JP5098195B2 - Carbon material, composite material, method for producing carbon material, and method for producing composite material - Google Patents

Carbon material, composite material, method for producing carbon material, and method for producing composite material Download PDF

Info

Publication number
JP5098195B2
JP5098195B2 JP2006083583A JP2006083583A JP5098195B2 JP 5098195 B2 JP5098195 B2 JP 5098195B2 JP 2006083583 A JP2006083583 A JP 2006083583A JP 2006083583 A JP2006083583 A JP 2006083583A JP 5098195 B2 JP5098195 B2 JP 5098195B2
Authority
JP
Japan
Prior art keywords
nitrogen
carbon
carbon material
molecular skeleton
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006083583A
Other languages
Japanese (ja)
Other versions
JP2007254231A (en
Inventor
康彦 大澤
環 三浦
泰成 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006083583A priority Critical patent/JP5098195B2/en
Publication of JP2007254231A publication Critical patent/JP2007254231A/en
Application granted granted Critical
Publication of JP5098195B2 publication Critical patent/JP5098195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

この発明は、炭素材料、複合材料、炭素材料の製造方法及び複合材料の製造方法に関する。   The present invention relates to a carbon material, a composite material, a carbon material manufacturing method, and a composite material manufacturing method.

近年、炭素材料はフラーレンやナノチューブの発見以来、物質としての興味ばかりでなく、応用の観点から大きな関心が高まっている。中でも特に、炭素材料は環境・エネルギー問題に関する素子の重要な材料と考えられている。例えば、携帯電話を初めとしたモバイル機器の電源に用いられているリチウムイオン電池の負極は、炭素材料があって初めて実用化された。リチウムイオン電池は、今後電気自動車やハイブリッド電気自動車等に大幅に応用されると考えられている。また、活性炭等の表面での充放電の容量を生かしたウルトラキャパシタも炭素材料無くしては語れない。更に、地球温暖化防止のために自動車用の燃料電池の開発が活発に行われているが、そこでも触媒担体、セパレーター、触媒自体としての応用が考えられている。   In recent years, since the discovery of fullerenes and nanotubes, carbon materials have attracted a great deal of interest not only as substances but also from the viewpoint of application. In particular, carbon materials are considered to be important materials for devices related to environmental and energy problems. For example, the negative electrode of a lithium ion battery used as a power source for mobile devices such as mobile phones has been put into practical use only after there is a carbon material. Lithium ion batteries are expected to be greatly applied to electric vehicles and hybrid electric vehicles in the future. In addition, an ultracapacitor that makes use of the charge / discharge capacity on the surface of activated carbon or the like cannot be described without a carbon material. Furthermore, development of fuel cells for automobiles has been actively carried out to prevent global warming, and applications therefor are also considered as catalyst carriers, separators, and catalysts themselves.

これらの炭素材料を使用する素子の性能向上のために、炭素原子の一部を窒素原子等のヘテロ原子で置換した炭素材料の開発が期待されている。特に、窒素原子で置換した炭素材料は、種々の機能の付与が期待されている。この窒素を含む炭素材料の合成法として、いわゆるポリイミドを不活性ガス雰囲気下で焼成して炭化する方法が知られている(特許文献1参照。)。
特開2004−41748号公報
In order to improve the performance of devices using these carbon materials, development of carbon materials in which some of the carbon atoms are substituted with hetero atoms such as nitrogen atoms is expected. In particular, carbon materials substituted with nitrogen atoms are expected to impart various functions. As a method for synthesizing this carbon material containing nitrogen, a method is known in which a so-called polyimide is baked and carbonized in an inert gas atmosphere (see Patent Document 1).
JP 2004-41748 A

しかしながら、上記方法によって合成される炭素材料は、含まれる窒素の量が少ない。   However, the carbon material synthesized by the above method has a small amount of nitrogen.

本発明は、上記課題を解決するためになされたものであり、本発明に係る炭素材料は、炭素と窒素とを含む炭素材料であって、炭素の六角網面の一部が窒素に置換した構成を有し、炭素に対する窒素の質量比が5.6[質量%]より大きいことを特徴とする。 The present invention has been made to solve the above problems, and the carbon material according to the present invention is a carbon material containing carbon and nitrogen, and a part of the hexagonal mesh surface of carbon is substituted with nitrogen. The composition is characterized in that the mass ratio of nitrogen to carbon is larger than 5.6 [% by mass].

本発明に係る複合材料は、本発明に係る炭素材料と、炭素材料を少なくとも表面に有する基材とを備えることを特徴とする。   A composite material according to the present invention includes the carbon material according to the present invention and a base material having at least a carbon material on a surface thereof.

本発明に係る炭素材料の製造方法は、一般式(I)で表されるジイミン分子骨格
The method for producing a carbon material according to the present invention comprises a diimine molecular skeleton represented by the general formula (I)

を含む高分子を用意し、高分子を酸素を含まない雰囲気の下、500[℃]以上1200[℃]以下の範囲の温度で焼成することを特徴とする。 And a polymer is fired at a temperature in the range of 500 [° C.] to 1200 [° C.] in an atmosphere not containing oxygen.

本発明に係る複合材料の製造方法は、一般式(I)で表されるジイミン分子骨格
The method for producing a composite material according to the present invention comprises a diimine molecular skeleton represented by the general formula (I)

を含む高分子を基材の上に塗布し、高分子が塗布された基材を酸素を含まない雰囲気の下、500[℃]以上1200[℃]以下の範囲の温度で焼成することを特徴とする。 And a polymer coated with the polymer is baked at a temperature in the range of 500 ° C. to 1200 ° C. in an oxygen-free atmosphere. And

本発明によれば、基本骨格が安定で耐食性に優れた炭素材料が提供される。   According to the present invention, a carbon material having a stable basic skeleton and excellent corrosion resistance is provided.

本発明によれば、高度の機能が発現した優れた複合材料が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding composite material with which the high function was expressed is provided.

本発明によれば、窒素を多く含み、基本骨格が安定で耐食性に優れた炭素材料を容易に製造することができる。   According to the present invention, a carbon material containing a large amount of nitrogen, having a stable basic skeleton, and excellent corrosion resistance can be easily produced.

本発明によれば、高度の機能が発現した優れた複合材料を容易に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding composite material with which the high function was expressed can be manufactured easily.

