JP5094506B2 - Production method of light olefin - Google Patents
Production method of light olefin Download PDFInfo
- Publication number
- JP5094506B2 JP5094506B2 JP2008088619A JP2008088619A JP5094506B2 JP 5094506 B2 JP5094506 B2 JP 5094506B2 JP 2008088619 A JP2008088619 A JP 2008088619A JP 2008088619 A JP2008088619 A JP 2008088619A JP 5094506 B2 JP5094506 B2 JP 5094506B2
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- catalyst
- light olefin
- producing
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、軽質オレフィンの製造方法に関し、詳しくは、プロピレンを高い収率で得ることができる軽質オレフィンの製造方法に関する。 The present invention relates to a method for producing light olefins, and more particularly to a method for producing light olefins capable of obtaining propylene in a high yield.
各種化学品の基礎原料として重要なエチレン、プロピレン(以下、「軽質オレフィン」と表記する)は、主として、エタン、プロパン、ブタン等のガス状炭化水素あるいはナフサ等の液状炭化水素を原料とし、外熱式の管状炉内で水蒸気雰囲気下に加熱分解する方法で製造されている。しかしながらこの方法では、オレフィン収率を高めるため800℃以上の高温を必要とし、そのために高価な装置材料を使用しなければならないという経済的に不利な点を有している。また、エチレンに対してプロピレンの生成量が少ない、といった課題もある。このため、軽質オレフィン、特にプロピレンをより多く得るための方法として、ゼオライト触媒を用いた炭化水素の接触転換法が種々検討されてきている。 Ethylene and propylene (hereinafter referred to as “light olefins”), which are important as basic raw materials for various chemicals, are mainly made from gaseous hydrocarbons such as ethane, propane, and butane or liquid hydrocarbons such as naphtha. It is manufactured by a method in which it is thermally decomposed in a steam atmosphere in a thermal tubular furnace. However, this method has an economical disadvantage in that it requires a high temperature of 800 ° C. or higher in order to increase the olefin yield, and thus expensive equipment materials must be used. There is also a problem that the amount of propylene produced is smaller than that of ethylene. For this reason, various methods for catalytic conversion of hydrocarbons using zeolite catalysts have been studied as methods for obtaining more light olefins, particularly propylene.
ゼオライト触媒としては、ZSM−5型等のペンタシル型のゼオライトを用いた報告が最も多く、例えば、特許文献1には、アルカリ金属イオン及び/又はアルカリ土類金属イオン型のZSM−5型ゼオライトに、周期表IB族の元素(銀など)を含有させた触媒を用いて、ナフサの反応を行い、エチレン、プロピレン等を製造する方法が記載されている。
この触媒では、「実質的に酸性サイトをもたないように調製することが重要」としている(段落〔0013〕参照)。該特許文献によれば、プロピレンの収率はエチレンの収率よりも低い。
また、特許文献2には、実質的にプロトンを含まず、周期表IB族の元素(銀など)を含有させた触媒を用いて、ブテンの反応を行い、エチレン、プロピレンを製造する方法が開示されている。この触媒については、「IB族金属を対応する陽イオンの状態で含むこと」との記載がある(段落〔0031〕参照)。この触媒は、ゼオライト中のプロトン量(酸量)が、ゼオライト1グラムあたり0.02ミリモル以下であり、「実質的にプロトンを含まない」ことを特徴とする(段落〔0027〕参照)。該特許文献に記載のプロピレン収率は約20質量%である。
As the zeolite catalyst, there are the most reports using a pentasil type zeolite such as ZSM-5 type. For example, Patent Document 1 discloses an alkali metal ion and / or alkaline earth metal ion type ZSM-5 type zeolite. And a method for producing ethylene, propylene, and the like by performing a naphtha reaction using a catalyst containing a group IB element (such as silver) in the periodic table.
In this catalyst, “it is important to prepare so as to have substantially no acidic sites” (see paragraph [0013]). According to the patent document, the yield of propylene is lower than the yield of ethylene.
Patent Document 2 discloses a method for producing ethylene and propylene by reacting butene using a catalyst that is substantially free of protons and contains a group IB element (such as silver) in the periodic table. Has been. As for this catalyst, there is a description that "group IB metal is contained in a corresponding cation state" (see paragraph [0031]). This catalyst is characterized in that the amount of protons (acid amount) in the zeolite is 0.02 mmol or less per gram of zeolite and is “substantially free of protons” (see paragraph [0027]). The propylene yield described in the patent document is about 20% by mass.
一方、上述の特許文献のような周期表IB族の元素(銀など)での修飾ではなく、希土類やリンで修飾したZSM−5型ゼオライトを用いた例も開示されている。例えば、特許文献3には、ZSM−5型ゼオライトを希土類およびリンで修飾した触媒を用い、n−ブタンの反応を行った例が記載されているが、プロピレンの収率は約20質量%であり、エチレンの収率よりも低い(実施例4参照)。さらに、特許文献4には、希土類およびリンに加え、さらにマンガン及び/又はジルコニウムで修飾したZSM−5型ゼオライトを触媒として用い、n−ブタンの反応を行った例が記載されているが、プロピレン収率は約20質量%以下である(実施例8参照)。
また、特許文献4および特許文献5には、銀あるいは銅と、リンで修飾したZSM−5型ゼオライトを触媒として、炭素数3〜10のパラフィンを主体とする炭化水素の接触反応によって、プロピレンが高収率(30〜60質量%)で得られることが記載されているが、ヘリウムガスで高希釈したパルス反応での結果であり、工業的に実施可能な反応条件で連続的にプロピレンが高収率で得られることは報告されていない。
なお、「周期表」の記載としては、上述の従来技術の記載では、引用した特許文献の例にしたがって、非特許文献1に記載の周期表の表記を参考に記載したが、以降の記述では、国際純正・応用化学連合(IUPAC:The International Union of Pure and Applied Chemistry)の周期表「IUPAC Periodic Table of the Elements,October 3th, 2005」にしたがって記載する。したがって、例えば上述の銀などの「IB族」は、IUPACの周期表では、「11族」となる。
On the other hand, an example is also disclosed in which ZSM-5 type zeolite modified with rare earth or phosphorus is used instead of modification with elements of group IB of the periodic table (such as silver) as in the above-mentioned patent document. For example, Patent Document 3 describes an example in which the reaction of n-butane was performed using a catalyst in which ZSM-5 type zeolite was modified with rare earth and phosphorus, but the yield of propylene was about 20% by mass. Yes, lower than the yield of ethylene (see Example 4). Further, Patent Document 4 describes an example in which a reaction of n-butane was performed using ZSM-5 type zeolite modified with manganese and / or zirconium in addition to rare earth and phosphorus as a catalyst. The yield is about 20% by mass or less (see Example 8).
Patent Document 4 and Patent Document 5 disclose propylene by a catalytic reaction of hydrocarbons mainly composed of paraffins having 3 to 10 carbon atoms using silver or copper and ZSM-5 type zeolite modified with phosphorus as a catalyst. Although it is described that it can be obtained in a high yield (30 to 60% by mass), it is a result of a pulse reaction highly diluted with helium gas, and the propylene is continuously high under industrially practicable reaction conditions. No yields have been reported.
In addition, as the description of the “periodic table”, in the above description of the prior art, the description of the periodic table described in Non-Patent Document 1 is described according to the cited patent document, but in the following description, It is described in accordance with the periodic table “IUPAC Periodic Table of the Elements, October 3th, 2005” of the International Union of Pure and Applied Chemistry (IUPAC: The International Union of Pure and Applied Chemistry). Therefore, for example, “Group IB” such as the above-mentioned silver becomes “Group 11” in the periodic table of IUPAC.
本発明は、炭化水素を原料とし、工業的にプロピレンを高い収率で得ることができる軽質オレフィンの製造方法を提供することを目的とするものである。 An object of this invention is to provide the manufacturing method of the light olefin which can obtain propylene industrially with a high yield from a hydrocarbon as a raw material.
本発明者らは、前記課題を解決すべく鋭意研究を進めた結果、特定の元素を含有するゼオライト触媒であって、かつ該特定の元素の粒子径を選択したゼオライト触媒を用いることによって、前記課題を解決し得ることを見出した。本発明はかかる知見に基づいて完成されたものである。すなわち、本発明は、 As a result of diligent research to solve the above problems, the present inventors have used a zeolite catalyst containing a specific element, and using the zeolite catalyst in which the particle size of the specific element is selected. We found that the problem could be solved. The present invention has been completed based on such findings. That is, the present invention
〔1〕炭化水素原料を接触転換させて軽質オレフィンを製造する方法において、リンおよび希土類元素を含有するとともに、周期表10〜12族の元素の少なくとも一種を含有するゼオライトを触媒として用い、かつ、該ゼオライトに担持された10〜12族元素の粒子径が1nm以下であることを特徴とする軽質オレフィンの製造方法、
〔2〕周期表10〜12族の元素が、銀、亜鉛、及びパラジウムの中から選ばれる少なくとも一種の元素である前記〔1〕に記載の軽質オレフィンの製造方法、
〔3〕ゼオライトがペンタシル型のゼオライトである前記〔1〕又は〔2〕に記載の軽質オレフィンの製造方法、
〔4〕ゼオライトが、MFI型構造のゼオライトである前記〔1〕〜〔3〕のいずれかに記載の軽質オレフィンの製造方法、
〔5〕炭化水素原料が、炭素数4以上の炭化水素類を10質量%以上含むものである前記〔1〕〜〔4〕のいずれかに記載の軽質オレフィンの製造方法、
〔6〕炭化水素原料が、ブテン類であることを特徴とする前記〔1〕〜〔5〕のいずれかに記載の軽質オレフィンの製造方法、及び
〔7〕軽質オレフィンが、プロピレンを主成分とするものである前記〔1〕〜〔6〕のいずれかに記載の軽質オレフィンの製造方法、
を提供するものである。
[1] In a method for producing a light olefin by catalytic conversion of a hydrocarbon raw material, using a zeolite containing phosphorus and a rare earth element and containing at least one element of Groups 10 to 12 of the periodic table as a catalyst; and A method for producing a light olefin, wherein the particle size of the group 10-12 element supported on the zeolite is 1 nm or less;
[2] The method for producing a light olefin according to the above [1], wherein the group 10-12 element of the periodic table is at least one element selected from silver, zinc, and palladium,
[3] The method for producing a light olefin according to [1] or [2], wherein the zeolite is a pentasil-type zeolite,
[4] The method for producing a light olefin according to any one of [1] to [3], wherein the zeolite is a zeolite having an MFI type structure,
[5] The method for producing a light olefin according to any one of [1] to [4], wherein the hydrocarbon raw material contains 10% by mass or more of hydrocarbons having 4 or more carbon atoms,
[6] The method for producing a light olefin according to any one of [1] to [5] above, wherein the hydrocarbon raw material is butenes, and [7] the light olefin contains propylene as a main component. The method for producing a light olefin according to any one of [1] to [6],
Is to provide.
本発明によれば、炭化水素原料を原料とし、工業的にプロピレンを高い収率で得ることができる軽質オレフィンの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the light olefin which can use a hydrocarbon raw material as a raw material and can obtain propylene industrially with a high yield can be provided.
本発明は、炭化水素原料を接触転換させて軽質オレフィンを製造する方法において、リンおよび希土類元素を含有するとともに、周期表10〜12族の元素の少なくとも一種を含有するゼオライトを触媒として用い、かつ、該ゼオライトに担持された10〜12族元素の粒子径が1nm以下であることを特徴とする軽質オレフィンの製造方法である。 The present invention provides a method for producing a light olefin by catalytic conversion of a hydrocarbon raw material, using phosphorus and a rare earth element as well as a zeolite containing at least one element of Groups 10 to 12 of the periodic table, and A method for producing a light olefin, wherein the particle size of the group 10-12 element supported on the zeolite is 1 nm or less.
本発明で使用する炭化水素原料としては、常温、常圧でガス状または液状の炭化水素類が使用できる。一般的には、炭素数2〜30、好ましくは2〜20の炭化水素原料が用いられる。このような炭化水素原料としては、例えば、エタン、プロパン、ブタン、ペンタン、ヘキサン等のパラフィン類、ブテン類、ペンテン類、ヘキセン類等のオレフィン類、シクロヘキサン等のナフテン類、あるいはナフサ、軽油等の軽質炭化水素留分を挙げることができる。これらの中で、より多くのプロピレンを生成するために適した原料としては、炭素数4以上の炭化水素類を10質量%以上含有する原料が好ましい。また、ブテン類、ペンテン類、ヘキセン類のような不飽和結合を有する原料が好ましく、特にブテン類を10質量%以上、好ましくは20質量%以上含む原料が適している。ブテン類とは、1−ブテン、2−ブテン、イソブテンのことであり、これらは混合物の状態で使用することができる。 As the hydrocarbon raw material used in the present invention, gaseous or liquid hydrocarbons at normal temperature and normal pressure can be used. Generally, hydrocarbon raw materials having 2 to 30 carbon atoms, preferably 2 to 20 carbon atoms are used. Examples of such hydrocarbon raw materials include paraffins such as ethane, propane, butane, pentane and hexane, olefins such as butenes, pentenes and hexene, naphthenes such as cyclohexane, or naphtha and light oil. A light hydrocarbon fraction can be mentioned. Among these, as a raw material suitable for producing more propylene, a raw material containing 10% by mass or more of hydrocarbons having 4 or more carbon atoms is preferable. In addition, raw materials having an unsaturated bond such as butenes, pentenes, and hexenes are preferable, and in particular, raw materials containing 10% by mass or more, preferably 20% by mass or more of butenes are suitable. Butenes are 1-butene, 2-butene, and isobutene, and these can be used in the state of a mixture.
本発明の触媒は、希土類元素およびリンを含み、周期表10〜12族の元素の少なくとも1種を含有するゼオライトを触媒の主成分とする。該ゼオライトとしては、ペンタシル型のゼオライトが好ましく、特にMFI型構造のものが好ましい。「MFI」は、国際ゼオライト連盟(International Zeolite Association)によって、ある特定の結晶構造を有するゼオライト種に対して付与される構造コードのひとつであり、MFI型構造ゼオライトの代表的なものとしては、ZSM−5及び/又はZSM−11が挙げられる。
また、当該ゼオライトのSiO2/Al2O3比は25〜800、好ましくは40〜600であり、さらに好ましくは60〜300である。
The catalyst of the present invention contains, as a main component of the catalyst, a zeolite containing a rare earth element and phosphorus and containing at least one element of Group 10-12 of the periodic table. As the zeolite, a pentasil type zeolite is preferable, and an MFI type structure is particularly preferable. “MFI” is one of the structural codes given to a zeolite species having a specific crystal structure by the International Zeolite Association. A typical example of MFI type zeolite is ZSM. -5 and / or ZSM-11.
The zeolite has a SiO 2 / Al 2 O 3 ratio of 25 to 800, preferably 40 to 600, and more preferably 60 to 300.
希土類元素としてはどのようなものでも使用できるが、好ましくは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ジスプロシウム等を挙げることができる。希土類元素は、それぞれを単独で使用しても、また、2種以上を混合して使用してもよい。触媒への希土類の修飾は、種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩、あるいはアルコキシド、アセチルアセトナト等を使用し、イオン交換法、含浸法あるいは水熱合成法その他の方法で行うことができる。 Any element can be used as the rare earth element, and preferred examples include lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium and the like. The rare earth elements may be used alone or in combination of two or more. Rare earth modification to the catalyst uses various salts such as acetate, nitrate, halide, sulfate, carbonate, alkoxide, acetylacetonate, etc., ion exchange method, impregnation method or hydrothermal synthesis method, etc. It can be done by the method.
本触媒の性能発現には、希土類元素に加えてリンと、周期表10〜12族の元素の少なくとも1種を触媒に含有させることが必須である。希土類元素、リン、周期表10〜12族の元素での修飾の順序については特に制約はなく、同時に修飾してもよいが、周期表10〜12族の元素、リン、希土類元素、の順で修飾する方がより好ましい。周期表10〜12族の元素としては、銀、亜鉛、パラジウムが好ましく、銀がより好ましい。ゼオライトへの導入は、それぞれの各種化合物を用いたイオン交換法、含浸法あるいは水熱合成法その他の方法で行うことができる。また、リンは、リン酸および/またはリン酸のアンモニウム塩等の水溶液に、ゼオライトを含浸、またはゼオライト上にこれらの水溶液を噴霧することによって担持することができる。リンの担持量は、0.2〜10質量%が好ましく、さらに好ましくは1〜5質量%である。 In order to develop the performance of the present catalyst, it is essential that the catalyst contains phosphorus and at least one element of Groups 10 to 12 of the periodic table in addition to the rare earth element. There is no particular limitation on the order of modification with rare earth elements, phosphorus, and elements of Group 10-12 of the periodic table, and they may be modified simultaneously, but in the order of elements of Group 10-12 of the periodic table, phosphorus, rare earth elements. It is more preferable to modify. As an element of periodic table group 10-12, silver, zinc, and palladium are preferable, and silver is more preferable. The introduction into the zeolite can be performed by an ion exchange method, an impregnation method, a hydrothermal synthesis method, or other methods using various compounds. Phosphorus can be supported by impregnating zeolite in an aqueous solution such as phosphoric acid and / or ammonium salt of phosphoric acid, or by spraying these aqueous solutions on zeolite. The amount of phosphorus supported is preferably 0.2 to 10% by mass, more preferably 1 to 5% by mass.
本触媒での希土類元素、リン、周期表10〜12族の元素はゼオライト上に担持あるいは含有されていることが重要であり、ゼオライトとこれらの修飾剤を物理的に混合しただけでは本触媒の効果は得られない。
本発明の触媒において、希土類元素の含有量は、ゼオライト中のアルミニウムに対し原子比で0.4〜20、好ましくは0.6〜5、さらに好ましくは1〜3であり、これらの値より含有量が少ない場合は副生成物である重質コークや芳香族が多くなり、含有量が多すぎる場合は触媒活性が低くなりプロピレン収率が低下する。一方、周期表10〜12族の元素の含有量は、その合計のモル数が、ゼオライト中のアルミニウムのモル数に対し、0.1〜20、好ましくは0.5〜10、さらに好ましくは1〜5であり、これらの値より含有量が少ない場合はプロピレンの生成量が低くなり、含有量が多すぎる場合は触媒活性が低くなる。また、このとき、担持された周期表10〜12族の元素は、ゼオライト上での粒子径を1nm以下となるように制御することが必要である。担持した後のこれらの粒子径が1nmよりも大きいと、触媒活性が著しく低下する。これらの金属の粒子径は、透過型電子顕微鏡(TEM)あるいは、粉末X線回折分析等で測定することができる。
It is important that rare earth elements, phosphorus, and elements of Groups 10 to 12 in the periodic table are supported or contained on the zeolite, and the physical properties of the catalyst can be obtained only by physically mixing the zeolite and these modifiers. There is no effect.
In the catalyst of the present invention, the rare earth element content is 0.4 to 20, preferably 0.6 to 5, and more preferably 1 to 3 in terms of atomic ratio with respect to aluminum in the zeolite. When the amount is small, heavy coke and aromatics, which are by-products, increase, and when the content is too large, the catalytic activity is lowered and the propylene yield is reduced. On the other hand, the content of the elements of Group 10-12 of the periodic table is such that the total number of moles is 0.1-20, preferably 0.5-10, more preferably 1 with respect to the number of moles of aluminum in the zeolite. When the content is less than these values, the amount of propylene produced is low, and when the content is too high, the catalytic activity is low. At this time, it is necessary to control the supported elements of Groups 10 to 12 of the periodic table so that the particle diameter on zeolite is 1 nm or less. When these particle diameters after loading are larger than 1 nm, the catalytic activity is remarkably lowered. The particle diameter of these metals can be measured with a transmission electron microscope (TEM), powder X-ray diffraction analysis, or the like.
本発明の触媒の形状は特に限定されず、粉末や成型品等のいずれの形状のものでもよい。また、これらの触媒はゼオライトおよび希土類元素、リン、周期表10〜12族の元素以外の他の成分、例えばアルカリ元素、アルカリ土類元素、各種バインダー等が含まれていてもよい。シリカ、アルミナ、マグネシアあるいは石英砂等の充填剤と混合して使用することも可能である。
本発明の接触転換反応の様式は特に限定しないが、固定床、移動床、流動床等の形式の反応器を使用し、上記の触媒を充填した触媒層へ炭化水素原料を供給することにより行われる。このとき炭化水素原料は、窒素、水素、ヘリウムあるいはスチーム等で希釈されていてもよい。反応温度は350〜780℃、好ましくは450〜650℃、さらに好ましくは500〜600℃の範囲である。780℃を越える温度でも実施できるが、メタンおよびコークの生成が急増する。また350℃以下では十分な活性が得られないため、一回通過あたりのプロピレン収量が少なくなる。反応圧力は常圧、減圧あるいは加圧のいずれでも実施できるが、通常は常圧からやや加圧が採用される。
以上のような条件下に本発明の方法を実施すれば、炭化水素原料から、軽質オレフィン特にプロピレンを選択的に製造することができる。
The shape of the catalyst of the present invention is not particularly limited, and may be any shape such as powder or molded product. In addition, these catalysts may contain other components other than zeolite and rare earth elements, phosphorus, and elements of Groups 10 to 12 of the periodic table, such as alkali elements, alkaline earth elements, various binders, and the like. It is also possible to use a mixture with a filler such as silica, alumina, magnesia or quartz sand.
The mode of the catalytic conversion reaction of the present invention is not particularly limited, but it is performed by supplying a hydrocarbon raw material to the catalyst bed filled with the above catalyst using a reactor of a fixed bed, moving bed, fluidized bed or the like. Is called. At this time, the hydrocarbon raw material may be diluted with nitrogen, hydrogen, helium, steam or the like. The reaction temperature ranges from 350 to 780 ° C, preferably from 450 to 650 ° C, more preferably from 500 to 600 ° C. Although it can be carried out at temperatures above 780 ° C., the production of methane and coke increases rapidly. Moreover, since sufficient activity cannot be obtained at 350 ° C. or lower, the yield of propylene per pass is reduced. The reaction pressure can be any of normal pressure, reduced pressure, or increased pressure. Usually, normal pressure or slightly increased pressure is employed.
When the method of the present invention is carried out under the above conditions, light olefins, particularly propylene, can be selectively produced from hydrocarbon raw materials.
以下に本発明の実施例を挙げてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in further detail with reference to examples, but the present invention is not limited to these examples.
実施例1
〔ゼオライト触媒の調製〕
ゼオライトとして粉末状のプロトン型ZSM−5ゼオライト(ケイ光X線分析で測定したSiO2/Al2O3比=60、比表面積350m2/g、粒子径150μm以下)100重量部を、硝酸銀を含む水溶液(1.575重量部の硝酸銀を脱イオン水1000重量部に溶解させたもの)に含浸し、40℃で2時間攪拌した。生成したスラリーを減圧下、40〜60℃で攪拌しながら約2時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃で8時間乾燥した後、マッフル炉内で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた固体を粉砕し、さらに塩化ランタン水溶液(26.7質量部の塩化ランタン7水和物を脱イオン水1000質量部に溶解させたもの)に含浸し、硝酸銀水溶液に含浸したときと同様な操作で乾燥・焼成し、白色の固体を得た。それを乳鉢で粉砕し、リン酸水素二アンモニウム水溶液(リン酸水素二アンモニウム17.1質量部を脱イオン水1000質量部に溶解させたもの)に含浸し、同様な操作で乾燥・焼成し、白色の固体を得た。それを乳鉢で粉砕し、さらにアルミナバインダー25質量部を加えて混練した後に、押出成型して直径1.6mm、長さ約2cmの円柱状の成型体とした(「触媒A」と呼称)。
得られた成型体(触媒A)は、ランタン:6.4質量%、リン:3.0質量%、銀:0.6質量%を含んでいた(蛍光X線分析法で定量、以下同様)。
Example 1
[Preparation of zeolite catalyst]
As zeolite, 100 parts by weight of powdered proton type ZSM-5 zeolite (SiO 2 / Al 2 O 3 ratio measured by fluorescent X-ray analysis = 60, specific surface area 350 m 2 / g, particle diameter 150 μm or less), silver nitrate An aqueous solution (1.575 parts by weight of silver nitrate dissolved in 1000 parts by weight of deionized water) was impregnated and stirred at 40 ° C. for 2 hours. While the resulting slurry was stirred at 40-60 ° C. under reduced pressure, water was evaporated over about 2 hours to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 8 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and calcined at 600 ° C. for 5 hours. The obtained solid was pulverized and further impregnated with an aqueous lanthanum chloride solution (26.7 parts by mass of lanthanum chloride heptahydrate dissolved in 1000 parts by mass of deionized water), and the same as when impregnated with an aqueous silver nitrate solution. The white solid was obtained by drying and calcination by various operations. It is pulverized in a mortar, impregnated in an aqueous diammonium hydrogen phosphate solution (17.1 parts by mass of diammonium hydrogen phosphate dissolved in 1000 parts by mass of deionized water), dried and fired in the same manner, A white solid was obtained. This was pulverized in a mortar, kneaded after adding 25 parts by mass of an alumina binder, and extruded to form a cylindrical molded body having a diameter of 1.6 mm and a length of about 2 cm (referred to as “catalyst A”).
The obtained molded body (catalyst A) contained lanthanum: 6.4% by mass, phosphorus: 3.0% by mass, and silver: 0.6% by mass (quantitatively determined by X-ray fluorescence analysis, the same applies hereinafter). .
上記のように調製した触媒を、日立ハイテクノロジーズ社製HF2200透過型電子顕微鏡(加速電圧200kV)で観察した(観察用の試料は、触媒を乳鉢で粉砕しヘプタン溶媒中に分散した後に、分散液をマイクログリット支持膜付き銅メッシュに滴下し、室温でヘプタンを乾燥することで調製した)。
観察の結果、銀に基づく明確な粒子は観測されず、またX線粉末回折分析でも銀粒子に基づくピークは観測されなかった(X線粉末回折分析は、リガク製RINT UltimaIII型X線回折装置を用い、Cu−Kα線によって測定範囲2θ=5〜80°、X線出力40kV、40mAの条件で測定した)。
これらのことから担持された銀の粒子径は1nm以下となっていることを確認した。
The catalyst prepared as described above was observed with an HF2200 transmission electron microscope (acceleration voltage 200 kV) manufactured by Hitachi High-Technologies Corporation (the observation sample was a dispersion liquid after the catalyst was pulverized in a mortar and dispersed in a heptane solvent. Was dripped onto a copper mesh with a microgrit support film and prepared by drying heptane at room temperature).
As a result of observation, no clear particles based on silver were observed, and no peak based on silver particles was observed in X-ray powder diffraction analysis (X-ray powder diffraction analysis was performed using a RINT Ultimate III X-ray diffractometer manufactured by Rigaku). And measured with Cu-Kα ray under the conditions of measuring range 2θ = 5 to 80 °, X-ray output 40 kV, 40 mA).
From these facts, it was confirmed that the particle diameter of the supported silver was 1 nm or less.
一方、フーリエ変換赤外分光法で触媒Aの赤外分光分析を行ったところ、酸性のプロトンに基づく吸収(3605cm-1)がみられ、酸性プロトンを有していることが確認された。またアンモニアTPD分析で、酸点の量を測定したところ、0.12mmol/gの酸量を有していることがわかった。
なお、フーリエ変換赤外分光分析は、非特許文献2に記載の方法に従い、日本分光株式会社製のフーリエ変換赤外分光光度計FT/IR−550型を使用して実施し、アンモニアTPD分析は、非特許文献3に記載の方法に従って日本ベル株式会社製のTPD−1−AT型を用いて測定した。
On the other hand, when infrared spectroscopic analysis of the catalyst A was performed by Fourier transform infrared spectroscopy, absorption based on acidic protons (3605 cm −1 ) was observed, and it was confirmed that the catalyst had acidic protons. Further, when the amount of acid sites was measured by ammonia TPD analysis, it was found to have an acid amount of 0.12 mmol / g.
The Fourier transform infrared spectroscopic analysis is performed using a Fourier transform infrared spectrophotometer FT / IR-550 type manufactured by JASCO Corporation according to the method described in Non-Patent Document 2, and the ammonia TPD analysis is performed. According to the method described in Non-Patent Document 3, measurement was performed using a TPD-1-AT type manufactured by Nippon Bell Co., Ltd.
非特許文献2:Trends in Physical Chemistry、第1巻、133頁、(T.Sanoら著、1990年)
非特許文献3:ゼオライト、第21巻、第2号、45〜52頁(片田直伸、丹羽幹 著、2004年)
Non-Patent Document 2: Trends in Physical Chemistry, Vol. 1, page 133 (T. Sano et al., 1990)
Non-Patent Document 3: Zeolite, Vol. 21, No. 2, pp. 45-52 (Naoto Katada, Miki Niwa, 2004)
〔軽質オレフィンの製造実験〕
この触媒1gを内径10mmのステンレス製反応管(外径3mmの熱電対用内挿管付き)に充填した。触媒層の上下には石英砂を充填した。このリアクターに空気を40cm3/min(0℃、1気圧換算、以下同じ)で流しながら触媒層の温度を600℃まで昇温し、そのまま1時間前処理を行った。前処理終了後、触媒層の温度を550℃に保持し、原料として1−ブテンを6cm3/min、窒素およびスチームをそれぞれ20cm3/min、1.0g/hの流量で連続的に供給して、1−ブテンの接触転換反応を行った。
原料の供給を開始してから3時間後、活性が安定した時点で、反応器出口の生成物の分析をガスクロマトグラフィーにより行い、生成物収率および原料転化率を次式により算出した。
生成物収率(質量%)=(各成分重量/供給原料重量)×100 (式1)
原料転化率(%)=(1−未反応原料重量/供給原料重量)×100 (式2)
式(1)で算出したプロピレン収率は36.7質量%、式(2)で算出した原料転化率は72.0%であった。
反応生成物の分析結果を、第1表に示す。
[Light olefin production experiment]
1 g of this catalyst was packed into a stainless steel reaction tube having an inner diameter of 10 mm (with an inner tube for thermocouple having an outer diameter of 3 mm). The upper and lower sides of the catalyst layer were filled with quartz sand. The temperature of the catalyst layer was raised to 600 ° C. while flowing air at 40 cm 3 / min (0 ° C., converted to 1 atm, the same applies hereinafter) into this reactor, and pretreatment was performed for 1 hour. After completion of pretreatment, the temperature of the catalyst layer was held at 550 ° C., of 1-butene 6 cm 3 / min, nitrogen and steam was continuously supplied at a flow rate of each 20cm 3 /min,1.0g/h as a raw material Then, the catalytic conversion reaction of 1-butene was performed.
Three hours after starting the feed of the raw material, when the activity was stabilized, the product at the outlet of the reactor was analyzed by gas chromatography, and the product yield and the raw material conversion rate were calculated by the following equations.
Product yield (mass%) = (weight of each component / feed weight) × 100 (Formula 1)
Raw material conversion (%) = (1-unreacted raw material weight / feed raw material weight) × 100 (Formula 2)
The propylene yield calculated by the formula (1) was 36.7% by mass, and the raw material conversion calculated by the formula (2) was 72.0%.
The analysis results of the reaction product are shown in Table 1.
比較例1
〔ゼオライト触媒の調製〕
使用する硝酸銀の量を、7.875質量部とした他は、実施例1と同様にして、希土類、リンおよび銀を含有するゼオライト触媒(触媒B)を調製した。得られた触媒(触媒B)は、ランタン:6.4質量%、リン:3.0質量%、銀:3.0質量%を含んでいた。実施例1と同様な方法で透過型電子顕微鏡およびX線粉末回折分析で、銀の粒子径を調べたところ、観測された銀の粒子径は平均1.2nmであり、1nmよりも大きくなっていた。なお、透過型電子顕微鏡での粒子径の測定は、倍率10万倍で200nm×200nmの領域を3ヶ所以上観測し、その中から無作為に選んだ20nm×20nmの領域5ヶ所について、明瞭に観測可能な粒子の数と長軸方向の長さを、目視で計測して平均した。またX線粉末回折分析では、シェラー式を用いた。
比較例1の触媒は、実施例1と同様に、赤外分光分析では酸性プロトンに基づく吸収がみられ、アンモニアTPD法で測定した酸の量は、0.13mmol/gであった。
Comparative Example 1
[Preparation of zeolite catalyst]
A zeolite catalyst (catalyst B) containing rare earth, phosphorus and silver was prepared in the same manner as in Example 1 except that the amount of silver nitrate used was 7.875 parts by mass. The obtained catalyst (Catalyst B) contained lanthanum: 6.4% by mass, phosphorus: 3.0% by mass, and silver: 3.0% by mass. When the particle diameter of silver was examined by a transmission electron microscope and X-ray powder diffraction analysis in the same manner as in Example 1, the average particle diameter of the observed silver was 1.2 nm, which was larger than 1 nm. It was. The particle size was measured with a transmission electron microscope by observing three or more 200 nm × 200 nm regions at a magnification of 100,000, and clearly identifying five randomly selected 20 nm × 20 nm regions. The number of particles that can be observed and the length in the long axis direction were visually measured and averaged. In the X-ray powder diffraction analysis, the Scherrer equation was used.
As in Example 1, the catalyst of Comparative Example 1 showed absorption based on acidic protons by infrared spectroscopic analysis, and the amount of acid measured by the ammonia TPD method was 0.13 mmol / g.
〔軽質オレフィンの製造実験〕
触媒Bを1g用い、実施例1と同じ条件で、1−ブテンの反応を行った。プロピレン収率は13.8質量%と低く、原料転化率も31.2%と低かった。
反応生成物の分析結果を、第1表に示す。
[Light olefin production experiment]
1 g of catalyst B was used and 1-butene was reacted under the same conditions as in Example 1. The propylene yield was as low as 13.8% by mass, and the raw material conversion was also as low as 31.2%.
The analysis results of the reaction product are shown in Table 1.
実施例2
〔ゼオライト触媒の調製〕
硝酸銀1.575質量部に代えて、硝酸亜鉛6水和物13.65質量部を用いた他は、実施例1と同様にして、希土類、リンおよび亜鉛を含有するゼオライト触媒(触媒C)を調製した。
得られた触媒(触媒C)は、ランタン:6.4質量%、リン:3.0質量%、亜鉛:1.6質量%を含んでいた。透過型電子顕微鏡およびX線粉末回折分析では、亜鉛に基づく明確な粒子は観測されず、担持された亜鉛の粒子径は1nm以下となっていることを確認した。実施例1と同様に、赤外分光分析では酸性プロトンに基づく吸収がみられ、アンモニアTPD法で測定した酸の量は、0.13mmol/gであった。
〔軽質オレフィンの製造実験〕
触媒Cを1g用い、実施例1と同じ条件で、1−ブテンの反応を行った。プロピレン収率は30.3質量%、原料転化率は66.7%であった。
反応生成物の分析結果を、第1表に示す。
Example 2
[Preparation of zeolite catalyst]
A zeolite catalyst (catalyst C) containing rare earth, phosphorus and zinc was prepared in the same manner as in Example 1 except that instead of 1.575 parts by mass of silver nitrate, 13.65 parts by mass of zinc nitrate hexahydrate was used. Prepared.
The obtained catalyst (catalyst C) contained lanthanum: 6.4% by mass, phosphorus: 3.0% by mass, and zinc: 1.6% by mass. In transmission electron microscope and X-ray powder diffraction analysis, no clear particles based on zinc were observed, and it was confirmed that the particle diameter of supported zinc was 1 nm or less. As in Example 1, absorption based on acidic protons was observed in infrared spectroscopic analysis, and the amount of acid measured by the ammonia TPD method was 0.13 mmol / g.
[Light olefin production experiment]
1g of catalyst C was used and 1-butene was reacted under the same conditions as in Example 1. The propylene yield was 30.3% by mass, and the raw material conversion was 66.7%.
The analysis results of the reaction product are shown in Table 1.
実施例3
〔ゼオライト触媒の調製〕
硝酸銀1.575質量部に代えて、硝酸パラジウム2.165質量部を用いた他は、実施例1と同様にして、希土類、リンおよびパラジウムを含有するゼオライト触媒(触媒D)を調製した。
得られた触媒(触媒D)は、ランタン:6.2質量%、リン:3.1質量%、パラジウム:0.6質量%を含んでいた。透過型電子顕微鏡およびX線粉末回折分析では、パラジウムに基づく明確な粒子は観測されず、担持されたパラジウムの粒子径は1nm以下となっていることを確認した。また実施例1と同様に、赤外分光分析では酸性プロトンに基づく吸収がみられ、アンモニアTPD法で測定した酸の量は、0.29mmol/gであった。
〔軽質オレフィンの製造実験〕
触媒Dを1g用い、実施例1と同じ条件で、1−ブテンの反応を行った。プロピレン収率は31.8質量%、原料転化率は83.1%であった。
反応生成物の分析結果を、第1表に示す。
Example 3
[Preparation of zeolite catalyst]
A zeolite catalyst (catalyst D) containing rare earth, phosphorus and palladium was prepared in the same manner as in Example 1 except that 2.165 parts by mass of palladium nitrate was used instead of 1.575 parts by mass of silver nitrate.
The obtained catalyst (catalyst D) contained lanthanum: 6.2% by mass, phosphorus: 3.1% by mass, and palladium: 0.6% by mass. In a transmission electron microscope and X-ray powder diffraction analysis, no clear particles based on palladium were observed, and it was confirmed that the particle diameter of supported palladium was 1 nm or less. Similarly to Example 1, absorption based on acidic protons was observed in infrared spectroscopic analysis, and the amount of acid measured by the ammonia TPD method was 0.29 mmol / g.
[Light olefin production experiment]
1g of catalyst D was used and 1-butene was reacted under the same conditions as in Example 1. The propylene yield was 31.8% by mass, and the raw material conversion was 83.1%.
The analysis results of the reaction product are shown in Table 1.
比較例2
〔ゼオライト触媒の調製〕
実施例1と同様な方法で、塩化ランタンを用いずに、銀とリンのみで修飾したゼオライト触媒(触媒E)を調製した。
透過型電子顕微鏡およびX線粉末回折分析では、銀に基づく明確な粒子は観測されず、担持された銀の粒子径は1nm以下となっていることを確認した。実施例1と同様に、赤外分光分析では酸性プロトンに基づく吸収がみられ、アンモニアTPD法で測定した酸の量は、0.13mmol/gであった。
〔軽質オレフィンの製造実験〕
触媒Eを1g用い、実施例1と同じ条件で、1−ブテンの反応を行った。原料転化率は91.5%と高かったが、プロピレン収率は20.4質量%と低かった。
反応生成物の分析結果を、第1表に示す。
Comparative Example 2
[Preparation of zeolite catalyst]
In the same manner as in Example 1, a zeolite catalyst (catalyst E) modified only with silver and phosphorus was prepared without using lanthanum chloride.
In the transmission electron microscope and X-ray powder diffraction analysis, clear particles based on silver were not observed, and it was confirmed that the particle diameter of the supported silver was 1 nm or less. As in Example 1, absorption based on acidic protons was observed in infrared spectroscopic analysis, and the amount of acid measured by the ammonia TPD method was 0.13 mmol / g.
[Light olefin production experiment]
1 g of catalyst E was used and 1-butene was reacted under the same conditions as in Example 1. The raw material conversion was as high as 91.5%, but the propylene yield was as low as 20.4% by mass.
The analysis results of the reaction product are shown in Table 1.
〔注〕
「C5」:ペンタン、ペンテン類、「C6+」は、炭素数6以上の生成物、
「その他軽質ガス」:水素および炭素数1〜4までの飽和炭化水素
〔note〕
“C5”: pentane, pentenes, “C6 +” is a product having 6 or more carbon atoms,
“Other light gases”: hydrogen and saturated hydrocarbons having 1 to 4 carbon atoms
表1より、実施例1〜3の製造方法では、原料転化率が高く、プロピレンの収率も高く、プロピレンを主成分とする生成物が得ることができることが分る。これに対し、担持した銀の粒子径が1nm以上のゼオライトを用いた比較例1や、希土類を担持しないゼオライトを用いた比較例2の方法では、原料の転化率が低く、プロピレンの収率も低い。 From Table 1, it can be seen that in the production methods of Examples 1 to 3, the raw material conversion rate is high, the yield of propylene is high, and a product containing propylene as a main component can be obtained. On the other hand, in the method of Comparative Example 1 using a zeolite having a supported silver particle diameter of 1 nm or more and the method of Comparative Example 2 using a zeolite that does not support a rare earth, the conversion rate of the raw material is low and the yield of propylene is also low. Low.
本発明の軽質オレフィンの製造方法によれば、炭化水素を原料とし、工業的にプロピレンを高い収率で得ることができる軽質オレフィンの製造方法を提供することができる。したがって、プロピレンを利用する種々の分野において、極めて有用な技術として利用することができる。 According to the light olefin production method of the present invention, it is possible to provide a light olefin production method capable of industrially obtaining propylene in a high yield using hydrocarbon as a raw material. Therefore, it can be utilized as a very useful technique in various fields using propylene.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088619A JP5094506B2 (en) | 2008-03-28 | 2008-03-28 | Production method of light olefin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088619A JP5094506B2 (en) | 2008-03-28 | 2008-03-28 | Production method of light olefin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009242264A JP2009242264A (en) | 2009-10-22 |
JP5094506B2 true JP5094506B2 (en) | 2012-12-12 |
Family
ID=41304617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088619A Expired - Fee Related JP5094506B2 (en) | 2008-03-28 | 2008-03-28 | Production method of light olefin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5094506B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5779398B2 (en) * | 2011-05-13 | 2015-09-16 | 出光興産株式会社 | Method for activating zeolite catalyst |
JP2012241019A (en) * | 2011-05-13 | 2012-12-10 | Idemitsu Kosan Co Ltd | Manufacturing method of light olefin and/or monocyclic aromatic compound |
JP6259455B2 (en) * | 2013-06-07 | 2018-01-10 | 国立大学法人東京工業大学 | Process for producing unsaturated hydrocarbons using metal-containing zeolite catalyst |
CN110678260A (en) * | 2017-05-31 | 2020-01-10 | 古河电气工业株式会社 | Fluid catalytic cracking structure, method for producing same, and fluid catalytic cracking apparatus provided with same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ178543A (en) * | 1974-09-23 | 1978-04-03 | Mobil Oil Corp | Conversion catalyst, crystalline alumin osilicate zeolite containing phosphorus |
JPH0639410B2 (en) * | 1989-01-11 | 1994-05-25 | 軽質留分新用途開発技術研究組合 | Method for producing lower olefin containing propylene as a main component |
JP3741455B2 (en) * | 1994-10-31 | 2006-02-01 | 旭化成ケミカルズ株式会社 | Hydrocarbon conversion catalyst and method for producing lower olefin and monocyclic aromatic hydrocarbon using the same |
JP3072348B2 (en) * | 1997-12-16 | 2000-07-31 | 工業技術院長 | Method for producing lower olefin |
JP4112943B2 (en) * | 2002-10-28 | 2008-07-02 | 出光興産株式会社 | Process for producing olefins by catalytic cracking of hydrocarbons |
JP2005314339A (en) * | 2004-04-30 | 2005-11-10 | Maruzen Petrochem Co Ltd | Method for production of lower olefin |
JP4879574B2 (en) * | 2005-09-16 | 2012-02-22 | 旭化成ケミカルズ株式会社 | Process for producing ethylene and propylene |
JP4714589B2 (en) * | 2006-01-20 | 2011-06-29 | 石油コンビナート高度統合運営技術研究組合 | Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil |
FR2905122B1 (en) * | 2006-08-24 | 2009-07-24 | Inst Francais Du Petrole | PROCESS FOR PRODUCTION OF PROPYLENE IN THE PRESENCE OF A MACROPOROUS CATALYST IN THE FORM OF SPHERICAL BALLS |
-
2008
- 2008-03-28 JP JP2008088619A patent/JP5094506B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009242264A (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100993452B1 (en) | Process for producing olefin by catalytic cracking of hydrocarbon | |
Chen et al. | Dehydrogenation of propane over spinel-type gallia–alumina solid solution catalysts | |
JP2021516146A (en) | Method for producing lower olefin by direct conversion of catalyst and syngas | |
JP5354976B2 (en) | Catalyst for producing light olefins and method for producing light olefins | |
JP2014024005A (en) | Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin | |
JP5094506B2 (en) | Production method of light olefin | |
JP4773451B2 (en) | Hydrocarbon cracking catalyst and method for producing the same | |
US20090326299A1 (en) | Use of a Catalyst Based on Zeolites in the Conversion of Oxygenates to Lower Olefins, and Associated Method | |
US9550178B2 (en) | Stable silicoaluminophosphate catalysts for conversion of alkyl halides to olefins | |
KR20190023054A (en) | Preparation of ZSM-5-based catalyst; use in ethylbenzene dealkylation process | |
CN112439443A (en) | Light olefin skeleton conversion catalyst and preparation method thereof | |
JP3072348B2 (en) | Method for producing lower olefin | |
CN113366088A (en) | Production of C using mixed catalysts comprising gallium metal oxides2To C5Process for paraffinic hydrocarbons | |
CN113993976B (en) | Production of C using hybrid catalysts comprising high acidity microporous components2To C5Process for paraffinic hydrocarbons | |
JP5674029B2 (en) | Propylene and ethylene production method | |
US8921634B2 (en) | Conversion of methane to aromatic compounds using UZM-44 aluminosilicate zeolite | |
US20210114006A1 (en) | Bi-functional catalyst for the production of olefins from synthesis gas | |
RU2585289C1 (en) | Methane aromatisation catalyst, method for production thereof and method of converting methane to produce aromatic hydrocarbons | |
JP4159853B2 (en) | Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same | |
US20240228404A9 (en) | Processes for preparing c2 to c4 hydrocarbons and process for preparing a formed hybrid catalyst | |
WO2024020309A1 (en) | Processes for preparing c2 to c4 hydrocarbons using hybrid catalysts | |
WO2024020524A1 (en) | Methods for preparing c2 to c4 hydrocarbons and formulated hybrid catalysts | |
JP2024040713A (en) | Hydrothermal resistance zinc-containing mfi type zeolite molded body | |
JP2023055080A (en) | Mfi type zeolite and catalyst for hydrocarbon production containing the same | |
TW202135935A (en) | Stable, high selectivity catalysts and catalyst systems, and processes for their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120828 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120918 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |