JP5097928B2 - Method for producing tetraazaporphyrin compound - Google Patents

Method for producing tetraazaporphyrin compound Download PDF

Info

Publication number
JP5097928B2
JP5097928B2 JP2005322814A JP2005322814A JP5097928B2 JP 5097928 B2 JP5097928 B2 JP 5097928B2 JP 2005322814 A JP2005322814 A JP 2005322814A JP 2005322814 A JP2005322814 A JP 2005322814A JP 5097928 B2 JP5097928 B2 JP 5097928B2
Authority
JP
Japan
Prior art keywords
compound
mixture
mol
isomer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005322814A
Other languages
Japanese (ja)
Other versions
JP2007099744A (en
Inventor
幸次 石川
健司 林口
雅巳 増沢
俊郎 成塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Chemical Co Ltd
Original Assignee
Yamada Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Chemical Co Ltd filed Critical Yamada Chemical Co Ltd
Priority to JP2005322814A priority Critical patent/JP5097928B2/en
Publication of JP2007099744A publication Critical patent/JP2007099744A/en
Application granted granted Critical
Publication of JP5097928B2 publication Critical patent/JP5097928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、光記録用色素、光学フィルター用色素などとして有用なテトラアザポルフィリン化合物の製造法に関するものである。  The present invention relates to a method for producing a tetraazaporphyrin compound useful as a dye for optical recording, a dye for optical filters, and the like.

光記録用色素、光学フィルター用色素などとして有用なテトラアザポルフィリン化合物化合物は、下記の文献に開示されている。
特開平11−11015号公報 特開平11−43619号公報 特開2000−275432号公報 これら文献のテトラアザポルフィリン化合物は、「特許文献1」や「特許文献2」にも開示されている様に、次の一般式で示される1,2−ジシアノエチレン化合物のシス体を環化することによって得られる。
Tetraazaporphyrin compound compounds useful as dyes for optical recording and dyes for optical filters are disclosed in the following documents.
JP 11-11015 A Japanese Patent Laid-Open No. 11-43619 JP 2000-275432 A The tetraazaporphyrin compounds of these documents cyclize a cis isomer of a 1,2-dicyanoethylene compound represented by the following general formula as disclosed in “Patent Document 1” and “Patent Document 2”. Can be obtained.

Figure 0005097928
この1,2−ジシアノエチレン化合物のシス体は、アシルシアニドと1置換アセトニトリル誘導体の脱水縮合反応により製造することができるが、「特許文献2」の実施例2によれば、下記する1,2−ジシアノエチレン化合物のシス体(構造式A)3.38gの製造に際して7.51gのトランス体(構造式B)が生成する。
Figure 0005097928
This cis isomer of 1,2-dicyanoethylene compound can be produced by a dehydration condensation reaction of acyl cyanide and a monosubstituted acetonitrile derivative. According to Example 2 of “Patent Document 2”, the following 1,2- In the production of 3.38 g of the cis isomer of the dicyanoethylene compound (Structural Formula A), 7.51 g of the trans isomer (Structural Formula B) is produced.

Figure 0005097928
また、同文献の実施例4によれば下記する1,2−ジシアノエチレン化合物のシス体(構造式C)3.45gの製造に際して12.3gのトランス体(構造式D)が生成する。
Figure 0005097928
In addition, according to Example 4 of the same document, 12.3 g of a trans isomer (structural formula D) is produced when 3.45 g of a cis isomer (structural formula C) of a 1,2-dicyanoethylene compound described below is produced.

Figure 0005097928
Figure 0005097928

本発明は、1,2−ジシアノエチレン化合物の2つの異性体のうちシス体の生成比率の高い製法を探求し、ひいてはテトラアザポルフィリン化合物の収率よい製法を提供せんとするものである。  The present invention seeks a process for producing a high cis isomer among the two isomers of 1,2-dicyanoethylene compound, and therefore provides a process for producing a tetraazaporphyrin compound with high yield.

課題を解決する為の手段Means to solve the problem

即ち本発明は、一般式(1)で示されるアシルシアニドと一般式(2)で示される1置換アセトニトリル誘導体とを、酸性触媒及び塩基性触媒の存在下に脱水反応させることにより一般式(3)で示される1,2−ジシアノエチレン化合物のシス体を製造し、次いでこの1,2−ジシアノエチレン化合物のシス体を環化してテトラアザポルフィリン化合物を製造する方法において、酸性触媒として前記したアシルシアニドの1.5〜2倍当量に相当する四塩化チタンを用いると共に、塩基性触媒として前記したアシルシアニドの2.8〜4倍当量に相当するN−メチルモルホリンを使用することを特徴とするテトラアザポルフィリン化合物の製造法に係るものである。
以下の構造式において、Rはオルト位にハロゲンが置換したフェニル基又は無置換のナフチル基を意味する。
That is, in the present invention, the acyl cyanide represented by the general formula (1) and the 1-substituted acetonitrile derivative represented by the general formula (2) are subjected to a dehydration reaction in the presence of an acidic catalyst and a basic catalyst, whereby the general formula (3) In the method of producing a tetraazaporphyrin compound by cyclization of the cis isomer of 1,2-dicyanoethylene compound represented by the following formula, and then cyclizing the cis isomer of 1,2-dicyanoethylene compound, Tetraazaporphyrin characterized by using titanium tetrachloride corresponding to 1.5 to 2 equivalents and using N-methylmorpholine corresponding to 2.8 to 4 equivalents of acyl cyanide as a basic catalyst. This relates to a method for producing a compound.
In the following structural formulas, R means a phenyl group substituted with a halogen at the ortho position or an unsubstituted naphthyl group.

Figure 0005097928
Figure 0005097928
Figure 0005097928
「特許文献2」には、酸性触媒として、酢酸、四塩化チタン、塩化亜鉛、三フッ化ホウ素などが、また塩基性触媒として、ピリジン、ピペリジン、N−メチルモルホリン、n−メチルピペリジンなどの有機塩基、酢酸ナトリウム、酢酸カリウム、酢酸アンモニウムなどの酢酸塩、炭酸ナトリウム、炭酸カリウムなどの無機塩基が例示されている。
一般式(3)で示される1,2−ジシアノエチレン化合物のシス体は、塩化亜鉛、塩化アルミニウムなどでは得られない。シス体を収率よく得るために、本発明では、酸性触媒として四塩化チタンを用い、塩基性触媒としてN−メチルモルホリンを用いる。
Figure 0005097928
Figure 0005097928
Figure 0005097928
In “Patent Document 2”, acetic acid, titanium tetrachloride, zinc chloride, boron trifluoride and the like are used as acidic catalysts, and organic compounds such as pyridine, piperidine, N-methylmorpholine and n-methylpiperidine are used as basic catalysts. Examples are bases, acetates such as sodium acetate, potassium acetate and ammonium acetate, and inorganic bases such as sodium carbonate and potassium carbonate.
A cis isomer of the 1,2-dicyanoethylene compound represented by the general formula (3) cannot be obtained with zinc chloride, aluminum chloride or the like. In order to obtain a cis isomer with good yield, in the present invention, titanium tetrachloride is used as an acidic catalyst and N-methylmorpholine is used as a basic catalyst.

「特許文献2」の実施例では、いずれの場合もアシルシアニドの3倍当量に相当する酸性触媒と、6倍当量に相当する塩基性触媒を使用している。
一般式(3)で示される1,2−ジシアノエチレン化合物のシス体の生成比率を高めるために、本発明ではアシルシアニドの1.5〜2倍当量に相当する量の四塩化チタンを使用し、アシルシアニド2.8〜4倍当量に相当する量N−メチルモルホリンを使用する。
因みに、アシルシアニド誘導体とモノハロゲノアセトニトリルとの脱水縮合反応により下記の様な1,2−ジシアノエチレン化合物のシス体を得ようとする場合には、四塩化チタンやN−メチルモルホリンの使用量を変えてもシス体、トランス体の生成比率は殆ど変わらず、テトラアザポルフィリン化合物の製造に有効なシス体の生成比率は極めて低い。
In each example of “Patent Document 2”, an acidic catalyst corresponding to 3 times equivalent of acyl cyanide and a basic catalyst corresponding to 6 times equivalent of acyl cyanide are used.
In order to increase the production ratio of the cis isomer of the 1,2-dicyanoethylene compound represented by the general formula (3), the present invention uses an amount of titanium tetrachloride corresponding to 1.5 to 2 equivalents of acyl cyanide, An amount of N-methylmorpholine corresponding to 2.8 to 4 equivalents of acyl cyanide is used.
By the way, when trying to obtain a cis isomer of 1,2-dicyanoethylene compound as shown below by dehydration condensation reaction of acyl cyanide derivative and monohalogenoacetonitrile, the amount of titanium tetrachloride or N-methylmorpholine used is changed. However, the production ratio of the cis isomer and the trans isomer is hardly changed, and the production ratio of the cis isomer effective for the production of the tetraazaporphyrin compound is extremely low.

Figure 0005097928
一般式(3)で示された1,2−ジシアノエチレン化合物のシス体とその異性体であるトランス体との混合物からのシス体の単離は、カラムクロマトグラフィー、あるいは適当な溶剤からの再結晶により行うことが出来る。また、この様な単離操作を施すことなく、シス体とトランス体の混合物のままでもテトラアザポルフィリン化合物の製造に用いることも可能である。
目的とするテトラアザポルフィリン化合物は、前記シス体、又はシス体/トランス体混合物と金属又は金属誘導体とをアルコール系溶媒中で有機塩基共存下で加熱反応することにより得ることが出来る。
上記の反応により得られるテトラアザポルフイリン化合物には、理論的に次の(4−1)〜(4−4)式で示される4種の異性体が存在する。
Figure 0005097928
Isolation of the cis isomer from the mixture of the cis isomer of the 1,2-dicyanoethylene compound represented by the general formula (3) and its isomer, trans isomer, can be carried out by column chromatography or by reconstitution from an appropriate solvent. It can be performed by crystals. Further, without performing such an isolation operation, a mixture of a cis isomer and a trans isomer can be used for production of a tetraazaporphyrin compound.
The target tetraazaporphyrin compound can be obtained by subjecting the cis isomer or cis isomer / trans isomer mixture and a metal or metal derivative to a heat reaction in the presence of an organic base in an alcohol solvent.
In the tetraazaporphyrin compound obtained by the above reaction, there are theoretically four kinds of isomers represented by the following formulas (4-1) to (4-4).

Figure 0005097928
Figure 0005097928
Figure 0005097928
Figure 0005097928
Figure 0005097928
Figure 0005097928
Figure 0005097928
Figure 0005097928

発明の効果Effect of the invention

本発明によれば、1,2−ジシアノエチレン化合物に占めるシス体の比率を格段に大きくすることができ、ひいては最終目的物であるテトラアザポルフィリン化合物を収率よく得ることができる。  According to the present invention, the ratio of the cis isomer to the 1,2-dicyanoethylene compound can be remarkably increased, and as a result, the tetraazaporphyrin compound, which is the final target product, can be obtained with high yield.

1,2−ジシアノエチレン化合物に占めるシス体の比率は、前記したアシルシアニドに対する四塩化チタンの使用量とN−メチルモルホリンの使用量が少なければ少ないほど大きくなる傾向にある。しかしながら、これらの使用量が少なくなると反応が進まず、未反応物が増加してくるため、ひいては最終目的物の収率が悪くなる。
四塩化チタンの望ましい使用量は、前記したアシルシアニドの1.5〜2倍当量に相当する量であり、N−メチルモルホリンの望ましい使用量は、前記したアシルシアニドの2.8〜4倍当量に相当する量である。
The ratio of the cis form in the 1,2-dicyanoethylene compound tends to increase as the amount of titanium tetrachloride and the amount of N-methylmorpholine used relative to the acyl cyanide decreases. However, when the amount of these used decreases, the reaction does not proceed and unreacted substances increase, resulting in a poor yield of the final target product.
Four desirable amount of titanium tetrachloride is an amount equivalent to 1.5 to 2 times equivalent amount of acyl cyanide mentioned above, desirable amount of N- methyl morpholine, of acyl cyanides mentioned above 2.8 to 4 An amount corresponding to a double equivalent.

撹拌機、冷却管、温度計、及び滴下ロートを取り付けた四ツ口反応フラスコにジクロロメタン300mlと四塩化チタン28.4g(0.150mol)を仕込み、この混合物を氷/メタノール/食塩浴中で0℃以下に冷却した。ここに、ピバロイルシアニド11.1g(0.100mol)を0℃以下で滴下し、続いて2−フルオロベンジルシアニド13.5g(0.100mol)を0℃以下で滴下した。次いで、N−メチルモルホリン30.3g(0.300mol)を発熱に注意しながら0℃以下で滴下した。滴下終了後、冷却浴を取り去り、混合物の温度を室温に戻して15時間撹拌した。反応混合物を氷水350mlで希釈して、この希釈液を30分撹拌した。しばらく静置後、ジクロロメタン層を分取してこれを水洗、無水硫酸マグネシウムで脱水乾燥後、ヘキサン100mlと活性白土45gを加えて30分撹拌し、ろ過、ろ液より溶媒を減圧留去して粗製の化合物(a)をそのトランス体との混合物として21.7g得た。  A four-necked reaction flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 300 ml of dichloromethane and 28.4 g (0.150 mol) of titanium tetrachloride, and this mixture was washed in an ice / methanol / saline bath. Cooled below ℃. Here, 11.1 g (0.100 mol) of pivaloyl cyanide was added dropwise at 0 ° C. or less, and then 13.5 g (0.100 mol) of 2-fluorobenzyl cyanide was added dropwise at 0 ° C. or less. Next, 30.3 g (0.300 mol) of N-methylmorpholine was added dropwise at 0 ° C. or less while paying attention to heat generation. After completion of the dropwise addition, the cooling bath was removed, the temperature of the mixture was returned to room temperature, and the mixture was stirred for 15 hours. The reaction mixture was diluted with 350 ml of ice water and the diluted solution was stirred for 30 minutes. After standing for a while, the dichloromethane layer was separated, washed with water, dehydrated and dried over anhydrous magnesium sulfate, 100 ml of hexane and 45 g of activated clay were added, and the mixture was stirred for 30 minutes, filtered, and the solvent was distilled off from the filtrate under reduced pressure. 21.7 g of crude compound (a) was obtained as a mixture with its trans isomer.

得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体73.8%、トランス体15.3%であった。これをトルエン/ヘキサン=1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製を行い化合物(a)を16.0g(収率70.2%)得た。mp:101〜102℃。MS:M=228(分子イオン)。H−NMR(300MHz,CDCl):δ1.15ppm(s,9H),δ7.14〜7.29(m,3H),δ7.44〜7.53(m,1H)。As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was 73.8% cis isomer and 15.3% trans isomer. This was purified by silica gel column chromatography using toluene / hexane = 1/1 as an eluent to obtain 16.0 g of compound (a) (yield: 70.2%). mp: 101-102 ° C. MS: M <+> = 228 (molecular ion). 1 H-NMR (300 MHz, CDCl 3 ): δ 1.15 ppm (s, 9H), δ 7.14-7.29 (m, 3H), δ 7.44-7.53 (m, 1H).

反応条件、及び後処理条件を全て実施例1と同様に行い、粗製の化合物(a)をそのトランス体との混合物として21.8g得た。得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体73.5%、トランス体15.5%であった。これをエタノール27mlに加熱溶解し、この溶液を徐々に0℃まで冷却して、この温度で30分撹拌した。晶析物をろ集し、冷エタノールで洗浄、50℃で乾燥して化合物(a)を12.5g(収率55.0%)得た。GC測定の結果、クロマトグラフ上で占める面積比は98%であった。  Reaction conditions and post-treatment conditions were all carried out in the same manner as in Example 1 to obtain 21.8 g of the crude compound (a) as a mixture with its trans isomer. As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was 73.5% cis isomer and 15.5% trans isomer. This was dissolved by heating in 27 ml of ethanol, and the solution was gradually cooled to 0 ° C. and stirred at this temperature for 30 minutes. The crystallized product was collected by filtration, washed with cold ethanol, and dried at 50 ° C. to obtain 12.5 g (yield 55.0%) of compound (a). As a result of GC measurement, the area ratio occupied on the chromatograph was 98%.

撹拌機、冷却管、温度計、及び滴下ロートを取り付けた四ツ口反応フラスコにジクロロメタン300mlと四塩化チタン37.9g(0.200mol)を仕込み、この混合物を氷/メタノール/食塩浴中で0℃以下に冷却した。ここに、ピバロイルシアニド11.1g(0.100mol)を0℃以下で滴下し、続いて2−フルオロベンジルシアニド13.5g(0.100mol)を0℃以下で滴下した。次いで、N−メチルモルホリン40.4g(0.400mol)を発熱に注意しながら0℃以下で滴下した。滴下終了後、実施例1と同様の操作を施して粗製の化合物(a)をそのトランス体との混合物として21.8g得た。  A four-necked reaction flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 300 ml of dichloromethane and 37.9 g (0.200 mol) of titanium tetrachloride, and this mixture was washed in an ice / methanol / saline bath. Cooled below ℃. Here, 11.1 g (0.100 mol) of pivaloyl cyanide was added dropwise at 0 ° C. or less, and then 13.5 g (0.100 mol) of 2-fluorobenzyl cyanide was added dropwise at 0 ° C. or less. Next, 40.4 g (0.400 mol) of N-methylmorpholine was added dropwise at 0 ° C. or less while paying attention to heat generation. After completion of the dropwise addition, the same operation as in Example 1 was performed to obtain 21.8 g of a crude compound (a) as a mixture with its trans isomer.

得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体72.5%、トランス体17.6%であった。トルエン/ヘキサン=1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製を行い化合物(a)を14.9g(収率65.3%)得た。  As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was cis isomer 72.5% and trans isomer 17.6%. Purification was performed by silica gel column chromatography using toluene / hexane = 1/1 as an eluent to obtain 14.9 g (yield: 65.3%) of compound (a).

Figure 0005097928
Figure 0005097928

撹拌機、冷却管、温度計、及び滴下ロートを取り付けた四ツ口反応フラスコにジクロロメタン300mlと四塩化チタン28.4g(0.150mol)を仕込み、この混合物を氷/メタノール/食塩浴中で0℃以下に冷却した。ここに、ピバロイルシアニド11.1g(0.100mol)を0℃以下で滴下し、続いて2−クロロベンジルシアニド15.2g(0.100mol)を0℃以下で滴下した。次いで、N−メチルモルホリン30.3g(0.300mol)を発熱に注意しながら0℃以下で滴下した。滴下終了後、冷却浴を取り去り、混合物の温度を室温に戻して12時間撹拌した。反応混合物を氷水35omlで希釈して、この希釈液を30分撹拌した。しばらく静置後、ジクロロメタン層を分取してこれを水洗、無水硫酸マグネシウムで脱水乾燥後、ヘキサン100mlと活性白土45gを加えて30分撹拌し、ろ過、ろ液より溶媒を減圧留去して化合物(b)をそのトランス体との混合物として22.0g得た。  A four-necked reaction flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 300 ml of dichloromethane and 28.4 g (0.150 mol) of titanium tetrachloride, and this mixture was washed in an ice / methanol / saline bath. Cooled below ℃. Here, 11.1 g (0.100 mol) of pivaloyl cyanide was added dropwise at 0 ° C. or less, and then 15.2 g (0.100 mol) of 2-chlorobenzyl cyanide was added dropwise at 0 ° C. or less. Next, 30.3 g (0.300 mol) of N-methylmorpholine was added dropwise at 0 ° C. or less while paying attention to heat generation. After completion of the dropwise addition, the cooling bath was removed, and the temperature of the mixture was returned to room temperature and stirred for 12 hours. The reaction mixture was diluted with 35 ml of ice water and the dilution was stirred for 30 minutes. After standing for a while, the dichloromethane layer was separated, washed with water, dehydrated and dried over anhydrous magnesium sulfate, 100 ml of hexane and 45 g of activated clay were added, and the mixture was stirred for 30 minutes, filtered, and the solvent was distilled off from the filtrate under reduced pressure. 22.0 g of compound (b) was obtained as a mixture with its trans isomer.

得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体77.2%、トランス体18.3%であった。これをトルエン/ヘキサン=1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製を行い化合物(a)を17.6g(収率72.0%)得た。MS:M=244(分子イオン)。As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was 77.2% cis isomer and 18.3% trans isomer. This was purified by silica gel column chromatography using toluene / hexane = 1/1 as an eluent to obtain 17.6 g of compound (a) (yield 72.0%). MS: M + = 244 (molecular ion).

Figure 0005097928
Figure 0005097928

撹拌機、冷却管、温度計、及び滴下ロートを取り付けた四ツ口反応フラスコにジクロロメタン300mlと四塩化チタン28.4g(0.150mol)を仕込み、この混合物を氷/メタノール/食塩浴中で0℃以下に冷却した。ここに、ピバロイルシアニド11.1g(0.100mol)を0℃以下で滴下し、続いて1−ナフチルアセトニトリル16.7g(0.100mol)を0℃以下で滴下した。次いで、N−メチルモルホリン30.3g(0.300mol)を発熱に注意しながら0℃以下で滴下した。滴下終了後、冷却浴を取り去り、混合物の温度を室温に戻して14時間撹拌した。反応混合物を氷水350mlで希釈して、この希釈液を30分撹拌した。しばらく静置後、ジクロロメタン層を分取してこれを水洗、無水硫酸マグネシウムで脱水乾燥後、トルエン100mlと活性白土45gを加えて30分撹拌し、ろ過、ろ液より溶媒を減圧留去して粗製の化合物(c)をそのトランス体との混合物として24.7g得た。  A four-necked reaction flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 300 ml of dichloromethane and 28.4 g (0.150 mol) of titanium tetrachloride, and this mixture was washed in an ice / methanol / saline bath. Cooled below ℃. Here, 11.1 g (0.100 mol) of pivaloyl cyanide was added dropwise at 0 ° C. or lower, and then 16.7 g (0.100 mol) of 1-naphthylacetonitrile was added dropwise at 0 ° C. or lower. Next, 30.3 g (0.300 mol) of N-methylmorpholine was added dropwise at 0 ° C. or less while paying attention to heat generation. After completion of the dropwise addition, the cooling bath was removed, and the temperature of the mixture was returned to room temperature and stirred for 14 hours. The reaction mixture was diluted with 350 ml of ice water and the diluted solution was stirred for 30 minutes. After standing for a while, the dichloromethane layer was separated, washed with water, dehydrated and dried over anhydrous magnesium sulfate, 100 ml of toluene and 45 g of activated clay were added, stirred for 30 minutes, filtered, and the solvent was distilled off from the filtrate under reduced pressure. 24.7 g of crude compound (c) was obtained as a mixture with its trans isomer.

得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体70.0%、トランス体13.3%であった。これをトルエン/ヘキサン=1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製を行い化合物(c)を18.7g(収率72.0%)得た。MS:M=260(分子イオン)。As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was 70.0% cis isomer and 13.3% trans isomer. This was purified by silica gel column chromatography using toluene / hexane = 1/1 as an eluent to obtain 18.7 g (yield 72.0%) of compound (c). MS: M + = 260 (molecular ion).

Figure 0005097928
Figure 0005097928

撹拌機、冷却管、温度計を取り付けた四ツ口反応フラスコに化合物(a)2.28g(0.0100mol)、塩化銅(I)0.33g(0.0033mol)、及び1−ペンタノール30mlを仕込み、この混合物を窒素気流下で100℃に昇温し、この温度でDBU1.52g(0.0100mol)を30分かけて滴下した。滴下終了後、この混合物を125℃に昇温して、この温度で窒素気流下8時間撹拌した。放冷後、反応混合物をメタノール100mlで希釈して、この希釈液に撹拌下で水50mlを滴下して色素を晶析させた。これをろ集、メタノール/水=2/1で洗浄後、100℃で乾燥して2.01gの青紫色結晶を得た。これをヘキサン/トルエン=10/1〜1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製して色素(a)−1〜(a)−4の混合物を1.46g(収率60.0%)得た。この4種の異性体混合物のクロロホルム中でのλmaxは593.5nm、モル吸光係数εは135000であった。  In a four-necked reaction flask equipped with a stirrer, a condenser, and a thermometer, compound (a) 2.28 g (0.0100 mol), copper (I) chloride 0.33 g (0.0033 mol), and 1-pentanol 30 ml The mixture was heated to 100 ° C. under a nitrogen stream, and 1.52 g (0.0100 mol) of DBU was added dropwise at this temperature over 30 minutes. After completion of dropping, the mixture was heated to 125 ° C. and stirred at this temperature for 8 hours under a nitrogen stream. After allowing to cool, the reaction mixture was diluted with 100 ml of methanol, and 50 ml of water was added dropwise to the diluted solution with stirring to crystallize the dye. This was collected by filtration, washed with methanol / water = 2/1, and dried at 100 ° C. to obtain 2.01 g of blue-violet crystals. This was purified by silica gel column chromatography using hexane / toluene = 10/1 to 1/1 as an eluent to obtain 1.46 g (yield 60.0) of a mixture of dyes (a) -1 to (a) -4. %)Obtained. Λmax of these four isomer mixtures in chloroform was 593.5 nm and molar extinction coefficient ε was 135,000.

Figure 0005097928
Figure 0005097928

撹拌機、冷却管、温度計を取り付けた四ツ口反応フラスコに化合物(b)2.44g(0.0100mol)、塩化銅(I)0.33g(0.0033mol)、及び1−ペンタノール30mlを仕込み、この混合物を窒素気流下で100℃に昇温し、この温度でDBU1.52g(0.0100mol)を30分かけて滴下した。滴下終了後、この混合物を125℃に昇温して、この温度で窒素気流下7時間撹拌した。放冷後、反応混合物をメタノール100mlで希釈して、この希釈液に撹拌下で水30mlを滴下して色素を晶析させた。これをろ集、メタノール/水=3/1で洗浄後、100℃で乾燥して2.03gの青紫色結晶を得た。これをヘキサン/トルエン=10/1〜1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製して色素(b)−1〜(b)−4の混合物を1.51g(収率58.0%)得た。この4種の異性体混合物のクロロホルム中でのλmaxは593.5nm、モル吸光係数εは124000であった。  In a four-necked reaction flask equipped with a stirrer, a condenser, and a thermometer, 2.44 g (0.0100 mol) of compound (b), 0.33 g (0.0033 mol) of copper (I) chloride, and 30 ml of 1-pentanol. The mixture was heated to 100 ° C. under a nitrogen stream, and 1.52 g (0.0100 mol) of DBU was added dropwise at this temperature over 30 minutes. After completion of the dropwise addition, the mixture was heated to 125 ° C. and stirred at this temperature for 7 hours under a nitrogen stream. After allowing to cool, the reaction mixture was diluted with 100 ml of methanol, and 30 ml of water was added dropwise to the diluted solution with stirring to crystallize the dye. This was collected by filtration, washed with methanol / water = 3/1, and dried at 100 ° C. to obtain 2.03 g of blue-violet crystals. This was purified by silica gel column chromatography using hexane / toluene = 10/1 to 1/1 as an eluent to obtain 1.51 g of a mixture of dyes (b) -1 to (b) -4 (yield 58.0). %)Obtained. Λmax in chloroform of this mixture of four isomers was 593.5 nm, and the molar extinction coefficient ε was 124000.

Figure 0005097928
Figure 0005097928

撹拌機、冷却管、温度計を取り付けた四ツ口反応フラスコに化合物(c)3.00g(0.0115mol)、ホルムアミド1.04g(0.0230mol)、三塩化バナジウム0.72g(0.0046mol)、及び1−ペンタノール25mlを仕込み、この混合物を窒素気流下で75℃に昇温し、この温度でDBU1.40g(0.00920mol)を45分かけて滴下した。滴下終了後、この混合物を120℃に昇温して、この温度で窒素気流下18時間撹拌した。放冷後、反応混合物をメタノール100mlで希釈して、この希釈液に撹拌下で水15mlを滴下して色素を晶析させた。これをろ集、メタノール/水=3/1で洗浄後、100℃で乾燥して2.40gの青色結晶を得た。これをヘキサン/トルエン=5/1〜1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製して色素(c)−1〜(c)−4の混合物を1.93g(収率60.6%)得た。この4種の異性体混合物のクロロホルム中でのλmaxは609.0nm、モル吸光係数εは131000であった。  Compound (c) 3.00 g (0.0115 mol), formamide 1.04 g (0.0230 mol), vanadium trichloride 0.72 g (0.0046 mol) in a four-necked reaction flask equipped with a stirrer, condenser, and thermometer ) And 25 ml of 1-pentanol, the mixture was heated to 75 ° C. under a nitrogen stream, and 1.40 g (0.00920 mol) of DBU was added dropwise at this temperature over 45 minutes. After completion of the dropwise addition, the mixture was heated to 120 ° C. and stirred at this temperature for 18 hours under a nitrogen stream. After allowing to cool, the reaction mixture was diluted with 100 ml of methanol, and 15 ml of water was added dropwise to the diluted solution with stirring to crystallize the dye. This was collected by filtration, washed with methanol / water = 3/1, and then dried at 100 ° C. to obtain 2.40 g of blue crystals. This was purified by silica gel column chromatography using hexane / toluene = 5/1 to 1/1 as an eluent to obtain 1.93 g of a mixture of dyes (c) -1 to (c) -4 (yield 60.6). %)Obtained. Λmax of this four isomer mixture in chloroform was 609.0 nm, and the molar extinction coefficient ε was 131000.

Figure 0005097928
Figure 0005097928

比較例1Comparative Example 1

撹拌機、冷却管、温度計、及び滴下ロートを取り付けた四ツ口反応フラスコにジクロロメタン300mlと四塩化チタン56.9g(0.300mol)を仕込み、この混合物を氷/メタノール/食塩浴中で0℃以下に冷却した。ここに、ピバロイルシアニド11.1g(0.100mol)を0℃以下で滴下し、続いて2−フルオロベンジルシアニド13.5g(0.100mol)を0℃以下で滴下した。次いで、N−メチルモルホリン60.7g(0.600mol)を発熱に注意しながら0℃以下で滴下した。滴下終了後、冷却浴を取り去り、混合物の温度を室温に戻して16時間撹拌した。反応混合物を氷水350mlで希釈して、この希釈液を30分撹拌した。しばらく静置後、ジクロロメタン層を分取してこれを水洗、無水硫酸マグネシウムで脱水乾燥後、ヘキサン100mlと活性白土45gを加えて30分撹拌し、ろ過、ろ液より溶媒を減圧留去して粗製の化合物(a)をそのトランス体との混合物として21.1g得た。  A four-necked reaction flask equipped with a stirrer, a condenser, a thermometer, and a dropping funnel was charged with 300 ml of dichloromethane and 56.9 g (0.300 mol) of titanium tetrachloride, and this mixture was charged in an ice / methanol / saline bath. Cooled below ℃. Here, 11.1 g (0.100 mol) of pivaloyl cyanide was added dropwise at 0 ° C. or less, and then 13.5 g (0.100 mol) of 2-fluorobenzyl cyanide was added dropwise at 0 ° C. or less. Next, 60.7 g (0.600 mol) of N-methylmorpholine was added dropwise at 0 ° C. or less while paying attention to heat generation. After completion of the dropwise addition, the cooling bath was removed, and the temperature of the mixture was returned to room temperature and stirred for 16 hours. The reaction mixture was diluted with 350 ml of ice water and the diluted solution was stirred for 30 minutes. After standing for a while, the dichloromethane layer was separated, washed with water, dehydrated and dried over anhydrous magnesium sulfate, 100 ml of hexane and 45 g of activated clay were added, and the mixture was stirred for 30 minutes, filtered, and the solvent was distilled off from the filtrate under reduced pressure. 21.1 g of crude compound (a) was obtained as a mixture with its trans isomer.

得られた粗生成物をGC測定した結果、それぞれの異性体の占めるクロマトグラフ上のピーク面積比はシス体45.0%、トランス体35.3%であった。これをトルエン/ヘキサン=1/1を溶離液としたシリカゲルカラムクロマトグラフィーにより精製を行い化合物(a)を9.71g(収率42.6%)得た。  As a result of GC measurement of the obtained crude product, the peak area ratio on the chromatograph occupied by each isomer was cis isomer 45.0% and trans isomer 35.3%. This was purified by silica gel column chromatography using toluene / hexane = 1/1 as an eluent to obtain 9.71 g (yield 42.6%) of compound (a).

Claims (1)

一般式(1)で示されるアシルシアニドと一般式(2)で示される1置換アセトニトリル誘導体とを、酸性触媒及び塩基性触媒の存在下に脱水反応させることにより一般式(3)で示される1,2−ジシアノエチレン化合物のシス体を製造し、次いでこの1,2−ジシアノエチレン化合物のシス体を環化してテトラアザポルフィリン化合物を製造する方法において、酸性触媒として前記したアシルシアニドの1.5〜2倍当量に相当する四塩化チタンを用いると共に、塩基性触媒として前記したアシルシアニドの2.8〜4倍当量に相当するN−メチルモルホリンを使用することを特徴とするテトラアザポルフィリン化合物の製造法。
以下の構造式において、Rはオルト位にハロゲンが置換したフェニル基又は無置換のナフチル基を意味する。
Figure 0005097928
Figure 0005097928
Figure 0005097928
The dehydration reaction of the acyl cyanide represented by the general formula (1) and the monosubstituted acetonitrile derivative represented by the general formula (2) in the presence of an acidic catalyst and a basic catalyst results in 1, In a method for producing a tetraazaporphyrin compound by producing a cis isomer of a 2- dicyanoethylene compound and then cyclizing the cis isomer of the 1,2-dicyanoethylene compound, 1.5 to 2 of the above-mentioned acyl cyanide as an acidic catalyst A method for producing a tetraazaporphyrin compound, characterized in that titanium tetrachloride corresponding to a double equivalent is used and N-methylmorpholine corresponding to 2.8 to 4 equivalents of the above-mentioned acyl cyanide is used as a basic catalyst.
In the following structural formulas, R means a phenyl group substituted with a halogen at the ortho position or an unsubstituted naphthyl group.
Figure 0005097928
Figure 0005097928
Figure 0005097928
JP2005322814A 2005-10-07 2005-10-07 Method for producing tetraazaporphyrin compound Active JP5097928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322814A JP5097928B2 (en) 2005-10-07 2005-10-07 Method for producing tetraazaporphyrin compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322814A JP5097928B2 (en) 2005-10-07 2005-10-07 Method for producing tetraazaporphyrin compound

Publications (2)

Publication Number Publication Date
JP2007099744A JP2007099744A (en) 2007-04-19
JP5097928B2 true JP5097928B2 (en) 2012-12-12

Family

ID=38027024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322814A Active JP5097928B2 (en) 2005-10-07 2005-10-07 Method for producing tetraazaporphyrin compound

Country Status (1)

Country Link
JP (1) JP5097928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696049B2 (en) 2007-04-05 2014-04-15 Nissan Motor Co., Ltd. Vehicle body structure
JPWO2012020570A1 (en) 2010-08-12 2013-10-28 三井化学株式会社 Plastic polarizing lens, manufacturing method thereof, and polarizing film
JP6142397B2 (en) * 2012-12-28 2017-06-07 山田化学工業株式会社 Color correction filter and illumination device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3742487B2 (en) * 1997-06-20 2006-02-01 三井化学株式会社 Optical recording medium
JP3961078B2 (en) * 1997-07-25 2007-08-15 株式会社リコー Method for producing dicyanoethylene compound

Also Published As

Publication number Publication date
JP2007099744A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP3202607B2 (en) Method for producing 2- (4-alkoxy-3-cyanophenyl) thiazole derivative
EP1077212B1 (en) Process for producing 6-cyanomethyl-1,3-dioxane-4-acetic acid derivatives
JP5208239B2 (en) Novel production method of anticancer active tricyclic compounds by alkyne coupling
SG187565A1 (en) Process for preparing benzofuran derivatives substituted at position 5
CN111201212A (en) Synthesis method of feloxicib and intermediate thereof
JPH05125051A (en) Synthesis of substituted (quinolin-2-yl- methoxy)phenyl acetic acid with uniform stereostructure
JP5097928B2 (en) Method for producing tetraazaporphyrin compound
HU178354B (en) Process for preparing 5-substituted 1,2-dihydro-3h-pyrrolo/1,2-a/-pyrrol-1-carboxylic acid derivatives from the corresponding nitriles
WO2004005276A1 (en) Process for preparation of 1,3-benzodioxole-2-spiro- cycloalkane derivatives
KR20060056375A (en) Novel process for the preparation of 2h-chromenes
JP5207516B2 (en) Method for producing 2,3-dicyanonaphthalene derivative
JP2009132624A (en) 2,3-dicyanonaphthalene derivative
HU198200B (en) Process for production of derivatives of quinoline carbonic acid
CA3036642C (en) Method for producing (r)-5-(3,4-difluorophenyl)-5-[(3-methyl-2-oxopyridin-1(2h)-yl)methyl]imidazolidin-2,4-dione and intermediate for producing same
TW201431860A (en) Method for production of 1,2-dihydroquinoline synthetic intermediate
CN113861121B (en) Novel method for generating 2, 3-dihydroxyquinoxaline and derivatives thereof through direct oxidation
JP2004244362A (en) Method for producing 1,2-disubstituted-1,4-dihydro-oxoquinoline derivative
JP2523026B2 (en) α, β-Unsaturated ketone and ketoxime derivatives
JPH0525162A (en) Quinolone derivative and its production
JP3952670B2 (en) Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivatives
Bonini et al. Synthesis and Properties of a New Family of Chiral Mesogens Containing the 2, 3-Dihydrobenzopyran Nucleus
CN118541351A (en) Process for preparing pyrrole compounds and intermediates therefor
JP2724634B2 (en) Optically active 1-phenylpyrrolidone derivatives, intermediates for their production, and methods for their production
JP4449211B2 (en) 6- (1-fluoroethyl) -5-iodo-4-pyrimidone and process for producing the same
JPH02255673A (en) 4-aryloxy-1,3-benzodioxoles and production thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5097928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250