以下、本発明の実施の形態に係る炭素材料、複合材料、炭素材料の製造方法及び複合材料の製造方法を説明する。   Hereinafter, a carbon material, a composite material, a carbon material manufacturing method, and a composite material manufacturing method according to embodiments of the present invention will be described.

図1は、本発明の実施の形態に係る炭素材料のイメージ図である。炭素材料は図1に示すカーボン微粒子1が集合したものである。このカーボン微粒子1は、図1の表面模式図に示すように炭素と窒素とを含み、炭素に対する窒素の質量比が5.6[質量%]より大きい。窒素は、炭素材料の機能化に有効である。このため、炭素に対する窒素の質量比が5.6[質量%]より大きい場合には、基本骨格が安定で耐食性に優れた炭素材料が提供される。このような炭素材料は、燃料電池用の酸素還元触媒、触媒担体、電気化学キャパシター用電極材料及びリチウムイオン電池用負極活物質等に応用できる。   FIG. 1 is an image diagram of a carbon material according to an embodiment of the present invention. The carbon material is a collection of carbon fine particles 1 shown in FIG. As shown in the surface schematic diagram of FIG. 1, the carbon fine particles 1 contain carbon and nitrogen, and the mass ratio of nitrogen to carbon is larger than 5.6 [% by mass]. Nitrogen is effective for functionalizing the carbon material. For this reason, when the mass ratio of nitrogen to carbon is larger than 5.6 [% by mass], a carbon material having a stable basic skeleton and excellent corrosion resistance is provided. Such carbon materials can be applied to oxygen reduction catalysts for fuel cells, catalyst carriers, electrode materials for electrochemical capacitors, negative electrode active materials for lithium ion batteries, and the like.

本発明の実施の形態に係る炭素材料は、炭素と窒素とを含み、低エネルギー窒素と高エネルギー窒素とを含む。低エネルギー窒素は、X線光電子分光法(XPS)によるN1Sスペクトルにおいて、結合エネルギーが397.5[eV]付近にピークを有する。また、高エネルギー窒素は、XPSによるN1Sスペクトルにおいて、結合エネルギーが400.5[eV]付近にピークを有する。図1に示すように、カーボン微粒子1は炭素の六角網面2の一部が低エネルギー窒素3又は高エネルギー窒素4に置換した構成を有する。低エネルギー窒素と高エネルギー窒素の両方を含むことにより、本発明の実施の形態に係る炭素材料は基本骨格が安定で、耐食性に優れる。このような炭素材料は、燃料電池用の酸素還元触媒、触媒担体、電気化学キャパシター用電極材料及びリチウムイオン電池用負極活物質等に応用できる。   The carbon material according to the embodiment of the present invention includes carbon and nitrogen, and includes low energy nitrogen and high energy nitrogen. Low energy nitrogen has a peak in the vicinity of 397.5 [eV] in the N1S spectrum by X-ray photoelectron spectroscopy (XPS). Further, high energy nitrogen has a peak in the vicinity of 400.5 [eV] in the binding energy in the N1S spectrum by XPS. As shown in FIG. 1, the carbon fine particles 1 have a configuration in which a part of the carbon hexagonal network surface 2 is replaced with low energy nitrogen 3 or high energy nitrogen 4. By including both low-energy nitrogen and high-energy nitrogen, the carbon material according to the embodiment of the present invention has a stable basic skeleton and excellent corrosion resistance. Such carbon materials can be applied to oxygen reduction catalysts for fuel cells, catalyst carriers, electrode materials for electrochemical capacitors, negative electrode active materials for lithium ion batteries, and the like.

本発明の実施の形態に係る炭素材料は、一般式(I)で表される1,2−エタンジイミン分子骨格
The carbon material according to the embodiment of the present invention is a 1,2-ethanediimine molecular skeleton represented by the general formula (I)

を含むことが好ましい。図1に示すように、炭素材料表面に一般式(I)で表される1,2−エタンジイミン分子骨格5を有する場合には、1,2−エタンジイミン分子骨格5により金属イオンが配位しやすくなる。このため、このような炭素材料を、例えば燃料電池用の触媒担体として用いた場合には、触媒微粒子の担持のきっかけとなる。 It is preferable to contain. As shown in FIG. 1, when the carbon material has the 1,2-ethanediimine molecular skeleton 5 represented by the general formula (I), the metal ions are easily coordinated by the 1,2-ethanediimine molecular skeleton 5. Become. For this reason, when such a carbon material is used as, for example, a catalyst carrier for a fuel cell, it triggers loading of catalyst fine particles.

本発明の実施の形態に係る炭素材料は、炭素材料と炭素材料を少なくとも表面に有する基材とを備える複合材料として使用可能である。ここで使用される基材は、触媒等に応用する場合には、導電性材料であることが好ましい。導電性材料が少なくとも表面に炭素材料を有する場合には、炭素材料の機能と基材の機能の組み合わせにより、高度の機能が発現した優れた複合材料が提供される。電極触媒に応用する場合には、使用する基材は導電性を有することが好ましい。   The carbon material which concerns on embodiment of this invention can be used as a composite material provided with the base material which has a carbon material and a carbon material on the surface at least. The base material used here is preferably a conductive material when applied to a catalyst or the like. When the conductive material has a carbon material on at least the surface, an excellent composite material exhibiting a high degree of function is provided by a combination of the function of the carbon material and the function of the base material. When applying to an electrode catalyst, it is preferable that the base material to be used has electroconductivity.

上記した炭素材料を得るためには、一般式(I)で表される1,2−エタンジイミン分子骨格
In order to obtain the above carbon material, a 1,2-ethanediimine molecular skeleton represented by the general formula (I)

を含む高分子を用意し、この高分子を酸素を含まない雰囲気の下、500[℃]以上1200[℃]以下の範囲の温度で焼成することによって製造する。この製造方法では、窒素原子を有する1,2−エタンジイミン分子骨格を含む高分子を用いることにより、少ない工程で、材料の機能化に有効な窒素を多く含み、基本骨格が安定で耐食性に優れた炭素材料を容易に製造することができる。この炭素材料は、炭素と窒素とを含み、炭素に対する窒素の質量比が5.6[質量%]より大きい。また、この炭素材料は、炭素と窒素とを含み、低エネルギー窒素と高エネルギー窒素とを含む。更に、1,2−エタンジイミン分子骨格を含む高分子を用いることにより、炭素材料中に1,2−エタンジイミン分子骨格が残存し、基本骨格が安定で耐食性に優れた炭素材料が得られる。焼成する際には、酸素を含まない雰囲気であることが炭化収率を高くするとともに、炭素材料表面の不要な含酸素官能基の導入を防止する点でより好ましく、酸素を含まない雰囲気として、不活性ガス雰囲気や真空等があげられる。焼成温度は500[℃]以上1200[℃]以下の範囲が窒素原子の含有量を大幅に減じない点でより好ましい。焼成温度が500[℃]より低い場合には、炭化が不十分で伝導性が劣るため好ましくない。また、焼成温度が1200[℃]より高い場合には、含有窒素原子が大幅減少する点から好ましくない。 The polymer is prepared by baking the polymer at a temperature in the range of 500 [° C.] to 1200 [° C.] in an atmosphere not containing oxygen. In this production method, by using a polymer containing a 1,2-ethanediimine molecular skeleton having a nitrogen atom, it contains a large amount of nitrogen effective for functionalization of the material in a small number of steps, and the basic skeleton is stable and excellent in corrosion resistance. A carbon material can be easily manufactured. This carbon material contains carbon and nitrogen, and the mass ratio of nitrogen to carbon is larger than 5.6 [% by mass]. The carbon material includes carbon and nitrogen, and includes low energy nitrogen and high energy nitrogen. Furthermore, by using a polymer containing a 1,2-ethanediimine molecular skeleton, a 1,2-ethanediimine molecular skeleton remains in the carbon material, and a carbon material having a stable basic skeleton and excellent corrosion resistance can be obtained. When firing, an atmosphere containing no oxygen is more preferable in terms of increasing the carbonization yield and preventing the introduction of unnecessary oxygen-containing functional groups on the surface of the carbon material. An inert gas atmosphere, a vacuum, etc. are raised. The firing temperature is more preferably in the range of 500 [° C.] to 1200 [° C.] in that the content of nitrogen atoms is not significantly reduced. When the firing temperature is lower than 500 [° C.], carbonization is insufficient and conductivity is inferior, which is not preferable. Moreover, when a calcination temperature is higher than 1200 [degreeC], it is unpreferable from the point that a contained nitrogen atom reduces significantly.

高分子は、2,2‘−ビピリジン分子骨格、又は1,10−フェナントロリン分子骨格を主鎖に含むポリイミドであることが好ましい。この場合には、炭素材料中に1,2−エタンジイミン分子骨格が残存した、窒素を多く含む炭素材料が得られる。2,2‘−ビピリジン分子骨格を有する化合物は、特に、一般式(II)、又は一般式(III)で表されるように、4,4’位置又は5,5’位置にアミノ基を有することが酸無水物と反応して高分子化のためのイミド結合を形成する点から好ましい。
The polymer is preferably a polyimide containing a 2,2′-bipyridine molecular skeleton or a 1,10-phenanthroline molecular skeleton in the main chain. In this case, a carbon material containing a large amount of nitrogen in which a 1,2-ethanediimine molecular skeleton remains in the carbon material is obtained. The compound having a 2,2′-bipyridine molecular skeleton particularly has an amino group at the 4,4′-position or the 5,5′-position as represented by the general formula (II) or the general formula (III). It is preferable from the point of reacting with an acid anhydride to form an imide bond for polymerization.

4,4’位置にアミノ基を有する化合物の例として、一般式(IV)で表される4,4’−ジアミノ−2,2’ビピリジンを次に示す。
As an example of a compound having an amino group at the 4,4 ′ position, 4,4′-diamino-2,2′bipyridine represented by the general formula (IV) is shown below.

1,10−フェナントロリン分子骨格を有する化合物は、特に、一般式(V)、又は一般式(VI)で表されるように、3,8位置又は4,7位置にアミノ基を有することが酸無水物と反応して高分子化のためのイミド結合を形成する点から好ましい。
The compound having a 1,10-phenanthroline molecular skeleton particularly has an amino group at the 3, 8 position or the 4, 7 position as represented by the general formula (V) or (VI). This is preferable in that it reacts with an anhydride to form an imide bond for polymerization.

1,2−エタンジイミン分子骨格を含む高分子(ポリイミド)は、酸無水物、例えばテトラカルボン酸無水物と、ジアミンである4,4’−ジアミノ−2,2’ビピリジンとを反応させて可溶性のポリアミック酸を調製し、このポリアミック酸を真空下で焼成することにより生成する。ここで得られたポリイミドをアルゴン雰囲気下で焼成することにより炭化し、機能化に有効な窒素を多く含む炭素材料が得られる。   A polymer (polyimide) containing a 1,2-ethanediimine molecular skeleton is soluble by reacting an acid anhydride, for example, a tetracarboxylic acid anhydride, with 4,4′-diamino-2,2′bipyridine, which is a diamine. A polyamic acid is prepared, and the polyamic acid is produced by firing under vacuum. The polyimide obtained here is carbonized by firing in an argon atmosphere, and a carbon material containing a large amount of nitrogen effective for functionalization is obtained.

上記した複合材料を得るためには、一般式(I)で表される1,2−エタンジイミン分子骨格
In order to obtain the above composite material, a 1,2-ethanediimine molecular skeleton represented by the general formula (I)

を含む高分子を基材の上に塗布し、この高分子が塗布された基材を酸素を含まない雰囲気の下、500[℃]以上1200[℃]以下の範囲の温度で焼成することによって製造する。この製造方法では、炭素材料の原料となる窒素を有する1,2−エタンジイミン分子骨格を含む高分子を基材に塗布して焼成することにより、少ない工程で、高度の機能が発現した優れた複合材料を容易に製造することができる。 And a base material coated with the polymer is baked at a temperature in the range of 500 ° C. to 1200 ° C. in an oxygen-free atmosphere. To manufacture. In this production method, an excellent composite that has developed high functions in a small number of steps by applying a polymer containing a 1,2-ethanediimine molecular skeleton having nitrogen as a raw material of a carbon material to a base material and baking it. The material can be manufactured easily.

高分子は、2,2‘−ビピリジン分子骨格、又は1,10−フェナントロリン分子骨格を主鎖に含むポリイミドであることが好ましい。この場合には、複合材料中に1,2−エタンジイミン分子骨格が残存した窒素を多く含む複合材料が得られる。   The polymer is preferably a polyimide containing a 2,2′-bipyridine molecular skeleton or a 1,10-phenanthroline molecular skeleton in the main chain. In this case, a composite material containing a large amount of nitrogen in which a 1,2-ethanediimine molecular skeleton remains in the composite material is obtained.

以下、実施例1〜実施例6及び比較例1〜比較例2により本発明について更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples 1 to 6 and Comparative Examples 1 to 2, but the scope of the present invention is not limited thereto.

まず、実施例1〜実施例5、比較例1及び比較例2より、本発明の実施の形態に係る炭素材料の製造方法について説明する。   First, the manufacturing method of the carbon material which concerns on embodiment of this invention is demonstrated from Example 1- Example 5, the comparative example 1, and the comparative example 2. FIG.

1.試料の調製
窒素を大量に含む炭素材料をバルクで合成するため、1,2−エタンジイミン分子骨格を含むポリイミドを合成して、得られたポリイミドをアルゴン雰囲気下で炭化した。図2は、実施例1〜実施例5、比較例1及び比較例2の製造方法を示すフロー図である。炭素材料は、ポリアミック酸を調製するポリアミック酸調製工程S1と、得られたポリアミック酸を用いて製膜を得る製膜工程S2と、得られた製膜に含まれる溶媒を乾燥させる溶媒乾燥工程S3と、溶媒乾燥工程S3で得られた試料を真空下300[℃]にてポリイミド化するポリイミド化工程S4と、得られたポリイミドをアルゴン雰囲気下で焼成して炭化する炭化工程S5とを経て製造される。実施例1〜実施例5では、1,2−エタンジイミン分子骨格を含み、ポリイミドの原料となるジアミンとして、5,5’−ジアミノ−2,2’−ビピリジンを用いた。5,5’−ジアミノ−2,2’−ビピリジンの合成方法は、J. Heterosyslic Chem., 14 (1977) 191.を参考にした。ポリイミドの酸無水物原料として、ピロメリット酸無水物を用いた。溶媒は、十分に乾燥したジメチルアセトアミド(水分5[ppm]以下)を用いた。
1. Preparation of Sample In order to synthesize a carbon material containing a large amount of nitrogen in bulk, a polyimide containing a 1,2-ethanediimine molecular skeleton was synthesized, and the obtained polyimide was carbonized under an argon atmosphere. FIG. 2 is a flowchart showing the manufacturing methods of Examples 1 to 5, Comparative Example 1 and Comparative Example 2. The carbon material includes a polyamic acid preparation step S1 for preparing a polyamic acid, a film forming step S2 for obtaining a film using the obtained polyamic acid, and a solvent drying step S3 for drying a solvent contained in the obtained film formation. And a polyimide forming step S4 for polyimideizing the sample obtained in the solvent drying step S3 at 300 [° C.] under vacuum, and a carbonizing step S5 for firing and carbonizing the obtained polyimide in an argon atmosphere. Is done. In Examples 1 to 5, 5,5′-diamino-2,2′-bipyridine was used as a diamine containing a 1,2-ethanediimine molecular skeleton and serving as a raw material for polyimide. The method for synthesizing 5,5′-diamino-2,2′-bipyridine was referred to J. Heterosyslic Chem., 14 (1977) 191. Pyromellitic anhydride was used as the acid anhydride raw material for polyimide. As the solvent, sufficiently dried dimethylacetamide (moisture 5 ppm or less) was used.

実施例1
実施例1の反応を図3(a)に示す。まず、ポリアミック酸を調製するために、窒素雰囲気のグローブボックス内で2.33[g]の5,5’−ジアミノ−2,2’−ビピリジン12を70[g]のジメチルアセトアミドに加えてよく撹拌して溶解し、この溶液に5,5’−ジアミノ−2,2’−ビピリジン12と等モルのピロメリット酸11を加えて半日撹拌してポリアミック酸を調製した。次に、この混合溶液(ポリアミック酸の溶液)をグローブボックスから外にとりだしてガラス板上に塗布し、温度を90〜100[℃]に設定したデジタルホットプレート上で溶媒を乾燥して膜とした。この膜をガラス基板から剥がして集め、真空容器に入れて真空下300[℃]にて1[時間]熱処理してポリイミド化した。このポリイミド13を密閉式の石英管に入れて、真空引きと高純度アルゴンガス(99.9999[%])によるリークを3回繰り返してから、石英管を通してアルゴンガスを流すように石英管のジョイントを切り替えて、流量30〜50[ml/分]でアルゴンガスを流し続けた。ポリイミドサンプルを中央に置いた石英管を管状電気炉に入れて、電気炉を400[℃/時間]の昇温速度にて900[℃]まで昇温し、900[℃]で1[時間]保持した。その後アルゴン流量を少し増やしてから温度を下げ、室温近くになってからアルゴンガスを止め、炭化したポリイミドを取り出して実施例1の試料とした。
Example 1
The reaction of Example 1 is shown in FIG. First, in order to prepare polyamic acid, 2.33 [g] 5,5′-diamino-2,2′-bipyridine 12 may be added to 70 [g] dimethylacetamide in a glove box in a nitrogen atmosphere. The solution was stirred to dissolve, and 5,5′-diamino-2,2′-bipyridine 12 and equimolar pyromellitic acid 11 were added to this solution and stirred for half a day to prepare a polyamic acid. Next, this mixed solution (polyamic acid solution) is taken out of the glove box and applied onto a glass plate, and the solvent is dried on a digital hot plate set at a temperature of 90 to 100 [° C.] did. This film was peeled off from the glass substrate, collected, put into a vacuum container, and heat-treated at 300 [° C.] under vacuum for 1 [hour] to be polyimideized. This polyimide 13 is put into a sealed quartz tube, vacuuming and leaking with high-purity argon gas (99.9999 [%]) are repeated three times, and then the quartz tube joint is made to allow argon gas to flow through the quartz tube. The argon gas was kept flowing at a flow rate of 30 to 50 [ml / min]. A quartz tube with a polyimide sample placed in the center is placed in a tubular electric furnace, and the electric furnace is heated to 900 [° C.] at a heating rate of 400 [° C./hour] and 1 [hour] at 900 [° C.]. Retained. Thereafter, the argon flow rate was slightly increased and then the temperature was lowered. After the temperature became close to room temperature, the argon gas was stopped, and the carbonized polyimide was taken out to obtain a sample of Example 1.

実施例2
実施例1において5,5’−ジアミノー2,2’−ビピリジンのうち、25[モル%]をジアミノジフェニルエーテルに置き換えた以外は実施例1と同様に処理して実施例2の試料を得た。
Example 2
A sample of Example 2 was obtained in the same manner as in Example 1 except that 25 [mol%] of 5,5′-diamino-2,2′-bipyridine in Example 1 was replaced with diaminodiphenyl ether.

実施例3
実施例1において5,5’−ジアミノー2,2’−ビピリジンのうち、50[モル%]をジアミノジフェニルエーテルに置き換えた以外は実施例1と同様に処理して実施例3の試料を得た。
Example 3
A sample of Example 3 was obtained in the same manner as in Example 1 except that 50 [mol%] of 5,5′-diamino-2,2′-bipyridine in Example 1 was replaced with diaminodiphenyl ether.

実施例4
実施例1において5,5’−ジアミノー2,2’−ビピリジンのうち、75[モル%]をジアミノジフェニルエーテルに置き換えた以外は実施例1と同様に処理して実施例4の試料を得た。
Example 4
A sample of Example 4 was obtained by treating in the same manner as in Example 1 except that 75 [mol%] of 5,5′-diamino-2,2′-bipyridine in Example 1 was replaced with diaminodiphenyl ether.

実施例5
実施例1において管状電気炉の温度を800[℃]まで昇温した以外は実施例1と同様に処理して実施例5の試料を得た。
Example 5
A sample of Example 5 was obtained in the same manner as in Example 1 except that the temperature of the tubular electric furnace was raised to 800 [° C.] in Example 1.

比較例1
比較例1の反応を図3(b)に示す。実施例1において、5,5’−ジアミノー2,2’−ビピリジン12の代わりに標準的なポリイミドの原料となるジアミンとしてジアミノジフェニルエーテル22を用い、使用する溶媒のジメチルアセトアミドの量を40[g]に減らして混合溶液(ポリアミック酸の溶液)を作った。この混合溶液は、少し撹拌していると溶液の粘度が高くなった。1[時間]程度撹拌してから実施例1と同様にガラス板上に塗布して膜を作り、この膜をガラス基板から剥がして集め、真空容器に入れて真空下300[℃]にて1[時間]熱処理してポリイミド23を得た。得られたポリイミド23を実施例1と同様に炭化して比較例1の試料を得た。
Comparative Example 1
The reaction of Comparative Example 1 is shown in FIG. In Example 1, instead of 5,5′-diamino-2,2′-bipyridine 12, diaminodiphenyl ether 22 was used as a diamine as a raw material for standard polyimide, and the amount of dimethylacetamide used as a solvent was 40 [g]. To make a mixed solution (polyamic acid solution). When this mixed solution was slightly stirred, the viscosity of the solution increased. After stirring for about 1 [hour], a film was formed by coating on a glass plate in the same manner as in Example 1. The film was peeled off from the glass substrate and collected, and placed in a vacuum container at 300 [° C.] under vacuum. [Time] Heat treatment was performed to obtain polyimide 23. The obtained polyimide 23 was carbonized in the same manner as in Example 1 to obtain a sample of Comparative Example 1.

比較例2
実施例1において管状電気炉の温度を1300[℃]まで昇温した以外は実施例1と同様に処理して比較例2の試料を得た。
Comparative Example 2
A sample of Comparative Example 2 was obtained in the same manner as in Example 1 except that the temperature of the tubular electric furnace was increased to 1300 [° C.] in Example 1.

得られた試料について、いくつかの分析を行った。分析として、XRD(X線回折)、XPS(X線光電子分光)、元素分析(炭素、水素及び窒素)を行った。XRDの結果を図4に示し、XPSのN1sのスペクトルを図5に示す。また、元素分析によるカーボンに対する窒素の質量比を表1に示す。   Several analyzes were performed on the obtained samples. As the analysis, XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), and elemental analysis (carbon, hydrogen, and nitrogen) were performed. The result of XRD is shown in FIG. 4, and the spectrum of XPS N1s is shown in FIG. Table 1 shows the mass ratio of nitrogen to carbon by elemental analysis.

2.結晶構造の確認(XRD)
得られた試料の結晶構造の確認のために、X線回折測定を行った。装置は、マックスサイエンス社製X線回折装置(MXP18VAHF)を用いた。測定は、電圧40[kV]、電流300[mA]、線源はCuKα線で行った。
2. Confirmation of crystal structure (XRD)
In order to confirm the crystal structure of the obtained sample, X-ray diffraction measurement was performed. The apparatus used was an X-ray diffractometer (MXP18VAHF) manufactured by Max Science. The measurement was performed using a voltage of 40 [kV], a current of 300 [mA], and a source of CuKα rays.

3.窒素の結合状態の確認(XPS)
得られた試料表面の窒素の結合状態の確認は、XPSにより行った。装置は、PHI社製 複合型表面分析装置 Quantum−2000を用いた。測定は、X線源としてMonochromated−AL−kα線(電圧1486.6[eV]、40[W])、光電子取り出し角度45[゜]、測定深さ約4[nm]、測定エリアφ200[μm]にてX線を得られた試料の表面に照射することにより行った。
3. Confirmation of nitrogen binding state (XPS)
Confirmation of the binding state of nitrogen on the obtained sample surface was performed by XPS. The apparatus used was a composite surface analyzer Quantum-2000 manufactured by PHI. Measurement is performed using Monochromated-AL-kα ray (voltage 1486.6 [eV], 40 [W]) as an X-ray source, photoelectron extraction angle 45 [°], measurement depth of about 4 [nm], and measurement area φ200 [μm]. ] Was performed by irradiating the surface of the sample from which X-rays were obtained.

4.組成の確認
合成した試料の組成は、元素分析により確認した。炭素、水素及び窒素の確認にはヤナコ社製有機元素分析装置 CHN CORdER MT−6型を用いた。
4). Confirmation of composition The composition of the synthesized sample was confirmed by elemental analysis. An organic element analyzer CHN CORdER MT-6 manufactured by Yanaco Co., Ltd. was used for confirmation of carbon, hydrogen and nitrogen.

実施例1、実施例3及び比較例1で得られた試料のXRDの結果を図4に示す。図4に示すように、実施例1、実施例3及び比較例1で得られた各試料において、ブロードなピーク31、32を有するスペクトルが観測された。このピーク31、32より、実施例1、実施例3及び比較例1で得られた試料は、六角網面による層構造が形成されていることがわかった。   The XRD results of the samples obtained in Example 1, Example 3 and Comparative Example 1 are shown in FIG. As shown in FIG. 4, in each sample obtained in Example 1, Example 3, and Comparative Example 1, spectra having broad peaks 31 and 32 were observed. From the peaks 31 and 32, it was found that the samples obtained in Example 1, Example 3 and Comparative Example 1 were formed with a layer structure having a hexagonal mesh surface.

次に、実施例1、実施例3及び比較例1で得られた試料のXPSのN1Sスペクトルを図5に示す。図5より、各試料において、結合エネルギーが397.5[eV]付近に低エネルギー窒素由来のピーク41が観測され、結合エネルギーが400.5[eV]付近に高エネルギー窒素由来のピーク42が観測された。各試料において、高エネルギー窒素由来のピーク42は強く、各試料には高エネルギー窒素が多く含まれていることがわかった。これに対し、高エネルギー窒素由来のピーク42に対する低エネルギー窒素由来のピーク41は実施例1で最も強度が強かった。炭素材料の原料の一つであるジアミンの50[モル%]が5,5’−ジアミノー2,2’−ビピリジンである実施例3では、高エネルギー窒素由来のピーク42に対する低エネルギー窒素由来のピーク41は実施例1より弱かった。また、ジアミンとしてジアミノジフェニルエーテルを使用した比較例1では、高エネルギー窒素由来のピーク42に対する低エネルギー窒素由来のピーク41は実施例3よりも弱かった。この結果から、炭素材料の原料の5,5’−ジアミノー2,2’−ビピリジンの割合が高い方が、得られた炭素材料の低エネルギー窒素の含有量が多くなることがわかった。   Next, the XPS N1S spectra of the samples obtained in Example 1, Example 3 and Comparative Example 1 are shown in FIG. From FIG. 5, in each sample, a peak 41 derived from low energy nitrogen is observed near a binding energy of 397.5 [eV], and a peak 42 derived from high energy nitrogen is observed near a binding energy of 400.5 [eV]. It was done. In each sample, the peak 42 derived from high energy nitrogen was strong, and it was found that each sample contained a large amount of high energy nitrogen. On the other hand, the peak 41 derived from low energy nitrogen relative to the peak 42 derived from high energy nitrogen was the strongest in Example 1. In Example 3 in which 50 [mol%] of diamine which is one of the raw materials of the carbon material is 5,5′-diamino-2,2′-bipyridine, the peak derived from low energy nitrogen with respect to peak 42 derived from high energy nitrogen 41 was weaker than Example 1. Moreover, in the comparative example 1 which uses diamino diphenyl ether as a diamine, the peak 41 derived from low energy nitrogen with respect to the peak 42 derived from high energy nitrogen was weaker than Example 3. From this result, it was found that the higher the proportion of 5,5'-diamino-2,2'-bipyridine as the raw material for the carbon material, the higher the content of low energy nitrogen in the obtained carbon material.

実施例1〜実施例5、比較例1及び比較例2で得られた試料の元素分析の結果を、炭素の含有量(質量)に対する窒素の含有量(質量)を表すN/C比を表1に示す。
The results of elemental analysis of the samples obtained in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 are expressed as N / C ratios representing the nitrogen content (mass) relative to the carbon content (mass). It is shown in 1.

表1より、炭素材料の原料の5,5’−ジアミノー2,2’−ビピリジンの割合が高い方が得られた炭素材料中の窒素の含有量が高くなることがわかった。また、比較例2の結果より、焼成温度が1300[℃]と高い場合には、窒素の含有量が低いことがわかった。これは、高温になると抜け始める含有窒素があるためと考えられる。 From Table 1, it was found that the higher the proportion of 5,5'-diamino-2,2'-bipyridine as the raw material for the carbon material, the higher the nitrogen content in the obtained carbon material. Moreover, from the results of Comparative Example 2, it was found that the nitrogen content was low when the firing temperature was as high as 1300 [° C.]. This is thought to be due to the presence of nitrogen that begins to escape at high temperatures.

次に、実施例6より、本発明の実施の形態に係る複合材料について説明する。   Next, the composite material which concerns on embodiment of this invention is demonstrated from Example 6. FIG.

実施例6
図6は、実施例6の製造方法を示すフロー図である。複合材料は、ポリアミック酸を調製するポリアミック酸調製工程S11と、得られたポリアミック酸をアセチレンブラックへコートするコーティング工程S12と、得られた試料に含まれる溶媒を乾燥させる溶媒乾燥工程S13と、溶媒乾燥工程S13で得られた試料を真空下300[℃]にてポリイミド化するポリイミド化工程S14と、得られた試料をアルゴン雰囲気下で焼成して炭化する炭化工程S15とを経て製造される。実施例6では、実施例1のポリアミック酸溶液に、アセチレンブラックを分散させてろ過して乾燥し、実施例1と同様の条件でポリイミド化及び焼成を行った。得られた試料について、XPS、元素分析を行った。
Example 6
FIG. 6 is a flowchart showing the manufacturing method of the sixth embodiment. The composite material includes a polyamic acid preparation step S11 for preparing a polyamic acid, a coating step S12 for coating the obtained polyamic acid on acetylene black, a solvent drying step S13 for drying a solvent contained in the obtained sample, a solvent The sample obtained in the drying step S13 is manufactured through a polyimide forming step S14 in which the sample is polyimideized at 300 [° C.] under vacuum and a carbonizing step S15 in which the obtained sample is baked and carbonized in an argon atmosphere. In Example 6, acetylene black was dispersed in the polyamic acid solution of Example 1, filtered and dried, and subjected to polyimide formation and firing under the same conditions as in Example 1. The obtained sample was subjected to XPS and elemental analysis.

実施例6で得られた試料のXPSのN1Sスペクトルより、図5に示す実施例1のスペクトルと比べて強度が弱いが、低エネルギー窒素由来のピークと高エネルギー窒素由来のピークが観測された。この結果より、アセチレンブラックの表面には、低エネルギー窒素と高エネルギー窒素が存在することがわかった。また、元素分析の結果より、N/Cは0.102であり、窒素の含有量が高いことがわかった。   From the XPS N1S spectrum of the sample obtained in Example 6, the intensity was weaker than the spectrum of Example 1 shown in FIG. 5, but a peak derived from low energy nitrogen and a peak derived from high energy nitrogen were observed. From this result, it was found that low energy nitrogen and high energy nitrogen exist on the surface of acetylene black. From the results of elemental analysis, it was found that N / C was 0.102 and the nitrogen content was high.

実施例1〜実施例6及び比較例1〜比較例2の結果より、本発明の実施の形態に係る炭素材料の製造方法では、窒素原子を多く含み、基本骨格が安定で耐食性に優れた炭素材料を容易に製造することができることがわかった。また、本発明の実施の形態に係る複合材料の製造方法によれば、高度の機能を発現した優れた複合材料を容易に製造することができることがわかった。   From the results of Examples 1 to 6 and Comparative Examples 1 to 2, in the method for producing a carbon material according to the embodiment of the present invention, carbon containing many nitrogen atoms, the basic skeleton is stable, and the corrosion resistance is excellent. It has been found that the material can be easily manufactured. Moreover, according to the manufacturing method of the composite material which concerns on embodiment of this invention, it turned out that the outstanding composite material which expressed the high function can be manufactured easily.

以上、本実施の形態について説明したが、上記実施の形態の開示の一部をなす論述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the present embodiment has been described above, it should not be understood that the description and the drawings, which form part of the disclosure of the above embodiment, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

本発明の実施の形態に係る炭素材料のイメージ図である。It is an image figure of the carbon material which concerns on embodiment of this invention. 実施例1〜実施例5、比較例1及び比較例2の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of Example 1- Example 5, the comparative example 1, and the comparative example 2. FIG. (a)実施例1における反応を示す図である。(b)比較例1における反応を示す図である。(A) It is a figure which shows reaction in Example 1. FIG. (B) It is a figure which shows the reaction in the comparative example 1. FIG. XRDの結果を示す図である。It is a figure which shows the result of XRD. XPSの結果を示す図である。It is a figure which shows the result of XPS. 実施例6の製造方法を示すフロー図である。10 is a flowchart showing a manufacturing method of Example 6. FIG.

符号の説明Explanation of symbols

1 カーボン微粒子(炭素材料)
2 炭素の六角網面
3 低エネルギー窒素
4 高エネルギー窒素
5 1,2−エタンジイミン分子骨格
1 Carbon fine particles (carbon material)
2 Carbon hexagonal network 3 Low energy nitrogen 4 High energy nitrogen 5 1,2-ethanediimine molecular skeleton

Claims (6)

炭素と窒素とを含む炭素材料であって、
前記炭素の六角網面の一部が前記窒素に置換した構成を有し、
前記炭素に対する前記窒素の質量比が5.6[質量%]より大きいことを特徴とする炭素材料。
A carbon material containing carbon and nitrogen,
A portion of the carbon hexagonal mesh surface is substituted with the nitrogen;
A carbon material, wherein a mass ratio of the nitrogen to the carbon is larger than 5.6 [% by mass].
炭素と窒素とを含む炭素材料であって、低エネルギー窒素と、高エネルギー窒素とを含むことを特徴とする炭素材料。   A carbon material containing carbon and nitrogen, wherein the carbon material contains low energy nitrogen and high energy nitrogen. 炭素と窒素とを含み、Including carbon and nitrogen,
前記炭素に対する前記窒素の質量比が5.6[質量%]より大きく、A mass ratio of the nitrogen to the carbon is greater than 5.6 [% by mass];
前記窒素が、低エネルギー窒素と、高エネルギー窒素とを含むことを特徴とする炭素材料。The carbon material, wherein the nitrogen includes low energy nitrogen and high energy nitrogen.
請求項1乃至請求項3のいずれかに係る炭素材料と、前記炭素材料を少なくとも表面に有する基材とを備えることを特徴とする複合材料。   A composite material comprising: the carbon material according to claim 1; and a base material having at least a surface of the carbon material. 一般式(I)で表される1,2−エタンジイミン分子骨格

を含む高分子を用意し、前記高分子を酸素を含まない雰囲気の下、500[℃]以上1200[℃]以下の範囲の温度で焼成することを特徴とする炭素材料の製造方法。
1,2-ethanediimine molecular skeleton represented by the general formula (I)

A method for producing a carbon material, comprising: preparing a polymer containing a carbon, and firing the polymer at a temperature in a range of 500 [° C.] to 1200 [° C.] in an atmosphere not containing oxygen.
前記高分子は、2,2‘−ビピリジン分子骨格、又は1,10−フェナントロリン分子骨格を主鎖に含むポリイミドであることを特徴とする請求項5に記載の炭素材料の製造方法。   6. The method for producing a carbon material according to claim 5, wherein the polymer is a polyimide containing a 2,2′-bipyridine molecular skeleton or a 1,10-phenanthroline molecular skeleton in the main chain.
JP2006083583A 2006-03-24 2006-03-24 Carbon material, composite material, method for producing carbon material, and method for producing composite material Expired - Fee Related JP5098195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006083583A JP5098195B2 (en) 2006-03-24 2006-03-24 Carbon material, composite material, method for producing carbon material, and method for producing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006083583A JP5098195B2 (en) 2006-03-24 2006-03-24 Carbon material, composite material, method for producing carbon material, and method for producing composite material

Publications (2)

Publication Number Publication Date
JP2007254231A JP2007254231A (en) 2007-10-04
JP5098195B2 true JP5098195B2 (en) 2012-12-12

Family

ID=38628851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006083583A Expired - Fee Related JP5098195B2 (en) 2006-03-24 2006-03-24 Carbon material, composite material, method for producing carbon material, and method for producing composite material

Country Status (1)

Country Link
JP (1) JP5098195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785940A (en) * 2020-06-28 2020-10-16 旌德君创科技发展有限公司 Bipyridine tin sheet-shaped composite material and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009295675A (en) * 2008-06-03 2009-12-17 Nippon Zeon Co Ltd Electrode for electrochemical element and electrochemical element
JP5246697B2 (en) * 2008-12-05 2013-07-24 株式会社明電舎 Method for manufacturing electrode for electric double layer capacitor
JP5557564B2 (en) * 2010-03-17 2014-07-23 富士フイルム株式会社 Nitrogen-containing carbon alloy and carbon catalyst using the same
WO2012005180A1 (en) * 2010-07-05 2012-01-12 独立行政法人産業技術総合研究所 Electrode material, electrode containing same, battery, method for producing electrode material precursor, and method for producing electrode material using the method for producing electrode material precursor
JP6268363B2 (en) * 2013-12-25 2018-01-31 パナソニックIpマネジメント株式会社 Carbon material for negative electrode material of sodium ion secondary battery, manufacturing method thereof, and sodium ion secondary battery using the same
DE102016209588A1 (en) * 2016-06-01 2017-12-07 Robert Bosch Gmbh Hybrid supercapacitor with increased energy density

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138070A (en) * 1993-11-15 1995-05-30 Tokai Carbon Co Ltd Production of carbonaceous material coated with glassy carbon
JPH08124569A (en) * 1994-10-25 1996-05-17 Central Glass Co Ltd Negative electrode methrial for lithium secondary battery and lithium secondary battery using this negative electrode metarial
JPH11354120A (en) * 1998-06-10 1999-12-24 Sumitomo Durez Kk Electrode material composition for lithium-ion secondary battery
JP4238416B2 (en) * 1999-05-27 2009-03-18 宇部興産株式会社 Porous carbonized film and method for producing the same
JP2002170574A (en) * 2000-09-21 2002-06-14 Ube Ind Ltd Electrode substrate for fuel cell
JP2003128409A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
DE10243240A1 (en) * 2002-09-17 2004-03-25 Basf Ag Foam useful for electrical and electrochemical applications, comprises at least 70 wt.% of carbon with pores in the cell framework material of 0.2-50 nm in size and a volume of 0.01-0.8 cm3/g
JP4449612B2 (en) * 2004-07-15 2010-04-14 Jsr株式会社 Composition for forming porous carbon film and method for forming porous carbon film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785940A (en) * 2020-06-28 2020-10-16 旌德君创科技发展有限公司 Bipyridine tin sheet-shaped composite material and preparation method thereof
CN111785940B (en) * 2020-06-28 2021-11-26 旌德君创科技发展有限公司 Bipyridine tin sheet-shaped composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2007254231A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Li et al. Enhanced Polysulfide Conversion with Highly Conductive and Electrocatalytic Iodine‐Doped Bismuth Selenide Nanosheets in Lithium–Sulfur Batteries
Mei et al. Porous Ti4O7 particles with interconnected‐pore structure as a high‐efficiency polysulfide mediator for lithium–sulfur batteries
Yang et al. Kinetic enhancement of sulfur cathodes by N‐doped porous graphitic carbon with bound VN nanocrystals
Yang et al. NbSe2 Meets C2N: A 2D‐2D Heterostructure Catalysts as Multifunctional Polysulfide Mediator in Ultra‐Long‐Life Lithium–Sulfur Batteries
Cai et al. Ultrafine Co3Se4 nanoparticles in nitrogen‐doped 3D carbon matrix for high‐stable and long‐cycle‐life lithium sulfur batteries
Gao et al. CoS quantum dot nanoclusters for high‐energy potassium‐ion batteries
Pang et al. Few-layer MoS 2 anchored at nitrogen-doped carbon ribbons for sodium-ion battery anodes with high rate performance
JP5098195B2 (en) Carbon material, composite material, method for producing carbon material, and method for producing composite material
Haghighat-Shishavan et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium
Nithiyanantham et al. Synthesis and characterization of DNA fenced, self-assembled SnO 2 nano-assemblies for supercapacitor applications
JP2021116191A (en) Composite carbon material and lithium-ion secondary battery
Wang et al. Tailored polyimide as positive electrode and polyimide-derived carbon as negative electrode for sodium ion full batteries
Hsieh et al. Iron phthalocyanine supported on 3D nitrogen-doped graphene aerogel as an electrocatalyst for non-aqueous Li− O2 batteries
Kumar et al. Synthesis of graphene-siloxene nanosheet based layered composite materials by tuning its interface chemistry: An efficient anode with overwhelming electrochemical performances for lithium-ion batteries
Zhang et al. A flexible design strategy to modify Ti3C2Tx MXene surface terminations via nucleophilic substitution for long-life Li-S batteries
Wang et al. Metal‐Organic‐Framework‐Derived FeSe2@ Carbon Embedded into Nitrogen‐Doped Graphene Sheets with Binary Conductive Networks for Rechargeable Batteries
Kim et al. Multifunctional Polymeric Phthalocyanine‐Coated Carbon Nanotubes for Efficient Redox Mediators of Lithium–Sulfur Batteries
Wei et al. Ultrafast microwave synthesis of MoTe2@ graphene composites accelerating polysulfide conversion and promoting Li2S nucleation for high-performance Li-S batteries
Wang et al. Understanding the Effect of Preparative Approaches in the Formation of “Flower-like” Li4Ti5O12—Multiwalled Carbon Nanotube Composite Motifs with Performance as High-Rate Anode Materials for Li-Ion Battery Applications
KR102243142B1 (en) Composite comprising molybdenum selenide, and catalyst for hydrogen evolution reaction containing the same
Chen et al. Metal–organic framework-derived nitrogen-doped carbon-confined CoSe 2 anchored on multiwalled carbon nanotube networks as an anode for high-rate sodium-ion batteries
Song et al. Millisecond photothermal carbonization for in-situ fabrication of mesoporous graphitic carbon nanocomposite electrode films
Ruby Raj et al. Extraordinary Ultrahigh‐Capacity and Long Cycle Life Lithium‐Ion Batteries Enabled by Graphitic Carbon Nitride‐Perylene Polyimide Composites
Mei et al. Large‐Scale Synthesis of Nanostructured Carbon‐Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium‐Sulfur Pouch Cells
Thirumal et al. Preparation of two-dimensional sodium-boron phosphide nanosheets used for Na-ion hybrid supercapacitor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees