spectrum corresponding to the pulsation component and the body motion component appearing in the blood flow fluctuation can be specified from the first signal component corresponding to the light of the light emitting element that has passed through the living body, and the first corresponding to the external light. The frequency spectrum corresponding to the body motion component can be specified from the two signal components, and the pulse wave spectrum and the body motion spectrum can be detected with high accuracy.

上記構成において、前記光透過量制御部は、前記周波数解析部による前記第1信号成分の周波数解析結果から受光平均レベルを求め、当該受光平均レベルを基準に、前記周波数解析結果内に所定レベルのピークが存在するか否かを判定し、前記ピークが存在するまで、前記光透過量可変フィルタの光透過量を最大透過状態よりも下げることが好ましい。この構成によれば、周波数解析結果による周波数解析結果だけで受光素子の飽和を判定することができる。
また、上記構成において、前記生体情報特定部は、前記受光信号のうちの前記生体の体動周波数範囲を通過させて前記第2周波数範囲の第2信号成分を抽出する低域通過フィルタを有することが好ましい。この構成によれば、外光の受光量変化に表れる体動成分を精度良く取り出すことができる。
また、上記構成において、前記光透過量制御部は、前記光透過量可変フィルタのうち、前記発光素子の光を入射する第1領域と異なる第2領域の光透過量を最大透過状態よりも下げることが好ましい。この構成によれば、発光素子の光の透過量を殆ど下げることなく、外光の透過量を下げることができ、脈動情報を含む光を適正レベルで受光して正確な脈拍計測や体動計測を継続することができる。
In the above configuration, the light transmission amount control unit obtains a light reception average level from the frequency analysis result of the first signal component by the frequency analysis unit, and uses a predetermined level in the frequency analysis result based on the light reception average level. It is preferable to determine whether or not a peak exists, and to reduce the light transmission amount of the light transmission variable filter from the maximum transmission state until the peak exists. According to this configuration, the saturation of the light receiving element can be determined only by the frequency analysis result based on the frequency analysis result.
Moreover, the said structure WHEREIN: The said biological information specific | specification part has a low-pass filter which passes the body movement frequency range of the said biological body among the said light reception signals, and extracts the 2nd signal component of the said 2nd frequency range. Is preferred. According to this configuration, it is possible to accurately extract the body motion component that appears in the change in the amount of received external light.
In the above configuration, the light transmission amount control unit lowers the light transmission amount of the second region different from the first region in which the light of the light emitting element is incident, from the maximum transmission state of the light transmission amount variable filter. It is preferable. According to this configuration, the amount of light transmitted through the light emitting element can be reduced almost without reducing the amount of light transmitted outside, and light including pulsation information can be received at an appropriate level for accurate pulse measurement and body motion measurement. Can continue.

また、上記構成において、前記光透過量制御部は、前記光透過量可変フィルタの前記第2領域に対し、中間調領域或いは非透過領域を増やすことが好ましい。この構成によれば、中間調領域或いは非透過領域を増やすことによって受光量を下げることができる。
また、上記構成において、前記第1領域を前記光透過量可変フィルタの平面視中央領域にすることが好ましい。この構成によれば、発光素子と検出部位との位置関係が多少ずれても発光素子の光を確実に入射することができる。
In the above structure, the light transmission control unit, the second region of the light transmission variable filter relative, Yasu is preferably increased halftone region or the non-transmissive region. According to this arrangement, the amount of received light can lower the gel by Yasu increasing halftone region or the non-transmissive region.
In the above configuration, it is preferable that the first region is a central region in plan view of the light transmission amount variable filter. According to this configuration, even if the positional relationship between the light emitting element and the detection site is slightly deviated, the light from the light emitting element can be reliably incident.

また、上記構成において、前記光透過量可変フィルタは、透過型液晶パネルであることが好ましい。 Further, the configuration smell Te, before Symbol light transmission variable filter is preferably a transmissive liquid crystal panel.

また、上記構成において、前記生体情報特定部は、前記受光信号のうちの前記光の周波数を略中心周波数とする周波数範囲を通過させて前記第1周波数範囲の第1信号成分を抽出する帯域通過フィルタを有することが好ましい。この構成によれば、生体を通った発光素子の光に相当する第1信号成分を精度良く取り出すことができる。 Further, in the above configuration, the biological information specifying unit passes through a frequency range in which the frequency of the light of the received light signal is approximately a center frequency, and extracts a first signal component in the first frequency range. It is preferable to have a filter. According to this configuration, the first signal component corresponding to the light of the light emitting element that has passed through the living body can be extracted with high accuracy.

また、上記構成において、前記生体情報特定部が体動成分を特定できない場合に、前記受光素子が前記生体の体動に連動して受光可能な疑似外光を照射する疑似外光照射部を有することが好ましい。この構成によれば、外光を受光不能な状況でも、疑似外光の受光量変化に表れる体動成分を取り出すことができ、脈拍等を精度良く検出することができる。
また、上記構成において、前記発光素子は、単一ピーク波長の赤外光又は単一ピーク波長の赤色光を照射することが好ましい。この構成によれば、体内で吸収されにくい光を照射することができる。
Further, in the above configuration, when the biological information specifying unit cannot specify a body movement component, the light receiving element includes a pseudo external light irradiation unit that emits pseudo external light that can be received in conjunction with the body movement of the living body. It is preferable. According to this configuration, even in a situation where external light cannot be received, a body motion component appearing in a change in the amount of pseudo external light received can be extracted, and a pulse or the like can be detected with high accuracy.
In the above structure, the light-emitting element preferably emits infrared light having a single peak wavelength or red light having a single peak wavelength. According to this configuration, it is possible to irradiate light that is difficult to be absorbed in the body.

また、本発明は、生体情報計測装置の制御方法において、生体の検出部位に向けて光を照射し、光素子により前記生体を介して前記光を受光して受光信号を生成し、前記受光素子に入射する光が透過する光透過量可変フィルタの光透過量を制御し、前記受光信号に基づいて、脈動成分を特定することを特徴とする。 Further, the present invention is a control method for the biological information measurement device, and irradiates light toward the detection site of a living body to produce a light receiving signal by receiving the light through the living body by the light receiving element, wherein controls the optical transmission of the light transmission quantity variable filter light incident on the light receiving element is transmitted, on the basis of the received light signal, and identifies the pulsating component.

この発明によれば、受光素子の出力の飽和を抑制して正確な脈拍計測を行うことができる。 According to the present invention, it is possible to suppress the saturation of the output of the light receiving element performs measurements accurate pulse rate monitor.

また、本発明は、以上説明した生体情報計測装置及びその制御方法に適用する他、この発明を実施するための制御プログラムを電気通信回線を介して一般ユーザに配布したり、そのようなプログラムを、磁気記録媒体、光記録媒体、半導体記録媒体といった、コンピュータに読み取り可能な記録媒体に格納して一般ユーザに配布する、といった態様でも実施され得る。   In addition to being applied to the above-described biological information measuring apparatus and its control method, the present invention distributes a control program for carrying out the present invention to general users via an electric communication line, or installs such a program. It can also be implemented in such a manner that it is stored in a computer-readable recording medium such as a magnetic recording medium, an optical recording medium, or a semiconductor recording medium and distributed to general users.

本発明によれば、受光素子の出力の飽和を抑制して脈拍等の生体情報を正確に計測することができる。
According to the present invention, it is possible to accurately measure the biological information of the pulse such as to suppress the saturation of the output of the light receiving element.

以下、図面を参照して本発明の実施形態を詳述する。
<第1実施形態>
図1は、本発明の第1実施形態に係る脈拍計測装置を示す図である。この脈拍計測装置1は、腕時計型に構成され、装置本体2と、この装置本体2の6時位置及び12時位置から延びてユーザの腕に巻回されるリストバンド(帯状体)3とを備えており、ジョギングやランニング等の運動を行う際にユーザが容易に装着可能に構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram showing a pulse measuring device according to the first embodiment of the present invention. The pulse measuring device 1 is configured as a wristwatch, and includes a device main body 2 and a wristband (band-like body) 3 that extends from the device main body 2 at the 6 o'clock position and the 12 o'clock position and is wound around the user's arm. It is configured so that the user can easily wear it when performing exercises such as jogging and running.

装置本体2は、脈拍数や時刻等の各種情報を表示する表示部5と、ユーザが各種指示を行うための操作部として機能する複数の操作スイッチ6A、6B、6Cとを有している。操作スイッチ6Aは、脈拍計測を開始/停止させる操作子であり、例えば、操作スイッチ6Aを操作する毎に、動作モードが脈拍計測モードと、時刻表示モードとに切り替わる。また、操作スイッチ6Bは、時刻設定等の各種セットアップの開始指示や動作モードの変更指示を行う操作子であり、操作スイッチ6Cは、セットアップのクリアや図示せぬライトをオンさせる操作子である。なお、図示の例では、操作スイッチ6A〜6Cが押下式スイッチの場合を示しているが、静電式やメンブレン電極を用いたタッチ式スイッチでもよい。   The apparatus main body 2 includes a display unit 5 that displays various information such as a pulse rate and time, and a plurality of operation switches 6A, 6B, and 6C that function as an operation unit for a user to perform various instructions. The operation switch 6A is an operator for starting / stopping pulse measurement. For example, each time the operation switch 6A is operated, the operation mode is switched between a pulse measurement mode and a time display mode. The operation switch 6B is an operation element for instructing start of various setups such as time setting and an instruction for changing the operation mode. The operation switch 6C is an operation element for clearing the setup and turning on a light (not shown). In the illustrated example, the operation switches 6A to 6C are push-type switches, but may be electrostatic switches or touch switches using membrane electrodes.

図2は装置本体2の内部構造(3時−9時断面)を示している。装置本体2は、外装ケース7と裏蓋8とを備え、外装ケース7は、金属材または非透明樹脂材等の光を透過しない材料(光非透過材料)で形成されている。この外装ケース7には、時計表側に表示カバーガラス10が固定されると共に、時計裏側(図2中、下方向)から中枠11が挿入され、この中枠11には、時計表側(図2中、上方向)から順に、表示部5を構成する液晶パネル12及び回路基板13と、電池14とが配設され、外装ケース7の裏側開口が裏蓋8で封止される。なお、図2中符号15は、液晶パネル12と回路基板13とを電気的に接続する導電ブロック(ゼブラコネクタ)であり、符号16、17は、電池電力を回路基板13に供給するための電池接点である。   FIG. 2 shows the internal structure of the apparatus main body 2 (cross section at 3 o'clock to 9 o'clock). The apparatus main body 2 includes an exterior case 7 and a back cover 8, and the exterior case 7 is formed of a material that does not transmit light (light non-transparent material) such as a metal material or a non-transparent resin material. A display cover glass 10 is fixed to the exterior case 7 on the timepiece front side, and a middle frame 11 is inserted from the back side (downward in FIG. 2). The middle frame 11 has a timepiece front side (FIG. 2). The liquid crystal panel 12 and the circuit board 13 that constitute the display unit 5 and the battery 14 are disposed in order from the middle (upward), and the back side opening of the outer case 7 is sealed with the back cover 8. 2 is a conductive block (zebra connector) for electrically connecting the liquid crystal panel 12 and the circuit board 13, and numerals 16 and 17 are batteries for supplying battery power to the circuit board 13. It is a contact point.

裏蓋(導光部材兼用裏蓋)8は、外装ケース7にねじ構造等で固定され、透明樹脂等(例えばプラスチック)の無色透明或いは有色透明の光透過材料(例えば、プラスチック等の樹脂材料)で形成されることにより、光を透過する導光部材を兼ねている。この裏蓋8には、電池14側に回路基板19がねじ19Aで固定され、この回路基板19はフレキシブル配線18を介して回路基板13と電気的に接続される。
この回路基板19には、生体情報検出用の光学式センサ(以下、生体情報検出部という)20を構成する一個の発光素子21、受光素子22及びこれら素子21、22の駆動等を行う周辺部品と、太陽光等の直射によっても受光素子22が電気的に飽和しないレベルに光を抑制する液晶フィルタ(光透過量可変フィルタ)31と、後述する疑似外光照射部25を構成する部品等が実装される。
The back cover (back cover for light guide member) 8 is fixed to the outer case 7 with a screw structure or the like, and is a transparent or colored transparent light-transmitting material (for example, a plastic material such as plastic). By being formed, it also serves as a light guide member that transmits light. A circuit board 19 is fixed to the back cover 8 with a screw 19 </ b> A on the battery 14 side, and the circuit board 19 is electrically connected to the circuit board 13 through a flexible wiring 18.
The circuit board 19 includes an optical sensor (hereinafter referred to as a biological information detection unit) 20 for detecting biological information, a single light emitting element 21, a light receiving element 22, and peripheral components for driving these elements 21, 22. And a liquid crystal filter (light transmission variable variable filter) 31 that suppresses light to a level at which the light receiving element 22 is not electrically saturated even by direct sunlight such as sunlight, and components that constitute a pseudo outside light irradiation unit 25 described later. Implemented.

発光素子21及び受光素子22は、回路基板19の時計裏側の面に実装され、周辺部品は回路基板19の時計表側の面に実装され、これにより、回路基板19の両面を有効利用して回路基板19の小型化を図りつつ、発光素子21及び受光素子22の配置自由度を高めることができる。
上記発光素子21は、回路基板15の略中央(装置本体2の平面方向中央寄り)に配置されており、700nm以上の光L1を出射するLED、具体的には、単一ピーク波長の可視光に比べて体内で吸収されにくい赤外光、又は、単一ピーク波長の赤色光を出射するLEDが適用され、透明の裏蓋8を介してユーザの手首(血流部位)Xに向けて光L1を照射する。
The light emitting element 21 and the light receiving element 22 are mounted on the surface of the circuit board 19 on the back side, and peripheral components are mounted on the surface of the circuit board 19 on the timepiece side. The degree of freedom of arrangement of the light emitting element 21 and the light receiving element 22 can be increased while downsizing the substrate 19.
The light emitting element 21 is disposed at substantially the center of the circuit board 15 (near the center in the plane direction of the apparatus main body 2), and emits light L1 of 700 nm or more, specifically, visible light having a single peak wavelength. LED that emits infrared light that is not easily absorbed by the body or red light having a single peak wavelength is applied, and light is directed toward the user's wrist (blood flow site) X through the transparent back cover 8. Irradiate L1.

受光素子22は、発光素子21に対して略3時側に配置され、発光素子21の波長領域内の光、及び、太陽光や照明光等の外光L3を受光可能なフォトトランジスタ(例えば、受光波長領域が700nm以上のフォトトランジスタ)が適用される。この受光素子22は、発光素子21が照射して手首Xの血管等で反射した反射光L2を、透明の裏蓋8及び液晶フィルタ31を介して受光し、受光量に応じた信号レベルの受光信号S1を出力する。   The light receiving element 22 is arranged at approximately 3 o'clock side with respect to the light emitting element 21, and is a phototransistor (for example, capable of receiving light in the wavelength region of the light emitting element 21 and external light L3 such as sunlight or illumination light). A phototransistor having a light receiving wavelength region of 700 nm or more is used. The light receiving element 22 receives the reflected light L2 irradiated by the light emitting element 21 and reflected by the blood vessel or the like of the wrist X through the transparent back cover 8 and the liquid crystal filter 31, and receives light at a signal level corresponding to the amount of light received. The signal S1 is output.

ここで、発光素子21から照射された光L1は、血管を流れる血流に応じて吸光度が変化するため、その反射光L2の光量が血流に応じて変化する。この場合、血管内の血流は、脈動だけでなく、体動(腕振り等の身体自体の動きや手首等の関節を曲げたときに変化する皮膚表面の動きがある)によっても変化するため、反射光L2は、脈動及び体動に応じて光量が変化することになる。従って、受光素子22は、脈動及び体動に応じた信号レベルの受光信号S1を出力する。
なお、本実施形態では、反射光を受光する反射型に構成する場合について説明するが、これに限らず、この生体情報検出部20により指等の血管から脈拍を検出する場合は、生体(指等)の通過光を受光する透過型に構成してもよい。
Here, the light L1 emitted from the light emitting element 21 changes in absorbance according to the blood flow flowing through the blood vessel, so that the amount of the reflected light L2 changes according to the blood flow. In this case, the blood flow in the blood vessel changes not only due to pulsation but also due to body movement (movement of the body itself such as arm swing and movement of the skin surface that changes when bending a joint such as the wrist). The amount of light of the reflected light L2 changes according to pulsation and body movement. Therefore, the light receiving element 22 outputs a light receiving signal S1 having a signal level corresponding to pulsation and body movement.
In the present embodiment, a case where the reflection type is configured to receive reflected light will be described. However, the present invention is not limited to this, and in the case where a pulse is detected from a blood vessel such as a finger by the biological information detection unit 20, Or the like).

また、受光素子22の受光波長領域を700nm以上にした理由は、発光素子21の光L1の反射光L2を確実に受光させるだけでなく、太陽光や照明光等の外光L3についても受光させるためである。
ここで、外光L3が受光素子22に受光される場合とは、この脈拍計測装置1のリストバンド3がある程度の遊びを持ってユーザの手首Xに巻回されるのが通常であるため、当該脈拍計測装置1を装着したユーザが腕振り等をした場合に、図2に示すように、装置本体2(裏蓋8)と手首Xとの間に隙間が空いて、その隙間を通った外光L3が手首Xで反射して受光素子22に受光される場合である。
The reason why the light receiving wavelength region of the light receiving element 22 is set to 700 nm or more is that not only the reflected light L2 of the light L1 of the light emitting element 21 is surely received but also external light L3 such as sunlight or illumination light is received. Because.
Here, when the external light L3 is received by the light receiving element 22, the wristband 3 of the pulse measuring device 1 is usually wound around the user's wrist X with a certain amount of play. When the user wearing the pulse measuring device 1 swings his arm or the like, as shown in FIG. 2, there is a gap between the device main body 2 (back cover 8) and the wrist X, and the gap passes through the gap. This is a case where the external light L3 is reflected by the wrist X and received by the light receiving element 22.

すなわち、本実施形態では、装置本体2(裏蓋8)と手首Xとの間、言い換えれば、生体情報検出部20と手首Xとの間に殆ど隙間が空いていない状態では、外光L3が受光素子22に殆ど受光されず、生体情報検出部20と手首Xとの間に隙間が空いた場合に、その隙間に応じて受光素子22に届く光が変化し、かかる外光L3を受光することによって、体動に応じて光量が変化する外光L3についても受光できるように構成されている。
ここで、受光素子22を脈拍計測装置1の3時側に配置した理由は、当該脈拍計測装置1をユーザの左手首に装着した際、ユーザの腕振り等によって太陽光や照明光(外光L3)が装置本体2の裏側の隙間に3時側から進入し易いからである。但し、受光素子22を3時側に配置する構成に限らず、3時側以外の位置に配置してもよい。
That is, in the present embodiment, the external light L3 is generated between the apparatus main body 2 (the back cover 8) and the wrist X, in other words, when there is almost no gap between the biological information detection unit 20 and the wrist X. When the light receiving element 22 hardly receives light and there is a gap between the biological information detection unit 20 and the wrist X, the light reaching the light receiving element 22 changes according to the gap and receives the external light L3. Thus, it is configured to be able to receive external light L3 whose amount of light changes according to body movement.
Here, the reason why the light receiving element 22 is arranged on the 3 o'clock side of the pulse measuring device 1 is that when the pulse measuring device 1 is mounted on the user's left wrist, sunlight or illumination light (external light) is generated by the user's arm swing or the like. This is because L3) easily enters the gap on the back side of the apparatus body 2 from the 3 o'clock side. However, the light receiving element 22 is not limited to being arranged at the 3 o'clock side, and may be arranged at a position other than the 3 o'clock side.

なお、外光L3の特に赤外光成分及び赤色光成分については、生体で吸収されにくいために手首Xや生体表面(皮膚等)を通過し易い。このため、装置本体2の裏側に大きな隙間が空いていない場合でも、ユーザの体動に応じて変化する装置本体2の姿勢によっては、外光L3が受光素子22に受光される場合があり、これによっても体動に応じて外光L3を受光可能である。
このように本実施形態では、受光素子22に外光L3を受光可能な素子を使用するため、太陽光や照明光等の外光L3を受光波長帯域に含まない受光素子を使用する従来の光学式脈拍計測装置に比して、汎用の受光素子を広く適用することができる。また、この受光素子22には、汎用のフォトトランジスタに限らず、汎用のフォトダイオード等の広く流通する光電センサを適用することが可能である。
Note that the infrared light component and the red light component of the external light L3 are particularly difficult to be absorbed by the living body, and therefore easily pass through the wrist X and the surface of the living body (skin etc.). For this reason, even when there is no large gap on the back side of the device body 2, depending on the posture of the device body 2 that changes according to the body movement of the user, the external light L3 may be received by the light receiving element 22, Also by this, the external light L3 can be received according to the body movement.
As described above, in this embodiment, since an element capable of receiving the external light L3 is used as the light receiving element 22, conventional optical elements using a light receiving element that does not include the external light L3 such as sunlight or illumination light in the light receiving wavelength band. A general-purpose light-receiving element can be widely applied as compared with the type pulse measuring device. The light receiving element 22 is not limited to a general-purpose phototransistor, and a widely distributed photoelectric sensor such as a general-purpose photodiode can be applied.

また、本実施形態では、太陽光や照明光等の外光L3が殆ど存在しない環境では、受光素子22が外光L3を受光不能となるため、かかる場合に、外光L3の代わりとなる光(以下、疑似外光という)L5を照射する疑似外光照射部25を備えている。
詳述すると、この疑似外光照射部25は、図2に示すように、受光素子22で受光可能な疑似外光L5を出射する一個の疑似外光用発光素子26を有しており、この疑似外光用発光素子26は、回路基板19の時計裏側の面に実装され、発光素子21と同様の光(700nm以上の光)を出射するLED、より具体的には、単一ピーク波長の可視光に比べて体内で吸収されにくい赤外光、又は、単一ピーク波長の赤色光を出射するLEDが適用される。
In the present embodiment, in an environment where there is almost no external light L3 such as sunlight or illumination light, the light receiving element 22 cannot receive the external light L3. A pseudo external light irradiation unit 25 that irradiates L5 (hereinafter referred to as pseudo external light) is provided.
More specifically, as shown in FIG. 2, the pseudo external light irradiation unit 25 has a single pseudo external light emitting element 26 that emits pseudo external light L5 that can be received by the light receiving element 22. The pseudo-external light emitting element 26 is mounted on the back surface of the circuit board 19 and emits light similar to the light emitting element 21 (light of 700 nm or more), more specifically, a single peak wavelength. An LED that emits infrared light that is less absorbed by the body than visible light or red light having a single peak wavelength is used.

この疑似外光用発光素子26は、発光素子21及び受光素子22に対して略9時側の位置に配置されており、透明の裏蓋8を介してユーザの手首Xに向けて疑似外光L5を出射する。この疑似外光L5の出射方向は、受光素子22側に向けられ、かつ、手首Xに対する入射角度が大きく設定されており、疑似外光L5は、手首Xで反射して、リストバンド3と手首Xとの間の隙間に応じて受光素子22に届く光量が変化する。これにより、疑似外光照射部25は、外光L3と同じく体動に応じて受光量が変化する疑似外光L5を出射することになる。   The pseudo external light emitting element 26 is disposed at a position approximately 9 o'clock with respect to the light emitting element 21 and the light receiving element 22, and pseudo external light is directed toward the user's wrist X through the transparent back cover 8. L5 is emitted. The emission direction of the pseudo external light L5 is directed to the light receiving element 22 side, and the incident angle with respect to the wrist X is set to be large. The pseudo external light L5 is reflected by the wrist X, and the wristband 3 and the wrist. The amount of light that reaches the light receiving element 22 changes in accordance with the gap with X. Thereby, the pseudo external light irradiation unit 25 emits the pseudo external light L5 in which the amount of received light changes in accordance with the body movement in the same manner as the external light L3.

次に液晶フィルタ31について説明する。液晶フィルタ31は、単純な黒白表示だけでなく、グレー表示(中間調表示)や様々なパターン表示が可能な透過型液晶パネルが適用され、受光素子22と裏蓋8との間に配置されて受光素子22に向かう光の透過量を可変する光透過量可変フィルタとして機能する。
この液晶フィルタ31は、図2に示すように、受光素子22の周囲から時計裏側に延出して発光素子21の直接光L1等の入射を遮断可能な遮光部材32を介して回路基板19に固定され、図3(A)に示すように、受光素子22の受光部22A(本例では2×2mm)との間に所定の隙間(本例では1.0mm)を設けて固定され、その一端側(本例では3時側)に接続されたフレキシブル配線33を介して回路基板19に電気的に接続され、回路基板19に構成された後述するフィルタ駆動部40によって駆動される。
Next, the liquid crystal filter 31 will be described. As the liquid crystal filter 31, not only simple black and white display but also a transmissive liquid crystal panel capable of gray display (halftone display) and various pattern displays is applied, and is arranged between the light receiving element 22 and the back cover 8. It functions as a light transmission variable filter that varies the amount of light transmitted to the light receiving element 22.
As shown in FIG. 2, the liquid crystal filter 31 is fixed to the circuit board 19 via a light shielding member 32 that extends from the periphery of the light receiving element 22 to the watch back side and can block direct light L1 and the like from the light emitting element 21. As shown in FIG. 3A, a predetermined gap (1.0 mm in this example) is provided between the light receiving portion 22A (2 × 2 mm in this example) of the light receiving element 22 and fixed, and one end thereof It is electrically connected to the circuit board 19 via the flexible wiring 33 connected to the side (3 o'clock side in this example), and is driven by a filter driving unit 40 described later formed on the circuit board 19.

また、この液晶フィルタ31の液晶表示部(本例では6×6mm)は、受光部22Aに対して大型に構成されて斜め光を効率よく取り入れ可能とされ、本実施形態では、図2に示す構成により、発光素子21からの光L2が液晶フィルタ31の略中央領域(第1領域)に入射し、外光L3が液晶フィルタ31の3時側領域に入射し、疑似外光L5が液晶フィルタ31の9時側領域に入射するように構成されている。ここで、発光素子21からの光L2を液晶フィルタ31の略中央領域に入射させることで、発光素子21とユーザの手首Xとの位置関係が多少ずれた場合でも発光素子21の光L2を確実に入射することができる。
この液晶フィルタ31には、縦6画素、横6画素のTFT(Thin Film Transistor:薄層トランジスタ)液晶が使用され、図3(B)に模式的に示すように、光入射側(図3の下方側)から順に、偏光板31A、ガラス基板31B、TFT層31C、配向膜31D、液晶層31E、配向膜31F、共通電極(透明電極)31G、ガラス基板31H、及び、偏光板31Iを積層して構成されている。
Further, the liquid crystal display portion (6 × 6 mm in this example) of the liquid crystal filter 31 is configured to be large with respect to the light receiving portion 22A so that oblique light can be taken in efficiently. In the present embodiment, it is shown in FIG. According to the configuration, the light L2 from the light emitting element 21 is incident on the substantially central region (first region) of the liquid crystal filter 31, the external light L3 is incident on the 3 o'clock region of the liquid crystal filter 31, and the pseudo external light L5 is the liquid crystal filter. It is comprised so that it may inject into the 9 o'clock side area | region of 31. Here, the light L2 from the light emitting element 21 is incident on the substantially central region of the liquid crystal filter 31, so that the light L2 of the light emitting element 21 can be reliably obtained even when the positional relationship between the light emitting element 21 and the user's wrist X is slightly shifted. Can be incident.
The liquid crystal filter 31 uses a TFT (Thin Film Transistor) liquid crystal having 6 pixels in the vertical direction and 6 pixels in the horizontal direction. As schematically shown in FIG. 3B, the light incident side (in FIG. In order from the lower side, a polarizing plate 31A, a glass substrate 31B, a TFT layer 31C, an alignment film 31D, a liquid crystal layer 31E, an alignment film 31F, a common electrode (transparent electrode) 31G, a glass substrate 31H, and a polarizing plate 31I are stacked. Configured.

図4(A)はTFT層31Cの平面図であり、図4(B)はTFT層31Cを周辺構成と共に示す斜視図であり、図4(C)はTFT層31Cの一部拡大図を示している。また、図5はTFT層31Cの電極構成を示している。これら図に示すように、TFT方式の液晶フィルタ31は、縦横にゲート電極(本例では6本のゲート電極(走査線)G1〜G5)35とデータ電極(本例では6本のデータ電極(データ線)D1〜D6)36とを交差させて配置され、各電極35、36交差部分に対応する位置に画素回路(スイッチング素子37、画素電極38)が各々構成されている。   4A is a plan view of the TFT layer 31C, FIG. 4B is a perspective view showing the TFT layer 31C together with peripheral components, and FIG. 4C shows a partially enlarged view of the TFT layer 31C. ing. FIG. 5 shows the electrode configuration of the TFT layer 31C. As shown in these drawings, the TFT type liquid crystal filter 31 includes a gate electrode (six gate electrodes (scanning lines) G1 to G5 in this example) 35 and data electrodes (six data electrodes (in this example)) in the vertical and horizontal directions. The data lines D1 to D6) 36 are arranged so as to intersect with each other, and pixel circuits (switching elements 37 and pixel electrodes 38) are formed at positions corresponding to the intersections of the electrodes 35 and 36, respectively.

上記構成により、液晶フィルタ31は、ゲート電極35をHレベルにして選択すると、データ電極36の電圧がゲート電圧で選択された列の液晶セルに印加され、該電極35、36の交差部分に設けられた画素電極38と共通電極31Gとの電位差に応じて液晶層31Eの対応する画素領域の透過率が変化して表示が行われる。この液晶駆動は、液晶表示の劣化を抑えるために略共通電極31Gの電圧に対して交流駆動となるように液晶が駆動される。
より具体的には、図6に液晶駆動波形の一例を示すように、1画面を構成する1フレームを正フィールドと負フィールドとに分け、各フィールドにおいて、ゲート電極35を順にHレベルにして選択すると共に(ゲート電極G1、ゲート電極G2、…)、データ電極36(データ電極D1、データ電極D2、…)により階調(透過率)に応じた電位(正フィールドでは正電位、負フィールドでは負電位)を印加し、各フィールド時間内に全ての画素に表示信号を書き込む。これによって、各画素に1フレームでプラスとマイナスの信号を書き込んで液晶フィルタ31の交流駆動が実施される。
With the above configuration, when the liquid crystal filter 31 is selected by setting the gate electrode 35 to the H level, the voltage of the data electrode 36 is applied to the liquid crystal cell of the column selected by the gate voltage, and is provided at the intersection of the electrodes 35 and 36. Display is performed by changing the transmittance of the corresponding pixel region of the liquid crystal layer 31E according to the potential difference between the pixel electrode 38 and the common electrode 31G. In this liquid crystal drive, the liquid crystal is driven so as to be AC driven with respect to the voltage of the common electrode 31G in order to suppress deterioration of the liquid crystal display.
More specifically, as shown in FIG. 6 as an example of the liquid crystal driving waveform, one frame constituting one screen is divided into a positive field and a negative field, and the gate electrode 35 is sequentially set to the H level in each field. (Gate electrode G1, gate electrode G2,...) And data electrode 36 (data electrode D1, data electrode D2,...) According to the gradation (transmittance) (positive potential in the positive field, negative potential in the negative field). Potential) is applied, and display signals are written to all the pixels within each field time. As a result, plus and minus signals are written to each pixel in one frame, and the AC drive of the liquid crystal filter 31 is performed.

なお、この液晶フィルタ31は、一般にコントラストが高いといわれるTFT駆動方式のVAモード(垂直配向)によって構成されることが望ましいが、これに限らない。例えば、液晶モードはSTN(Super Twisted Nematic)、GH(Guest Host)、PC(Phase Change)、PDLC(Polymer Dispersed Liquid Crystal)、FLC(Feroelectric Liquid Crystal)、OCB(optically compensated birefringence)等も使用可能である。   The liquid crystal filter 31 is desirably configured by a VA mode (vertical alignment) of a TFT driving method, which is generally said to have a high contrast, but is not limited thereto. For example, the liquid crystal mode is STN (Super Twisted Nematic), GH (Guest Host), PC (Phase Change Liquid Crystal), PDLC (Polymer Discharged Liquid Crystal), FLC (Ferroelectric Liquid Crystal, etc.). is there.

図7は脈拍計測装置1のブロック図であり、図8はその回路構成を示す図である。図7において、発光制御部50は、発光素子21の発光制御を行うものであり、図示せぬ発振回路の発振信号(例えば32kHz)を分周(1/16分周)して得た2kHzの信号を入力し、この2kHzの信号がHレベルのときに発光素子21に駆動電力を供給し、Lレベルのときに駆動電力の供給を停止し、これによって、2kHzデューティ比50%に対応する時間間隔で発光/消灯を繰り返させる。つまり、この脈拍計測装置1では、2kHzを発光の時間間隔を規定する発光周波数(間欠駆動周波数とも言う)としている。   FIG. 7 is a block diagram of the pulse measuring device 1, and FIG. 8 is a diagram showing its circuit configuration. In FIG. 7, the light emission control unit 50 performs light emission control of the light emitting element 21. The light emission control unit 50 divides an oscillation signal (for example, 32 kHz) of an oscillation circuit (not shown) by 2 kHz (1/16 division). When a signal is input, the driving power is supplied to the light emitting element 21 when the 2 kHz signal is at the H level, and the driving power supply is stopped when the 2 kHz signal is at the L level, and thereby a time corresponding to a 2 kHz duty ratio of 50%. Repeat lighting / extinguishing at intervals. That is, in this pulse measuring device 1, 2 kHz is set as the light emission frequency (also referred to as intermittent drive frequency) that defines the time interval of light emission.

電流電圧変換部51は、受光素子22から出力される受光信号S1を電流/電圧変換するものであり、図8に示すように、オペアンプ51Aの出力と入力−を抵抗51Bを介して接続すると共にコンデンサ51Cを並列接続して構成され、受光量に比例した電流を電圧に変換してオペアンプ51Aにより増幅して出力する。この電流電圧変換部51で変換された受光信号S2は、帯域通過フィルタ部(第1フィルタ)52と低域通過フィルタ部(第2フィルタ)53とに各々出力される。   The current-voltage converter 51 performs current / voltage conversion on the received light signal S1 output from the light receiving element 22, and as shown in FIG. 8, connects the output of the operational amplifier 51A and the input − through a resistor 51B. A capacitor 51C is connected in parallel, a current proportional to the amount of received light is converted into a voltage, amplified by an operational amplifier 51A, and output. The light reception signal S2 converted by the current-voltage conversion unit 51 is output to a band-pass filter unit (first filter) 52 and a low-pass filter unit (second filter) 53, respectively.

帯域通過フィルタ部52は、電流電圧変換部51から出力される受光信号S2から、上記発光周波数(2kHz)を含む第1周波数範囲の信号成分(第1信号成分)を抽出するものである。より具体的には、帯域通過フィルタ部52は、上記発光周波数を中心周波数(f0)とし、かつ、低域通過フィルタ部53を通過する低周波数範囲より高い周波数範囲(本構成では、1kHz以上)の信号成分を通過させる。これによって、生体を通った光(光L1の反射光L2)の信号成分を取り出すことができ、言い換えれば、血流の変動(脈動及び体動による変動)に応じて振幅レベルが変動する信号成分を取り出すことができる。   The band pass filter unit 52 extracts a signal component (first signal component) in a first frequency range including the light emission frequency (2 kHz) from the light reception signal S2 output from the current-voltage conversion unit 51. More specifically, the band-pass filter unit 52 uses the emission frequency as the center frequency (f0) and has a higher frequency range than the low frequency range that passes through the low-pass filter unit 53 (1 kHz or more in this configuration). The signal component of is passed. As a result, the signal component of the light passing through the living body (the reflected light L2 of the light L1) can be extracted. In other words, the signal component whose amplitude level varies according to the blood flow variation (variation due to pulsation and body movement). Can be taken out.

この帯域通過フィルタ部52は、図8に示すように、オペアンプ52Aの出力と入力−を抵抗52Bを介して接続すると共にコンデンサ52C、52Dを介して接続し、かつ、入力−への入力側に抵抗52E、52Fを接続した多重帰還型アクティブフィルタ回路で構成される。このため、パッシブフィルタ回路で構成する場合に比して、得られる周波数特性の自由度が高く、かつ、増幅を行うことができるといった利点がある。
ここで、帯域通過フィルタ部52の通過周波数を1kHz以上にした理由は、赤外線方式の家電リモコンで一般に使用される1kHz以下の周波数信号(ノイズ成分に相当)を除くためである。
As shown in FIG. 8, the band-pass filter unit 52 connects the output of the operational amplifier 52A and the input − through the resistor 52B and the capacitors 52C and 52D, and is connected to the input to the input −. It is composed of a multiple feedback active filter circuit to which resistors 52E and 52F are connected. For this reason, compared with the case where it comprises with a passive filter circuit, there exists an advantage that the freedom degree of the frequency characteristic obtained is high and can be amplified.
Here, the reason why the pass frequency of the band pass filter unit 52 is set to 1 kHz or more is to remove a frequency signal (corresponding to a noise component) of 1 kHz or less that is generally used in an infrared home appliance remote controller.

低域通過フィルタ部53は、電流電圧変換部51から出力される受光信号S2から、脈動の周波数より低い第2周波数範囲の信号成分を抽出するものであり、言い換えれば、体動に応じて受光素子22に入射した外光L3による体動成分を抽出可能なフィルタに構成されている。
ここで、体動成分(歩行時やランニング時等の腕振り等の身体運動や手首等の関節を曲げたときに変化する皮膚表面の動きがある)は、通常0Hzよりも大きく10Hz以下の範囲となるため、この低域通過フィルタ部53は、例えば、カットオフ周波数(fc)が10Hzのフィルタに構成される。この低域通過フィルタ部53は、図8に示すように、抵抗53A、53B、コンデンサ53C、53D及びオペアンプ53Eを組み合わせたアクティブフィルタ回路で構成され、パッシブフィルタ回路で構成する場合に比して、得られる周波数特性の自由度が高く、かつ、増幅を行うことが可能である。
The low-pass filter unit 53 extracts a signal component in the second frequency range lower than the pulsation frequency from the light reception signal S2 output from the current-voltage conversion unit 51. In other words, the low-pass filter unit 53 receives light according to body movement. The filter is configured to extract a body motion component due to external light L3 incident on the element 22.
Here, the body motion component (the body motion such as arm swing during walking or running or the movement of the skin surface that changes when the wrist joint is bent) is usually greater than 0 Hz and less than or equal to 10 Hz. Therefore, the low-pass filter unit 53 is configured as a filter having a cutoff frequency (fc) of 10 Hz, for example. As shown in FIG. 8, the low-pass filter unit 53 includes an active filter circuit in which resistors 53A and 53B, capacitors 53C and 53D, and an operational amplifier 53E are combined. The obtained frequency characteristics have a high degree of freedom and can be amplified.

帯域通過フィルタ部52の後段(出力側)には、図7に示すように、増幅率変更部54によって増幅率を変更可能な増幅部(第1増幅部)55と、検波部(第1検波部)56とが順に接続され、低域通過フィルタ部53の後段(出力側)には、増幅率変更部57によって増幅率を変更可能な増幅部(第2増幅部)58が接続される。   As shown in FIG. 7, an amplification unit (first amplification unit) 55 whose amplification factor can be changed by an amplification factor change unit 54 and a detection unit (first detection unit) are provided at the subsequent stage (output side) of the bandpass filter unit 52. 56) are connected in order, and an amplification unit (second amplification unit) 58 whose amplification factor can be changed by the amplification factor changing unit 57 is connected to the subsequent stage (output side) of the low-pass filter unit 53.

増幅部55及び増幅率変更部54は、帯域通過フィルタ部52を通過した受光信号S3を演算処理部60で演算処理(周波数解析処理)するのに適切な信号レベルに増幅するためのものである。この増幅部55及び増幅率変更部54は、図8に示すように、抵抗55A、55Bを前後に配置したオペアンプ55Cの出力と入力−をつなぐ帰還経路に、抵抗54A、55C、54Cを各々スイッチング素子54D、54E、54Fを介して接続可能に構成した回路に構成され、演算処理部60の制御の下、各スイッチング素子54D〜54Fのオン/オフが制御されることによって増幅率を変更する。   The amplifying unit 55 and the amplification factor changing unit 54 are for amplifying the received light signal S3 having passed through the band-pass filter unit 52 to a signal level suitable for arithmetic processing (frequency analysis processing) by the arithmetic processing unit 60. . As shown in FIG. 8, the amplifying unit 55 and the amplification factor changing unit 54 switch the resistors 54A, 55C, and 54C in a feedback path that connects the output and the input − of the operational amplifier 55C in which the resistors 55A and 55B are arranged at the front and rear. The circuit is configured to be connectable via the elements 54D, 54E, and 54F, and the amplification factor is changed by controlling the on / off of each of the switching elements 54D to 54F under the control of the arithmetic processing unit 60.

検波部56は、増幅部55で増幅された受光信号S3の包絡線を検波するものであり、図8に示すように、入力信号をショットキーダイオード56Aに通し、抵抗56Bとコンデンサ56Cの並列回路で受ける回路が適用される。この抵抗56Bとコンデンサ56Cの時定数を適切に設計することで、その出力波形を入力波形の包絡線に近い波形にすることができる。   The detector 56 detects the envelope of the light reception signal S3 amplified by the amplifier 55. As shown in FIG. 8, the input signal is passed through a Schottky diode 56A, and a parallel circuit of a resistor 56B and a capacitor 56C. The circuit received in is applied. By appropriately designing the time constants of the resistor 56B and the capacitor 56C, the output waveform can be made close to the envelope of the input waveform.

なお、上記検波部56に代えて、上記受光信号S3の極大値同士或いは極小値同士をピークホールドし、それらを結んで包絡線を検波する検波部を設けるようにしてもよい。この場合、この検波部は、上記受光信号S3をアナログデジタル変換した波形データを取得するデジタルメモリスコープを備え、このデジタルメモリスコープに取得された波形データの極大値同士或いは極小値同士をピークホールドして得た包絡線を取得するようにすればよい。このように、極大値同士或いは極小値同士を結んだ包絡線を得ることにより、ノイズ成分の影響を低減して包絡線を検波することができる。この場合、この包絡線には、脈動そのものの波形ではなく、脈動の1/2周波数の波形が含まれることになる。   Instead of the detection unit 56, a detection unit may be provided for peak-holding the local maximum values or the local minimum values of the light reception signal S3 and connecting them to detect the envelope. In this case, the detection unit includes a digital memory scope that acquires waveform data obtained by analog-to-digital conversion of the received light signal S3, and peaks and holds the local maximum values or the local minimum values of the waveform data acquired in the digital memory scope. What is necessary is just to acquire the obtained envelope. In this way, by obtaining an envelope connecting the maximum values or the minimum values, the influence of the noise component can be reduced and the envelope can be detected. In this case, the envelope does not include the waveform of the pulsation itself, but includes a waveform of ½ frequency of the pulsation.

増幅部58及び増幅率変更部57は、低域通過フィルタ部53を通過した受光信号S4を演算処理部60で演算処理(周波数解析処理)するのに適切な信号レベルに増幅するためのものであり、上記増幅部55及び増幅率変更部54と同様の回路が適用される。つまり、増幅部58及び増幅率変更部57は、図8に示すように、抵抗58A、58Bを前後に配置したオペアンプ58Cの出力と入力−をつなぐ帰還経路に、抵抗57A、57C、57Cを各々スイッチング素子57D、57E、57Fを介して接続可能に構成した回路に構成され、演算処理部60の制御の下、各スイッチング素子57D〜57Fのオン/オフが制御されることによって増幅率を変更する。   The amplifying unit 58 and the amplification factor changing unit 57 are for amplifying the received light signal S4 that has passed through the low-pass filter unit 53 to a signal level suitable for arithmetic processing (frequency analysis processing) by the arithmetic processing unit 60. Yes, the same circuit as the amplifying unit 55 and the amplification factor changing unit 54 is applied. That is, as shown in FIG. 8, the amplifying unit 58 and the amplification factor changing unit 57 respectively connect the resistors 57A, 57C, and 57C to the feedback path that connects the output and the input − of the operational amplifier 58C in which the resistors 58A and 58B are arranged before and after. The circuit is configured to be connectable via the switching elements 57D, 57E, and 57F, and the amplification factor is changed by controlling the on / off of each of the switching elements 57D to 57F under the control of the arithmetic processing unit 60. .

入力選択部61は、演算処理部60の制御の下、増幅部55で増幅された受光信号S3、及び、増幅部58で増幅された受光信号S4のいずれかをA/D変換部62に切換出力するものであり、図7に示すように、増幅部55及び58の出力側にスイッチング素子61A、61Bを各々配置し、一方のスイッチング素子61Aには、演算処理部60からA/D入力選択信号SSを出力してオンオフを切り換え、他方のスイッチング素子61Bには、上記A/D入力選択信号SSの信号レベルをインバータ61Cにより反転させて供給してオフオンを切り換える回路が適用される。
A/D変換部62は、受光信号S3の包絡線信号S3A又は受光信号S4のいずれかを入力し、アナログデジタル変換して演算処理部60に出力する。
The input selection unit 61 switches either the light reception signal S3 amplified by the amplification unit 55 or the light reception signal S4 amplified by the amplification unit 58 to the A / D conversion unit 62 under the control of the arithmetic processing unit 60. As shown in FIG. 7, switching elements 61A and 61B are arranged on the output side of the amplifying units 55 and 58, respectively, and the A / D input selection from the arithmetic processing unit 60 is performed on one switching element 61A. A circuit for switching on / off by applying the signal level of the A / D input selection signal SS inverted by an inverter 61C is applied to the other switching element 61B.
The A / D conversion unit 62 receives either the envelope signal S3A or the light reception signal S4 of the light reception signal S3, performs analog-digital conversion, and outputs it to the arithmetic processing unit 60.

疑似外光照射部25は、疑似外光用発光素子26及び疑似外光用駆動部27で構成され、疑似外光用駆動部27は、演算処理部60の制御の下、疑似外光用発光素子26の発光制御を行うものである。この疑似外光用駆動部27は、図8に示すように、トランジスタ27Aのコレクタを抵抗27Bを介して疑似外光用発光素子26に接続し、このトランジスタ25Aのエミッタを接地し、ベースに抵抗27Cを介して演算処理部60からの制御信号(オンオフを指示する信号)が入力される構成の回路が適用され、上記制御信号に基づいて疑似外光用発光素子26を選択的に駆動する。フィルタ駆動部40は、演算処理部60の制御の下、液晶フィルタ31の表示制御を行うものである。   The pseudo external light irradiation unit 25 includes a pseudo external light emitting element 26 and a pseudo external light drive unit 27, and the pseudo external light drive unit 27 emits light for pseudo external light under the control of the arithmetic processing unit 60. The light emission control of the element 26 is performed. As shown in FIG. 8, the pseudo-external light drive unit 27 connects the collector of the transistor 27A to the pseudo-external light light-emitting element 26 through a resistor 27B, grounds the emitter of the transistor 25A, and connects the resistance to the base. A circuit having a configuration in which a control signal (signal to turn on / off) from the arithmetic processing unit 60 is input via the 27C is applied, and the pseudo external light emitting element 26 is selectively driven based on the control signal. The filter driving unit 40 performs display control of the liquid crystal filter 31 under the control of the arithmetic processing unit 60.

演算処理部60は、脈拍計測装置1の各部を制御する制御部や生体情報(脈動成分、体動成分)を特定する生体情報特定部として機能するものである。より具体的には、この演算処理部60は、CPU、ROM及びRAM(本例では、FFT用RAM1と、FFT用RAM2とを有する)等を備えたコンピュータ構成を備え、CPUがROMに格納された制御プログラムを実行することにより、入力したデータの周波数解析処理(FFT処理)を行う周波数解析部、周波数解析結果に基づき脈拍数を特定する脈拍数特定部、及び、液晶フィルタ31の光透過量を制御する光透過量制御部として機能し、特定した脈拍数を表示部5に表示させる処理等を行う。   The arithmetic processing unit 60 functions as a control unit that controls each unit of the pulse measuring device 1 and a biological information specifying unit that specifies biological information (pulsation component, body movement component). More specifically, the arithmetic processing unit 60 has a computer configuration including a CPU, a ROM, and a RAM (in this example, having an FFT RAM 1 and an FFT RAM 2), and the CPU is stored in the ROM. By executing the control program, a frequency analysis unit that performs frequency analysis processing (FFT processing) of input data, a pulse rate specification unit that specifies a pulse rate based on the frequency analysis result, and a light transmission amount of the liquid crystal filter 31 It functions as a light transmission amount control unit that controls the above, and performs a process of displaying the specified pulse rate on the display unit 5.

なお、本実施形態では、演算処理部60がソフトウェア処理により制御部、生体情報特定部(周波数解析部、脈拍数特定部)及び光透過量制御部として機能する場合を説明するが、これに限らず、これらの一部又は全てをハードウェア回路によって構成してもよい。また、この演算処理部60には、図示せぬ発振回路の発振信号の分周信号(1Hz信号)に基づいて時刻を計時する時計回路も内蔵されている。時計回路の構成は公知の構成を適用すればよいため、詳細な説明は省略する。   In the present embodiment, the case where the arithmetic processing unit 60 functions as a control unit, a biological information specifying unit (a frequency analyzing unit, a pulse rate specifying unit), and a light transmission amount control unit by software processing will be described. Instead, some or all of these may be configured by hardware circuits. The arithmetic processing unit 60 also incorporates a clock circuit that measures time based on a frequency-divided signal (1 Hz signal) of an oscillation signal (not shown) of an oscillation circuit. Since a known configuration may be applied to the configuration of the timepiece circuit, detailed description is omitted.

次に、この脈拍計測装置1の脈拍計測時(生体情報計測時)の動作を説明する。図9はこの場合の主動作を示すフローチャートである。図9に示すように、ユーザが操作スイッチ6Aを操作して脈拍計測の開始を指示すると、まず、演算処理部60内のCPU(以下、制御部という)は、図示せぬ発振回路の発振信号を分周した出力(本例では32Hzの信号)の割り込みを許可し(ステップSP1)、この32Hz割り込みをトリガーとしてA/D変換部62の取り込みと、入力選択部61による入力切り換えを行う。また、制御部は、変数Nを値0に設定し(ステップS2)、その後、発光制御部50により2kHz(発光周波数)のデューティ比50%の時間間隔で発光素子21の発光制御を開始させる。   Next, the operation of the pulse measuring device 1 at the time of pulse measurement (measurement of biological information) will be described. FIG. 9 is a flowchart showing the main operation in this case. As shown in FIG. 9, when the user operates the operation switch 6A to instruct the start of pulse measurement, first, a CPU (hereinafter referred to as a control unit) in the arithmetic processing unit 60 causes an oscillation signal of an oscillation circuit (not shown). Is interrupted (step SP1), and the 32 Hz interrupt is used as a trigger to capture the A / D converter 62 and switch the input by the input selector 61. In addition, the control unit sets the variable N to a value of 0 (step S2), and then causes the light emission control unit 50 to start light emission control of the light emitting element 21 at a time interval of 2 kHz (light emission frequency) with a duty ratio of 50%.

このため、受光素子22から受光信号S1が出力され、電流電圧変換部51によって電流電圧変換されて、図10(A)に示すように、2kHz(発光周波数)の変調波である受光信号S2が出力される。そして、この受光信号S2は、2kHzを中心周波数とする帯域通過フィルタ部52を通過することによって、図10(B)に示すように、2kHzの変調成分を示す受光信号S3が出力される。次に、受光信号S3に対し、検波部56が検波処理を施すことによって、図10(C)に示すように、受光信号S3の包絡線を示す包絡線信号S3Aが出力される。この包絡線信号S3Aの波形には、脈動成分(脈波形)と体動成分(体動波形)の情報が含まれている。   For this reason, the light receiving signal S1 is output from the light receiving element 22, and is converted into a current voltage by the current-voltage converting unit 51. As shown in FIG. 10A, a light receiving signal S2 that is a modulated wave of 2 kHz (light emitting frequency) Is output. Then, the light reception signal S2 passes through the band-pass filter 52 having a center frequency of 2 kHz, so that a light reception signal S3 indicating a 2 kHz modulation component is output as shown in FIG. 10B. Next, when the detection unit 56 performs detection processing on the light reception signal S3, an envelope signal S3A indicating an envelope of the light reception signal S3 is output as shown in FIG. The waveform of the envelope signal S3A includes information on the pulsation component (pulse waveform) and the body motion component (body motion waveform).

また、受光信号S2が、10Hz以下を通過する低域通過フィルタ部53を通過することによって、図10(D)に示すように、10Hzを超える脈動成分が取り除かれた受光信号S4が取得され、この受光信号S4の波形には、体動成分とノイズ成分(体動に依存しない外乱光成分など)の情報が含まれる。
上記ステップS2の処理実行後、制御部は、A/D入力選択信号SSをHレベルに設定し、32Hz割り込みフラグがオンになるまで待機する(ステップSP4)。なお、この32Hz割り込みフラグとは、上記32Hzの割り込み信号の1周期(1/32秒)が経過したか否かを判定するためのフラグであり、言い換えれば、A/D変換部62の取り込みと入力切り換えとを行うタイミングを検出するフラグである。
Further, by passing the light reception signal S2 through the low-pass filter unit 53 that passes 10 Hz or less, as shown in FIG. 10D, the light reception signal S4 from which the pulsation component exceeding 10 Hz is removed is acquired. The waveform of the received light signal S4 includes information on body motion components and noise components (such as disturbance light components that do not depend on body motion).
After executing the process of step S2, the control unit sets the A / D input selection signal SS to the H level and waits until the 32 Hz interrupt flag is turned on (step SP4). The 32 Hz interrupt flag is a flag for determining whether or not one period (1/32 second) of the 32 Hz interrupt signal has elapsed. In other words, the 32 Hz interrupt flag is taken in by the A / D converter 62. This is a flag for detecting the timing of input switching.

A/D入力選択信号SSがHレベルに設定された場合、入力選択部61のスイッチング素子61Aが開状態に設定されると共に、スイッチング素子61Bが閉状体に設定されるため、包絡線信号S3AがA/D変換部62に出力され、ここでアナログデジタル変換されて演算処理部60に出力される。
そして、制御部は、32Hz割り込みフラグがオンになると(ステップSP4:YES)、32Hz割り込みフラグをクリアして(ステップSP5)、デジタルデータ(包絡線の波形データ)をFFT用RAM1に格納する(ステップSP6)。
When the A / D input selection signal SS is set to the H level, the switching element 61A of the input selection unit 61 is set to an open state and the switching element 61B is set to a closed body, so that the envelope signal S3A is It is output to the A / D converter 62, where it is analog-digital converted and output to the arithmetic processor 60.
When the 32 Hz interrupt flag is turned on (step SP4: YES), the control unit clears the 32 Hz interrupt flag (step SP5) and stores the digital data (envelope waveform data) in the FFT RAM 1 (step SP5). SP6).

続いて、制御部は、A/D入力選択信号SSをLレベルに切り換え、入力選択部61のスイッチング素子61Aを閉状態に切り換えると共に、スイッチング素子61Bを開状態に切り換える(ステップSP7)。このため、低域通過フィルタ部53を通過した受光信号S4が、A/D変換部62に入力されてアナログデジタル変換されて演算処理部60に出力される。そして、制御部は、32Hz割り込みフラグがオンになると(ステップSP8:YES)、32Hz割り込みフラグをクリアして(ステップSP9)、デジタルデータ(受光信号S4の波形データ)をFFT用RAM2に格納する(ステップSP10)。   Subsequently, the control unit switches the A / D input selection signal SS to the L level, switches the switching element 61A of the input selection unit 61 to the closed state, and switches the switching element 61B to the open state (step SP7). For this reason, the received light signal S4 that has passed through the low-pass filter unit 53 is input to the A / D conversion unit 62, converted from analog to digital, and output to the arithmetic processing unit 60. When the 32 Hz interrupt flag is turned on (step SP8: YES), the control unit clears the 32 Hz interrupt flag (step SP9) and stores the digital data (waveform data of the light reception signal S4) in the FFT RAM 2 ( Step SP10).

次に、制御部は、変数Nに値1を加算し(ステップSP11)、変数Nが値256に達したか否かを判定する(ステップSP12)。このとき、値256に達していない場合は(ステップSP12:NO)、ステップSP3の処理へ移行して、上記の包絡線の波形データの取り込みと、受光信号S4の波形データの取り込みとを継続させる。これによって、これらデータの取り込みは変数Nが値256に達するまで繰り返され、FFT用RAM1及びFFT用RAM2に、各16Hz256ポイントの波形データを格納するまで上記データの取り込みを繰り返す。   Next, the control unit adds 1 to the variable N (step SP11), and determines whether or not the variable N has reached the value 256 (step SP12). At this time, if the value 256 is not reached (step SP12: NO), the process proceeds to step SP3, and the acquisition of the waveform data of the envelope and the acquisition of the waveform data of the light reception signal S4 are continued. . As a result, the acquisition of these data is repeated until the variable N reaches the value 256, and the acquisition of the data is repeated until the waveform data of each 16 Hz 256 points is stored in the FFT RAM 1 and the FFT RAM 2.

続いて、変数Nが値256に達すると(ステップSP12:YES)、制御部は、FFT用RAM1に格納された波形データ(受光信号S3の包絡線の波形データ)に対し、FFT(高速フーリエ変換)処理(周波数解析)を実行することにより(ステップSP13)、図11(A)に示すように、該波形に含まれる複数の周波数スペクトル(ローカルピーク)を特定可能な解析結果(第1周波数範囲の解析結果に相当)を得る。
次いで、制御部は、FFT用RAM2に格納された波形データ(受光信号S4の波形データ)に対し、同様のFFT(高速フーリエ変換)処理(周波数解析)を実行することにより(ステップSP14)、図11(B)に示すように、該波形に含まれる1又は複数の周波数スペクトル(ローカルピーク)を特定可能な解析結果(第2周波数範囲の解析結果に相当)を得る。
Subsequently, when the variable N reaches the value 256 (step SP12: YES), the control unit performs FFT (Fast Fourier Transform) on the waveform data (the waveform data of the envelope of the light reception signal S3) stored in the FFT RAM 1. ) By executing the process (frequency analysis) (step SP13), as shown in FIG. 11A, an analysis result (first frequency range) that can identify a plurality of frequency spectra (local peaks) included in the waveform Is equivalent to the analysis result of
Next, the control unit performs similar FFT (Fast Fourier Transform) processing (frequency analysis) on the waveform data (waveform data of the light reception signal S4) stored in the FFT RAM 2 (step SP14), As shown in FIG. 11B, an analysis result (corresponding to an analysis result in the second frequency range) that can specify one or a plurality of frequency spectra (local peaks) included in the waveform is obtained.

ここで、FFT用RAM1に格納された波形データには、脈動成分(脈波形)と体動成分(体動波形)の情報が含まれることから、図11(A)に示す2つの周波数スペクトルf1、f2は、脈動成分と体動成分とに相当することが判る。しかし、この情報だけでは、どちらの周波数スペクトルf1、f2が脈動成分であるかを特定することが困難である。
一方、FFT用RAM2に格納された波形データには、体動成分とノイズ成分が含まれ、10Hzを超える脈動成分(脈波形)が含まれないことから、図11(B)に示す大きな周波数スペクトルf3、f4、f5は、体動成分とノイズ成分が含まれ、10Hzを超える脈動成分が含まれないことが判る。
Here, since the waveform data stored in the FFT RAM 1 includes information on the pulsation component (pulse waveform) and the body motion component (body motion waveform), the two frequency spectra f1 shown in FIG. , F2 corresponds to a pulsation component and a body motion component. However, it is difficult to specify which frequency spectrum f1, f2 is a pulsating component only with this information.
On the other hand, since the waveform data stored in the FFT RAM 2 includes a body motion component and a noise component, and does not include a pulsation component (pulse waveform) exceeding 10 Hz , a large frequency spectrum shown in FIG. It can be seen that f3, f4, and f5 include body motion components and noise components, and do not include pulsation components exceeding 10 Hz .

そこで、本構成では、上記第1周波数範囲の解析結果と上記第2周波数範囲の解析結果の両方に、体動成分に相当する周波数スペクトル(体動スペクトル)が含まれることを利用し、制御部は、両方の周波数解析結果に含まれる同一周波数の周波数スペクトルf2、f3を体動成分(体動スペクトル)と特定し、第1周波数範囲の解析結果に含まれるが、第2周波数範囲の解析結果には含まれない周波数スペクトルf1を、脈拍数に対応する脈動成分(脈動スペクトル)と特定する処理(見分ける処理)を実行する(ステップSP15)。
Therefore, in the present configuration, the control unit utilizes the fact that both the analysis result of the first frequency range and the analysis result of the second frequency range include the frequency spectrum (body motion spectrum) corresponding to the body motion component. Specifies the frequency spectrums f2 and f3 of the same frequency included in both frequency analysis results as body motion components (body motion spectrum) and is included in the analysis result of the first frequency range, but the analysis result of the second frequency range A process (a process for distinguishing) the frequency spectrum f1 that is not included in is identified as a pulsation component (pulsation spectrum) corresponding to the pulse rate (step SP15).

次に、制御部は、体動成分を検出できたか否かを判定し(ステップSP16)、体動成分を検出できた場合は(ステップSP16:YES)、周波数スペクトルf1の周波数を一分間当たりの振幅回数に換算して脈拍数を算出し、算出した脈拍数を表示部5に表示させ(ステップSP17)、ステップSP2の処理に移行する。   Next, the control unit determines whether or not the body motion component has been detected (step SP16). If the body motion component has been detected (step SP16: YES), the frequency of the frequency spectrum f1 is determined per minute. The pulse rate is calculated in terms of the number of amplitudes, the calculated pulse rate is displayed on the display unit 5 (step SP17), and the process proceeds to step SP2.

一方、体動成分を検出できなかった場合(ステップSP16:NO)、制御部は、疑似外光照射部25によって疑似外光L5を照射中か否かを判定し(ステップSP18)、疑似外光照射中でなければ(ステップSP18:NO)、疑似外光用駆動部27により疑似外光用発光素子26を駆動させて疑似外光L5を照射させる(ステップSP19)。そして、制御部は、疑似外光L5照射後にステップSP2の処理に移行し、脈拍数の検出処理(ステップSP2〜SP17)を繰り返す。
このため、夜間の時間帯や曇りの日で外光L3が受光不能な状況では、外光L3の代わりとなる疑似外光L5が照射され、上記第2周波数範囲の解析結果を得て体動成分に相当する周波数スペクトル(上記f3に相当)を特定することが可能になる。従って、この場合も、制御部は、上述と同様に、上記第1周波数範囲の解析結果と上記第2周波数範囲の解析結果とを比較することによって、体動成分と脈動成分とを特定することができ、脈拍数を精度良く検出することができる。
On the other hand, when the body movement component cannot be detected (step SP16: NO), the control unit determines whether or not the pseudo external light irradiation unit 25 is irradiating the pseudo external light L5 (step SP18), and pseudo external light. If the irradiation is not in progress (step SP18: NO), the pseudo-external light driving unit 27 drives the pseudo-external light-emitting element 26 to irradiate the pseudo external light L5 (step SP19). And a control part transfers to the process of step SP2 after pseudo external light L5 irradiation, and repeats the detection process (steps SP2-SP17) of a pulse rate.
For this reason, in the situation where the external light L3 cannot be received in the night time zone or on a cloudy day, the pseudo external light L5 is used instead of the external light L3, and the body movement is obtained by obtaining the analysis result of the second frequency range. It becomes possible to specify the frequency spectrum corresponding to the component (corresponding to the above f3). Accordingly, in this case as well, the control unit specifies the body motion component and the pulsation component by comparing the analysis result of the first frequency range and the analysis result of the second frequency range, as described above. And the pulse rate can be accurately detected.

ここで、ステップS18の判定で、疑似外光照射中であった場合には(ステップSP18:YES)、制御部は、ステップSP2の処理へ移行し、再度上記ステップSP2〜SP16の処理を実行し、脈拍数の検出処理を行う。これによって、たまたま体動成分が検出されなかった場合には、次回以降に体動成分が検出された時点で、脈拍数を精度良く検出することができる。
なお、このフローチャートでは、疑似外光L5の照射中にも拘わらず、体動成分を取得できない場合には(ステップSP18:YES)、脈拍数の検出処理を再実行する場合について述べたが、これに限らず、かかる場合は、体動がない状況、つまり、ユーザが運動していない状況とも判断できるため、上記第1周波数範囲の解析結果のみに基づいて脈拍数を推定し、その脈拍数を表示するようにしてもよい。
If it is determined in step S18 that pseudo-external light irradiation is being performed (step SP18: YES), the control unit shifts to the process in step SP2 and executes the processes in steps SP2 to SP16 again. The pulse rate detection process is performed. As a result, if no body motion component happens to be detected, the pulse rate can be accurately detected when the body motion component is detected next time.
In this flowchart, the case is described in which the pulse rate detection process is re-executed when the body motion component cannot be acquired despite the irradiation of the pseudo external light L5 (step SP18: YES). In this case, since it can be determined that there is no body movement, that is, a situation where the user is not exercising, the pulse rate is estimated based only on the analysis result of the first frequency range, and the pulse rate is calculated. You may make it display.

具体的には、例えば、第1周波数範囲の解析結果から得られる周波数スペクトル(ローカルピーク)が一つであり、かつ、脈拍の周波数範囲内であった場合には、その周波数スペクトルを脈動成分と特定し、かかる周波数スペクトルから脈拍数を算出して表示する方法がある。また、例えば、第1周波数範囲の解析結果から得られる周波数スペクトル(ローカルピーク)が複数であった場合には、これらの周波数スペクトルのうち、その周波数が脈拍の周波数範囲内の周波数スペクトルを抽出し、この周波数スペクトルから脈拍数を算出して表示する方法がある。   Specifically, for example, when the frequency spectrum (local peak) obtained from the analysis result of the first frequency range is one and is within the pulse frequency range, the frequency spectrum is used as the pulsation component. There is a method of specifying and displaying the pulse rate from the frequency spectrum. For example, when there are a plurality of frequency spectra (local peaks) obtained from the analysis result of the first frequency range, a frequency spectrum within the frequency range of the pulse is extracted from these frequency spectra. There is a method of calculating and displaying the pulse rate from this frequency spectrum.

ところで、本実施形態では、発光素子21の光L2と外光L3(或いは疑似外光L5)とを一つの受光素子22で受光するため、直射日光等の強い外光L3を受光した場合に受光素子22が電気的に飽和してしまうおそれがある。かかる場合には、周波数解析を施しても周波数スペクトルが得られず、その間は脈拍数を正確に計測できなくなってしまう。
そこで、本実施形態では、受光素子22の出力の飽和を回避するため、液晶フィルタ31の光透過量を可変制御している。図12はこの場合の動作を示すフローチャートであり、図13(A)〜(D)は、外光L3受光時(疑似外光L5の非照射中)の液晶フィルタ31の表示状態を示す図である。なお、この光透過量可変制御は、上記ステップSP1〜SP19からなる脈拍計測処理の際に実行される処理であり、以下、図12及び図13を参照しつつ光透過量可変制御について説明する。
By the way, in this embodiment, since the light L2 and the external light L3 (or pseudo external light L5) of the light emitting element 21 are received by the single light receiving element 22, it is received when strong external light L3 such as direct sunlight is received. The element 22 may be electrically saturated. In such a case, a frequency spectrum cannot be obtained even if frequency analysis is performed, and the pulse rate cannot be measured accurately during that time.
Therefore, in this embodiment, the light transmission amount of the liquid crystal filter 31 is variably controlled in order to avoid saturation of the output of the light receiving element 22. FIG. 12 is a flowchart showing the operation in this case, and FIGS. 13A to 13D are views showing the display state of the liquid crystal filter 31 when the external light L3 is received (during the non-irradiation of the pseudo external light L5). is there. The light transmission amount variable control is a process executed during the pulse measurement process including the above steps SP1 to SP19, and the light transmission amount variable control will be described below with reference to FIGS.

制御部は、脈拍計測処理の開始時に、まず、図13(A)に示すように、液晶フィルタ31の全画素を全て白(最大透過)に表示制御し(ステップSP31)、変数DIを0(零)に設定する(ステップSP32)。
次いで、制御部は、ステップSP13の処理で得た第1周波数範囲の解析結果から、第1周波数範囲内の全周波数帯域における周波数スペクトルのレベル平均値(以下、全周波数平均レベルPAVEという)を算出する(ステップSP33)。この全周波数平均レベルPAVEは、受光素子22の受光平均レベルに相当しており、制御部は、予め定めた周波数範囲(本例では0.2Hz〜0.4Hz)内に、全周波数平均レベルPAVEを超えるピーク(周波数スペクトル)があるか否かを判定し(ステップSP34)、これにより、外光L3の光量が多く受光素子22が飽和しているか否かを判定する。
At the start of the pulse measurement process, the control unit first controls display of all the pixels of the liquid crystal filter 31 to white (maximum transmission) as shown in FIG. 13A (step SP31), and sets the variable DI to 0 ( (Zero) (step SP32).
Next, the control unit calculates the level average value of the frequency spectrum in the entire frequency band in the first frequency range (hereinafter referred to as the total frequency average level PAVE) from the analysis result of the first frequency range obtained by the process of step SP13. (Step SP33). This all-frequency average level PAVE corresponds to the light-receiving average level of the light-receiving element 22, and the control unit sets the all-frequency average level PAVE within a predetermined frequency range (0.2 Hz to 0.4 Hz in this example). It is determined whether or not there is a peak (frequency spectrum) exceeding (step SP34), and thereby it is determined whether or not the light receiving element 22 is saturated with a large amount of external light L3.

すなわち、外光L3の光量が大きく受光素子22が飽和している場合には、周波数解析を行ってもほぼDCレベルのみとなるため、ピーク(周波数スペクトル)が現れず、上記ステップSP34の判定はNOとなり、第1周波数範囲の解析結果だけで受光素子22の飽和を検出可能である。
この場合、制御部は、続くステップSP35の処理へ移行し、変数DIに値1を加算し、液晶フィルタ31のデータ電極D1に対応するデータ列(ここでは=1)の1列を全て黒(非透過)に表示制御し(ステップSP36)、ステップSP33へ移行する。
このため、第1周波数範囲の0.2Hz〜0.4Hz内に、全周波数平均レベルPAVEを超えるピーク(周波数スペクトル)がでるまで、つまり、受光素子22の受光量が飽和レベル以下になるまで、変数DIに値1ずつ加算され、液晶フィルタ31が、図13(C)に示すように、データ電極D2に相当するデータ列が黒にされた後に、図13(D)に示すように、更にデータ電極D3に対応するデータ列が黒にされ、…といったように制御される。そして、上記ピークが存在した場合(ステップS4:YES)、受光素子22の受光量が飽和レベル以下になったと判定できるため、制御部は、この可変制御処理を一時中断して、液晶フィルタ31をその時点の表示状態に保持させる。
That is, when the light amount of the external light L3 is large and the light receiving element 22 is saturated, since only the DC level is obtained even if the frequency analysis is performed, no peak (frequency spectrum) appears, and the determination in step SP34 is as follows. It becomes NO, and the saturation of the light receiving element 22 can be detected only by the analysis result in the first frequency range.
In this case, the control unit proceeds to the processing of the subsequent step SP35, adds the value 1 to the variable DI, and all the one column of the data column (here, = 1) corresponding to the data electrode D1 of the liquid crystal filter 31 is black ( Display control is performed (non-transparent) (step SP36), and the process proceeds to step SP33.
For this reason, until a peak (frequency spectrum) exceeding the entire frequency average level PAVE is generated within 0.2 Hz to 0.4 Hz of the first frequency range, that is, until the amount of light received by the light receiving element 22 is equal to or lower than the saturation level. The value DI is incremented by 1 to the variable DI, and the liquid crystal filter 31 further turns the data string corresponding to the data electrode D2 to black as shown in FIG. 13C, and then, as shown in FIG. The data string corresponding to the data electrode D3 is made black, and so on. If the peak is present (step S4: YES), it can be determined that the amount of light received by the light receiving element 22 has become equal to or lower than the saturation level. The display state at that time is held.

このように、本構成では、受光素子22の受光量が飽和レベル以下になるまで、図13(A)〜(D)に示すように、液晶フィルタ31を主に外光L3の入射領域に相当する3時側のデータ列(データ電極D1側)から順に黒に変更していく。このため、受光素子22から照射された光L1の反射光L2の入射領域に相当する中央領域に光透過領域を残しつつ黒領域(非透過領域)を徐々に増やすことができる。従って、発光素子21の光L2の透過量を殆ど下げることなく、外光L3の透過量を徐々に下げることができる。従って、強い外光L3による受光素子22の飽和を回避しつつ、脈動情報を含む反射光L2を適正レベルで受光させることができ、正確な体動計測及び脈拍計測を継続することができる。   As described above, in this configuration, as shown in FIGS. 13A to 13D, the liquid crystal filter 31 mainly corresponds to the incident region of the external light L3 until the light receiving amount of the light receiving element 22 is equal to or lower than the saturation level. The black data is sequentially changed to black from the 3 o'clock side data string (data electrode D1 side). For this reason, it is possible to gradually increase the black region (non-transmissive region) while leaving the light transmissive region in the central region corresponding to the incident region of the reflected light L2 of the light L1 emitted from the light receiving element 22. Therefore, the transmission amount of the external light L3 can be gradually reduced without substantially reducing the transmission amount of the light L2 of the light emitting element 21. Therefore, it is possible to receive the reflected light L2 including pulsation information at an appropriate level while avoiding saturation of the light receiving element 22 due to strong external light L3, and to continue accurate body movement measurement and pulse measurement.

一方、疑似外光L5を照射している場合、制御部は、図14(A)〜(D)に示すように、液晶フィルタ31を主に疑似外光L5の入射領域に相当する9時側のデータ列(データ電極D6側)から順に黒に変更し、これにより、反射光L2の透過量を殆ど下げることなく、疑似外光L5の透過量を徐々に下げることができる。従って、疑似外光L5の受光量が過度になった場合、例えば、疑似外光L5の光量とユーザの肌の色との関係等で受光量が過度になってしまった場合でも、受光素子22の飽和を回避することができ、正確な体動計測及び脈拍計測を継続することができる。   On the other hand, when the pseudo external light L5 is irradiated, the control unit mainly moves the liquid crystal filter 31 to the 9 o'clock side corresponding to the incident area of the pseudo external light L5 as shown in FIGS. Are sequentially changed to black from the data string (on the data electrode D6 side), whereby the transmission amount of the pseudo external light L5 can be gradually decreased without substantially decreasing the transmission amount of the reflected light L2. Therefore, when the amount of received light of the pseudo external light L5 becomes excessive, for example, even when the amount of received light becomes excessive due to the relationship between the light amount of the pseudo external light L5 and the color of the user's skin, etc. Saturation can be avoided, and accurate body motion measurement and pulse measurement can be continued.

以上説明したように、本実施形態の脈拍計測装置1では、所定の時間間隔(発光周波数に対応)で光L1を照射する単一の発光素子21と、その光L1を生体を介して受光可能で、かつ、生体の体動に連動して受光量が変化する外光L3を受光可能に設けられた単一の受光素子22と、受光素子22が出力する受光信号から、上記光L1の反射光L2の受光成分に対応する第1周波数範囲の信号成分を抽出する帯域通過フィルタ部52と、外光L3の受光成分に対応する第2周波数範囲の信号成分を抽出する低域通過フィルタ部53とを備えるので、第1周波数範囲の信号成分から脈動成分及び体動成分のいずれかに対応する周波数スペクトルf1、f2を特定し、かつ、第2周波数範囲の信号成分から体動成分f3の周波数スペクトルを特定して、脈動成分f1及び体動成分f2(=f3)を精度良く検出することができる。   As described above, in the pulse measuring device 1 of the present embodiment, the single light emitting element 21 that irradiates the light L1 at a predetermined time interval (corresponding to the light emission frequency) and the light L1 can be received through the living body. In addition, the reflection of the light L1 from a single light receiving element 22 provided so as to be able to receive external light L3 whose amount of received light changes in conjunction with body movements of the living body, and a light receiving signal output from the light receiving element 22. A band-pass filter unit 52 that extracts a signal component in the first frequency range corresponding to the light reception component of the light L2, and a low-pass filter unit 53 that extracts a signal component in the second frequency range corresponding to the light reception component of the external light L3. Therefore, the frequency spectrum f1, f2 corresponding to either the pulsation component or the body motion component is specified from the signal component in the first frequency range, and the frequency of the body motion component f3 from the signal component in the second frequency range Special spectrum To, pulsating component f1 and the body motion component f2 (= f3) can be accurately detected.

しかも、本構成では、受光素子22の受光部22A側に配設されて受光部22Aに向かう光の光透過量を可変自在な液晶フィルタ31を設け、受光素子22の受光量が飽和レベル以下になるまで液晶フィルタ31の光透過量を下げるので、受光素子22の飽和を抑制して脈拍計測を行うことができる。この場合、本構成では、液晶フィルタ31を、発光素子21の光L2を入射する領域と異なる領域から光透過量を下げる、つまり、外光L3(又は疑似外光L5)の入射領域から光透過量を下げることにより、発光素子21の光L2の透過量を殆ど下げることなく、外光L3(又は疑似外光L5)の透過量を下げることができ、これによって脈動情報を含む光L2を適正レベルで受光して正確な体動計測及び脈拍計測を継続することができる。   In addition, in this configuration, a liquid crystal filter 31 is provided that is disposed on the light receiving portion 22A side of the light receiving element 22 and can change the amount of light transmitted toward the light receiving portion 22A, and the light receiving amount of the light receiving element 22 is less than a saturation level. Since the light transmission amount of the liquid crystal filter 31 is lowered until the time is reached, the pulse measurement can be performed while suppressing the saturation of the light receiving element 22. In this case, in this configuration, the liquid crystal filter 31 reduces the light transmission amount from a region different from the region where the light L2 of the light emitting element 21 is incident, that is, transmits light from the incident region of the external light L3 (or pseudo external light L5). By reducing the amount, the transmission amount of the external light L3 (or pseudo external light L5) can be reduced almost without reducing the transmission amount of the light L2 of the light emitting element 21, and thus the light L2 including the pulsation information is appropriately set. By receiving light at the level, accurate body movement measurement and pulse measurement can be continued.

さらに、本構成では、外光L3に代わる疑似外光L5を照射する疑似外光照射部25を備えるので、外光L3が受光不能な状況でも、低域通過フィルタ部53によって体動成分(体動スペクトル)を取り出すことができる。従って、時間帯及び場所を選ばず脈拍数を精度良く検出することが可能になる。また、この疑似外光L5照射時においても液晶フィルタ31の光透過量を可変する制御を行うので、疑似外光L5によって受光素子22が飽和してしまう事態を回避でき、これによっても正確な脈拍計測を継続することができる。
さらに、本構成では、生体情報検出部20が、発光素子21及び受光素子22を各々一個ずつ備えるだけでよく、その他には、疑似外光用発光素子26を一個備えるだけでよいので、従来のものと比較して、脈拍検出精度が高いにもかかわらず、発光素子及び受光素子の数を低減することができる。
Further, in this configuration, since the pseudo external light irradiating unit 25 that irradiates the pseudo external light L5 instead of the external light L3 is provided, the low-pass filter unit 53 causes the body motion component (body body) even when the external light L3 cannot be received. Dynamic spectrum). Therefore, the pulse rate can be detected with high accuracy regardless of the time zone and place. Further, since the control for changing the light transmission amount of the liquid crystal filter 31 is performed even during the irradiation of the pseudo external light L5, the situation where the light receiving element 22 is saturated by the pseudo external light L5 can be avoided, and this also enables an accurate pulse. Measurement can be continued.
Furthermore, in this configuration, the living body information detection unit 20 only needs to include one light emitting element 21 and one light receiving element 22 respectively, and in addition to that, only one light emitting element 26 for pseudo external light may be provided. The number of light-emitting elements and light-receiving elements can be reduced despite the high pulse detection accuracy compared to those.

さらにまた、本構成では、裏蓋8を光透過材料で形成し、装置本体2内の発光素子21、受光素子22及び疑似外光用発光素子26がこの裏蓋8を介して光L1及びL5を外部に出射し、かつ、外部からの光L2、L3及びL5を受光するように構成したので、上記裏蓋8を導光部材に兼用することができ、導光部材を別途設ける場合に比して部品点数を削減することができる。なお、裏蓋8は必要な周波数範囲を通過させればよく、例えば、赤外光だけを透過する材料で形成してもよい。
また、本構成では、図2に示すように、受光素子22を装置本体10の中心を外した位置に設置することによって装置本体10の重心位置を中心位置からずらすようにしている。これによって、ユーザの腕振り等の運動によってリストバンド3と手首Xとの間に隙間が空き易くなり、外光L3を受光素子22で受光され易くして体動の検出精度を高めることができる。
Furthermore, in this configuration, the back cover 8 is formed of a light transmissive material, and the light emitting element 21, the light receiving element 22, and the pseudo external light emitting element 26 in the apparatus main body 2 are transmitted through the back cover 8 with the lights L 1 and L 5. Since the back cover 8 can also be used as a light guide member, the light guide member can be used as a separate light guide member. Thus, the number of parts can be reduced. The back cover 8 only needs to pass through a necessary frequency range, and may be formed of a material that transmits only infrared light, for example.
In this configuration, as shown in FIG. 2, the light receiving element 22 is installed at a position where the center of the apparatus main body 10 is removed, thereby shifting the center of gravity of the apparatus main body 10 from the center position. As a result, a gap between the wristband 3 and the wrist X can be easily formed by the user's movement such as swinging the arm, and the external light L3 can be easily received by the light receiving element 22 and the detection accuracy of body movement can be improved. .

さらに、本構成では、生体を通った光(光L1の反射光L2)だけの信号成分を取り出す第1フィルタを帯域通過フィルタ部52に構成したので、ノイズ成分に相当する高周波成分を予め除去することが可能である。
また、帯域通過フィルタ部52を通過した第1信号成分と、低域通過フィルタ部53を通過した第2信号成分とを、A/D変換部62に切換出力する入力選択部61を設けたので、これら信号成分の信号処理に使用するA/D変換部62及び演算処理部60(周波数解析部)を各々一つで共用でき、その分、構成部品を低減することができる。
なお、上記実施形態では、発光周波数を2kHzとする場合を例示したが、これに限らない。例えば、発振回路に時計用に一般に使用される水晶発振回路を使用した場合、その分周周波数である2048Hz或いは1024Hzの整数倍の周波数を使用することが好ましい。
Furthermore, in this configuration, since the first filter that extracts only the signal component of the light passing through the living body (the reflected light L2 of the light L1) is configured in the band-pass filter unit 52, the high-frequency component corresponding to the noise component is removed in advance. It is possible.
In addition, since the input selection unit 61 that switches and outputs the first signal component that has passed through the band-pass filter unit 52 and the second signal component that has passed through the low-pass filter unit 53 to the A / D conversion unit 62 is provided. The A / D conversion unit 62 and the arithmetic processing unit 60 (frequency analysis unit) used for signal processing of these signal components can be shared by one, and the number of components can be reduced accordingly.
In the above-described embodiment, the case where the light emission frequency is 2 kHz is exemplified, but the present invention is not limited to this. For example, when a crystal oscillation circuit generally used for a watch is used as the oscillation circuit, it is preferable to use a frequency that is an integer multiple of 2048 Hz or 1024 Hz, which is the frequency division frequency.

<第2実施形態>
図15は第2実施形態に係る脈拍計測装置1のブロック図であり、図16(A)〜(D)は液晶フィルタ31の可変制御を示す図である。
この脈拍計測装置1は、帯域通過フィルタ部52を通過した信号(包絡線信号S3A)専用のA/D変換部62A及び第1周波数解析部(FFT)70Aを備え、かつ、低域通過フィルタ部53を通過した信号(受光信号S4)専用のA/D変換部62B及び第2周波数解析部(FFT)70Bを備える点が、第1実施形態に係る脈拍計測装置1と異なる。これ以外の構成は液晶フィルタ31の可変制御を除いて第1実施形態と略同一の構成であるため、同一の符号を付して示し、重複する説明は省略する。
Second Embodiment
FIG. 15 is a block diagram of the pulse measuring device 1 according to the second embodiment, and FIGS. 16A to 16D are diagrams illustrating variable control of the liquid crystal filter 31.
The pulse measuring device 1 includes an A / D conversion unit 62A dedicated to a signal (envelope signal S3A) that has passed through the band-pass filter unit 52 and a first frequency analysis unit (FFT) 70A, and a low-pass filter unit. The pulse measuring device 1 according to the first embodiment is different from the pulse measuring device 1 according to the first embodiment in that an A / D conversion unit 62B and a second frequency analysis unit (FFT) 70B dedicated to the signal (light reception signal S4) that has passed through 53 are provided. Since the configuration other than this is substantially the same as that of the first embodiment except for the variable control of the liquid crystal filter 31, the same reference numerals are given, and redundant description is omitted.

A/D変換部62Aは、帯域通過フィルタ部52を通過して検波部56から出力される受光信号S3の包絡線信号S3Aを入力し、これをアナログデジタル変換して第1周波数解析部70Aに出力する。そして、第1周波数解析部70Aは、入力した包絡線信号S3Aのデータに対してFFT(高速フーリエ変換)処理を施し、この周波数解析結果を演算処理部60に出力する。   The A / D conversion unit 62A inputs the envelope signal S3A of the received light signal S3 that passes through the bandpass filter unit 52 and is output from the detection unit 56, and analog-digital converts this to the first frequency analysis unit 70A. Output. Then, the first frequency analysis unit 70A performs an FFT (Fast Fourier Transform) process on the input envelope signal S3A data, and outputs the frequency analysis result to the arithmetic processing unit 60.

また、A/D変換部62Bは、低域通過フィルタ部53を通過した受光信号S4を入力し、これをアナログデジタル変換して第2周波数解析部70Bに出力する。そして、第2周波数解析部70Bは、入力した受光信号S4のデータに対してFFT(高速フーリエ変換)処理を施し、この周波数解析結果を演算処理部60に出力する。   The A / D conversion unit 62B receives the received light signal S4 that has passed through the low-pass filter unit 53, converts the received signal S4 from analog to digital, and outputs the converted signal to the second frequency analysis unit 70B. Then, the second frequency analysis unit 70B performs an FFT (Fast Fourier Transform) process on the input data of the received light signal S4, and outputs the frequency analysis result to the arithmetic processing unit 60.

このように、本実施形態では、帯域通過フィルタ部52を通過した信号専用のA/D変換部62A及び第1周波数解析部70Aを設けると共に、低域通過フィルタ部53を通過した信号専用のA/D変換部62A及び第2周波数解析部70Bを備えるので、計算量の多い周波数解析処理を、専用の周波数解析部70A、70Bで行うことができ、演算処理部60(CPU)の負担を軽減することができる。これによって、演算処理部60内のCPUに演算能力が比較的低いものを採用することができ、また、汎用の周波数解析用のICチップを周波数解析部70A、70Bとして使用することができる。   As described above, in the present embodiment, the A / D conversion unit 62A and the first frequency analysis unit 70A dedicated to the signal that has passed through the bandpass filter unit 52 are provided, and the A dedicated to the signal that has passed through the low-pass filter unit 53 is provided. Since the A / D conversion unit 62A and the second frequency analysis unit 70B are provided, the frequency analysis processing with a large amount of calculation can be performed by the dedicated frequency analysis units 70A and 70B, thereby reducing the burden on the arithmetic processing unit 60 (CPU). can do. As a result, it is possible to employ a CPU having a relatively low calculation capability for the CPU in the calculation processing unit 60, and it is possible to use general-purpose frequency analysis IC chips as the frequency analysis units 70A and 70B.

また、この脈拍計測装置1は、図16(A)〜(D)に示すように、液晶フィルタ31の駆動制御を行っており、この駆動制御は外光L3受光時及び疑似外光L5受光時に共通である。詳述すると、制御部は、全周波数平均レベルPAVEを超えるピーク(周波数スペクトル)がでない場合、つまり、受光素子22の受光量が飽和レベルを超えている場合、まず、図16(B)に示すように、液晶フィルタ31の4辺の角部を第2中間調の階調にすると共に、この角部の周囲を第2中間調より光透過度が高い第1中間調の階調にし、外光L3或いは疑似外光L5の透過量を下げる。
次に、制御部は、図16(C)に示すように、上記中間調領域を各々一段階黒い(光非透過度が高い)階調にすると共に、その周囲を第1中間調の階調にし、外光L3或いは疑似外光L5の透過量を更に下げる。そして、それでも受光量が飽和レベルを超えた状態が継続する場合は、図16(D)に示すように、上記中間調領域を各々一段階黒い階調にすると共に、受光素子22の光L2が入射する中央領域以外の白であった領域を一段階黒い階調にする。
In addition, as shown in FIGS. 16A to 16D, the pulse measuring device 1 performs drive control of the liquid crystal filter 31, and this drive control is performed when the external light L3 is received and the pseudo external light L5 is received. It is common. More specifically, when there is no peak (frequency spectrum) that exceeds the total frequency average level PAVE, that is, when the amount of light received by the light receiving element 22 exceeds the saturation level, first, the control unit is shown in FIG. As described above, the corner portions of the four sides of the liquid crystal filter 31 are set to the second halftone gradation, and the periphery of the corner portion is set to the first halftone gradation having a light transmittance higher than that of the second halftone. The transmission amount of the light L3 or the pseudo external light L5 is reduced.
Next, as shown in FIG. 16C, the control unit makes each of the halftone areas one level black (high light opacity), and surrounds the first halftone with a surrounding area. Then, the transmission amount of the external light L3 or the pseudo external light L5 is further reduced. If the state in which the amount of received light continues to exceed the saturation level still continues, the halftone areas are each made one level black gradation as shown in FIG. 16D, and the light L2 of the light receiving element 22 is The white area other than the incident central area is made a one-step black gradation.

このようにして、受光素子22の光L2が入射する中央領域(第1領域)を除く領域(第2領域)の光透過量を多段階で下げることにより、発光素子21の光L2の透過量を下げることなく、外光L3及び疑似外光L5の透過量を少しずつ下げることができる。これにより、強い外光L3による受光素子22の飽和を回避しつつ、脈動情報を含む反射光L2を適正レベルで受光させることができ、正確な脈拍計測を継続することが可能である。なお、この液晶フィルタ31の駆動制御を第1実施形態の脈拍計測装置1に適用してもよく、また、第2実施形態の脈拍計測装置1に第1実施形態の液晶フィルタ31の駆動制御を適用してもよいことは勿論である。   In this way, the light transmission amount of the light L2 of the light emitting element 21 is reduced in multiple steps by reducing the light transmission amount of the region (second region) excluding the central region (first region) where the light L2 of the light receiving element 22 is incident. The amount of transmission of the external light L3 and the pseudo external light L5 can be reduced little by little without lowering. Accordingly, it is possible to receive the reflected light L2 including pulsation information at an appropriate level while avoiding saturation of the light receiving element 22 due to strong external light L3, and it is possible to continue accurate pulse measurement. The driving control of the liquid crystal filter 31 may be applied to the pulse measuring device 1 of the first embodiment, and the driving control of the liquid crystal filter 31 of the first embodiment is applied to the pulse measuring device 1 of the second embodiment. Of course, it may be applied.

<第3実施形態>
図17は第3実施形態に係る脈拍計測装置1のブロック図であり、図18(A)〜(H)は液晶フィルタ31の可変制御を示す図である。
この脈拍計測装置1は、ユーザの指(検出部位)X2に向けて発光素子21の光L1を照射し、その反射光L2を受光素子22で受光する光学式の脈拍計測装置であり、増幅率変更部54及び57を備えない点が、上記第2実施形態に係る脈拍計測装置1と異なる。それ以外の構成は、液晶フィルタ31の可変制御を除いて第2実施形態と略同一の構成であるため、同一の符号を付して示し、重複する説明は省略する。
この脈拍計測装置1においては、増幅部55及び58の増幅率が予め定めた一定値に固定される。この固定値は、様々な環境において脈波を計測した場合に最も適切であった値に設定される。この構成によれば、増幅部55及び58の増幅率を変更する増幅率変更部等を備えない分、上記第1実施形態及び第2実施形態よりも構成部品を低減することができ、また、演算処理部60(CPU)の負担を軽減することができる。
<Third Embodiment>
FIG. 17 is a block diagram of the pulse measuring device 1 according to the third embodiment, and FIGS. 18A to 18H are diagrams showing variable control of the liquid crystal filter 31. FIG.
This pulse measuring device 1 is an optical pulse measuring device that irradiates the user's finger (detection site) X2 with the light L1 of the light emitting element 21 and receives the reflected light L2 with the light receiving element 22, and has an amplification factor. The point which is not provided with the change parts 54 and 57 differs from the pulse measuring device 1 which concerns on the said 2nd Embodiment. Since the other configuration is substantially the same as that of the second embodiment except for the variable control of the liquid crystal filter 31, the same reference numerals are given, and redundant description is omitted.
In this pulse measuring device 1, the amplification factors 55 and 58 are fixed to a predetermined constant value. This fixed value is set to a value that is most appropriate when pulse waves are measured in various environments. According to this configuration, it is possible to reduce the number of components compared to the first embodiment and the second embodiment because the amplification factor changing unit or the like for changing the amplification factor of the amplification units 55 and 58 is not provided. The burden on the arithmetic processing unit 60 (CPU) can be reduced.

また、この脈拍計測装置1は、図18(A)〜(H)に示すように、液晶フィルタ31の駆動制御を行っており、この駆動制御は外光L3受光時を示している。これら図に示すように、制御部は、全周波数平均レベルPAVEを超えるピーク(周波数スペクトル)がでない場合、つまり、受光素子22の受光量が飽和レベルを超える場合、外光L3の入射領域に相当する3時側から透過量を徐々に下げる。具体的には、制御部は、まず、図18(B)に示すように、3時側の2つの角部を第2中間調の階調にすると共に、この2つの角部の周囲(略9時側)を第2中間調より光透過度が高い第1中間調の階調にし、外光L3の透過量を下げる。
次に、制御部は、図18(C)に示すように、上記中間調領域を各々一段階黒い(光非透過度が高い)階調にすると共に、その周囲を第1中間調の階調にし、外光L3の透過量を更に下げる。そして、それでも受光量が飽和レベルを超えた状態が継続する場合は、図18(D)〜(H)に示すように、上記中間調領域を各々一段階黒い階調にすると共に、その略9時側を第1中間調の階調にし、外光L3の透過量を下げるという表示変更を順次行う。
In addition, as shown in FIGS. 18A to 18H, the pulse measuring device 1 performs drive control of the liquid crystal filter 31, and this drive control indicates when the external light L3 is received. As shown in these figures, the control unit corresponds to the incident region of the external light L3 when there is no peak (frequency spectrum) exceeding the total frequency average level PAVE, that is, when the amount of light received by the light receiving element 22 exceeds the saturation level. The transmission amount is gradually reduced from the 3 o'clock side. Specifically, as shown in FIG. 18B, the control unit first changes the two corners on the 3 o'clock side to the second halftone gradation and surrounds the two corners (substantially). 9 o'clock side) is set to the first halftone gradation having a light transmittance higher than that of the second halftone, and the transmission amount of the external light L3 is reduced.
Next, as shown in FIG. 18C, the control unit makes each of the halftone areas a one-step black (high light opacity) gradation and surrounds the first halftone gradation around it. The amount of transmission of the external light L3 is further reduced. If the state in which the amount of received light continues to exceed the saturation level continues, the halftone area is set to a one-step black gradation, as shown in FIGS. The display is sequentially changed so that the hour side is set to the first halftone gradation and the transmission amount of the external light L3 is reduced.

すなわち、外光L3の入射領域に相当する3時側から段階的に階調を上げることによって、受光素子22から照射された光L1の反射光L2の入射領域に相当する中央領域に光透過領域を残しつつ黒領域(非透過領域)及び中間調領域を徐々に増やし、発光素子21の光L2の透過量を殆ど下げることなく、外光L3の透過量を徐々に下げることができる。従って、強い外光L3による受光素子22の飽和を回避しつつ、脈動情報を含む反射光L2を適正レベルで受光させることができ、正確な脈拍計測を継続することができる。
この場合、第1実施形態の黒領域だけを徐々に増やす方法に比して、外光L3の透過量をより細かく徐々に下げることができるので、第1実施形態よりも、強い外光L3による受光素子22の飽和を回避しつつ、脈動情報を含む反射光L2をより適正レベルで受光させることが可能になり、より正確な脈拍計測を継続することが可能になる。
That is, by gradually increasing the gradation from the 3 o'clock side corresponding to the incident region of the external light L3, a light transmitting region is provided in the central region corresponding to the incident region of the reflected light L2 of the light L1 emitted from the light receiving element 22. The black area (non-transmission area) and the halftone area are gradually increased while leaving the light amount, and the transmission amount of the external light L3 can be gradually reduced without substantially reducing the transmission amount of the light L2 of the light emitting element 21. Accordingly, it is possible to receive the reflected light L2 including pulsation information at an appropriate level while avoiding saturation of the light receiving element 22 due to the strong external light L3, and it is possible to continue accurate pulse measurement.
In this case, compared with the method of gradually increasing only the black region of the first embodiment, the amount of transmission of the external light L3 can be gradually reduced more finely. Therefore, the external light L3 is stronger than that of the first embodiment. While avoiding saturation of the light receiving element 22, the reflected light L2 including the pulsation information can be received at a more appropriate level, and more accurate pulse measurement can be continued.

一方、疑似外光L5を照射している場合には、図示は省略するが、制御部は、疑似外光L5の入射領域に相当する9時側から段階的に階調を上げるように液晶フィルタ31の駆動制御を行う。つまり、図18(A)〜(D)を各々左右対称で行うように駆動制御を行う。これにより、第1実施形態よりも疑似外光L5の透過量をより細かく徐々に下げることができ、疑似外光L5による受光素子22の飽和を回避しつつ、脈動情報を含む反射光L2をより適正レベルで受光させることが可能になり、正確な脈拍計測を継続することができる。
なお、この液晶フィルタ31の駆動制御についても、第1又は第2実施形態の脈拍計測装置1に適用してもよいし、また、この第3実施形態の脈拍計測装置1に第1又は第2実施形態の液晶フィルタ31の駆動制御を適用してもよいことは勿論である。
On the other hand, when the pseudo external light L5 is emitted, although not shown in the drawing, the control unit performs a liquid crystal filter so that the gradation is gradually increased from the 9 o'clock side corresponding to the incident area of the pseudo external light L5. 31 is controlled. That is, drive control is performed so that FIGS. 18A to 18D are performed symmetrically. As a result, the amount of transmission of the pseudo external light L5 can be gradually and more gradually reduced than in the first embodiment, and the reflected light L2 including pulsation information can be further reduced while avoiding saturation of the light receiving element 22 by the pseudo external light L5. Light can be received at an appropriate level, and accurate pulse measurement can be continued.
The drive control of the liquid crystal filter 31 may also be applied to the pulse measuring device 1 of the first or second embodiment, or the first or second of the pulse measuring device 1 of the third embodiment. Of course, the drive control of the liquid crystal filter 31 of the embodiment may be applied.

また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。例えば、上述の実施形態では、第1周波数範囲の解析結果から全周波数平均レベルPAVEを求め、この全周波数平均レベルPAVEを基準に所定レベルのピークが存在するか否かを判定することによって、受光素子22が飽和しているか否かを検出する場合について説明したが、これに限らず、第2周波数範囲の解析結果から同様の処理を行って受光素子22が飽和しているか否かを検出してもよい。
但し、後者の脈波成分を含まない第2周波数範囲の情報から受光素子22の飽和を判定するよりは、前者の脈波成分を含む第1周波数範囲の情報から受光素子22の飽和を判定する方が好ましい。その理由は、前者は脈波成分に相当すると予想されるピークの有無を直接判定するため、脈波成分を正確に検出する観点から効率的であると考えられるからである。
Further, the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention. For example, in the above-described embodiment, the average frequency level PAVE is obtained from the analysis result of the first frequency range, and it is determined whether or not a predetermined level peak exists based on the total frequency average level PAVE. The case of detecting whether or not the element 22 is saturated has been described. However, the present invention is not limited to this, and the same processing is performed from the analysis result of the second frequency range to detect whether or not the light receiving element 22 is saturated. May be.
However, the saturation of the light receiving element 22 is determined from the information of the first frequency range including the former pulse wave component rather than the saturation of the light receiving element 22 from the information of the second frequency range not including the latter pulse wave component. Is preferred. The reason is that the former is considered to be efficient from the viewpoint of accurately detecting the pulse wave component because it directly determines the presence or absence of a peak that is expected to correspond to the pulse wave component.

また、上記の周波数解析結果を用いて受光素子22の飽和を検出する方法に限らず、例えば、受光素子22の出力レベル(受光レベル)或いは平均出力レベル(受光平均レベル)に基づいて受光素子22が飽和しているか否かを検出する等の他の方法を適用してもよい。
また、上述の実施形態においては、光透過量可変フィルタを液晶フィルタ31で構成する場合について述べたが、これに限らず、透過する光を波長や偏光で制限可能な他の光学フィルタや光学シャッタ等で構成してもよい。但し、液晶フィルタは消費電流が少ない点、及び、メカ機構を必要としないため小型できるといった点で液晶フィルタを採用することが好ましい。
Further, the method is not limited to the method of detecting the saturation of the light receiving element 22 using the frequency analysis result described above. For example, the light receiving element 22 is based on the output level (light receiving level) or the average output level (light receiving average level) of the light receiving element 22. Other methods such as detecting whether or not is saturated may be applied.
In the above-described embodiment, the case where the light transmission amount variable filter is configured by the liquid crystal filter 31 has been described. However, the present invention is not limited to this, and other optical filters and optical shutters that can limit the transmitted light by wavelength or polarization. Or the like. However, the liquid crystal filter is preferably employed in that it consumes less current and can be downsized because it does not require a mechanical mechanism.

また、上述の実施形態では、液晶フィルタ31等の光透過量可変フィルタの制御や脈拍計測処理を実行するための制御プログラムを脈拍計測装置1内に予め記憶しておく場合について説明したが、この制御プログラムを、磁気記録媒体、光記録媒体、半導体記録媒体等のコンピュータが読み取り可能な記録媒体に格納し、コンピュータが記録媒体からこの制御プログラムを読み取って実行するようにしてもよい。また、この制御プログラムを通信ネットワーク上の配信サーバ等からダウンロードできるようにしてもよい。
また、上述の実施形態では、本発明を腕時計型の脈拍計測装置に適用する場合について説明したが、これに限らない。例えば、発光素子21と受光素子22とを備えた光学式センサユニット(生体情報検出部に相当)を人や動物等の生体の血流部位に取り付け、それ以外の構成は、別体とした脈拍計測装置等に広く適用が可能である。また、脈拍検出の血流部位は、手首、指に限らず、耳部等でもよい。さらに、脈拍計測装置に限らず、体動(体動ピッチ等)の検出結果を出力(表示等)する体動計測装置等の光学式の生体情報計測装置に広く適用が可能である。
Moreover, although the above-mentioned embodiment demonstrated the case where the control program for performing control of light transmission variable filters, such as the liquid crystal filter 31, and a pulse measurement process was memorize | stored in the pulse measuring device 1 previously, The control program may be stored in a computer-readable recording medium such as a magnetic recording medium, an optical recording medium, or a semiconductor recording medium, and the computer may read the control program from the recording medium and execute it. The control program may be downloaded from a distribution server on the communication network.
Moreover, although the above-mentioned embodiment demonstrated the case where this invention was applied to a wristwatch-type pulse measuring device, it is not restricted to this. For example, an optical sensor unit (corresponding to a biological information detection unit) provided with a light emitting element 21 and a light receiving element 22 is attached to a blood flow site of a living body such as a person or an animal, and the other configurations are separate pulses. It can be widely applied to measuring devices and the like. In addition, the blood flow site for pulse detection is not limited to the wrist and fingers, but may be the ear. Furthermore, the present invention is not limited to the pulse measurement device, and can be widely applied to optical biological information measurement devices such as a body motion measurement device that outputs (displays) a detection result of body motion (body motion pitch or the like).

本発明の第1実施形態に係る脈拍計測装置を示す図である。It is a figure which shows the pulse measuring device which concerns on 1st Embodiment of this invention. 脈拍計測装置の内部構造を示す図である。It is a figure which shows the internal structure of a pulse measuring device. (A)は液晶フィルタのレイアウトを示す図であり、(B)は液晶フィルタの断面構造を示す図である。(A) is a figure which shows the layout of a liquid crystal filter, (B) is a figure which shows the cross-section of a liquid crystal filter. (A)は液晶フィルタのTFT層の平面図であり、(B)はTFT層を周辺構成と共に示す斜視図であり、(C)はTFT層の一部拡大図である。(A) is a plan view of the TFT layer of the liquid crystal filter, (B) is a perspective view showing the TFT layer together with its peripheral configuration, and (C) is a partially enlarged view of the TFT layer. TFT層の電極構成を示す図である。It is a figure which shows the electrode structure of a TFT layer. 液晶フィルタの駆動波形の一例を示す図である。It is a figure which shows an example of the drive waveform of a liquid crystal filter. 脈拍計測装置のブロック図である。It is a block diagram of a pulse measuring device. 脈拍計測装置の回路構成を示す図である。It is a figure which shows the circuit structure of a pulse measuring device. 脈拍計測時の主動作を示すフローチャートである。It is a flowchart which shows the main operation | movement at the time of a pulse measurement. (A)〜(D)は脈拍計測装置における各部の信号波形を示す図である。(A)-(D) are figures which show the signal waveform of each part in a pulse measuring device. (A)は帯域通過フィルタ部を通過した信号の周波数解析結果を示す図であり、(B)は低域通過フィルタ部を通過した信号の周波数解析結果を示す図である。(A) is a figure which shows the frequency analysis result of the signal which passed the band pass filter part, (B) is a figure which shows the frequency analysis result of the signal which passed the low-pass filter part. 液晶フィルタの光透過量可変制御を示すフローチャートである。It is a flowchart which shows the light transmission amount variable control of a liquid crystal filter. (A)〜(D)は外光受光時の液晶フィルタの表示状態を各々示す図である。(A)-(D) is a figure which respectively shows the display state of the liquid crystal filter at the time of external light light reception. (A)〜(D)は疑似外光受光時の液晶フィルタの表示状態を各々示す図である。(A)-(D) is a figure which respectively shows the display state of the liquid crystal filter at the time of pseudo external light light reception. 本発明の第2実施形態に係る脈拍計測装置のブロック図である。It is a block diagram of the pulse measuring device concerning a 2nd embodiment of the present invention. (A)〜(D)は液晶フィルタの表示状態を各々示す図である。(A)-(D) are figures which respectively show the display state of a liquid crystal filter. 本発明の第3実施形態に係る脈拍計測装置のブロック図である。It is a block diagram of the pulse measuring device concerning a 3rd embodiment of the present invention. (A)〜(H)は外光受光時の液晶フィルタの表示状態を各々示す図である。(A)-(H) are the figures which respectively show the display state of the liquid crystal filter at the time of external light light reception.

符号の説明Explanation of symbols

1…脈拍計測装置(生体情報計測装置)、2…装置本体、3…リストバンド、5…表示部、7…外装ケース、8…裏蓋、20…生体情報検出部、21…発光素子、22…受光素子、31…液晶フィルタ、32…遮光部材、40…フィルタ駆動部、50…発光制御部、51…電流電圧変換部、52…帯域通過フィルタ部(第1フィルタ)、53…低域通過フィルタ部(第2フィルタ)、54、57…増幅率変更部、55、58…増幅部、56…検波部、60…演算処理部(生体情報特定部、周波数解析部、脈拍数特定部、制御部、光透過量制御部)、61…入力選択部、62…A/D変換部、f1〜f6…周波数スペクトル。   DESCRIPTION OF SYMBOLS 1 ... Pulse measuring device (biological information measuring device), 2 ... Apparatus main body, 3 ... Wristband, 5 ... Display part, 7 ... Outer case, 8 ... Back cover, 20 ... Biological information detection part, 21 ... Light emitting element, 22 DESCRIPTION OF SYMBOLS ... Light receiving element, 31 ... Liquid crystal filter, 32 ... Light shielding member, 40 ... Filter drive part, 50 ... Light emission control part, 51 ... Current-voltage conversion part, 52 ... Band-pass filter part (1st filter), 53 ... Low-pass Filter unit (second filter), 54, 57 ... amplification factor changing unit, 55, 58 ... amplifying unit, 56 ... detecting unit, 60 ... calculation processing unit (biological information specifying unit, frequency analyzing unit, pulse rate specifying unit, control) Part, light transmission amount control part), 61 ... input selection part, 62 ... A / D conversion part, f1 to f6 ... frequency spectrum.

Claims (12)

生体の検出部位に向けて光を照射する発光素子と、
前記生体を介して前記光を受光して受光信号を生成する受光素子と、
前記受光素子に入射する光の透過量を増減させる光透過量可変フィルタと、
前記光透過量可変フィルタの光透過量を制御する光透過量制御部と、
前記受光信号のうち、前記光の発光周波数を含む第1周波数範囲の第1信号成分の包絡線の波形データに周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第1周波数範囲及び脈拍数相当の周波数より低い第2周波数範囲の第2信号成分の波形データに周波数解析を施して周波数スペクトルを特定し、前記第1信号成分に含まれる周波数スペクトルと、前記第2信号成分に含まれない周波数スペクトルとに基づいて、脈拍数に対応する脈動成分を特定する生体情報特定部とを備え、
前記生体情報特定部は、前記第1信号成分の包絡線の波形データから得た前記複数の周波数スペクトルと、前記第2信号成分の波形データから得た前記周波数スペクトルとの両方に含まれる同一周波数の周波数スペクトルを特定する処理を実行する周波数解析部を有し、
前記生体情報特定部が前記同一周波数の周波数スペクトルを特定できない場合に、前記受光素子が前記生体の体動に連動して受光可能な疑似外光を照射する疑似外光照射部を有することを特徴とする生体情報計測装置。
A light emitting element that emits light toward a detection site of a living body;
A light receiving element that receives the light through the living body and generates a light reception signal;
A light transmission variable filter that increases or decreases the transmission of light incident on the light receiving element;
A light transmission amount control unit for controlling the light transmission amount of the light transmission amount variable filter;
Among the received light signals, a frequency analysis is performed on the waveform data of the envelope of the first signal component in the first frequency range including the light emission frequency of the light to identify a plurality of frequency spectra, and the first frequency range and pulse Frequency analysis is performed on the waveform data of the second signal component in the second frequency range lower than the frequency corresponding to the number to identify the frequency spectrum, and the frequency spectrum included in the first signal component and the second signal component include A biological information specifying unit that specifies a pulsation component corresponding to the pulse rate based on the frequency spectrum that is not ,
The biological information specifying unit includes the same frequency included in both the plurality of frequency spectra obtained from the waveform data of the envelope of the first signal component and the frequency spectrum obtained from the waveform data of the second signal component A frequency analysis unit that executes processing for specifying the frequency spectrum of
When the biological information specifying unit cannot specify the frequency spectrum of the same frequency, the light receiving element has a pseudo external light irradiating unit that emits pseudo external light that can be received in conjunction with body movement of the living body. A biological information measuring device.
請求項1に記載の生体情報計測装置において、
前記光透過量制御部は、前記受光素子の受光量が飽和レベル以下になるまで、前記光透過量可変フィルタの光透過量を最大透過状態よりも下げることを特徴とする生体情報計測装置。
The biological information measuring apparatus according to claim 1,
The biological information measurement device, wherein the light transmission amount control unit lowers the light transmission amount of the variable light transmission amount filter from the maximum transmission state until the light reception amount of the light receiving element becomes a saturation level or less.
請求項1又は2に記載の生体情報計測装置において、
前記生体情報特定部は、前記第1信号成分の包絡線の波形データから得た前記複数の周波数スペクトルと、前記第2信号成分の波形データから得た前記周波数スペクトルとの両方に含まれる同一周波数の周波数スペクトルを特定する処理を実行する周波数解析部と、
前記周波数解析部が前記同一周波数の周波数スペクトルを特定した場合に、前記第1信号成分に含まれる前記周波数スペクトルのうち、前記同一周波数の周波数スペクトルを除く周波数スペクトルから脈拍数に対応する脈動成分に相当する脈波スペクトルを特定し、当該脈波スペクトルから脈拍数を特定する脈拍数特定部とを有することを特徴とする生体情報計測装置。
The biological information measuring device according to claim 1 or 2,
The biological information specifying unit includes the same frequency included in both the plurality of frequency spectra obtained from the waveform data of the envelope of the first signal component and the frequency spectrum obtained from the waveform data of the second signal component A frequency analysis unit that executes processing for specifying the frequency spectrum of
When the frequency analysis unit specifies the frequency spectrum of the same frequency, the pulsation component corresponding to the pulse rate from the frequency spectrum excluding the frequency spectrum of the same frequency among the frequency spectrum included in the first signal component. A biological information measuring apparatus comprising: a pulse rate specifying unit that specifies a corresponding pulse wave spectrum and specifies a pulse rate from the pulse wave spectrum.
請求項3に記載の生体情報計測装置において、
前記光透過量制御部は、前記周波数解析部による前記第1信号成分の周波数解析結果から受光平均レベルを求め、当該受光平均レベルを基準に、前記周波数解析結果内に所定レベルのピークが存在するか否かを判定し、前記ピークが存在するまで、前記光透過量可変フィルタの光透過量を最大透過状態よりも下げることを特徴とする生体情報計測装置。
The biological information measuring device according to claim 3,
The light transmission amount control unit obtains a light reception average level from the frequency analysis result of the first signal component by the frequency analysis unit, and a peak of a predetermined level exists in the frequency analysis result based on the light reception average level. Or not, and the light transmission amount of the light transmission amount variable filter is lowered below the maximum transmission state until the peak exists.
請求項2乃至4のいずれか一項に記載の生体情報計測装置において、
前記生体情報特定部は、前記受光信号のうちの前記生体の体動周波数範囲を通過させて前記第2周波数範囲の第2信号成分を抽出する低域通過フィルタを有することを特徴とする生体情報計測装置。
The biological information measuring device according to any one of claims 2 to 4,
The biological information specifying unit includes a low-pass filter that extracts a second signal component of the second frequency range by passing through the body motion frequency range of the living body in the received light signal. Measuring device.
請求項2乃至5のいずれか一項に記載の生体情報計測装置において、
前記光透過量制御部は、前記光透過量可変フィルタのうち、前記発光素子の光を入射する第1領域と異なる第2領域の光透過量を最大透過状態よりも下げることを特徴とする生体情報計測装置。
In the biological information measuring device according to any one of claims 2 to 5,
The light transmission amount control unit lowers the light transmission amount of a second region different from the first region where the light of the light emitting element is incident from the light transmission amount variable filter from a maximum transmission state. Information measuring device.
請求項6に記載の生体情報計測装置において、
前記光透過量制御部は、前記光透過量可変フィルタの前記第2領域に対し、中間調領域或いは非透過領域を増やすことを特徴とする生体情報計測装置。
The biological information measuring apparatus according to claim 6,
The biological transmission measuring device, wherein the light transmission amount control unit increases a halftone region or a non-transmission region with respect to the second region of the light transmission amount variable filter.
請求項6又は7に記載の生体情報計測装置において、
前記第1領域を前記光透過量可変フィルタの平面視中央領域にしたことを特徴とする生体情報計測装置。
In the biological information measuring device according to claim 6 or 7,
The biological information measuring apparatus according to claim 1, wherein the first region is a central region in plan view of the light transmission amount variable filter.
請求項1乃至8のいずれか一項に記載の生体情報計測装置において、
前記光透過量可変フィルタは、透過型液晶パネルであることを特徴とする生体情報計測装置。
In the biological information measuring device according to any one of claims 1 to 8,
The biological information measuring device, wherein the light transmission variable filter is a transmissive liquid crystal panel.
請求項1乃至9のいずれか一項に記載の生体情報計測装置において、
前記生体情報特定部は、前記受光信号のうちの前記光の発光周波数を略中心周波数とする周波数範囲を通過させて前記第1周波数範囲の第1信号成分を抽出する帯域通過フィルタを有することを特徴とする生体情報計測装置。
In the biological information measuring device according to any one of claims 1 to 9,
The biological information specifying unit includes a band-pass filter that extracts a first signal component in the first frequency range by passing a frequency range having a light emission frequency of the light of the received light signal as a substantially central frequency. A biological information measuring device as a feature.
請求項1乃至10のいずれか一項に記載の生体情報計測装置において、In the biological information measuring device according to any one of claims 1 to 10,
前記発光素子は、単一ピーク波長の赤外光又は単一ピーク波長の赤色光を照射することを特徴とする生体情報計測装置。  The biological information measuring apparatus, wherein the light emitting element emits infrared light having a single peak wavelength or red light having a single peak wavelength.
生体の検出部位に向けて光を照射し、Irradiate light toward the detection part of the living body,
受光素子により前記生体を介して前記光を受光して受光信号を生成すると共に、光透過量制御部により前記受光素子に入射する光が透過する光透過量可変フィルタの光透過量を制御し、  The light receiving element receives the light via the living body and generates a light reception signal, and the light transmission amount control unit controls the light transmission amount of the light transmission variable filter through which the light incident on the light receiving element is transmitted.
前記受光信号のうち、前記光の発光周波数を含む第1周波数範囲の第1信号成分の包絡線の波形データに周波数解析を施して複数の周波数スペクトルを特定すると共に、前記第1周波数範囲及び脈拍数相当の周波数より低い第2周波数範囲の第2信号成分の波形データに周波数解析を施して周波数スペクトルを特定し、前記第1信号成分に含まれる周波数スペクトルと、前記第2信号成分に含まれない周波数スペクトルとに基づいて、脈拍数に対応する脈動成分を特定する処理を実行し、  Among the received light signals, a frequency analysis is performed on the waveform data of the envelope of the first signal component in the first frequency range including the light emission frequency of the light to identify a plurality of frequency spectra, and the first frequency range and pulse Frequency analysis is performed on the waveform data of the second signal component in the second frequency range lower than the frequency corresponding to the number to identify the frequency spectrum, and the frequency spectrum included in the first signal component and the second signal component include Based on the frequency spectrum that does not exist, execute the process to identify the pulsation component corresponding to the pulse rate,
前記脈拍数に対応する脈動成分を特定する処理では、前記第1信号成分の包絡線の波形データから得た前記複数の周波数スペクトルと、前記第2信号成分の波形データから得た前記周波数スペクトルとの両方に含まれる同一周波数の周波数スペクトルを特定する処理を実行し、  In the process of identifying the pulsation component corresponding to the pulse rate, the plurality of frequency spectra obtained from the waveform data of the envelope of the first signal component, and the frequency spectrum obtained from the waveform data of the second signal component To identify the frequency spectrum of the same frequency contained in both
前記同一周波数の周波数スペクトルを特定できない場合に、疑似外光照射部により、前記受光素子が前記生体の体動に連動して受光可能な疑似外光を照射することを特徴とする生体情報計測装置の制御方法。  When the frequency spectrum of the same frequency cannot be specified, the living body information measuring device, wherein the light receiving element emits the pseudo outside light that can be received in conjunction with the body movement of the living body by the pseudo outside light irradiation unit. Control method.
JP2007150236A 2007-06-06 2007-06-06 Biological information measuring apparatus and control method thereof Expired - Fee Related JP5374835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150236A JP5374835B2 (en) 2007-06-06 2007-06-06 Biological information measuring apparatus and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150236A JP5374835B2 (en) 2007-06-06 2007-06-06 Biological information measuring apparatus and control method thereof

Publications (3)

Publication Number Publication Date
JP2008301934A JP2008301934A (en) 2008-12-18
JP2008301934A5 JP2008301934A5 (en) 2010-06-24
JP5374835B2 true JP5374835B2 (en) 2013-12-25

Family

ID=40231175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150236A Expired - Fee Related JP5374835B2 (en) 2007-06-06 2007-06-06 Biological information measuring apparatus and control method thereof

Country Status (1)

Country Link
JP (1) JP5374835B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742104B2 (en) * 2010-03-25 2015-07-01 セイコーエプソン株式会社 Optical device and biological information detector
JP5682200B2 (en) * 2010-09-28 2015-03-11 セイコーエプソン株式会社 Biological information detector and biological information measuring device
JP5909999B2 (en) * 2011-11-02 2016-04-27 セイコーエプソン株式会社 Pulse wave signal processing device and pulse wave measuring device
ITMI20130104A1 (en) * 2013-01-24 2014-07-25 Empatica Srl DEVICE, SYSTEM AND METHOD FOR THE DETECTION AND TREATMENT OF HEART SIGNALS
US11134854B2 (en) 2014-03-06 2021-10-05 Koninklijke Philips N.V. Physiological property determination apparatus
JP5862754B2 (en) * 2014-12-11 2016-02-16 セイコーエプソン株式会社 Pulse sensor and pulse meter
KR102491852B1 (en) * 2015-08-28 2023-01-26 삼성전자주식회사 Optical sensor and method of operating of the optical sensor
JP6569539B2 (en) * 2016-01-13 2019-09-04 株式会社島津製作所 Imaging device
US11116454B2 (en) 2018-07-19 2021-09-14 Shimadzu Corporation Imaging device and method
CN111820912B (en) * 2019-04-17 2022-06-07 深圳市理邦精密仪器股份有限公司 Medical equipment and display method of light intensity of medical equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518889U (en) * 1974-07-05 1976-01-22
JPS5376697U (en) * 1976-11-30 1978-06-26
JPS60135029A (en) * 1983-12-23 1985-07-18 松下電工株式会社 Blood stream and pulse detection apparatus
JPS63275327A (en) * 1987-05-08 1988-11-14 Hamamatsu Photonics Kk Diagnostic apparatus
JPH01288230A (en) * 1988-05-14 1989-11-20 Matsushita Electric Works Ltd Pulse detector
US5301680A (en) * 1992-12-09 1994-04-12 Hygeia Biomedical Research Inc. Apparatus and method for the diagnosis of labor
IL145445A (en) * 2001-09-13 2006-12-31 Conmed Corp Signal processing method and device for signal-to-noise improvement
JP3770204B2 (en) * 2002-05-22 2006-04-26 株式会社デンソー Pulse wave analysis device and biological condition monitoring device
JP4196209B2 (en) * 2003-06-30 2008-12-17 日本光電工業株式会社 Signal processing method and pulse photometer using the same
JP4614047B2 (en) * 2004-03-29 2011-01-19 日本光電工業株式会社 Blood light absorption substance concentration measuring device.
JP3940150B2 (en) * 2005-03-03 2007-07-04 シチズンホールディングス株式会社 Caffres electronic blood pressure monitor
JP2006263356A (en) * 2005-03-25 2006-10-05 Konica Minolta Sensing Inc Bioinformation measuring apparatus
JP4830693B2 (en) * 2005-08-24 2011-12-07 日本光電工業株式会社 Oxygen saturation measuring apparatus and measuring method
JP2007054471A (en) * 2005-08-26 2007-03-08 Nippon Koden Corp Pulse rate measuring apparatus and pulse rate measuring method
US8655436B2 (en) * 2005-09-27 2014-02-18 Citizen Holdings Co., Ltd. Heart rate meter and heart beat detecting method

Also Published As

Publication number Publication date
JP2008301934A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP5374835B2 (en) Biological information measuring apparatus and control method thereof
AU2015287796B2 (en) Positioning a wearable device for data collection
US12004845B2 (en) Pulse spectroscopy
JP3969412B2 (en) Biological information measuring device
CN107492317B (en) Display device
JP2004261366A (en) Biological state detecting device, sensor, and method of detecting biological state
JPH08289876A (en) Pulse meter
WO1999012469A1 (en) Reflection photodetector and biological information measuring instrument
US11337615B2 (en) Smart wristband for multiparameter physiological monitoring
CN104135917A (en) Pulse monitor and program
JP5098380B2 (en) Pulse measuring device and control method thereof
JP2006212161A (en) Biological information measuring system, biological information measuring apparatus and data processor
JPWO2016103648A1 (en) Sensor, sensor device and sensor system
EP3613051A1 (en) Heartrate tracking techniques
CN110037669A (en) Wearable device and pulse detection method for pulse detection
JP2008220722A (en) Pulse measuring apparatus and its controlling method
JP2020018430A (en) Biological information measuring device
CN202458381U (en) Finger-clamping blood oxygen saturation measuring device having the capability of automatic power on/off and provided with pedometer
CN113729669A (en) PPG pulse wave simulator
JP5239370B2 (en) Biological information processing apparatus and biological information processing method
JP2005125106A (en) Biological information measuring device and pulse wave measuring apparatus
JP3558428B2 (en) Biological information measurement device
US20220249021A1 (en) Smart wristband for multiparameter physiological monitoring
JP7380659B2 (en) Electronic equipment, electronic clocks, information output methods and programs
JP7390125B2 (en) Biological information processing device and its control method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees